19.06.2013 Views

Metabolomics - CERM

Metabolomics - CERM

Metabolomics - CERM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Metabolomics</strong><br />

Leonardo Tenori<br />

FiorGen Fundation and<br />

<strong>CERM</strong>


Systems Biology<br />

and the rise of the “-omics”<br />

Omics technologies such as genomics and high-throughput DNA sequencing were introduced in parallel to the<br />

Human Genome Project since 1990s. According to one etymological analysis, the suffix 'ome' is derived from the<br />

Sanskrit OM ("completeness and fullness") (Lederberg and McCray, 2001). Omics technologies and various<br />

neologisms that define their application contexts, however, are more than a simple play on words. They substantially<br />

transformed both the throughput and the design of scientific experiments. The omics technologies allow the<br />

generation of copious amounts of data at multiple levels of biology from gene sequence and expression to protein<br />

and metabolite patterns underlying variability in cellular networks and function of whole organ systems (Nicholson<br />

and Lindon, 2008; Wilke et al., 2008)<br />

Genomics<br />

Study of genes<br />

Epigenomics<br />

The study of the complete set of epigenetic (DNA methylation)<br />

modifications on the genetic material of a cell, known as the<br />

epigenome<br />

Transcriptomics<br />

All the mRNA in a cell/tissue/organism<br />

Proteomics<br />

All the proteins in a cell/tissue/organism<br />

Metallomics<br />

comprehensive analysis of the entirety of metal and metalloid species<br />

within a cell or tissue type<br />

Metabonomics/<strong>Metabolomics</strong><br />

All the metabolites in a cell/tissue/organism


“La metabolomica è l’ultima nata tra le scienze omiche e ha lo scopo di studiare il<br />

metaboloma, che è l’insieme di tutti i metaboliti contenuti in un fluido biologico (o cellula<br />

o tessuto)”.<br />

Cos’è la Metabolomica<br />

Punti di forza: forza<br />

Genomics: the only -omics which is not context dependent<br />

<strong>Metabolomics</strong>: strong environmental influence<br />

L’insieme dei metaboliti rappresenta<br />

l’espressione<br />

l’espressione amplificata amplificata del<br />

genoma<br />

I metaboliti sono caratterizzati da<br />

elevata stabilità. stabilità Ciò permette<br />

una elevata precisione e<br />

riproducibilità delle misure<br />

L’analisi metabolomica scatta<br />

“un’istantanea<br />

un’istantanea” dello stato di<br />

salute o malattia di un soggetto


Genomics is “only” the<br />

start!<br />

Genomics:<br />

the complete blueprint of an individual. What do we need more?<br />

There are 6 million parts in a 747 plane. If someone shows you the<br />

blueprints of all of them one after the other, would you be able to tell how<br />

the plane looks like?<br />

Proteomics:<br />

“only” 30-40,000 proteins.<br />

However, millions of potential interactions that make an “individual”. And the<br />

analysis is still very difficult…<br />

<strong>Metabolomics</strong>:<br />

Only a few thousand metabolites.<br />

However, not negligible external variability.


Metabolomica:<br />

la nuova frontiera<br />

“Genomics and proteomics tell you what<br />

might happen, but metabolomics tells<br />

you what actually did happen”<br />

Bill Lasley - University of California, Davis<br />

“If you have a disease, it’s likely that<br />

your metabolism is going to be<br />

affected. The same is true if you get hit<br />

with a toxicant. To be honest, the<br />

diagnostic potential is staggering”<br />

Mark Viant - University of Birmingham


Since the late 1990s,<br />

such metabolomic<br />

studies have<br />

undergone an<br />

explosive explosive growth growth and and<br />

this trend is still<br />

continuing, with more<br />

than a thousand of<br />

papers published in<br />

2010!<br />

Entries in Pubmed<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Metabonom*<br />

Metabolom*<br />

0<br />

1998 2000 2002 2004 2006 2008 2010 2012<br />

Year


Metabonomics “…measurement of the dynamic multiparametric<br />

metabolic response of living systems to pathophysiological stimuli or<br />

genetic modification…” Nicholson et al., 1999<br />

What’s in a name?<br />

<strong>Metabolomics</strong> “...the complete set of metabolites/low-molecular-weight<br />

intermediates, which are context dependent, varying according to the<br />

physiology, developmental or pathological state of the cell, tissue,<br />

organ or organism…” Oliver 2002


Metabolomica<br />

Analisi del profilo (della della concentrazione di un<br />

particolare metabolita o di una specifica<br />

classe classe)<br />

Analisi dell’impronta (della della presenza e<br />

concentrazione di tutti i metaboliti<br />

evidenziati, sia pure non tutti noti, e dal<br />

confronto con impronte campione per<br />

evidenziare alterazioni dovute a malattie,<br />

esposizione a tossine, alterazioni genetiche<br />

o impatto ambientale)<br />

ambientale


Metabolomica:<br />

alcuni obiettivi<br />

Valutare eventuali correlazioni tra<br />

impronta metabolica e malattia<br />

(sarebbe sarebbe così così possibile possibile disporre disporre di di nuovi nuovi<br />

strumenti strumenti per per approfondire<br />

approfondire le le<br />

conoscenze<br />

conoscenze su su determinate<br />

determinate patologie)<br />

patologie


Metabolomica:<br />

alcuni obiettivi<br />

Cercare di capire se sia possibile diagnosticare<br />

e valutare lo stadio di avanzamento di una<br />

malattia<br />

(una una diagnosi diagnosi più più precoce precoce dei dei tumori tumori di di quella quella<br />

attualmente<br />

attualmente possibile, possibile, per per esempio, esempio,<br />

permetterebbe<br />

permetterebbe di di salvare salvare il il 30 30%% di di malati malati<br />

utilizzando utilizzando ii farmaci farmaci attualmente<br />

attualmente disponibili)<br />

disponibili


Metabolomica:<br />

alcuni obiettivi<br />

Scoprire nuovi biomarker<br />

(quelli quelli attuali attuali utilizzati utilizzati per per la la diagnosi diagnosi di di<br />

alcune alcune patologie patologie potrebbero potrebbero non non<br />

essere essere gli gli unici unici e/o e/o ii più più efficienti)<br />

efficienti


Metabolomica:<br />

alcuni obiettivi<br />

Studiare i metaboliti connessi a specifici<br />

pathway metabolici<br />

(sarebbe sarebbe possibile possibile definire definire dei dei nuovi nuovi<br />

bersagli bersagli per per farmaci farmaci futuri futuri ee valutare valutare<br />

l’impatto l’impatto di di quelli quelli attuali attuali permettendo<br />

permettendo<br />

una una personalizzazione personalizzazione avanzata avanzata della della<br />

terapia)<br />

terapia


The metabolome<br />

consists of what?<br />

Small organic molecules: amino acids, fatty acids,<br />

carbohydrates, vitamins, and lipids<br />

& some inorganic, elemental species<br />

Metabolome informatics resource:<br />

Metabolome informatics resource:<br />

Kyoto Encyclopedia of genes and genomes (kegg)<br />

http://www.genome.jp/kegg/compound<br />

The human metabolome project: metabolomics toolbox<br />

http://www.metabolomics.ca<br />

National Centre for Plants & Microbial <strong>Metabolomics</strong>:<br />

http://www.metabolomics.bbsrc.ac.uk


What is a<br />

Metabolite?<br />

Any organic molecule detectable in the<br />

body with a MW < 1000 Da<br />

Includes peptides, oligonucleotides,<br />

sugars, nucelosides, organic acids,<br />

ketones, aldehydes, amines, amino<br />

acids, lipids, steroids, alkaloids and<br />

drugs (xenobiotics)<br />

Includes human & microbial products<br />

Concentration > 1µM


C om p ound class N u m b er C om p ound cla ss N u m b er<br />

A cyl g lycin es 10 Indoles and indole derivatives 12<br />

A cyl p h osp h ates 10 In organic ions and gases 20<br />

A lcohol p h osp h ates 2 K eto acid s 8<br />

A lcohols an d p olyols 40 K eto nes 6<br />

A ld ehyd es 3 L eukotrienes 8<br />

A lkan es an d alkenes 10 M inerals and elem ents 40<br />

A m in o acid p h osp h ates 1 M iscellaneous 77<br />

A m in o acid s 114 N ucleosides 24<br />

A m in o alcoh ols 14 N ucleotid es 24<br />

A m in o k etones 14 P eptid es 21<br />

A rom atic acid s 22 P hosph olipids 2177<br />

B ile acid s 19 P olyam ines 11<br />

B iotin an d d erivatives 2 P olyphen ols 22<br />

C arb oh ydrates 35 P orphyrin s 6<br />

C arn itin es 22 P rostan oid s 23<br />

C atech olam in es an d d erivatives 21 P terins 14<br />

C ob alam in d erivates 4 P urines and purine d erivatives 11<br />

C oen zym e A d erivatives 1 P yridoxals and derivatives 7<br />

C yclin am in es 9 P yrim idines and pyrim idine derivatives 2<br />

D icarb oxylic acid s 17 Q uinones and derivatives 3<br />

F atty acid s 65 R etinoid s 11<br />

G lu coron id es 8 Sphingo lipid s 3<br />

G lycerolip id s 1070 Steroid s and steroid derivatives 109<br />

G lu ycolip id s 15 Sugar phosp hates 9<br />

H ydroxy acid s 129 T ricarboxylic acids 2


H 2N<br />

O<br />

O<br />

Glycine<br />

O<br />

Pyruvic acid<br />

OH<br />

HO<br />

H 2N<br />

OH<br />

HO<br />

O<br />

Esempio di metaboliti<br />

NH<br />

O<br />

H<br />

N<br />

Succinic acid<br />

O O<br />

Oxaloacetic acid<br />

Arginine<br />

N<br />

H<br />

Tryptophan<br />

O<br />

OH<br />

OH<br />

NH 2<br />

O<br />

O<br />

NH 2<br />

OH<br />

OH<br />

H 2N<br />

N<br />

N<br />

N<br />

N<br />

Acetyl CoA<br />

O<br />

HO OH<br />

Adenosine-5'-triphosphate<br />

O<br />

O<br />

O<br />

O<br />

P<br />

P<br />

OH<br />

P<br />

OH<br />

OH<br />

O<br />

O<br />

OH


Why 1 µM?<br />

Equals ~200 ng/mL<br />

Limit of detection by NMR<br />

Limit of facile isolation/separation by<br />

many analytical methods<br />

Excludes environmental pollutants<br />

Most disease indicators have<br />

concentrations >1 µM<br />

Need to draw the line somewhere


<strong>Metabolomics</strong><br />

Generate metabolic “signatures”<br />

Monitor/measure metabolite flux<br />

Monitor enzyme/pathway kinetics<br />

Assess/identify phenotypes<br />

Monitor gene/environment interactions<br />

Track effects from toxins/drugs/surgery<br />

Monitor consequences from gene KOs<br />

Identify functions of unknown genes


Medical <strong>Metabolomics</strong><br />

Generate metabolic “signatures” for disease<br />

states or host responses<br />

Obtain a more “holistic” view of metabolism<br />

(and treatment)<br />

Accelerate assessment & diagnosis<br />

More rapidly and accurately (and cheaply)<br />

assess/identify disease phenotypes<br />

Monitor gene/environment interactions<br />

Rapidly track effects from drugs/surgery


Metabolomica<br />

Medicina:<br />

Pochi metaboliti di<br />

riferimento per ogni<br />

specifica patologia<br />

Metabolomica:<br />

Quadro d’insieme dei<br />

metaboliti


Traditional Metabolite<br />

Analysis<br />

HPLC, GC, CE, MS


Problems with<br />

Traditional Methods<br />

Requires separation followed by<br />

identification (coupled methodology)<br />

Requires optimization of separation<br />

conditions each time<br />

Often requires multiple separations<br />

Slow (up to 72 hours per sample)<br />

Manually intensive (constant supervision,<br />

high skill, tedious)


What’s the<br />

Difference Between<br />

<strong>Metabolomics</strong> and<br />

Traditional Clinical<br />

Chemistry?<br />

Throughput<br />

(more metabolites, greater<br />

accuracy, higher speed)


New <strong>Metabolomics</strong><br />

Approaches<br />

+<br />

Impronta digitale metabolica


Advantages<br />

Measure multiple (10’s to 100’s) of<br />

metabolites at once – no separation!!<br />

Allows metabolic profiles or “fingerprints” to<br />

be generated<br />

Mostly automated, relatively little sample<br />

preparation or derivitization<br />

Can be quantitative (esp. NMR)<br />

Analysis & results in < 60 s


NMR versus MS<br />

• Quantitative, very<br />

fast<br />

• Requires no work<br />

up or separation<br />

• Allows analysis of<br />

300+ cmpds at<br />

once<br />

• Not sensitive<br />

• Quite fast<br />

• Very sensitive<br />

• Allows analysis or<br />

ID of 3000+ cmpds<br />

at once<br />

• Not quantitative<br />

• Requires work-up


2 Routes to <strong>Metabolomics</strong><br />

Two approaches:<br />

• Identify as many metabolites as possible<br />

• Use the whole spectrum as a fingerprint (statistics)<br />

ppm<br />

hippurate urea<br />

fumarate<br />

7<br />

6<br />

5<br />

ppm<br />

Quantitative<br />

methods<br />

hippurate<br />

allantoin<br />

creatinine taurine<br />

water<br />

4<br />

7<br />

TMAO<br />

3<br />

citrate<br />

2<br />

6<br />

creatinine<br />

1<br />

5<br />

2-oxoglutarate<br />

succinate<br />

4<br />

3<br />

2<br />

1<br />

Chemometric methods<br />

(fingerprinting and pattern recognition)<br />

25<br />

PC2<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30 -20 -10 0<br />

PC1<br />

10


• Identifies compounds<br />

• Quantifies compds<br />

Quantitative vs.<br />

Chemometric<br />

• Concentration range of<br />

1 µM to 1 M<br />

• Handles wide range of<br />

samples/conditions<br />

• Allows identification of<br />

diagnostic patterns<br />

• Limited by DB size<br />

• No compound ID<br />

• No compound conc.<br />

• No compound<br />

concentration range<br />

• Requires strict sample<br />

uniformity<br />

• Allows identification<br />

of diagnostic patterns<br />

• Limited by training set


Benefits of analyzing the<br />

metabolome<br />

Number of metabolites lower than number of genes and proteins in<br />

a cell - sample complexity reduced<br />

Although concentration of enzyme & metabolic flux may not<br />

significantly change during a biochemical reaction, concentration<br />

of metabolites can change significantly<br />

Reflect more accurately functional level of a cell<br />

Metabolic fluxes regulated not only by gene expression but also by<br />

environmental stresses - hence worth measuring downstream<br />

products (i.e. metabolites)<br />

Estimated that metabolomic expts are 2x to 3x less expensive than<br />

proteomic & transcriptomic expts


Challenges when<br />

analyzing metabolomes<br />

Metabolomes extend over 7 to 9<br />

order of magnitudes in<br />

concentration (picomoles to<br />

millimoles)<br />

Currently not possible to analyze all<br />

metabolites in a single analysis<br />

Several analytical strategies (MS,<br />

NMR in combination with<br />

chromatographic separations,<br />

whole cell analysis)<br />

Requires high throughput


Advantages:<br />

Use of NMR in<br />

Non-destructive, non-biased<br />

Easily quantifiable<br />

Requires little or no separation<br />

metabolomics studies<br />

Permits identification of novel compounds<br />

Does not require chemical derivatization<br />

Particularly amenable to cmpds less tractable to GC-MS<br />

or LC-MS (sugars, amines, volatile ketones, &<br />

relatively non-reactive compounds)<br />

Ref. Trends in analytical chemistry (2008) Vol 27, pp.228-237


Disavantage of the NMR<br />

approach<br />

Relatively insensitive technique<br />

Lower limit of detection 1-5 µM<br />

Usually large sample size (500 µL)


Raccolta e<br />

stoccaggio<br />

dei campioni<br />

Processo Sperimentale<br />

Preparazione<br />

dei campioni<br />

Analisi<br />

Statistica<br />

Impronta<br />

Misure<br />

NMR<br />

Profilo<br />

Assegnamento<br />

dei segnali<br />

Elaborazione<br />

degli spettri<br />

Database di<br />

composti di<br />

riferimento


NMR Experiment<br />

A current through (green)<br />

generates a strong magnetic field<br />

polarizes the nuclei in the sample<br />

material (red).<br />

It is surrounded by the r.f. coil (black)<br />

delivers the computer generated r.f.<br />

tunes that initiate the nuclear<br />

quantum dance.<br />

At some point in time, the switch is<br />

turned and now the dance is recorded<br />

through the voltage it induces.<br />

the NMR signal, in the r.f. coil.<br />

The signals Fourier transform (FT) shows<br />

"lines" for different nuclei in different<br />

electronic environments.


NMR<br />

A typical 950-MHz H NMR spectrum of urine showing the<br />

degree of spectral complexity


Profilo 1 H NMR di urina umana


Profilo 1 H NMR di urina umana


Profilo 1 H NMR di urina umana


Profilo di siero umano<br />

Proteins + Lipids + Small molecules<br />

Lipids + Small molecules<br />

Lipids + Proteins<br />

Lipids


serum<br />

urine<br />

saliva<br />

fecal extract


Data analysis - approach<br />

Classify NMR spectrum based on its<br />

inherent patterns of peaks<br />

Identify spectral features responsible<br />

for the classification (according to<br />

physiological or pathological status)<br />

NMR spectral data processing<br />

Prepare NMR data for multivariate<br />

modeling:<br />

Spectral binning: spectra divided<br />

into regions whose areas are<br />

summed to extract peak intensities<br />

Results in a data matrix:<br />

Rows = samples/observations<br />

Columns= variables (for example,<br />

normalized peak intensities of<br />

defined bins)


Data analysis and<br />

interpretation<br />

Data collected represented in a matrix<br />

Chemometric Approach<br />

Principle Component Analysis (PCA)<br />

Soft Independent Modeling of Class Analogy (SIMCA)<br />

Partial Least-Squares aka Projections to Latent Structures (PLS)<br />

Orthogonal PLS (OPLS)<br />

Targeted Profiling


PCA<br />

Unsupervised<br />

Multivariate analysis based on projection methods<br />

Main tool used in chemometrics<br />

Extract and display the systematic variation in the data<br />

Each Principle Component (PC) is a linear combination of the<br />

original data parameters<br />

Each successive PC explains the maximum amount of variance<br />

possible, not accounted for by the previous PCs<br />

PCs Orthogonal to each other<br />

Conversion of original data leads to two matrices, known as<br />

scores and loadings<br />

The scores(T) represent a low-dimensional plane that closely<br />

approximates X. Linear combinations of the original<br />

variables. Each point represents a single sample spectrum.<br />

A loading plot/scatter plot(P) shows the influence (weight) of the<br />

individual X-variables in the model. Each point represents a<br />

different spectral intensity.<br />

The part of X that is not explained by the model forms the<br />

residuals(E)<br />

X = TP T = t 1p 1 T + t 2p 2 T + ... + E


PCA Plot Nomenclature<br />

• PCA Generate 2<br />

kinds of plots, the<br />

scores plot and the<br />

loadings plot<br />

• Scores plot (on<br />

right) plots the data<br />

using the main<br />

principal<br />

components<br />

original<br />

data<br />

Z = X W<br />

scores loading


PCA Loadings Plot<br />

• Loadings plot shows<br />

how much each of the<br />

variables<br />

(metabolites)<br />

contributed to the<br />

different principal<br />

components<br />

• Variables at the<br />

extreme corners<br />

contribute most to the<br />

scores plot separation


PCA Details/Advice<br />

In some cases PCA will not succeed in<br />

identifying any clear clusters or obvious<br />

groupings no matter how many components<br />

are used. If this is the case, it is wise to<br />

accept the result and assume that the<br />

presumptive classes or groups cannot be<br />

distinguished with PCA<br />

As a general rule, if a PCA analysis fails to<br />

achieve even a modest separation of classes,<br />

then it is probably better to use other<br />

statistical techniques to try to separate them


SIMCA<br />

Supervised learning method<br />

based on PCA<br />

Construct a seperate PCA<br />

model for each known class<br />

of observations<br />

PCA models used to assign the<br />

class belonging to observations<br />

of unknown class origin<br />

Recommended for use in one class<br />

case or for classification if no<br />

interpretation is needed<br />

CLASS SPECIFIC STUDIES<br />

One-class problem: Only disease observations<br />

define a class; control samples are too<br />

heterogeneous, for example, due to other<br />

variations caused by diseases, gender, age, diet,<br />

lifestyle, etc.<br />

Two-class problem: Disease and control<br />

observations define two seperate classes


PLS<br />

Supervised learning method.<br />

Recommended for two-class cases instead of using<br />

SIMCA.<br />

Principles that of PCA. But in PLS, a second piece<br />

of information is used, namely, the labeled set<br />

of class identities.<br />

Two data tables considered namely X (input data<br />

from samples) and Y (containing qualitative<br />

values, such as class belonging, treatment of<br />

samples)<br />

The quantitive relationship between the two tables<br />

is sought.<br />

X = TP T + E<br />

Y = TC T + E<br />

The PLS algorithm maximizes the covariance<br />

between the X variables and the Y variables<br />

PLS models negatively affected by systematic<br />

variation in the X matrix not related to the Y<br />

matrix (not part of the joint correlation<br />

structure between X-Y.


OPLS<br />

OPLS method is a recent modification of the PLS method to help overcome pitfalls<br />

Main idea to seperate systematic variation in X into two parts, one linearly related to Y and one unrelated<br />

(orthogonal).<br />

T T<br />

Comprises two modeled variations, the Y-predictive (T P ) and the Y-orthogonal (ToP ) compononents.<br />

p p<br />

o<br />

Only Y-predictive variation used for modeling of Y.<br />

T T<br />

X = T P + ToP + E<br />

p p o<br />

T<br />

Y = T C + F<br />

p p<br />

E and F are the residual matrices of X and Y<br />

OPLS-DA compared to PLS-DA


Remarks on pattern<br />

classification<br />

Intent in using these classification techniques not to identify<br />

specific compound<br />

Classify in specific categories, conditions or disease status<br />

Traditional clinical chemistry depended on identifying and<br />

quantifying specific compounds<br />

Chemometric profiling interested in looking at all<br />

metabolites at once and making a phenotypic<br />

classification of diagnosis


Targeted profiling<br />

Targeted metabolomic profiling is fundamentally different than<br />

most chemometric approaches.<br />

In targeted metabolomic profiling the compounds in a given<br />

biofluid or tissue extract identified and quantified by comparing<br />

the spectrum of interest to a library of reference spectra of<br />

pure compounds.<br />

Key advantage: Does not require collection of identical sets =<br />

More amenable to human studies or studies that require less<br />

day-to-day monitoring.<br />

Disadvantage: Relatively limited size of most current spectral<br />

libraries = bias metabolite identification and interpretation.<br />

A growing trend towards combining the best features of both<br />

chemometric and targeted methods.


Databases<br />

Large amount of data<br />

Need for databases that can be easily searched<br />

Better databases will help in combining<br />

chemometric and targeted profiling methods<br />

Newly emerging databases<br />

HMDB good model for other databases<br />

Challenge of standardisation


Databases


Metabolomica:<br />

Fattori di variabilità<br />

Sesso<br />

Età<br />

Dieta<br />

Dieta<br />

Ritmi fisiologici<br />

Genotipo<br />

Stress<br />

Patologie


Effetto della dieta<br />

Trimetilammina N-ossido<br />

Consumo di pesce<br />

NON Consumo di pesce<br />

Consumo di chewing-gum, caramelle etc..<br />

Mannitolo<br />

4 .00 3.90 3.80 3.7 0 3.60


Ind 1<br />

Ind 2<br />

Effetto del profilo individuale<br />

10.00 7.50 5.00 2.50 ppm<br />

62


Effetto delle patologie<br />

Campioni di saliva da individui sani e da individui affetti da periodontite cronica


Our interest in metabolomics<br />

Metabolic signature of individuals<br />

Metabolic phenotype<br />

Metabolic signature of diseases<br />

• Celiac disease<br />

• tumor → metastasis (breast, colorectal)<br />

• cardiovascular risk<br />

• diabetes<br />

• pulmonary diseases<br />

• …<br />

Metabolites and biobank samples<br />

• Sensitive reporters of stability<br />

• Assess sample preparation and preanalytical procedures<br />

• …


METabolomic REFerence<br />

The METREF project<br />

Looking first at urine of healthy individuals, and developing a<br />

feeling for the intraindividual vs. interindividual variations<br />

Why?<br />

• Training<br />

• Urine samples are easy to collect<br />

• Large number of samples<br />

• Potential intrinsic value of the information


METabolomic REFerence<br />

Experimental scheme:<br />

• 22 Individuals, 11 Males & 11 Females<br />

• ≥40 urine samples each, on a period of 2-3 months<br />

• First in the morning preprandial<br />

• Collection suspended in case of illness; otherwise no restrictions<br />

• Data recording:<br />

Diet<br />

Drugs<br />

Lifestyle, general habits<br />

Smoker / No Smoker<br />

• NMR analysis: 1D 1 H spectra


Ind 1<br />

Ind 2<br />

METabolomic REFerence<br />

Getting a first feeling…<br />

We believe the human<br />

eye is very sensitive to<br />

differences in patterns<br />

Visual inspection suggests that it should be interesting to look for individual<br />

fingerprints by statistical analysis


METabolomic REFerence<br />

Convex hulls of 22 donors in the three most significant PCA PCA-CA CA dimensions<br />

PCA for data<br />

reduction<br />

CA for obtain<br />

well separated<br />

clusters<br />

KNN for<br />

classification<br />

99% accuracy<br />

in montecarlo<br />

cross validation<br />

“natural” gender discrimination<br />

MALE<br />

FEMALE<br />

Assfalg, Bertini, Colangiuli, Luchinat, Schäfer, Schütz, Spraul, PNAS PNAS, , 2008 2008, , 105, 1420 1420-4


METabolomic REFerence<br />

Dendrogram of the 22 donors on the 21 21-dimensional dimensional PCA-CA PCA CA subspace<br />

Assfalg, Bertini, Colangiuli, Luchinat, Schäfer, Schütz, Spraul, PNAS PNAS, , 2008 2008, , 105, 1420 1420-4


METabolomic REFerence<br />

Gut microflora related metabolites<br />

Concentrations of 12 selected metabolites for each donor. Absolute<br />

creatinine concentration (Crea) and relative metabolite<br />

concentrations (relative to creatinine)


METabolomic REFerence<br />

An individual metabolic fingerprint exist!<br />

But it is hidden inside the daily noise<br />

Assfalg, Bertini, Colangiuli, Luchinat, Schäfer, Schütz, Spraul, PNAS PNAS, , 2008 2008, , 105,<br />

1420-4<br />

1420


METabolomic REFerence 2<br />

Why Healthy Individuals Again?<br />

• Expanding the dataset<br />

• Trying to learn more about relevance of genetic vs lifestyle contributions<br />

• Check the constancy of metabolic phenotypes over time


METabolomic REFerence 2<br />

Experimental Scheme (2 years later)<br />

• 20 Individuals, 9 Male & 11 Females<br />

• 11 Individuals (6 M + 5 F) already in the first screening<br />

• 40 samples/each on a period of 2-3 months<br />

• First in the morning preprandial<br />

• Collection suspended in case of illness<br />

• Data recording:<br />

Diet<br />

Drugs<br />

Life style<br />

Smoker / No Smoker<br />

• NMR analysis: 1D 1 H spectra


METREF 1,2,3<br />

11<br />

7 4 22<br />

t 20 7 4<br />

4<br />

4<br />

father<br />

& son<br />

5 22<br />

twins<br />

MetRef1<br />

2005<br />

MetRef2<br />

2007<br />

MetRef3<br />

2008


METabolomic REFerence 2<br />

2005 collection 2007 collection<br />

AD<br />

AF<br />

AG<br />

AH<br />

AI<br />

AO<br />

AP<br />

AR<br />

AS<br />

AT<br />

AU<br />

AW<br />

AX<br />

AZ<br />

BC<br />

BD<br />

BE<br />

BF<br />

BG<br />

BH<br />

BI<br />

BK<br />

99.905%<br />

100.000%<br />

100.000%<br />

99.922%<br />

99.760%<br />

97.500%<br />

97.500%<br />

100.000%<br />

100.000%<br />

99.995%<br />

100.000%<br />

100.000%<br />

100.000%<br />

100.000%<br />

99.998%<br />

100.000%<br />

100.000%<br />

100.000%<br />

99.933%<br />

100.000%<br />

100.000%<br />

99.470%<br />

AI<br />

AO<br />

AR<br />

AS<br />

AU<br />

AW<br />

BC<br />

BF<br />

BG<br />

BH<br />

BI<br />

BQ<br />

BS<br />

BT<br />

BU<br />

BV<br />

BX<br />

BZ<br />

TA<br />

TB<br />

100.000<br />

100.000% %<br />

99.995%<br />

99.941%<br />

100.000%<br />

99.998%<br />

99.705%<br />

99.629%<br />

100.000%<br />

100.000%<br />

98.462%<br />

99.998%<br />

100.000%<br />

99.983%<br />

96.647%<br />

99.998%<br />

99.998%<br />

100.000%<br />

98.450%<br />

98.235%<br />

PCA-CA-KNN classification results<br />

Bernini, P.; Bertini, I.; Luchinat, C.; Nepi, S.; Saccenti, E.; Schäfer, H.; Schütz, B.; Spraul,<br />

M.; Tenori, L. Individual human phenotypes in metabolic space and time, J. Prot. Res. 2009


METabolomic REFerence<br />

genes<br />

lifestyle etc.<br />

• Il metabotipo consiste di una parte variabile (ambiente) e di una parte<br />

invariabile (genetica+ambiente)<br />

• La parte invariante rimane inalterata per almeno 2/3 anni<br />

• La scoperta del fingerprint metabolico individuale ha un grande<br />

potenziale per studi biomedici<br />

Bernini, P.; Bertini, I.; Luchinat, C.; Nepi, S.; Saccenti, E.; Schäfer, H.; Schütz, B.; Spraul, M.; Tenori, L.<br />

Individual human phenotypes in metabolic space and time, J. Prot. Res. 2009


Un “salto” metabolico<br />

Evoluzione del profilo metabolico di un individuo<br />

nell’arco di tre anni<br />

Hippurate<br />

MetRef1<br />

MetRef2<br />

MetRef3


Celiac Disease <strong>Metabolomics</strong><br />

What is Celiac Disease?<br />

• Celiac Disease (CD), or sprout, is a permanent intolerance to gluten<br />

• Gluten is a proteic complex formed by gliadin and glutenin<br />

• Gluten is found in wheat, rye and barley and others<br />

• Gliadin and glutenin comprise about 80% of the protein contained in wheat<br />

seeds.<br />

• Gluten is present in bread, pasta, pizza, biscuits…<br />

• Gluten is one of the most used alimentary additives<br />

The ONLY therapy is a<br />

totally gluten-free diet<br />

Aim: define the metabolome of celiac disease; obtain hints on its biochemistry


Celiac Disease <strong>Metabolomics</strong><br />

Experimental scheme:<br />

• Study subjects: 34<br />

• Control subjects: 34<br />

• Samples: Serum and Urine<br />

NMR spectra acquired:<br />

• 1D Noesy (standard 1D 1H spectra) for serum and urine samples<br />

• CPMG: to remove signals due to macromolecules (on serum samples)<br />

• @ a Bruker 600 MHz<br />

Statistical<br />

Analysis<br />

Projection to Latent Structures (PLS) to reduce data dimension Optimal number of<br />

components obtained by minimizing the Cross-Validated (CV) error<br />

Canonical Analysis (CA) to obtain two well separated clusters<br />

Support Vector Machines (SVM) for classification


Celiac Disease <strong>Metabolomics</strong><br />

Results<br />

CPMG spectra Serum<br />

Accuracy: 83.4%<br />

Sensivity: 83.4%<br />

Specifity: 83.4%<br />

NOESY spectra Serum<br />

Accuracy: 78.9%<br />

Sensivity: 74.0%<br />

Specifity: 82.8%<br />

NOESY spectra Urine<br />

Accuracy: 69.3%<br />

Sensivity: 73.9%<br />

Specifity: 63.9%


Celiac Disease <strong>Metabolomics</strong><br />

Note: both subjects are<br />

asymptomatic!<br />

Clusterization of serum spectra of celiac and healthy subjects<br />

Bertini, I.; Calabrò, A.; De Carli, V.; Luchinat, C.; Nepi, S.; Porfirio, B.; Renzi, D.; Saccenti, E.;<br />

Tenori, L. The metabonomic signature of celiac disease, J. Proteome Res. 2009, 8(1), 170


Celiac Disease <strong>Metabolomics</strong><br />

Significantly different metabolites in<br />

serum (p


Celiac Disease <strong>Metabolomics</strong><br />

Celiac disease often associated with fatigue:<br />

Why ?<br />

Increased glucose, decreased pyruvate, lactate:<br />

Impaired glycolysis, impaired energy production<br />

Lipid beta beta-oxidation oxidation + use of ketonic bodies:<br />

Alternate less efficient energy production


Celiac Disease <strong>Metabolomics</strong><br />

Follow-up analysis<br />

Samples at 3, 6, 9, 12 months from diagnosis<br />

Serum and urines<br />

Metabolite profiling<br />

Patter recognition<br />

Using CPMG sera, all but one samples after 12<br />

months on a gluten-free diet are classified as<br />

normal!


Celiac Disease <strong>Metabolomics</strong><br />

Clusterization of Celiac and Healthy subject serum spectra<br />

Bertini, I.; Calabrò, A.; De Carli, V.; Luchinat, C.; Nepi, S.; Porfirio, B.; Renzi, D.; Saccenti, E.;<br />

Tenori, L. The metabonomic signature of celiac disease, J. Proteome Res. 2009, 8(1), 170


Celiac Disease <strong>Metabolomics</strong><br />

Clusterization of Celiac and Healthy subject serum spectra<br />

and corresponding Follow-up<br />

Bertini, I.; Calabrò, A.; De Carli, V.; Luchinat, C.; Nepi, S.; Porfirio, B.; Renzi, D.; Saccenti, E.;<br />

Tenori, L. The metabonomic signature of celiac disease, J. Proteome Res. 2009, 8(1), 170


Potential celiac disease<br />

Subjects: 134<br />

Celiacs: 59 (9 male, 50 female, age 40,2 ± 14,9)<br />

Potential Celiacs: 25 (5 male, 20 female, age 34,2 ± 13,1)<br />

Healthy: 50 (18 male, 32 female, age 36,1 ± 13,9)<br />

Aim: define the metabolome of potential<br />

celiacs subjects<br />

The term potential CD patients has been proposed for those subjects who do not<br />

have, and have never had, a jejunal biopsy consistent with clear CD, and yet have<br />

immunological abnormalities similar to those found in celiac patients.


Potential Celiac Disease<br />

Celiacs Celiacs Vs Vs Healthy<br />

Serum Serum Serum CPMG<br />

CPMG<br />

• Accuracy: 82.3 82.3 %<br />

%<br />

• Sensivity: 82.3 82.3 %<br />

%<br />

• Specifity82.9 82.9 % %<br />

%<br />

Serum Serum Serum Serum Serum Noesy<br />

Noesy<br />

• Accuracy : 74.4 74.4 % %<br />

%<br />

• Sensivity: 77.6 77.6 77.6 %<br />

%<br />

• Specifity : 70.1 70.1 %<br />

%<br />

Urine Urine Noesy<br />

Noesy<br />

• Accuracy : 69.4 69.4 %<br />

%<br />

• Sensivity : 73.3 73.3 73.3 % %<br />

%<br />

• Specifity: 64.1 64.1 %<br />

%<br />

Celiacs Celiacs Vs Vs Potential Potential Celiacs<br />

Celiacs<br />

Serum Serum CPMG<br />

CPMG<br />

• Accuracy : 63.7 63.7 %<br />

%<br />

• Sensivity : 81.2 81.2 %<br />

%<br />

• Specifity : 19.7 19.7 %<br />

%<br />

Serum Serum Noesy Noesy Noesy Noesy<br />

Noesy Noesy Noesy<br />

. . Accuracy : 64.9 64.9 %<br />

%<br />

• Sensivity : 81.8 81.8 81.8 % %<br />

%<br />

• Specifity : 24.7 24.7 %<br />

%<br />

Urine Urine Noesy<br />

Noesy<br />

• Accuratezza : 59.9 59.9 %<br />

%<br />

• Sensivity : 79.0 79.0 %<br />

%<br />

• Specifity: 11.3 11.3 11.3 %<br />

%


Celiachia Potenziale<br />

Celiaci – Sani –<br />

Croci: predizione dei Celiaci Potenziali<br />

Celiaci Potenziali: soggetti con anticorpi positivi<br />

alla gliadina ma senza presenza di danno<br />

intestinale. NON sono celiaci e NON vengono<br />

messi a dieta<br />

Esiste una impronta metabolica<br />

della celiachia<br />

Queste alterazioni sono presenti<br />

anche nei celicaci potenziali:<br />

esse precedono il danno<br />

intestinale<br />

La celiachia potenziale è molto<br />

simile da un punto di vista<br />

metabolico alla celiachia. Molti<br />

metaboliti che differenziano I<br />

controlli e celiaci sono alterati<br />

anche nei celiaci potenziali. I<br />

nostri risultati suggeriscono l’uso<br />

di dieta priva di glurine anche<br />

nei celiaci potenziali<br />

Bernini P, Bertini I, Calabrò A, la Marca G, Lami G, Luchinat C, Renzi D, Tenori L. Are patients with<br />

potential celiac disease really potential? The answer of metabonomics. J. Proteome Res. 2010


Spettro NMR di olio di oliva<br />

Prime esperienze con olio acquisite alcuni anni fa (Prof. Luchinat)<br />

L.Mannina, C.Luchinat, M.Patumi, M.C.Emanuele, E.Rossi. A.L.Segre,<br />

"Concentration dependence of 13C NMR spectra of triglycerides: implications for the<br />

NMR anlysisis of olive oils",<br />

Magnetic Resonance in Chemistry (2000), 38, 886-890.<br />

L.Mannina, C.Luchinat, M.C.Emanuele, A.L.Segre,<br />

"Acyl positional distribution of glycerol tri-esters in vegetable oils: a 13C NMR study",<br />

Chemistry and Physics of Lipids, (1999), 103, 47-55.


ACIDO LINOLENICO REGIONE DEI METILI<br />

( 1H) H)<br />

β SITOSTEROLO<br />

OLIO DI OLIVA<br />

EXTRAVERGINE<br />

OLIO DI OLIVA<br />

OLIO DI GIRASOLE<br />

OLIO DI MAIS<br />

OLIO DI SOIA<br />

OLIO DI ARACHIDI


ATTRIBUTI SENSORIALI<br />

Olio amaro<br />

Olio avvinato<br />

Cattiva separazione<br />

dalle acque di<br />

vegetazione<br />

Olio pungente<br />

Olio fruttato


PRODOTTI DI OSSIDAZIONE QUASI ASSENTI IN<br />

UN OLIO BUONO<br />

OLIO EXTRAVERGINE<br />

OLIO RANCIDO


CARATTERIZZAZIONE GEOGRAFICA ( 1 H)<br />

Olio Siciliano Olio Umbro


CARATTERIZZAZIONE<br />

GEOGRAFICA ( 1 H):<br />

OLI TOSCANI<br />

TCA LDA<br />

Seggiano Lucca Arezzo<br />

Root 2<br />

10<br />

-8<br />

-15 -10 -5 0 5 10 15<br />

L. Mannina, M.Patumi, N.Proietti, A.L. Segre, Italian Journal of Food Science. (2001), 13, 53-64<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

Root 1<br />

S<br />

AR<br />

A


CARATTERIZZAZIONE<br />

GEOGRAFICA ( 1 H):<br />

OLI DEL CENTRO-NORD<br />

LDA<br />

L.Mannina, M.Patumi, N.Proietti, D.Bassi, A.L.Segre, Journal of Agriculture and Food Chemistry, (2001), 49, 2687-<br />

2696


Metabolomica del latte<br />

Recente interesse per<br />

l’applicazione della metabolomica<br />

all’analisi del latte e dei suoi<br />

derivati


*Lattosio<br />

Spettro 1 H NMR di latte<br />

Lecitina<br />

Creatina<br />

Glicerolo<br />

Acidi grassi<br />

insaturi<br />

*<br />

Citrato<br />

Acidi<br />

grassi


Spettro 1 H NMR di marche diverse<br />

Non si osservano differenze negli<br />

spettri di latte fresco intero tra marche<br />

diverse.<br />

Il Granarolo parzialmente scremato<br />

presenta picchi meno intensi nella<br />

zona degli acidi grassi (frecce).<br />

Maremma<br />

Mukki<br />

Granarolo


Spettro 1 H NMR di latte scremato<br />

Lo spetto di latte scremato non<br />

presenta i picchi relativi alla presenza<br />

degli acidi grassi saturi e insaturi e<br />

quelli relativi al glicerolo<br />

Coop<br />

Intero<br />

Coop<br />

Scremato


Formato<br />

Spettro 1 H NMR di latte di capra<br />

Piruvato<br />

Acetato<br />

Capra<br />

Mucca


Formato<br />

Fresco<br />

Spettro 1 H NMR di latte UHT<br />

UHT<br />

Piruvato<br />

Acetato


formato<br />

Formato acetato e<br />

piruvato sono<br />

caratteristici dei latti<br />

UHT, anche se in<br />

quantità diverse<br />

Spettro 1 H NMR di latte UHT<br />

Granarolo UHT<br />

Granarolo Italia UHT<br />

Maremma UHT<br />

(<br />

Mukki UHT<br />

COOP UHT<br />

piruvato<br />

acetato


Spettro 1 H NMR di latte ω3<br />

Acidi grassi<br />

insaturi<br />

Intero<br />

ω3


Disponibilità di Tesi in<br />

METABOLOMICA<br />

presso il<br />

Centro di Risonanze Magnetiche<br />

dell’Università di Firenze<br />

Argomento di Ricerca:<br />

Analisi Metabolomica di Fluidi Biologici<br />

tramite Risonanza Magnetica Nucleare<br />

La proposta è rivolta a laureandi<br />

(Laurea di I livello e\o II livello)<br />

In Chimica, Chimica Farmaceutica,<br />

Biologia, Biotecnologie<br />

Per informazioni: tenori@cerm.unifi.it

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!