21.06.2013 Views

Etude de la faisabilité d'une source de positrons polarisée basée sur ...

Etude de la faisabilité d'une source de positrons polarisée basée sur ...

Etude de la faisabilité d'une source de positrons polarisée basée sur ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00647307, version 1 - 1 Dec 2011<br />

THÈSE<br />

Pour obtenir le gra<strong>de</strong> <strong>de</strong><br />

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE<br />

Spécialité : Physique Subatomique & Astroparticules<br />

Arrêté ministériel : 7 août 2006<br />

Présentée par<br />

Jonathan DUMAS<br />

Thèse dirigée par Eric Voutier et<br />

codirigée par Joseph Grames<br />

préparée au sein du Laboratoire <strong>de</strong> Physique Subatomique et<br />

<strong>de</strong> Cosmologie / Jefferson Lab<br />

dans l'École Doctorale <strong>de</strong> Physique <strong>de</strong> Grenoble<br />

<strong>Etu<strong>de</strong></strong>s <strong>de</strong> <strong>la</strong> <strong>faisabilité</strong> <strong>d'une</strong><br />

<strong>source</strong> <strong>de</strong> <strong>positrons</strong> po<strong>la</strong>risée<br />

<strong>basée</strong> <strong>sur</strong> le bremsstrahlung<br />

d'un faisceau d'électrons<br />

po<strong>la</strong>risé<br />

Thèse soutenue publiquement le 22 Septembre 2011,<br />

<strong>de</strong>vant le jury composé <strong>de</strong> :<br />

Mr, Jean-Marie, DE CONTO<br />

Professeur à l’Université Joseph Fourier, Prési<strong>de</strong>nt<br />

Mr, Arne, FREYBERGER<br />

Physicien au Thomas Jefferson National Accelerator Facility, Rapporteur<br />

Mr, Joseph, GRAMES<br />

Physicien au Thomas Jefferson National Accelerator Facility, Membre<br />

Mme, Egle, TOMASI GUSTAFSSON<br />

Physicienne à l’Institut <strong>de</strong> Physique Nucléaire d’Orsay, Membre<br />

Mr, Alessandro, VARIOLA<br />

Physicien au Laboratoire <strong>de</strong> l’Accélérateur Linéaire, Rapporteur<br />

Mr, Eric, VOUTIER<br />

Physicien au Laboratoire Physique Subatomique Cosmologie, Membre


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

m E<br />

E 2 = m 2 c 4 +p 2 c 2<br />

p c <br />

<br />

mc 2 −mc 2


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

> 90% <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

∼ 35% <br />

<br />

<br />

100%<br />

75% <br />

<br />

<br />

<br />

85% <br />

<br />

<br />

<br />

<br />

> 80%<br />

> <br />

<br />

< 10


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

22 Na → 22 Ne+e + +νe <br />

<br />

β + <br />

<br />

<br />

e − e + <br />

<br />

Z <br />

<br />

<br />

<br />

<br />

t <br />

Pmax(1−e −t/τ ) Pmax <br />

<br />

τ <br />

γ R<br />

τ −1 <br />

5<br />

=<br />

√ <br />

3re<br />

γ<br />

8<br />

5<br />

, <br />

R3 re me <br />

<br />

me


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

γ<br />

q(Z)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

τ<br />

<br />

<br />

<br />

<br />

-<br />

e<br />

+ e<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

e(k)+<br />

P(p) → e(k ′ ) + P(p ′ ) <br />

q 2 = (k−k ′ ) 2 = (p ′ −p) 2


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

γP GE<br />

GM Q 2 <br />

q 2 <br />

<br />

<br />

-<br />

(k)<br />

e e (k')<br />

γ(q)<br />

P(p) P(p')<br />

eP <br />

k k ′ p p ′ <br />

q<br />

<br />

M J ν,e J µ,P <br />

<br />

M = u(k ′ )eγ µ u(k)<br />

<br />

Jν,e egµν<br />

q2 u(p′ <br />

)<br />

GMγ µ + GE −GM<br />

-<br />

2M(1+τ) (p+p′ ) µ<br />

<br />

u(p)<br />

<br />

J µ,P<br />

<br />

u 2g µν = {γ µ ,γ ν } M<br />

τ = −q 2 /4M 2 <br />

<br />

<br />

<br />

GM GE <br />

<br />

<br />

<br />

<br />

<br />

θe E′<br />

dσ<br />

dΩe<br />

= kfrec<br />

dσ<br />

dΩe<br />

<br />

Mott<br />

σR = kfrec<br />

dσ<br />

dΩe<br />

<br />

Mott<br />

<br />

G 2 M + ǫ<br />

τ G2 E<br />

<br />

<br />

k = 1/[ǫτ(1+τ)] frec = E ′ /E <br />

<br />

ǫ = 1+2(1+τ)tan 2 (θe/2) −1


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

(dσ/dΩ)Mott <br />

σR <br />

<br />

ǫ σR <br />

θe ∼ 180◦ GM σR <br />

θe ∼ 0◦ τ q2 <br />

<br />

<br />

ep → ep <br />

Pt <br />

Pl <br />

Pt = − Pb<br />

<br />

2ǫ(1−ǫ)<br />

GEGM<br />

<br />

σR τ<br />

Pl = Pb √<br />

1−ǫ 2 2<br />

GM <br />

σR<br />

Pb <br />

<br />

<br />

GE τ(1+ǫ) Pt<br />

= −<br />

<br />

2ǫ<br />

GM<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Pl


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

ep <br />

<br />

γ <br />

<br />

<br />

GM = −ebGM +δ GM<br />

GE = −ebGE +δ GE<br />

F3 = δ F3<br />

<br />

<br />

<br />

eb <br />

<br />

<br />

<br />

δ <br />

ǫ<br />

GM,1 −2eb<br />

τ GEℜ<br />

<br />

δ <br />

GE,1<br />

Pt = − Pb<br />

<br />

2ǫ(1−ǫ)<br />

<br />

GEGM −ebGEℜ[δ<br />

σR τ<br />

GM]−ebGMℜ<br />

Pl = Pb √ <br />

1−ǫ 2 G 2 <br />

M −2ebGMℜ δ <br />

GM,2<br />

σR = G 2 M + ǫ<br />

τ G2 E −2ebGM ℜ<br />

σR<br />

δ GM,1 = δ GM +ǫ ν<br />

M2 F3<br />

δ GE,1 = δ GE + ν<br />

M2 F3<br />

δ GM,2 = δ GM + ǫ<br />

1+ǫ<br />

ν = p+p′<br />

.<br />

2<br />

k +k′<br />

2<br />

ν<br />

M 2 F3<br />

<br />

<br />

δ <br />

GE,1 <br />

<br />

<br />

<br />

<br />

. <br />

<br />

<br />

γ <br />

<br />

σR PT PL


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

1/q 2 <br />

x † <br />

<br />

<br />

<br />

<br />

γ * (q) γ (q')<br />

x+ξ<br />

GPD<br />

x-ξ<br />

p p'=p+∆<br />

<br />

γ ∗ p → γp <br />

q q ′ p p ′ <br />

∆(p ′ −p)(q −q ′ )<br />

<br />

<br />

<br />

γ ∗ p → γp <br />

<br />

ep → epγ <br />

<br />

• <br />

<br />

• <br />

<br />

<br />

<br />

σ(ep → epγ) = σBH +σDVCS +PbσDVCS +ebσINT +PbebσINT<br />

<br />

σ σ <br />

<br />

<br />


tel-00647307, version 1 - 1 Dec 2011<br />

σINT σINT<br />

σINT σINT<br />

σ 0 (e − ) = σBH +σDVCS −σINT<br />

σ + (e − )−σ − (e − ) = 2PbσDVCS −2PbσINT<br />

2σBH +2σDVCS = σ 0 (e + )+σ 0 (e − )<br />

ep → epγ<br />

2σINT = σ 0 (e + )−σ 0 (e − )<br />

4PbσDVCS = σ + (e + )−σ − (e + ) + σ + (e − )−σ − (e − ) <br />

4PbσINT = σ + (e + )−σ + (e − ) − σ − (e + )−σ − (e − ) .<br />

e − e +


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

p<br />

θ2<br />

θ1<br />

θ1 θ2 <br />

p<br />

<br />

<br />

<br />

e + e − <br />

k0 E γ ≫ 1<br />

γ <br />

<br />

<br />

k ′ = k0<br />

(1−βcos(θ1))<br />

(1−βcos(θ2))+(k0/E)(1−cos(θ))<br />

θ<br />

k'<br />

k<br />

<br />

β c <br />

m k ′ θ1 ≃ 180 ◦ <br />

θ2 ≃ 0 ◦ θ1 <br />

<br />

<br />

kmax = E z<br />

1+z<br />

<br />

z = 4 Ek0<br />

m2 . <br />

c4 γ 2m <br />

<br />

<br />

<br />

<br />

dσ<br />

dk = 2πr2 ea<br />

kmax<br />

χ+1+cos 2 (α)


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

kmax Ebeam <br />

<br />

/dk (mbarn)<br />

σ<br />

d<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 10 20 30 40 50 60<br />

k (MeV)<br />

<strong>la</strong>ser<br />

P / P<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

P<br />

P<br />

circ.<br />

lin.<br />

0 10 20 30 40 50<br />

k (MeV)<br />

Pcirc. Plin.<br />

γ <br />

γ k<br />

re <br />

a = 1 k<br />

, ρ = ,<br />

1+z kmax<br />

χ = ρ2 (1−a 2 ) 1−ρ(1+a)<br />

, cos(α) =<br />

1−ρ(1−a) 1−ρ(1−a) .<br />

<br />

Pcirc/P<strong>la</strong>ser Plin/P<strong>la</strong>ser <br />

Pcirc<br />

P<strong>la</strong>ser<br />

Plin<br />

P<strong>la</strong>ser<br />

=<br />

=<br />

(2+χ) cos(α)<br />

(χ+1+cos 2 (α))<br />

<br />

(1−cos(α)) 2<br />

2(χ+1+cos 2 . <br />

(α))


tel-00647307, version 1 - 1 Dec 2011<br />

1.25×10 18 1.8×10 10<br />

γ 2×10 7<br />

γ<br />

γ e + e −<br />

γ<br />

γ<br />

k − 2m


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

±± <br />

<br />

<br />

<br />

<br />

γ <br />

B⊥dz = 0 <br />

<br />

<br />

λu <br />

<br />

θ ≈ 1/γ γ <br />

K <br />

<br />

K = eB0λu<br />

2πmc 2 ≈ 0.934B⊥λu[T·cm]. <br />

K < 1 <br />

λn2πc/knnλu(1 + K 2 )/(8π 2 2 c 2 γ 2 ) <br />

n = 1 <br />

K ≈ 1 <br />

<br />

K ≫ 1 <br />

N <br />

2N <br />

N 2 <br />

K <br />

λu B0 <br />

<br />

dN<br />

dk [<br />

1<br />

m.MeV ] = 106e3 4πǫ0c22×K2 γ2 ∞<br />

<br />

n=1<br />

J ′2<br />

n (xn)+<br />

αn<br />

K<br />

2 n<br />

− J<br />

xn<br />

2 <br />

n(xn) Θ(α 2 n), <br />

ǫ0 n <br />

Jn(x),J ′ n(x) Θ(x) <br />

<br />

α 2 n = n<br />

r −1−K2 , xn = 2Krαn and r = λu<br />

2γ2 . <br />

λ


tel-00647307, version 1 - 1 Dec 2011<br />

γ<br />

θ = 0 ◦<br />

Pn =<br />

2sn −1<br />

1−2sn +2s 2 n<br />

sn = k/kn k kn<br />

n<br />

γ<br />

B⊥ λu K k1 Nγ<br />

e −<br />

γ


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

∼<br />

γ<br />

∼ GeV


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

Z E1 k<br />

θγ<br />

E1,E2,k ≫ 1<br />

k E1−E2<br />

k u = |u| ≈ p1θγ<br />

d2σ dkdξ = 2αZ2r 2 e<br />

1<br />

kE 2 1<br />

E2<br />

E1<br />

p1<br />

α 2 Z 2 ln(E1)/E1<br />

Z<br />

u < 1/E1<br />

(E 2 1 +E 2 2)(3+2Γ)−2E1E2(1+4u 2 ξ 2 Γ) <br />

α re Γ<br />

u<br />

E2


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

δ<br />

Γ = F −ln(δ)−2−f(Z). <br />

ξ<br />

f(Z) <br />

f(Z) = a 2<br />

∞ 1<br />

n(n2 +a2 )<br />

n=1<br />

<br />

a = αZ F(δ/ξ)<br />

ξ1/(1 + u 2 ) δ =<br />

k/2E1E2<br />

∆ −F( δ<br />

ξ<br />

) ∆ −F(δ<br />

ξ )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

∆(6Z −1/3 /121)(ξ/δ)<br />

<br />

∞<br />

δ 2 q<br />

F = [1−F(q)] −1<br />

ξ<br />

2 −(δ2 /ξ2 )<br />

q3 dq <br />

(δ/ξ)<br />

F(q) q <br />

<br />

<br />

1−F(q)<br />

q 2 =<br />

3<br />

i=1<br />

αi<br />

β 2 i +q2<br />

<br />

βi(Z1/3 /121)bi b16.0 b21.2 b30.3 <br />

<br />

<br />

δ<br />

F = −<br />

ξ<br />

1<br />

3<br />

α<br />

2<br />

2 3 3<br />

<br />

1+Bj<br />

i ln(1+Bi)+ αiαj ln(1+Bj)+ 1<br />

<br />

<br />

2<br />

i=1<br />

i=1<br />

j=1<br />

Bi −Bj<br />

Bi(βiξ/δ) 2 α10.1 α20.55 α30.35 <br />

δ βiξ/δ ≫ 1 <br />

−1/3 δ 111Z ξ<br />

F = ln . <br />

ξ δ


tel-00647307, version 1 - 1 Dec 2011<br />

S1<br />

S2<br />

⎛<br />

⎜<br />

⎝<br />

I<br />

P1<br />

P2<br />

P3<br />

⎞<br />

⎟<br />

⎠ = Tγ<br />

I Si<br />

Pi<br />

Brem.<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

S1<br />

S2<br />

S3<br />

⎞<br />

⎟<br />

⎠<br />

1/k


tel-00647307, version 1 - 1 Dec 2011<br />

S3<br />

P1<br />

P2<br />

P3<br />

T γ<br />

Brem.<br />

xz<br />

T γ<br />

Brem. =<br />

⎛<br />

⎜<br />

⎝<br />

I0 0 0 0<br />

D 0 0 0<br />

0 0 0 0<br />

0 T 0 L<br />

⎞<br />

⎟<br />

⎠<br />

45 ◦<br />

I0 = (E 2 1 +E 2 2)(3+2Γ)−2E1E2(1+4u 2 ξ 2 Γ)<br />

D = 8E1E2u 2 ξ 2 Γ I0<br />

T = −4kE2ξ(1−2ξ)uΓ I0<br />

L = k[(E1 +E2)(3+2Γ)−2E2(1+4u 2 ξ 2 Γ)] I0.<br />

⎛<br />

⎝<br />

P1<br />

P2<br />

P3<br />

⎞<br />

⎛<br />

⎠ = ⎝<br />

D<br />

0<br />

S1T +S3L<br />

⎞<br />

⎠ .


tel-00647307, version 1 - 1 Dec 2011<br />

P3/S3 > 1<br />

T e Brem. =<br />

⎛<br />

⎜<br />

⎝<br />

I0 0 0 0<br />

0 G 0 E<br />

0 0 G 0<br />

0 F 0 G+H<br />

⎞<br />

⎟<br />

⎠<br />

k/(T1 − 2)<br />

T e Brem.


tel-00647307, version 1 - 1 Dec 2011<br />

I0<br />

E = 4kξE1u(2ξ −1)Γ I0<br />

F = 4kξE2u(2ξ −1)Γ I0<br />

2 2<br />

G = 4kE1E2 1+Γ−2u ξ Γ I0<br />

H = k 2 1+8Γ(ξ −0.5) 2 I0<br />

⎛<br />

⎝<br />

S ′ 1<br />

S ′ 2<br />

S ′ 3<br />

⎞<br />

S ′ 3/S3 < −1<br />

⎛<br />

⎠ = ⎝<br />

S1G+S3E<br />

S2G<br />

S1F +S3(G+H)<br />

⎞<br />

⎠ .


tel-00647307, version 1 - 1 Dec 2011<br />

θe<br />

k<br />

q E1<br />

E2<br />

E2 →


tel-00647307, version 1 - 1 Dec 2011<br />

−E2<br />

k = E1 +E2<br />

d2σ dE1dξ = 2αZ2r 2 1<br />

e<br />

k3 2<br />

(E1 +E 2 2)(3+2Γ)+2E1E2(1+4u 2 ξ 2 Γ) <br />

T e Pair. =<br />

⎛<br />

⎜<br />

⎝<br />

1 D 0 0<br />

0 0 0 T<br />

0 0 0 0<br />

0 0 0 L<br />

⎞<br />

⎟<br />

⎠<br />

E1 = k + E2


tel-00647307, version 1 - 1 Dec 2011<br />

xz<br />

I0 = (E 2 1 +E 2 2)(3+2Γ)+2E1E2(1+4u 2 ξ 2 Γ)<br />

D = −8E1E2u 2 ξ 2 Γ/I0<br />

T = 4kE2ξ(1−2ξ)Γu/I0<br />

L = k[(E1 −E2)(3+2Γ)+2E2(1+4u 2 ξ 2 Γ)]/I0<br />

⎛<br />

⎝<br />

S1<br />

S2<br />

S3<br />

⎞<br />

⎛<br />

⎠ = ⎝<br />

P3T<br />

0<br />

P3L<br />

⎞<br />

⎠ .<br />

e + e −


tel-00647307, version 1 - 1 Dec 2011<br />


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

S3/P3 = 0.75 T1/(k−2) = 0 S3/P3 = −0.75 T1/(k−2) = 1


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

∆P3 P3 <br />

P3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

e + e −


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

e + e −


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Z <br />

Z <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

± <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T 2 1 −1 <br />

<br />

µ


tel-00647307, version 1 - 1 Dec 2011<br />

µ<br />

µ<br />

µ


tel-00647307, version 1 - 1 Dec 2011<br />

µ<br />

µ


tel-00647307, version 1 - 1 Dec 2011<br />

N ±<br />

Pe<br />

dσ ±<br />

dΩ<br />

= dσ0<br />

dΩ (1±PeA)<br />

AS = N+ −N −<br />

N + +N −<br />

N ± = ρǫ dσ±<br />

dΩ ∆ΩNe<br />

ρ · −2 ǫ ∆Ω<br />

N + ≈ N − ≈ N 0<br />

Ne<br />

[δA] 2 =<br />

[δA] 2 =<br />

<br />

P 2 e<br />

A = AS<br />

Pe<br />

(N + +N − ) 2<br />

4N + N− −1 .<br />

<br />

2P 2 eNeρǫ dσ0<br />

dΩ ∆Ω<br />

−1 A


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

P 2 eNe <br />

<br />

<br />

<br />

<br />

<br />

µ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

· 3×10 −3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

µ


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c c <br />

<br />

<br />

∆p/p


tel-00647307, version 1 - 1 Dec 2011<br />

2<br />

µ<br />

× 2 µ<br />

θi


tel-00647307, version 1 - 1 Dec 2011<br />

1/sin(θi)<br />

◦<br />

±<br />

±2.5%


tel-00647307, version 1 - 1 Dec 2011<br />

10 −3<br />

∼<br />

µ<br />

e + e −<br />

µ<br />

10 −6


tel-00647307, version 1 - 1 Dec 2011<br />

±<br />

10 MeV electron beam, acceptance = 10°<br />

, ∆p/p=<br />

± 10%<br />

(MeV/c)<br />

positron<br />

p<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Target thickness (mm)<br />

µ<br />


tel-00647307, version 1 - 1 Dec 2011<br />

FoM<br />

Acceptance = 10°<br />

, ∆p/p=<br />

± 10%<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

-7<br />

10<br />

0 20 40 60 80 100<br />

Electron energy (MeV)<br />

◦<br />

Target thickness (mm)<br />

Acceptance = 10°<br />

, ∆p/p=<br />

± 10%<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 20 40 60 80 100<br />

Electron energy (MeV)<br />

±


tel-00647307, version 1 - 1 Dec 2011<br />

µA


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

P3/2 <br />

S1/2 ms = ±1/2<br />

ml l 2l + 1 <br />

ml ml = −1,0,1 ml = 0 <br />

<br />

mj = ml+ms mj = ±1/2 <br />

S P mj = ±3/2,±1/2 P3/2<br />

S1/2 <br />

<br />

∆mj = 1 −1 <br />

−3/2 3/2→ −1/2 1/2 −1/2<br />

1/2 → −1/2 1/2 <br />

C.B.<br />

V.B.<br />

E Orbital<br />

-3/2<br />

-1/2 +1/2<br />

1/3<br />

1 1<br />

m j=+1 m j=-1<br />

-1/2 +1/2 +3/2<br />

m j<br />

S 1/2<br />

P 3/2<br />

<br />

<br />

<br />

<br />

<br />

C.B.<br />

V.B.<br />

<br />

E Orbital<br />

-3/2<br />

-1/2 +1/2<br />

m j=+1 m j=-1<br />

-1/2 +1/2<br />

+3/2<br />

m j<br />

S 1/2<br />

P 3/2<br />

<br />

<br />

<br />

<br />

δ <br />

P 3/2 <br />

50 <br />

±3/2 ±1/2 <br />

<br />

<br />

<br />

<br />

−1/2 −3/2 P3/2 <br />

δ


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

90 <br />

<br />

<br />

Ea <br />

<br />

<br />

3 <br />

<br />

<br />

<br />

<br />

3<br />

qextracted <br />

Nγ <br />

QE = qextracted<br />

Pγ hν <br />

Nγ<br />

<br />

Ie = QE Pγ<br />

. <br />


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

pc<br />

e =<br />

<br />

Bdl<br />

, <br />

θ<br />

θ Bdl


tel-00647307, version 1 - 1 Dec 2011<br />

0.13173I 3<br />

14.905 ◦<br />

29.97 ◦<br />

B = 6.38+339.96I −0.18576I 2 −<br />

0 ◦


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

• <br />

<br />

∼ 5 ±0.01 ◦ <br />

<br />

• <br />

<br />

0.07 ◦ <br />

• <br />

<br />

<br />

<br />

µ → <br />

±0.23 ◦ <br />

θ ±0.31 ◦ <br />

<br />

• <br />

• <br />

<br />

• <br />

• <br />

△ B.dl/ B.dl = ±0.16 <br />

<br />

<br />

△p<br />

p =<br />

<br />

△ 2 B.dl<br />

+<br />

B.dl<br />

△θ<br />

<br />

θ<br />

2<br />

= 1.00%. <br />

<br />

<br />

<br />

P = N↑ −N↓<br />

N↑ +N↓<br />

N↑N↓ <br />

<br />

2− 2


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

φspin <br />

<br />

φspin = B.dl/mcγ 2 β <br />

β γ <br />

<br />

E <br />

F = e<br />

|E| = β|B|<br />

<br />

E + β<br />

c ∧ <br />

B =0. <br />

E B <br />

θ <br />

<br />

<br />

<br />

<br />

φspin = e/2p Bdl. <br />

±π/2 <br />

±π/4 ±π/2 <br />

<br />

π


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

±173 ◦ <br />

<br />

<br />

<br />

<br />

dσ<br />

dθ<br />

= dσ0<br />

dθ<br />

<br />

1+S(θ) <br />

P.ˆn<br />

S(θ) <br />

dσ0<br />

dθ =<br />

2 Ze<br />

2mc2 2 . (1−β2 )(1−β 2sin2 (θ/2))<br />

β4sin4 (θ/2)<br />

<br />

<br />

n <br />

p p ′ <br />

ˆn = p× p ′<br />

|p× p ′ . <br />

|<br />

P <br />

ˆn <br />

AM N ↑ N ↓ <br />

±θ <br />

<br />

<br />

AM = 1−r<br />

1+r<br />

<br />

<br />

<br />

r =<br />

N↑ +θN↓ −θ<br />

N ↓<br />

+θN↑ −θ<br />

= PS(θ) <br />

.


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

Z <br />

Z <br />

θ <br />

±173 ◦ <br />

µ µ


tel-00647307, version 1 - 1 Dec 2011<br />

1µ %<br />

×


tel-00647307, version 1 - 1 Dec 2011<br />

µA


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

∼ 1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

µ <br />

<br />

<br />

<br />

<br />

∼ 6


tel-00647307, version 1 - 1 Dec 2011<br />

10 ◦ 4 ◦<br />

∆T/T = ±10 %<br />

1µA<br />

∆θ/θ = ±5 %


tel-00647307, version 1 - 1 Dec 2011<br />

Pγ<br />

d 2 σ 0 /dθdφ<br />

AC(θ)<br />

d 2 σ 0<br />

dθdφ<br />

AC(θ) =<br />

Pt<br />

d 2 σ<br />

dθdφ = d2 σ 0<br />

dθdφ [1+PγPtAC(θ)]<br />

<br />

1<br />

= r0<br />

2<br />

k0<br />

k<br />

k<br />

k0<br />

2 k0<br />

k<br />

k<br />

+ −sin<br />

k0<br />

2 <br />

(θ) sin(θ)<br />

<br />

k k0 k<br />

− ,cos(θ) + −sin<br />

k0 k k0<br />

2 <br />

(θ) ,<br />

k0<br />

k θ


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

L <br />

<br />

εT = exp[−(µ0 +PγPtµ1)L] <br />

<br />

µ0 µ1 <br />

<br />

µ0 = ρe<br />

<br />

dθdφ d2σ0 dθdφ , µ1<br />

<br />

= ρe<br />

dθdφ d2 σ 0<br />

dθdφ AC(θ), <br />

ρe <br />

µ0/ρe µ1/ρe <br />

µ1/µ0 <br />

<br />

<br />

<br />

<br />

<br />

AT = N+ −N −<br />

N + +N − = tanh(−PγPtµ1L) <br />

<br />

Pγ = −AT/Ptµ1L.


tel-00647307, version 1 - 1 Dec 2011<br />

δPγ = 2NγP 2<br />

t µ 2 1L 2 exp(−µ0L) −1/2<br />

S2ReconvTarget<br />

L = 2<br />

µ0<br />

.<br />

NoS2ReconvTarget


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

IS1,ID,IS2 <br />

<br />

ID IS1 IS2 <br />

<br />

<br />

<br />

<br />

5 ◦ <br />

<br />

<br />

∆T/T ≤ 10


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1st <br />

<br />

2nd <br />

<br />

<br />

<br />

<br />

<br />

lx


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

(x,y,z) <br />

<br />

B = B0,0,0(1−x)(1−y)(1−z)+B1,0,0x(1−y)(1−z)<br />

+ B0,1,0(1−x)y(1−z)+B0,0,1(1−x)(1−y)z<br />

+ B1,1,0xy(1−z)+B1,0,1x(1−y)z<br />

+ B0,1,1(1−x)yz +B1,1,1xyz. <br />

Bx By Bz<br />

<br />

<br />

<br />

<br />

<br />

r <br />

r


tel-00647307, version 1 - 1 Dec 2011<br />

By = aI 2 +bI+c<br />

a = −1.683.109−6T/A 2 b = 1.536.10 −3 c = 1.841.10 −3<br />

x ′<br />

S2ReconvTarget<br />

S2ReconvTarget 0 ◦<br />

{2;3;4;5}<br />

{46.8;68.4;91.1;115.2}<br />

x<br />

S2ReconvTarget<br />

β<br />

0 ◦<br />

β


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

Ti<strong>de</strong>al ±δ Ti<strong>de</strong>al <br />

Ti<strong>de</strong>al <br />

<br />

<br />

∆T/T = ±10 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

S2ReconvTarget<br />

NoS2ReconvTarget


tel-00647307, version 1 - 1 Dec 2011<br />

NoS2ReconvTarget S2ReconvTarget


tel-00647307, version 1 - 1 Dec 2011<br />

0.49<br />

S2ReconvTarget<br />

S2ReconvTarget<br />

0.63<br />

NoS2ReconvTarget<br />

S2ReconvTarget<br />

S2ReconvTarget 0.29<br />

S2ReconvTarget<br />

NoS2ReconvTarget


tel-00647307, version 1 - 1 Dec 2011<br />

NoS2ReconvTarget<br />

S2ReconvTarget<br />

S2ReconvTarget<br />

∆T/T ± 10 NoS2ReconvTarget<br />

S2ReconvTarget 0.49<br />

∆T/T = ±10<br />

∆θ = ±5 ◦<br />

∼ 1<br />

µ ∼ ∼<br />


tel-00647307, version 1 - 1 Dec 2011<br />

S2ReconvTarget<br />

NoS2ReconvTarget


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

↑↑ <br />

↓↑ <br />

<br />

<br />

E +<br />

i (E− i ) <br />

<br />

↑↑ ↓↑ <br />

AT = E+ −E −<br />

E + =<br />

+E −<br />

<br />

iE+ iE− i <br />

iE+ i +i<br />

E− i<br />

i −


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

E ±<br />

i<br />

= Ni<br />

p<br />

ǫ ± pep<br />

<br />

Ni i ǫ ± p <br />

ep <br />

<br />

ǫ3 p ǫ0p <br />

<br />

<br />

ǫ ± p = ǫ 0 p ±PePtǫ 3 p<br />

<br />

<br />

<br />

AT = PePtAe = PePt ǫ 3 pep/ <br />

p<br />

p<br />

ǫ 0 pep<br />

<br />

<br />

Ae <br />

<br />

<br />

<br />

<br />

<br />

δPe =<br />

2NP 2<br />

t<br />

<br />

ǫ 0 pA 2 e<br />

p<br />

−1/2<br />

= [2NP 2<br />

t FoMI] −1/2<br />

<br />

<br />

<br />

N = <br />

iNi <br />

I <br />

<br />

Crystal5<br />

-3<br />

× 10<br />

FOM<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

+ e<br />

-<br />

e<br />

2 3 4 5 6 7 8 9<br />

T(MeV)<br />

<br />

<br />

i <br />

10 5 10 4


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

∼ 7% <br />

<br />

I <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

p <br />

<br />

A p<br />

T = n+ p −n − p<br />

n + p +n − p<br />

=<br />

pi −<br />

in+ in−pi <br />

in+ pi +i<br />

n− pi<br />

<br />

np p <br />

i <br />

<br />

A p<br />

T = PePtA p ǫ<br />

e = PePt<br />

3 p<br />

ǫ0 p<br />

. <br />

<br />

<br />

<br />

<br />

<br />

Pe = <br />

<br />

<br />

δPe =<br />

p<br />

p<br />

1<br />

(δP p e) 2<br />

−1/2 P p e<br />

(δP p e) 2/<br />

p<br />

=<br />

<br />

2NeP 2<br />

t<br />

1<br />

(δP p e) 2<br />

<br />

ǫ 0 p(A p e) 2<br />

= [2NeP 2<br />

t FoMSI] −1/2<br />

p<br />

−1/2<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 9 <br />

> 1 %


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

3<br />

× 10<br />

Po<strong>la</strong>rization +1<br />

2500<br />

Entries 6181704<br />

Mean 1.142<br />

RMS 1.183<br />

Po<strong>la</strong>rization -1<br />

2000<br />

Entries 5275110<br />

Mean 0.9951<br />

RMS 1.077<br />

1500<br />

1000<br />

500<br />

0<br />

0 1 2 3 4 5 6<br />

E(MeV)<br />

FOM<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-3<br />

× 10<br />

+ e<br />

-<br />

e<br />

2 3 4 5 6 7 8 9<br />

T(MeV)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

SI


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

±10 ◦ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

± <br />

<br />

<br />

Bmax z <br />

<br />

<br />

<br />

×


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

× 2 <br />

<br />

<br />

<br />

<br />

µ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g/cm 3<br />

<br />

<br />

µs<br />

<br />

<br />

<br />

<br />

× 2 × 2 <br />

µ <br />

<br />

<br />

<br />

<br />

<br />

% <br />

<br />

<br />

× 2 <br />

± <br />

<br />

<br />

<br />

<br />

<br />

∼%


tel-00647307, version 1 - 1 Dec 2011<br />

µ<br />

Ω<br />

∼<br />

×


tel-00647307, version 1 - 1 Dec 2011<br />

137


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

137 22 <br />

<br />

∆E<br />

E =<br />

PeakWidth<br />

. <br />

PeakLoc.−Pe<strong>de</strong>stalLoc.<br />

<br />

<br />

<br />

µ µ <br />

µ <br />

<br />

% <br />

<br />

µ <br />

137 <br />


tel-00647307, version 1 - 1 Dec 2011<br />

∼<br />


tel-00647307, version 1 - 1 Dec 2011<br />

%


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

µ<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

e + e −


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />


tel-00647307, version 1 - 1 Dec 2011<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

th


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011<br />

Letter of Intent to PAC35<br />

Po<strong>la</strong>rized electrons for po<strong>la</strong>rized<br />

<strong>positrons</strong>:<br />

A proof–of–principle experiment<br />

Alexandre Camsonne 1 , Jonathan Dumas 1,2 , Arne Freyberger 1 ,<br />

Joseph Grames 1,† , Matt Poelker 1 , Jean-Sébastien Réal 2 ,<br />

Eric Voutier 2,†<br />

Abstract<br />

1 Thomas Jefferson National Accelerator Facility,<br />

12000 Jefferson Avenue<br />

Newport News, Virginia 23606, USA<br />

2 Laboratoire <strong>de</strong> Physique Subatomique et <strong>de</strong> Cosmologie<br />

IN2P3/CNRS, Université Joseph Fourier, INP<br />

53 rue <strong>de</strong>s Martyrs<br />

38026 Grenoble ce<strong>de</strong>x, France<br />

This letter proposes an experiment at the CEBAF injector to <strong>de</strong>monstrate and<br />

mea<strong>sur</strong>e the longitudinal po<strong>la</strong>rization transfer from a highly spin po<strong>la</strong>rized electron<br />

beam to <strong>positrons</strong> via the po<strong>la</strong>rized bremsstrahlung and subsequent pair-creation<br />

processes in radiator and pair production targets, respectively. A new <strong>de</strong>dicated<br />

injector beam line and experimental apparatus is <strong>de</strong>scribed. The segmentation of<br />

the MeV region of the injector from the remaining CEBAF complex is <strong>de</strong>scribed as<br />

a strategy to perform the experiment during the 6-month shutdown (May-October,<br />

2011) of the 12 GeV Upgra<strong>de</strong>.<br />

† grames@j<strong>la</strong>b.org, voutier@lpsc.in2p3.fr


tel-00647307, version 1 - 1 Dec 2011<br />

1 Synopsis<br />

The purpose of this letter is to inform, and seek approval from, the Program<br />

Advisory Committee for an experiment we would like to perform during the<br />

6-month shutdown (May-October, 2011) for the 12 GeV Upgra<strong>de</strong>. The experiment<br />

constitutes the Ph.D. Thesis of Jonathan Dumas (LPSC/JLab) and<br />

would be the first ever <strong>de</strong>monstration and mea<strong>sur</strong>ement for producing po<strong>la</strong>rized<br />

<strong>positrons</strong> using a po<strong>la</strong>rized electron beam. The experimentis proposed to<br />

occur in the CEBAF injector using a new <strong>de</strong>dicated electronbeam lineand an<br />

experimental apparatus successfully applied at the SLAC E166 experiment[1]<br />

to <strong>de</strong>monstrate po<strong>la</strong>rized <strong>positrons</strong> by an alternative method. The proposed<br />

beam energy for the experiment is 3-8 MeV which can be provi<strong>de</strong>d by the<br />

injector cryounit ( 1<br />

4<br />

cryomodule). The low electron beam current required (1-<br />

10 µA) implies a re<strong>la</strong>tively straight-forward and low-power target conversion<br />

systemandsmall radiationbudget.Thepositron po<strong>la</strong>rizationwillbemea<strong>sur</strong>ed<br />

by a Compton transmission po<strong>la</strong>rimeter. To perform this experiment during<br />

the 6-month shutdown we propose to temporarily segment the lowest MeV<br />

energy region of the injector from the remaining CEBAF complex. This configuration<br />

and long shutdown provi<strong>de</strong> ample time to install the segmentation,<br />

then install, commission and perform the experiment, and finally recover the<br />

original injector configuration in advance of restoring the injector for CEBAF<br />

operations.<br />

2 Motivation<br />

An efficient scheme for positron production, wi<strong>de</strong>ly used in particle accelerators,<br />

relieson thecreationof electron-positron pairsfrom highenergyphotons.<br />

A significant aspect of the process is the <strong>de</strong>pen<strong>de</strong>nce on the po<strong>la</strong>rization, in<br />

particu<strong>la</strong>r, the circu<strong>la</strong>rpo<strong>la</strong>rization of the photon transfers to the longitudinal<br />

po<strong>la</strong>rization of the positron [2]. This is the basic concept of operation tested<br />

for the po<strong>la</strong>rized positron <strong>source</strong> being <strong>de</strong>veloped for the International Linear<br />

Colli<strong>de</strong>r (ILC). The circu<strong>la</strong>rlypo<strong>la</strong>rized photons are produced either from the<br />

Compton back-scatteringof a <strong>la</strong>serlightfrom high energyelectrons[3] or from<br />

the synchrotron radiation of very high energy electrons travelling through a<br />

helical undu<strong>la</strong>tor [1], the <strong>la</strong>tter approach selected for the ILC. This letter of<br />

intent proposes an experiment to investigate an alternative scheme based on<br />

the po<strong>la</strong>rized bremsstralhung process [4].<br />

Simi<strong>la</strong>rly to pair creation, the bremsstrahlung process is a po<strong>la</strong>rization sensitive<br />

mechanism. This property has been wi<strong>de</strong>ly used at un-po<strong>la</strong>rized electron<br />

accelerators to produce linearly po<strong>la</strong>rized photon beams. In addition to the<br />

intrinsic linear po<strong>la</strong>rization, the photons have a circu<strong>la</strong>r component when the<br />

incoming electron beam is po<strong>la</strong>rized, such that the bremsstrahlung of po<strong>la</strong>rized<br />

electrons most generally lead to elliptically po<strong>la</strong>rized photons [2,5]. This<br />

concept is routinely used to obtain a linearly or a circu<strong>la</strong>rly po<strong>la</strong>rized photon<br />

beam at Hall B [6] at several GeV beam energy.<br />

2


tel-00647307, version 1 - 1 Dec 2011<br />

The production of po<strong>la</strong>rized <strong>positrons</strong> from po<strong>la</strong>rized bremsstrahlung [7,8]<br />

was explored in the ILC context, although not pursued in part because of the<br />

requirement of a high intensity po<strong>la</strong>rized electron beam. However, recent advances<br />

inhigh-po<strong>la</strong>rization (85%) and high-current(1 mA)electron<strong>source</strong>s[9]<br />

are encouraging and may offer greater potential for a compact, low energy<br />

driver for a po<strong>la</strong>rized positron <strong>source</strong> [10]. To the best of the authors’ knowledge<br />

this basic operational concept to transfer the longitudinal po<strong>la</strong>rization of<br />

electrons to <strong>positrons</strong> via po<strong>la</strong>rized bremsstrahlung and subsequent po<strong>la</strong>rized<br />

pair-creation has never been experimentally investigated. It is the goal of the<br />

present experiment to <strong>de</strong>monstrate and quantify this concept by mea<strong>sur</strong>ing<br />

the energy distribution of the positron yield and po<strong>la</strong>rization obtained using<br />

a highly po<strong>la</strong>rized electron beam of 3-8 MeV.<br />

3 Physics processes<br />

3.1 Po<strong>la</strong>rized bremsstrahlung<br />

(b)<br />

ξ<br />

/dk d<br />

σ<br />

d<br />

Z=74, θγ=1<br />

mrad<br />

2<br />

10<br />

-1<br />

10<br />

10<br />

10<br />

1<br />

-2<br />

T= 1000 MeV<br />

T= 100 MeV<br />

T= 10 MeV<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

k/T<br />

1<br />

e<br />

/ P<br />

γ<br />

P<br />

Z=74, θγ=1<br />

mrad<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

T= 1000 MeV<br />

T= 100 MeV<br />

T= 10 MeV<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

k/T<br />

1<br />

Figure 1. (color) Differential bremsstrahlung cross section (dσ/dkdξ) and longitudinal<br />

to circu<strong>la</strong>r po<strong>la</strong>rization transfer (Pγ/Pe) from electrons (or <strong>positrons</strong>) to photons with<br />

energy (k) expressed as a fraction of the electron beam energy (T), for a tungsten<br />

nucleus (Z=74) calcu<strong>la</strong>ted at a fixed angle θγ=1 mrad.<br />

As the essential mechanism for the production of high energy photons, the<br />

bremsstrahlung process is a text-book reaction wi<strong>de</strong>ly investigated theoretically<br />

and experimentally. Po<strong>la</strong>rization observables at high energy, including<br />

effects of the nuclear field screening and corrections to the Born approximation,<br />

were first addressed by H.A. Olsen and L.C. Maximon [2] and are<br />

3


tel-00647307, version 1 - 1 Dec 2011<br />

still today the reference calcu<strong>la</strong>tions implementedin the GEANT4 simu<strong>la</strong>tion<br />

package [11]. Fig. 1 shows the energy distribution of the differential cross section<br />

and of the po<strong>la</strong>rization transfer from longitudinally po<strong>la</strong>rized electrons to<br />

circu<strong>la</strong>rlypo<strong>la</strong>rized photons, as a function of the photon energy for a tungsten<br />

nucleus and a fixed photon angle of 1 mrad . The sharp <strong>de</strong>crease of the cross<br />

section in the end-point region is typical of the bremsstrahlung spectra. The<br />

po<strong>la</strong>rization transfer is essentially universal, the highest circu<strong>la</strong>r po<strong>la</strong>rization<br />

being obtained at the highest photon energy.<br />

3.2 Po<strong>la</strong>rized pair-creation<br />

(b)<br />

ξ<br />

/dT d<br />

σ<br />

d<br />

Z=74, θe=1<br />

mrad<br />

-1<br />

10<br />

-2<br />

10<br />

10<br />

1<br />

-3<br />

k= 1000 MeV<br />

k= 100 MeV<br />

k= 10 MeV<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

T/k<br />

1<br />

γ<br />

/ P<br />

e<br />

P<br />

Z=74, θe=1<br />

mrad<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

k= 1000 MeV<br />

k= 100 MeV<br />

k= 10 MeV<br />

-0.6<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

T/k<br />

1<br />

Figure 2. (color) Pair creation differential cross section (dσ/dkdξ) and circu<strong>la</strong>r to longitudinal<br />

po<strong>la</strong>rization transfer (Pe/Pγ) from photons to <strong>positrons</strong> (or electrons) with<br />

energy(T)expressed asafractionofthe photon beam energy(k),foratungsten nucleus<br />

(Z=74) calcu<strong>la</strong>ted at a fixed angle θe=1 mrad.<br />

As the inverse process of the bremsstrahlung reaction, pair production is <strong>de</strong>scribed<br />

by the same matrix elementsso that the cross section and po<strong>la</strong>rization<br />

transfer re<strong>la</strong>tions can be <strong>de</strong>rived from the bremsstralhung expressions following<br />

elementary substitutions [2]. Differential cross sections and po<strong>la</strong>rization<br />

transfer are shown in Fig. 2 for a tungsten nucleus and a fixed positron angle<br />

of 1 mrad, at typical incoming photon energies. The essentially f<strong>la</strong>t distribution<br />

is a direct consequence of the production of two i<strong>de</strong>ntical mass particles<br />

from a massless photon. The po<strong>la</strong>rization transfer shows a shape simi<strong>la</strong>r to<br />

bremsstrahlung but over a <strong>la</strong>rger range of values, allowing for negative and<br />

positive po<strong>la</strong>rization transfer.<br />

Fig. 3 shows the expected positron yield and po<strong>la</strong>rization obtained from a<br />

GEANT4 simu<strong>la</strong>tion using an 8 MeV electron beam and a 1 mm thick tung-<br />

4


tel-00647307, version 1 - 1 Dec 2011<br />

sten target. Angu<strong>la</strong>r (±10 ◦ ) and momentum (±5 %) acceptance cuts, reflecting<br />

collection and selection magnets, respectively, have been applied to the<br />

simu<strong>la</strong>ted yield. It is seen that a 2 pA positron current can be obtained with<br />

30-60% longitudinal po<strong>la</strong>rization. Higher po<strong>la</strong>rizations may be obtained at the<br />

expense of reduced positron current. Such a configuration should be easy to<br />

achieveand improveupon because of the small energy <strong>de</strong>posited in the target:<br />

the beam current can be increased to 10-30 µA without major impact on the<br />

target, and possibly more by using a tilted foil [12]. Such a positron current<br />

and po<strong>la</strong>rization can be mea<strong>sur</strong>ed rapidly (minutes) as <strong>de</strong>scribed in Sec. 6.<br />

Positron current (pA)<br />

Ie<br />

= 1 µ A T = 8 MeV P = 85%<br />

e<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

∆p/p<br />

= ± 5%<br />

∆θ<br />

= ± 10°<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Positron kinetic energy (MeV)<br />

Figure 3. (color) Positron yield and po<strong>la</strong>rization produced from a 1 µA and 85% longitudinally<br />

po<strong>la</strong>rized electron beam of 8 MeV striking a 1 mm thick tungsten target.<br />

4 Experiment strategy<br />

The experiment we propose foremost requires a po<strong>la</strong>rized electron beam with<br />

energy of at least ∼1 MeV to achieve pair creation. While both the CEBAF<br />

and FEL accelerators may in principle provi<strong>de</strong> such a beam, reproducing at<br />

the FEL the highly spin po<strong>la</strong>rized electron beam, electron spin manipu<strong>la</strong>tors<br />

and electron po<strong>la</strong>rimeters that exist at CEBAF is costly and impractical.<br />

Consequently, we limited ourselves to the CEBAF complex and evaluated<br />

howwemightaccomplishtheexperimentatlocations<strong>de</strong>finedbytypicalenergy<br />

ranges: 1-10MeV(lowestMeVregion)[4],10-60 MeV(injectorfullenergy)[10]<br />

and several GeV (linacs or end stations) [13]. While all cases appear viable,<br />

our final choice is gui<strong>de</strong>d by practical consi<strong>de</strong>rations. For example, photoneutron<br />

background radiation yield becomes increasingly a distraction above<br />

∼8 MeV, green field <strong>de</strong>signs are less invasive than modifiying existing beam<br />

5<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Po<strong>la</strong>rization (%)


tel-00647307, version 1 - 1 Dec 2011<br />

Figure 4. The unmodified (top) and conceptual segmented (bottom) injector <strong>la</strong>youts<br />

are shown together for comparison. In this configuration the segmented injector may<br />

operate to <strong>de</strong>liver a highly po<strong>la</strong>rized (85%) electron beam with energy up to 10 MeV.<br />

The beam current may be monitored by both a BCM cavity and a fixed termination<br />

Faraday cup (FC2 DUMP) with both operational and hardware limits as routinely used<br />

for CEBAF operations.<br />

lines, and the potential avai<strong>la</strong>bility of experimental equipment (discussed in<br />

Sec. 7) significantly reduces cost and overhead. Of all concerns, integration<br />

with the CEBAF schedule, dictated by the Nuclear Physics (NP) program,<br />

Scheduled Accelerator Down (SAD) periods and the 6-month and 12-month<br />

12 GeV Upgra<strong>de</strong> shtudowns, is required. Finally, the strategy we propose<br />

is to temporarily segment the lowest MeV region of injector following the<br />

10 MeV cryounit from the remain<strong>de</strong>r of the CEBAF complex during the 6month<br />

shutdown May-October, 2011.<br />

Historically,theoperation oftheelectrongunhad requiredforpersonnel safety<br />

purpose that the entire injector and north linac be elevated to a Beam Permit<br />

status. However, about 3 years ago an injector segmentation was constructed<br />

to allowfor operation of the electrongun and warm radio-frequencycavitiesto<br />

accelerate the beam to 500 keV. This was done within constraints set by the<br />

Radiological Control (RadCon) and Personnel Safety System (PSS) groups<br />

to protect personnel and hardware. This mo<strong>de</strong> has since become routine and<br />

proved invaluable for maintenanceopportunities and beam operations, particu<strong>la</strong>rlywhilestartingtheacceleratorafterashutdown.<br />

Theproposed segmentation<br />

of the injector for 10 MeVbeam energy would offer simi<strong>la</strong>r opportunities.<br />

In particu<strong>la</strong>r the 6-month 12 GeV Upgra<strong>de</strong> shutdown would provi<strong>de</strong> sufficient<br />

opportunity to install, commission and run this experiment. While we may<br />

still consi<strong>de</strong>r a permanent segmentation, for the purpose of this letter of in-<br />

6


tel-00647307, version 1 - 1 Dec 2011<br />

tent we only request a temporary segmentation, that is, one that would be<br />

entirely removed at the end of the shutdown.<br />

The region of the injector inten<strong>de</strong>d for segmentation is shown in Fig. 4, where<br />

the unmodified (top) and conceptual segmented (bottom) <strong>la</strong>youts are shown<br />

together for comparison. Our p<strong>la</strong>n proposes to reconfigure approximately 5<br />

meters of beam line. All components would be <strong>sur</strong>veyed prior to removal for<br />

<strong>la</strong>terre-instal<strong>la</strong>tion.Two opticsgir<strong>de</strong>rsand one differentialpumpgir<strong>de</strong>rwould<br />

be removed and stored un<strong>de</strong>r vacuum. A fourth gir<strong>de</strong>r containing a Faraday<br />

cup would move upstream, where installed 10 years ago, to function as a fixed<br />

beam dump (rated for 10 MeV and 200 µA); effectivelythe termination point<br />

of the segmented injector. The cleared region would be used to fabricate a<br />

temporary shield wall <strong>la</strong>byrinth consisting primarily of steel shield blocks and<br />

re-using the existing PSS personnel gate and egress controls. Downstream of<br />

the shield wall the existing cryomodule 0L03 would exist unmodified, never<br />

vented.Notetheprimaryentranceoftheinjector(notshown) provi<strong>de</strong>sroutine<br />

egress and a 2-ton crane/door for moving equipment to the injector. The<br />

ultimate configuration would be evaluated by the RadCon and PSS groups<br />

and approved by the Director of Operations.<br />

The new electron beam line and experimental apparatus to be installed, occupy<br />

a 3×3 m 2 footprint, shown in Fig. 4 and discussed in <strong>de</strong>tail in the next<br />

section. The cyrounit, electron spectrometer and electron Mott po<strong>la</strong>rimeter<br />

have been previously tested with 2-8 MeV electron beam energy. The proposed<br />

experimental collectionoptics, spectrometer and po<strong>la</strong>rimeter have been<br />

previously applied in a comparable energy range [14].<br />

5 Experiment <strong>la</strong>yout<br />

The existing equipmentof the injector beam lineoffer the capabilitiesof beam<br />

energy and po<strong>la</strong>rization mea<strong>sur</strong>ements, allowing for a precise knowledge of<br />

the electron beam. For the production of <strong>positrons</strong>, a new electron line would<br />

be installed on the opposite si<strong>de</strong> of the injector line, with no interference<br />

with these beam characterization capabilities. This new line (Fig. 5) would be<br />

instrumented with various diagnostic <strong>de</strong>vices and a target <strong>la</strong>d<strong>de</strong>r supporting<br />

a viewer, an empty target, and different production targets.<br />

For example, a 1 µA highly longitudinallypo<strong>la</strong>rized electronbeam of 3-8 MeV<br />

would produce a circu<strong>la</strong>rly po<strong>la</strong>rized photon beam within a 1 mm tungsten<br />

target (T1) via po<strong>la</strong>rized bremsstrahlung. The beam power <strong>de</strong>posited in T1<br />

has beensimu<strong>la</strong>tedtobeabout 4W, corresponding tohalfof thetotal electron<br />

beampower.Adipolelocatedafterthetargetwouldgui<strong>de</strong>theexitingelectrons<br />

towards a beam dump. At a 1 m distance from the initial production target,<br />

thepo<strong>la</strong>rizedphotonswouldcreatealongitudinallypo<strong>la</strong>rize<strong>de</strong>lectron-positron<br />

pair in a second tungsten target (T2), the remaining part of the secondary<br />

photon beam being absorbed in an appropriate photon-dump.<br />

Major parts of the characterization equipment of the SLAC E166 experi-<br />

7


tel-00647307, version 1 - 1 Dec 2011<br />

Figure 5. Schematic <strong>la</strong>yout of the experiment.<br />

ment [14] used in a simi<strong>la</strong>r energy range would then be installed to mea<strong>sur</strong>e<br />

thepositron yieldand po<strong>la</strong>rization. Asolenoidcollectsthe<strong>positrons</strong>, a doubledipole<br />

spectrometer selects the positron momentum and preserves the longitudinal<br />

po<strong>la</strong>rization. In the Compton transmission po<strong>la</strong>rimeter the po<strong>la</strong>rized<br />

<strong>positrons</strong> convert into circu<strong>la</strong>rly po<strong>la</strong>rized photons in a third tungsten target<br />

(T3). The Compton absorption of these photons within a po<strong>la</strong>rized iron target<br />

is the operationnal principle of the transmission po<strong>la</strong>rimeter: the asymmetry<br />

between the number of transmitted photons mea<strong>sur</strong>ed for two opposite target<br />

orientations is proportionnal to the positron po<strong>la</strong>rization. In addition, the<br />

same experimenta<strong>la</strong>symmetry can also be obtained by reversingthe incoming<br />

positron po<strong>la</strong>rization (by reversing the electron beam helicity) allowing for<br />

the control of systematics. Furthermore, the knowledge of the electron beam<br />

po<strong>la</strong>rization from the Mott electron po<strong>la</strong>rimeter allows for a cross calibration<br />

of the Compton transmission po<strong>la</strong>rimeter. It is then forseen to firstly commission<br />

the new beam lineand the Compton transmission po<strong>la</strong>rimeter in electron<br />

mo<strong>de</strong>, and secondly perform the positron characterization experiment.<br />

6 Electron and positron po<strong>la</strong>rimetry<br />

6.1 Compton transmission po<strong>la</strong>rimetry<br />

ThedifferentialcrosssectionfortheCompton scatteringofcircu<strong>la</strong>rlypo<strong>la</strong>rized<br />

photons (Pγ) from a po<strong>la</strong>rized electron target (Pt) can be written<br />

d 2 σ<br />

dθdφ = d2 σ 0<br />

dθdφ [1+PγPtAC(θ)] (1)<br />

8


tel-00647307, version 1 - 1 Dec 2011<br />

where d 2 σ 0 /dθdφ is the unpo<strong>la</strong>rized Compton cross section<br />

d 2 σ 0<br />

dθdφ<br />

<br />

1<br />

= r0<br />

2<br />

ω<br />

ω0<br />

2 ω0<br />

ω<br />

and AC(θ) is the analyzing power of the Compton process<br />

AC(θ) =<br />

ω0<br />

ω<br />

ω0 ω ω<br />

− cos(θ) +<br />

ω0 ω ω0<br />

ω<br />

+ −sin<br />

ω0<br />

2 <br />

(θ) sin(θ) (2)<br />

−sin 2 <br />

(θ) ; (3)<br />

both quantities <strong>de</strong>pending on the scattered photon energy (ω) and angle (θ),<br />

and the incoming photon energy (ω0).<br />

Compton cross section (b)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.4<br />

-1<br />

10 1 10<br />

k (MeV)<br />

Unpo<strong>la</strong>rized cross section<br />

Po<strong>la</strong>rization <strong>de</strong>pen<strong>de</strong>nt component<br />

Analyzing power<br />

Figure 6. (color) Total Compton cross section components and analyzing power.<br />

Compton transmission po<strong>la</strong>rimetry takes advantage of the sensivity of the<br />

Compton process to the absorption of circu<strong>la</strong>rly po<strong>la</strong>rized photons in a po<strong>la</strong>rized<br />

target. This method, which involves a single <strong>de</strong>tection <strong>de</strong>vice matching<br />

the size of the incoming beam, is intrinsicallyeasy to implementand has been<br />

recently used successfully in experiments simi<strong>la</strong>r to the present one [14,15].<br />

Consi<strong>de</strong>ring the simple case of a monochromatic parallel photon beam scattering<br />

off a po<strong>la</strong>rized electron target with length L, the transmission efficiency<br />

characterizing the probability that a photon exits the target may be written<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

Analyzing power<br />

εT = exp[−(µ0 +PγPtµ1)L] (4)<br />

which assumes the loss of any photon interacting in the target and the dominance<br />

of the Compton process; µ0 and µ1 are the unpo<strong>la</strong>rized and po<strong>la</strong>rized<br />

Compton absorption coefficients<br />

µ0 = ρe<br />

<br />

dθdφ d2σ0 dθdφ , µ1<br />

<br />

= ρe<br />

9<br />

dθdφ d2 σ 0<br />

dθdφ AC(θ), (5)


tel-00647307, version 1 - 1 Dec 2011<br />

withρe theelectron<strong>de</strong>nsityofthetarget.Thetotal unpo<strong>la</strong>rizedComptoncross<br />

section (µ0/ρe), the po<strong>la</strong>rization <strong>de</strong>pen<strong>de</strong>nt part (µ1/ρe) and the Compton<br />

analyzing power (µ1/µ0) are shown in Fig. 6 as a function of the incoming<br />

photon energy. The magnitu<strong>de</strong> of the cross section and of the analyzing power<br />

guarantee an efficient po<strong>la</strong>rimeter over the energy range of this experiment.<br />

The zero-crossing of the analyzing power at about 1.5 MeV is of particu<strong>la</strong>r<br />

interest for <strong>de</strong>tector calibration purposes.<br />

The mea<strong>sur</strong>ement of the circu<strong>la</strong>r po<strong>la</strong>rization of the photon beam is obtained<br />

from the number of transmitted photons for oppositly po<strong>la</strong>rized target orientations.<br />

The corresponding asymmetry is<br />

AT = N+ −N −<br />

N + +N − = tanh(−PγPtµ1L) (6)<br />

from which the photon circu<strong>la</strong>r po<strong>la</strong>rization is inferred according to<br />

The associated statistical uncertainty is<br />

Pγ = −AT/Ptµ1L. (7)<br />

δPγ = <br />

2Nγ P 2<br />

t µ 2 1L 2 exp(−µ0L) −1/2<br />

, (8)<br />

in the case of small asymmetries. In this discussion a single photon energy is<br />

assumed, however, in reality the broad photon spectrum must be consi<strong>de</strong>red.<br />

The resulting experimental asymmetry is then a convolution of this spectrum<br />

with the po<strong>la</strong>rized Compton absorption process. This multistep process has<br />

been simu<strong>la</strong>ted with GEANT4 taking advantage of improvments to inclu<strong>de</strong><br />

po<strong>la</strong>rized electron, positron and photon interactions [16].<br />

As an example,consi<strong>de</strong>r a 7.5 MeVelectronbeam of 400 µm width illumintating<br />

a 1 mm thick tungsten foil. The created photons travel 12 mm to a po<strong>la</strong>rized<br />

analyzing target (iron cylin<strong>de</strong>r 75 mm in length and 50 mm in diameter<br />

with a 7.4 % po<strong>la</strong>rization). The photon <strong>de</strong>tector is mo<strong>de</strong>led by a 60×60 mm 2<br />

i<strong>de</strong>al <strong>de</strong>tection <strong>sur</strong>face located 72.5 mm from the exit of the po<strong>la</strong>rized target.<br />

This geometrical arrangement corresponds to the E166 experiment[14]. Fig. 7<br />

shows the number of transmitted photons and the expected asymmetry for a<br />

mea<strong>sur</strong>ement <strong>la</strong>sting about 100 s with a 1 pA electron beam of 85% longitudinal<br />

po<strong>la</strong>rization. For each photon energy bin, the electron beam po<strong>la</strong>rization<br />

can be inferred from<br />

Pe = AT<br />

PtAe<br />

where the electron analyzing power Ae is <strong>de</strong>termined either from simu<strong>la</strong>tion<br />

or experiment with a known po<strong>la</strong>rized beam, varying from -0.08 to 0.34 in<br />

the consi<strong>de</strong>red energy range. The statistical average over the accepted photon<br />

energy yields the absolute statistical uncertainty ±0.03 on the <strong>de</strong>termination<br />

of Pe meaning that an accurate mea<strong>sur</strong>ement may be obtained within a short<br />

amount of time due to the high (150 kHz) event rate.<br />

10<br />

(9)


tel-00647307, version 1 - 1 Dec 2011<br />

γ<br />

Transmitted photons, N<br />

×<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

3<br />

10<br />

Positive target po<strong>la</strong>r.<br />

Negative target po<strong>la</strong>r.<br />

Asymmetry<br />

0 1 2 3 4 5 6 7 8<br />

k (MeV)<br />

Figure 7. (color) Number of transmitted photons for two opposite target po<strong>la</strong>rizations<br />

and expected experimental asymmetry as obtained from GEANT4 simu<strong>la</strong>tions. The<br />

statistical error bars correspond to a mea<strong>sur</strong>ement time of 100 s at a 1 pA current.<br />

6.2 Data acquisition<br />

In or<strong>de</strong>r to achieve the statistical accuracy in reasonable time, a fast acquisition<br />

will be <strong>de</strong>signed for the readout of the photon calorimeter of the Compton<br />

transmission po<strong>la</strong>rimeter. Achieving anticipated rates of several hundred<br />

kilohertz is possible through the use of F<strong>la</strong>sh Analog to Digitial Converters<br />

(F<strong>la</strong>sh ADC), allowing pipe-lining and buffering of the event data. The<br />

data acquisition system (DAQ) proposed for this experimentis simi<strong>la</strong>rto that<br />

presently implemented for the Hall A Compton po<strong>la</strong>rimeter, which <strong>de</strong>monstrated<br />

100 kHz trigger acquisition already in 1999 [17].<br />

Wireless technology and increased micro-processor speeds with GHz bandwidth<br />

have ma<strong>de</strong> suitable F<strong>la</strong>sh ADC’s both attainable and affordable. The<br />

benefit to the DAQ system is that complete pipe-lining of the event data is<br />

possible, meaning data is recor<strong>de</strong>d continuously into a <strong>la</strong>rge circu<strong>la</strong>r memory<br />

buffer (access rates from 1.5 µs up to 250 µs). A consequence is the ability<br />

to locate events by accessing the memory corresponding to the trigger time<br />

therebyeliminatingextrinsic<strong>de</strong>ad timeas long as eventsare read before being<br />

overwritten by another event. This concept will be the core of the acquisition<br />

system of Hall D [20] inten<strong>de</strong>d to record and generate the trigger of several<br />

thousand calorimeter channels at rates of 160 kHz. Jefferson Laboratory has<br />

<strong>de</strong>velopedthe corresponding F<strong>la</strong>sh ADC with a sampling rate of 250 MHzand<br />

is presently commissioning the ADC in the Hall A Moeller DAQ where direct<br />

on-board processing of the data using scalers allows for computation of experimental<br />

asymmetries and po<strong>la</strong>rization calcu<strong>la</strong>tions without <strong>de</strong>ad time [18].<br />

11<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

(%)<br />

T<br />

Asymmetry, A


tel-00647307, version 1 - 1 Dec 2011<br />

As mentioned previously the Hall A Compton po<strong>la</strong>rimeter reached high event<br />

rates 10 years ago using a 40 MHz F<strong>la</strong>sh ADC, the state of the art transfer<br />

VME protocol avai<strong>la</strong>ble at that time with a speed of 20 MBytes/s, buffering<br />

and online histogramming on the VME CPU. A new data acquisition is now<br />

being tested in parallel to the old DAQ, using a simi<strong>la</strong>r 250 MHz F<strong>la</strong>sh ADC<br />

to compute the integral of the signal during each helicityperiod [19]. Byusing<br />

commonly avai<strong>la</strong>ble Field Programmable Gate Arrays (FPGA) one can easily<br />

implementintegration of the signal or histogramming, completelyeliminating<br />

the <strong>de</strong>ad time linked to data transfer to the central processor. Depending<br />

upon the trigger rate and using new transfer protocols reaching 320 MBytes/s<br />

one may also transfer all the events without <strong>de</strong>ad time for offline analysis. It<br />

appears reasonable to assert that trigger rates of about 1 MHz are attainable<br />

simply by scaling the old DAQ with transfer speeds now 10 times faster.<br />

Such performance improvement will soon be confirmed preparing the Hall A<br />

Compton DAQ for coming experiments at 6 and 12 GeV in which this system<br />

will be fully implemented.<br />

Analog signal<br />

FADC<br />

Digital integration<br />

over a time window<br />

(field po<strong>la</strong>rization flip<br />

and helicity flip)<br />

normalized by time<br />

gives integrated<br />

asymmetry<br />

Pipeline<br />

250 MHz continuous sampling<br />

Circu<strong>la</strong>r buffer<br />

Integration over<br />

few samples<br />

corresponding<br />

to pulse width<br />

and record in onboard<br />

histograms<br />

Software threshold<br />

or<br />

external trigger such<br />

as RF<br />

Circu<strong>la</strong>r<br />

readout buffers<br />

Continuous buffer readout<br />

VME320 or VXS<br />

of<br />

events of interests<br />

No <strong>de</strong>adtime as long as trigger rate<br />

is smaller than readout and buffers<br />

not full<br />

Figure 8. Schematic of the proposed data acquistion system.<br />

As illustratedin Fig. 8, the system wil<strong>la</strong>llow severalmethods of mea<strong>sur</strong>ement.<br />

First, as an integration mea<strong>sur</strong>ement it has the advantage of being free of<br />

threshol<strong>de</strong>ffects,insensitivetopile-upandwillworkatanyrateattheexpense<br />

of energy information. Second, implemented for online histogramming it is<br />

also free of <strong>de</strong>ad time and provi<strong>de</strong>s the energy <strong>de</strong>pen<strong>de</strong>nce of the asymmetry<br />

at any rate, although the systematics due to pile up and thresholds must<br />

be studied to <strong>de</strong>termine the optimal ba<strong>la</strong>nce between statistical uncertainty<br />

and systematic error. This method should also be able to reach a 1 MHz<br />

event rate. Finally, event by event readout provi<strong>de</strong>s the greatest quantity of<br />

information without <strong>de</strong>ad time provi<strong>de</strong>d events are read faster than written.<br />

For example, to record 20 samples for each event and transfer 200 MByte/s<br />

naively requires a rate of 1 MHz. The challenge is the <strong>la</strong>rge amount of data<br />

generated, so it may prove more practical to implement this third method<br />

with a pre-scaler for systematic studies. Practically, an operational system<br />

could be <strong>de</strong>veloped in about 6 months taking advantage of existing projects,<br />

for example, the Hall A Compton and Moller po<strong>la</strong>rimeter DAQ upgra<strong>de</strong>s and<br />

12


tel-00647307, version 1 - 1 Dec 2011<br />

Hall D is already commissioning a comparable system. The final system will<br />

operate simultaneously the three data acquisition methods.<br />

7 Timeline<br />

We propose a 2 year p<strong>la</strong>n to perform this proof-of-principle experiment, complete<br />

the Ph.D. Thesis of Jonathan Dumas and publish our results. The following<br />

timelineoutlines a p<strong>la</strong>n we believewill allow us to successfully perform<br />

this experiment.<br />

December, 2009<br />

• Following the 2nd year Ph.D. Thesis Reviewof Jonthan Dumas we received<br />

support by the Accelerator Division Associate Director to proceed and submit<br />

a Letter of Intent to PAC35 for this proposed experiment at CEBAF.<br />

January - February, 2010 (Scheduled Accelerator Down)<br />

• Col<strong>la</strong>borators seek PAC approval so that we may have official support of<br />

JLab, and to <strong>de</strong>velopa Memorandum of Un<strong>de</strong>rstanding (MOU) with DESY<br />

(Compton transmission po<strong>la</strong>rimeter) and Princeton University (collection<br />

solenoid and spectrometer) to loan hardware for this experiment.<br />

• Survey and assess region for positron experiment and segmentation.<br />

March - June, 2010 (Nuclear Physics Program)<br />

• LPSC to loan Compton transmission po<strong>la</strong>rimeter from DESY, acquire analyzing<br />

magnet power supply, <strong>de</strong>velop data acquisition system, test photon<br />

calorimeter, integrate systems.<br />

• JLab to loan solenoid and spectrometer from Princeton University, acquire<br />

magnet power supplies, make functional, map and/or <strong>de</strong>velop magnetic<br />

mo<strong>de</strong>l for simu<strong>la</strong>tion.<br />

• Develop <strong>de</strong>tailed <strong>la</strong>yout to add new electron beam line to injector at 0L02<br />

(lowest MeV) region, with suitable optics and diagnostics to <strong>de</strong>liver/control<br />

beam at conversion target. Fabricate and acquire components for new beam<br />

line “spigot”.<br />

July - August, 2010 (Scheduled Accelerator Down)<br />

• Early opportunity to install new beam line “spigot”: new vacuum chamber<br />

and iso<strong>la</strong>tion valve.<br />

• Perform final mea<strong>sur</strong>ements to prepare for the injector segmentation.<br />

September 2010 April 2011 (Nuclear Physics Program)<br />

• Complete integrated <strong>de</strong>sign of the experiment with full simu<strong>la</strong>tions, scattering<br />

chamber, targets, collection optics, dumps, <strong>de</strong>tectors and shielding.<br />

• Fabricate and test beam line components.<br />

• Fabricate injector segmentation.<br />

13


tel-00647307, version 1 - 1 Dec 2011<br />

• Transfer Compton transmission po<strong>la</strong>rimeter from LPSC to JLab.<br />

• Prepare for experiment instal<strong>la</strong>tion.<br />

May - October 2011 (Perform Experiment)<br />

• 1 month to install segmentation, experimental apparatus and commission<br />

segmentation.<br />

• 3 months to commission and perform experiment.<br />

• 1 month to un-install segmentation, remove and return experimental apparatus<br />

to DESY and Princeton University.<br />

• 1 month advance recovery in preparation of CEBAF operations.<br />

November - December 2011 (Nuclear Physics Program)<br />

• Experiment and analysis are completed.<br />

• Jonathan Dumas to <strong>de</strong>fend Ph.D. Thesis and publish results.<br />

8 Summary<br />

Thisletterproposes an experimentat theCEBAFinjectorto <strong>de</strong>monstrateand<br />

mea<strong>sur</strong>e the longitudinal po<strong>la</strong>rization transfer from a highly spin po<strong>la</strong>rized<br />

electron beam to <strong>positrons</strong> via the po<strong>la</strong>rized bremsstrahlung and subsequent<br />

pair-creation processes in radiator and pair production targets, respectively.<br />

It requires a new <strong>de</strong>dicated injector beam line and experimental apparatus. A<br />

strategywhichimpliesthesegmentationoftheMeVregionoftheinjectorfrom<br />

the remainingCEBAF complexhas been proposed to perform this experiment<br />

during the 6-month shutdown (May-October, 2011) of the 12 GeV Upgra<strong>de</strong>.<br />

This experiment is <strong>de</strong>signed to have a small physical and radiation footprint.<br />

By using a 1-10 µA electron beam low power targets and minimal shielding<br />

is inten<strong>de</strong>d. The positron (and electron beam) po<strong>la</strong>rization will be mea<strong>sur</strong>ed<br />

via the Compton transmission method. The expected positron yield is low<br />

∼pA but yet<strong>de</strong>manding in terms of data acquisition performances. We should<br />

benefit from the current <strong>de</strong>velopments for Hall A and Hall D to guarantee a<br />

powerfull operation of this <strong>de</strong>vice.<br />

In addition to this unique proof-of-principle experiment, this represents the<br />

first accelerator physics experiment at Jefferson Lab aimed at a production<br />

mechanism for <strong>positrons</strong> in the CEBAF accelerator. This R&D issue has been<br />

discussed for many years and through two workshops, most recently at the<br />

InternationalWorkshop onPositrons atJefferson Lab inMarch,2009 [21]. The<br />

results of thisexperimentwould provi<strong>de</strong>valuable information for thepotential<br />

<strong>de</strong>velopment of a higher intensity po<strong>la</strong>rized positron <strong>source</strong> for CEBAF, and<br />

may prove useful for opportunities in the context of the ILC.<br />

14


tel-00647307, version 1 - 1 Dec 2011<br />

References<br />

[1] G. Alexan<strong>de</strong>r et al, Phys. Rev. Lett. 100 (2008) 210801.<br />

[2] H.A. Olsen, L.C. Maximon, Phys. Rev. 114 (1959) 887.<br />

[3] T. Omori et al, Phys. Rev. Lett. 96 (2006) 114801.<br />

[4] J. Dumas, J. Grames, E. Voutier, AIP Conf. Proc. 1149 (2009) 1184.<br />

[5] W.H. McMaster, Rev. Mod. Phys 33 (1961) 8.<br />

[6] B.A. Mecking et al., Nucl. Inst. Meth. A 503 (2003) 513.<br />

[7] E.G. Bessonov, A.A. Mikhailichenko, Proc. of the V th European Particle<br />

Accelerator Conference, Barcelona (Spain), June 10-14, 1996.<br />

[8] A.P. Potylitsin, Nucl. Inst. Meth. A 398 (1997) 395.<br />

[9] J. Grames et al., Proc. of the 2007 Particle Accelerator Conference,<br />

Albuquerque (New Mexico, USA), June 25-29, 2007.<br />

[10] J. Dumas, J. Grames, E. Voutier, AIP Conf. Proc. 1160 (2009) 120.<br />

[11] S. Agostinelli et al, Nucl. Inst. Meth. A 506 (2003) 250.<br />

[12] P. Perez, A. Rosowsky, Nucl. Inst. Meth. 532 (2004) 523<br />

[13] A.P. Freyberger, AIP Conf. Proc. 1160 (2009) 101.<br />

[14] G. Alexan<strong>de</strong>r et al, Nucl. Inst. Meth. A 610 (2009) 451.<br />

[15] M. Fukuda et al, Phys. Rev. Lett. 91 (2003) 164801.<br />

[16] R. Dol<strong>la</strong>n, K. Laihem, A. Schälicke, Nucl. Inst. Meth. A 559 (2006) 185<br />

[17] http://hal<strong>la</strong>web.j<strong>la</strong>b.org/compton/Documentation/Technical/1997/<br />

note.perf.acq.dg.ps.gz<br />

[18] http://hal<strong>la</strong>web.j<strong>la</strong>b.org/parity/prex/mollfadc.pdf<br />

[19] http://hal<strong>la</strong>web.j<strong>la</strong>b.org/rom/fadcspec.pdf<br />

[20] http://www.j<strong>la</strong>b.org/Hall-D/daq wfest/daq wfest.ps<br />

[21] Proceedings of the International Workshop on Positron at Jefferson Lab, Edts.<br />

L. Elouadrhiri, T.A. Forest, J. Grames, W. Melnitchouk, and E. Voutier, AIP<br />

Conf. Proc. 1160 (2009).<br />

15


tel-00647307, version 1 - 1 Dec 2011


tel-00647307, version 1 - 1 Dec 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!