22.06.2013 Views

247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < ∞ and f : R ...

247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < ∞ and f : R ...

247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < ∞ and f : R ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2<br />

Propositi<strong>on</strong> 3. Given f ∈ L p,q , we write f = fm where<br />

Then<br />

fm(x) := f(x)χ {x:2 m <strong>≤</strong>|f(x)| λ}|<br />

2 m<br />

2 m−1<br />

λ<br />

λ q<br />

<br />

<br />

q/p dλ<br />

|En|<br />

λ<br />

n≥m<br />

<br />

<br />

1/pq <br />

|En| .<br />

n≥m<br />

To obtain a lower bound, we keep <strong>on</strong>ly the summ<strong>and</strong> n = m; for an upper bound,<br />

we use the c<strong>on</strong>cavity of fracti<strong>on</strong>al powers. This yields<br />

<br />

2 m |Em| 1/p q f ℓm ∗ Lp,q <br />

<br />

<br />

<br />

2 m |En| 1/p<br />

<br />

<br />

(5)<br />

.<br />

m<strong>≤</strong>n<br />

As 2 m χEm L p = 2m |Em| 1/p , we have our desired lower bound. To obtain the<br />

upper bound, we use the triangle inequality in ℓq (Z):<br />

<br />

<strong>∞</strong><br />

RHS(5) = <br />

2 −k 2 m+k <br />

<strong>∞</strong><br />

χEm+kLp <strong>≤</strong> 2 −k<br />

<br />

<br />

k=0<br />

ℓ q m<br />

k=0<br />

ℓ q m<br />

<br />

<br />

2 m χEmLp q<br />

ℓm This completes the proof of the upper bound. <br />

Lemma 4. Given 1 <strong>≤</strong> q < <strong>∞</strong> <strong>and</strong> a finite set A ⊂ 2Z ,<br />

<br />

q <br />

<br />

<br />

A <strong>≤</strong> A<br />

q <br />

<br />

<strong>≤</strong> 2 max<br />

A∈A A<br />

<br />

<br />

q<br />

<strong>≤</strong> 2 q A q<br />

where all sums are over A ∈ A. More generally, for any subset A of a geometric<br />

series <strong>and</strong> any 0 < q < <strong>∞</strong>,<br />

<br />

q <br />

A ≈ <br />

<br />

A<br />

q<br />

where the implicit c<strong>on</strong>stants depend <strong>on</strong> q <strong>and</strong> the step size of the geometric series.<br />

Propositi<strong>on</strong> 5. <strong>For</strong> 1 < p < <strong>∞</strong> <strong>and</strong> 1 <strong>≤</strong> q <strong>≤</strong> <strong>∞</strong>,<br />

(6)<br />

sup | fg| : g ∗<br />

L p′ ,q ′ <strong>≤</strong> 1 ≈ f ∗ L p,q.<br />

Indeed, LHS(6) defines a norm <strong>on</strong> Lp,q . Note that by (6), this norm is equivalent<br />

to our quasi-norm. Moreover, under this norm, Lp,q is a Banach space <strong>and</strong> when<br />

q = <strong>∞</strong>, the dual Banach space is Lp′ ,q ′<br />

, under the natural pairing.<br />

Remark. When p = 1 (<strong>and</strong> q = 1), the RHS(6) is typically infinite; indeed, <br />

E |f|<br />

may well be infinite even for some set E of finite measure. In fact, there there cannot<br />

be a norm <strong>on</strong> Lp,q equivalent to our quasi-norm. <strong>For</strong> example, the impossibility of<br />

finding an equivalent norm for L1,<strong>∞</strong> (R) can be deduced by computing<br />

<br />

N<br />

<br />

|x − n| −1<br />

∗<br />

<br />

N <br />

<br />

≈ N log(N) <strong>and</strong> |x − n| −1 ∗<br />

L1,<strong>∞</strong> ≈ N.<br />

n=0<br />

L 1,<strong>∞</strong><br />

n=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!