22.06.2013 Views

247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < ∞ and f : R ...

247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < ∞ and f : R ...

247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < ∞ and f : R ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>247A</str<strong>on</strong>g> <str<strong>on</strong>g>Notes</str<strong>on</strong>g> <strong>on</strong> <strong>Lorentz</strong> <strong>spaces</strong><br />

Definiti<strong>on</strong> <strong>1.</strong> <strong>For</strong> 1 <strong>≤</strong> p < <strong>∞</strong> <strong>and</strong> f : R d → C we define<br />

(1) f ∗<br />

L p<br />

weak (Rd )<br />

<strong>and</strong> the weak L p space<br />

:= sup λ<br />

λ>0<br />

1/p {x : |f(x)| > λ} <br />

L p<br />

weak (Rd ) := f : f ∗<br />

L p<br />

weak (Rd ) < <strong>∞</strong> .<br />

Equivalently, f ∈ L p<br />

weak if <strong>and</strong> <strong>on</strong>ly if |{x : |f(x)| > λ}| λ−p .<br />

Warning. The quantity in (1) does not define a norm. This is the reas<strong>on</strong> we append<br />

the asterisk to the usual norm notati<strong>on</strong>.<br />

To make a side-by-side comparis<strong>on</strong> with the usual Lp norm, we note that<br />

<br />

1/p fLp =<br />

=<br />

<strong>∞</strong><br />

<strong>and</strong>, with the c<strong>on</strong>venti<strong>on</strong> that p 1/<strong>∞</strong> = 1,<br />

0<br />

pλ<br />

0<strong>≤</strong>λ λ}| pλ<br />

λ<br />

1/p<br />

= p 1/p λ|{|f| > λ}| 1/p L p ((0,<strong>∞</strong>), dλ<br />

λ )<br />

f ∗<br />

L p = p<br />

weak<br />

1/<strong>∞</strong> 1/p<br />

λ|{|f| > λ}| <br />

L<strong>∞</strong> dλ<br />

((0,<strong>∞</strong>), λ ) .<br />

This suggests the following definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 2. <strong>For</strong> 1 <strong>≤</strong> p < <strong>∞</strong> <strong>and</strong> 1 <strong>≤</strong> q <strong>≤</strong> <strong>∞</strong> we define the <strong>Lorentz</strong> space L p,q (R d )<br />

as the space of measurable functi<strong>on</strong>s f for which<br />

(2) f ∗ Lp,q := p1/q 1/p<br />

λ|{|f| > λ}| <br />

Lq dλ ( λ )<br />

< <strong>∞</strong>.<br />

From the discussi<strong>on</strong> above, we see that Lp,p = Lp <strong>and</strong> Lp,<strong>∞</strong> = L p<br />

weak<br />

. Again<br />

· ∗ Lp,q is not a norm in general. Nevertheless, it is positively homogeneous: for all<br />

a ∈ C,<br />

(3)<br />

af ∗ L p,q = λ {|f| > |a| −1 λ} 1/p L q (dλ/λ) = |a| · f ∗ L p,q<br />

(strictly the case a = 0 should receive separate treatment). In lieu of the triangle<br />

inequality, we have the following:<br />

f + g ∗ L p,q = λ {|f + g| > λ} 1/p L q (dλ/λ)<br />

<strong>≤</strong> λ {|f| > 1<br />

2 λ} + {|g| > 1<br />

2 λ} 1/p L q (dλ/λ)<br />

<strong>≤</strong> λ {|f| > 1<br />

2 λ} 1/p L q (dλ/λ) + λ {|g| > 1<br />

2 λ} 1/p L q (dλ/λ)<br />

by the c<strong>on</strong>cavity of fracti<strong>on</strong>al powers <strong>and</strong> the triangle inequality in L q (dλ/λ). Thus<br />

(4)<br />

f + g ∗ L p,q <strong>≤</strong> 2f∗ L p,q + 2g∗ L p,q.<br />

Combining (3), (4), <strong>and</strong> the fact that fLp,q = 0 implies f ≡ 0 almost everywhere,<br />

we see that · ∗ Lp,q obeys the axioms of a quasi-norm. When p > 1, this<br />

quasi-norm is equivalent to an actual norm (see below). When p = 1 <strong>and</strong> q = 1,<br />

there cannot be a norm that is equivalent to our quasi-norm. However there is<br />

a metric that generates the same topology. In either case, we obtain a complete<br />

metric space.<br />

Notice that (i) if |f| ≥ |g| then f∗ Lp,q ≥ g∗L p,q <strong>and</strong> (ii) The quasi-norms are<br />

rearrangement invariant, which is to say that f∗ Lp,q = f ◦φ∗L p,q for any measure<br />

preserving bijecti<strong>on</strong> φ : Rd → Rd .<br />

1


2<br />

Propositi<strong>on</strong> 3. Given f ∈ L p,q , we write f = fm where<br />

Then<br />

fm(x) := f(x)χ {x:2 m <strong>≤</strong>|f(x)| λ}|<br />

2 m<br />

2 m−1<br />

λ<br />

λ q<br />

<br />

<br />

q/p dλ<br />

|En|<br />

λ<br />

n≥m<br />

<br />

<br />

1/pq <br />

|En| .<br />

n≥m<br />

To obtain a lower bound, we keep <strong>on</strong>ly the summ<strong>and</strong> n = m; for an upper bound,<br />

we use the c<strong>on</strong>cavity of fracti<strong>on</strong>al powers. This yields<br />

<br />

2 m |Em| 1/p q f ℓm ∗ Lp,q <br />

<br />

<br />

<br />

2 m |En| 1/p<br />

<br />

<br />

(5)<br />

.<br />

m<strong>≤</strong>n<br />

As 2 m χEm L p = 2m |Em| 1/p , we have our desired lower bound. To obtain the<br />

upper bound, we use the triangle inequality in ℓq (Z):<br />

<br />

<strong>∞</strong><br />

RHS(5) = <br />

2 −k 2 m+k <br />

<strong>∞</strong><br />

χEm+kLp <strong>≤</strong> 2 −k<br />

<br />

<br />

k=0<br />

ℓ q m<br />

k=0<br />

ℓ q m<br />

<br />

<br />

2 m χEmLp q<br />

ℓm This completes the proof of the upper bound. <br />

Lemma 4. Given 1 <strong>≤</strong> q < <strong>∞</strong> <strong>and</strong> a finite set A ⊂ 2Z ,<br />

<br />

q <br />

<br />

<br />

A <strong>≤</strong> A<br />

q <br />

<br />

<strong>≤</strong> 2 max<br />

A∈A A<br />

<br />

<br />

q<br />

<strong>≤</strong> 2 q A q<br />

where all sums are over A ∈ A. More generally, for any subset A of a geometric<br />

series <strong>and</strong> any 0 < q < <strong>∞</strong>,<br />

<br />

q <br />

A ≈ <br />

<br />

A<br />

q<br />

where the implicit c<strong>on</strong>stants depend <strong>on</strong> q <strong>and</strong> the step size of the geometric series.<br />

Propositi<strong>on</strong> 5. <strong>For</strong> 1 < p < <strong>∞</strong> <strong>and</strong> 1 <strong>≤</strong> q <strong>≤</strong> <strong>∞</strong>,<br />

(6)<br />

sup | fg| : g ∗<br />

L p′ ,q ′ <strong>≤</strong> 1 ≈ f ∗ L p,q.<br />

Indeed, LHS(6) defines a norm <strong>on</strong> Lp,q . Note that by (6), this norm is equivalent<br />

to our quasi-norm. Moreover, under this norm, Lp,q is a Banach space <strong>and</strong> when<br />

q = <strong>∞</strong>, the dual Banach space is Lp′ ,q ′<br />

, under the natural pairing.<br />

Remark. When p = 1 (<strong>and</strong> q = 1), the RHS(6) is typically infinite; indeed, <br />

E |f|<br />

may well be infinite even for some set E of finite measure. In fact, there there cannot<br />

be a norm <strong>on</strong> Lp,q equivalent to our quasi-norm. <strong>For</strong> example, the impossibility of<br />

finding an equivalent norm for L1,<strong>∞</strong> (R) can be deduced by computing<br />

<br />

N<br />

<br />

|x − n| −1<br />

∗<br />

<br />

N <br />

<br />

≈ N log(N) <strong>and</strong> |x − n| −1 ∗<br />

L1,<strong>∞</strong> ≈ N.<br />

n=0<br />

L 1,<strong>∞</strong><br />

n=0


Proof. Because the quasi-norm is positively homogeneous, we need <strong>on</strong>ly verify (6)<br />

in the case that f <strong>and</strong> g have quasi-norm comparable to <strong>on</strong>e. We may also assume<br />

that f = 2nχFn <strong>and</strong> g = 2mχEm. By the normalizati<strong>on</strong> just menti<strong>on</strong>ed,<br />

<br />

n<br />

(7)<br />

2 |Fn| 1/pq m<br />

≈ 1 ≈ 2 |Em| 1/p′q ′<br />

n<br />

Combining the above with Lemma 4 to obtain<br />

<br />

<br />

<br />

(8)<br />

<br />

2 n A 1/p<br />

q<br />

<br />

<br />

≈ <br />

A∈2 Z<br />

n:|Fn|≈A<br />

<strong>and</strong> similarly for g. Now we compute:<br />

<br />

|fg| dx = <br />

n,m<br />

<strong>≤</strong> <br />

A,B∈2 Z<br />

<strong>≤</strong> <br />

A,B∈2 Z<br />

2 n 2 m |Fn ∩ Em|<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

n:|Fn|∼A<br />

<br />

n:|Fn|∼A<br />

A∈2 Z<br />

m<br />

n:|Fn|≈A<br />

2 n<br />

<br />

<br />

<br />

<br />

<br />

· min(A, B) · <br />

<br />

2 n A 1/p<br />

<br />

<br />

A<br />

· min B<br />

2 n |Fn| 1/p q ≈ <strong>1.</strong><br />

<br />

p ′ , B<br />

A<br />

2 m<br />

<br />

<br />

<br />

<br />

m:|Em|∼B<br />

1 1<br />

p<br />

<br />

<br />

· <br />

<br />

<br />

m:|Em|∼B<br />

2 m B 1/p′<br />

Notice that this has the structure of a bilinear form: two vectors (indexed over 2 Z )<br />

with a matrix sitting between them. Moreover, by Schur’s test, the matrix is a<br />

bounded operator <strong>on</strong> ℓ q (2 Z ). Thus,<br />

<br />

<br />

<br />

|fg| dx <br />

<br />

<br />

<br />

<br />

<br />

2<br />

n:|Fn|∼A<br />

n A 1/p<br />

<br />

ℓq (A∈2Z )<br />

<br />

<br />

· <br />

<br />

<br />

<br />

<br />

<br />

2<br />

m:|Em|∼B<br />

m B 1/p′<br />

<br />

ℓq ′ (B∈2Z )<br />

by (8) <strong>and</strong> the corresp<strong>on</strong>ding statement for g. This completes proof of the part<br />

of (6). We turn now to the opposite inequality. Given f = 2 n χFn ∈ L p,q , we<br />

choose<br />

Then <br />

g = <br />

n<br />

fg = <br />

n<br />

2 n |Fn| 1<br />

p<br />

2 n |Fn| 1<br />

p<br />

It remains to show that g ∗<br />

∗<br />

gLp′ ,q ′<br />

′<br />

q<br />

≈ <br />

A∈2 Z<br />

A q′<br />

<br />

<br />

<br />

<br />

q−1 1 −<br />

|Fn| p ′ χFn<br />

= <br />

q−1 2 n 1 1−<br />

|Fn| p ′ = <br />

<br />

L p′ ,q<br />

n∈N(A)<br />

n<br />

n<br />

<br />

2 n(q−1) |Fn| q−p<br />

p χFn .<br />

2 n |Fn| 1 q p<br />

′ <strong>1.</strong> By Propositi<strong>on</strong> 3,<br />

q<br />

<br />

|Fn| <br />

<br />

′ /p ′<br />

≈ 1<br />

≈ f ∗ Lp,q ≈ <strong>1.</strong><br />

<br />

<br />

<br />

.<br />

where n ∈ N(A) ⇔ 2 n(q−1) |Fn| q−p<br />

p ≈ A.<br />

Notice that for each A, the sum in n is over part of a geometric series; indeed,<br />

Thus Lemma 4 applies <strong>and</strong> yields<br />

∗<br />

gLp′ ,q ′<br />

′<br />

q<br />

≈ <br />

A q′ <br />

n ∈ N(A) =⇒ |Fn| ⇐⇒ A p p(q−1)<br />

q−p −n<br />

2 q−p .<br />

A∈2 Z<br />

n∈N(A)<br />

|Fn| q′ /p ′<br />

≈ <br />

n<br />

2 nq |Fn| q/p ≈ <strong>1.</strong><br />

This provides the needed bound <strong>on</strong> g <strong>and</strong> so completes the proof of (6).<br />

The fact that LHS(6) is indeed a norm is a purely abstract statement about<br />

vector <strong>spaces</strong> <strong>and</strong> (separating) linear functi<strong>on</strong>als. The proof that L p,q is complete<br />

in this norm differs little from the usual Riesz–Fischer argument.<br />

Let ℓ be a c<strong>on</strong>tinuous linear functi<strong>on</strong>al <strong>on</strong> L p,q . By definiti<strong>on</strong>, |ℓ(χE)| |E| 1/p<br />

<strong>and</strong> so the measure E ↦→ ℓ(χE) is absolutely c<strong>on</strong>tinuous with respect to Lebesgue<br />

measure <strong>and</strong> so is represented by some locally L 1 functi<strong>on</strong> g. This is the Rad<strong>on</strong>–<br />

Nikodym Theorem. By linearity this representati<strong>on</strong> of the functi<strong>on</strong>al extends to<br />

3


4<br />

simple functi<strong>on</strong>s. Boundedness when tested against simple functi<strong>on</strong>s suffices to<br />

show that g ∈ Lp′ ,q ′<br />

. When q = <strong>∞</strong>, the simple functi<strong>on</strong>s are dense in Lp,q <strong>and</strong> so<br />

our linear functi<strong>on</strong>al admits the desired representati<strong>on</strong>.<br />

When q = <strong>∞</strong> the simple functi<strong>on</strong>s are not dense. <strong>For</strong> example, <strong>on</strong>e cannot<br />

approximate |x| −d/p ∈ L p,<strong>∞</strong> (R d ) by simple functi<strong>on</strong>s. Indeed, inspired by the<br />

Banach limit linear functi<strong>on</strong>als <strong>on</strong> ℓ <strong>∞</strong> (Z) we can c<strong>on</strong>struct a n<strong>on</strong>-trivial linear<br />

functi<strong>on</strong>al <strong>on</strong> L p,<strong>∞</strong> that vanishes <strong>on</strong> simple functi<strong>on</strong>s. Let L denote the vector<br />

space of f ∈ L p,<strong>∞</strong> such that<br />

ℓ(f) := lim<br />

x→0 |x| d/p f(x) exists.<br />

Notice that L c<strong>on</strong>tains the simple functi<strong>on</strong>s <strong>and</strong> that ℓ vanishes <strong>on</strong> these. By the<br />

Hahn–Banach theorem, we can extended ℓ to a linear functi<strong>on</strong>al <strong>on</strong> all of L p,q . <br />

Definiti<strong>on</strong> 6. We say that a mapping T <strong>on</strong> (some class of) measurable functi<strong>on</strong>s<br />

is sublinear if it obeys<br />

<br />

T (cf)(x) <strong>≤</strong> |c| T f(x) <strong>and</strong> T (f + g)(x) <strong>≤</strong> [T f](x) + [T g](x) <br />

for all c ∈ C <strong>and</strong> measurable functi<strong>on</strong>s f <strong>and</strong> g (in the domain of T ).<br />

Linear maps are obviously sublinear. Moreover, if {Tt} is a family of linear maps<br />

then<br />

[T f](x) := [Ttf](x) L q<br />

t<br />

is sublinear. The case q = <strong>∞</strong> yields a kind of ‘maximal functi<strong>on</strong>’, while q = 2 gives<br />

a kind of ‘square functi<strong>on</strong>’.<br />

Theorem 7 (Marcinkiewicz interpolati<strong>on</strong> theorem). Fix 1 <strong>≤</strong> p0, p1, q0, q1 <strong>≤</strong> <strong>∞</strong><br />

with p0 = p1 <strong>and</strong> q0 = q<strong>1.</strong> Let T be a sublinear operator that obeys<br />

<br />

χE(x)[T (9)<br />

χF ](x) 1/q<br />

dx |E| ′<br />

j |F | 1/pj j ∈ {0, 1}<br />

uniformly for finite-measure sets E <strong>and</strong> F . Then for any 1 <strong>≤</strong> r <strong>≤</strong> <strong>∞</strong> <strong>and</strong> θ ∈ (0, 1),<br />

<br />

T f ∗ Lqθ ,r f ∗ Lpθ ,r<br />

where 1/pθ = (1 − θ)/p0 + θ/p1 <strong>and</strong> similarly, qθ = (1 − θ)/q0 + θ/q<strong>1.</strong><br />

Remarks. <strong>1.</strong> This form of the result is actually due to Hunt. The original versi<strong>on</strong><br />

is Corollary 8 below.<br />

2. Inequalities of the form (9) are known as restricted weak type estimates. Note<br />

<br />

χE[T χF ] dx |E| 1/q′<br />

|F | 1/p ⇔ <br />

T χF <br />

Lq,<strong>∞</strong> |F | 1/p ⇐ T f <br />

Lq,<strong>∞</strong> fLp as can be shown using Propositi<strong>on</strong>s 3 <strong>and</strong> 5. The rightmost inequality here is called<br />

a weak type estimate. At the top of the food chain sits the str<strong>on</strong>g type estimate:<br />

T fLq fLp. If pθ <strong>≤</strong> qθ we then we can choose r = qθ <strong>and</strong> so (using the nesting<br />

of <strong>Lorentz</strong> <strong>spaces</strong>) obtain a str<strong>on</strong>g type estimate as the c<strong>on</strong>clusi<strong>on</strong> of the theorem.<br />

3. The hypothesis pθ <strong>≤</strong> qθ is needed to obtain the str<strong>on</strong>g type c<strong>on</strong>clusi<strong>on</strong>.<br />

C<strong>on</strong>sider, for example,<br />

f(x) ↦→ x −1/2 f(x) which maps L p [0, <strong>∞</strong>), dx → L 2p<br />

p+2 ,<strong>∞</strong> [0, <strong>∞</strong>), dx <br />

boundedly for all 2 <strong>≤</strong> p <strong>≤</strong> <strong>∞</strong>. However<br />

f(x) = x −1/p [log(x + x −1 p+2<br />

−<br />

)] 2p<br />

shows that T does not map L p into L 2p/(p+2) for any such p.


Proof of Theorem 7. By the duality relati<strong>on</strong>s am<strong>on</strong>g <strong>Lorentz</strong> <strong>spaces</strong> (cf. Propositi<strong>on</strong><br />

5), it suffices to show that<br />

<br />

<br />

<br />

<br />

<br />

g(x)[T f](x) dx<br />

1 whenever f∗L pθ ,r ≈ 1 ≈ g∗<br />

L q′ ,r′ .<br />

θ<br />

Moreover, we can take g to be of the form 2mχEm .<br />

We would like to take f of the same form, but this takes a little more justificati<strong>on</strong>.<br />

First by splitting a general f into real/imaginary parts <strong>and</strong> then each of these into<br />

its positive/negative parts, we see that it suffices to c<strong>on</strong>sider n<strong>on</strong>-negative functi<strong>on</strong>s<br />

f. This also justifies taking g of the special form. Note that for g we can safely round<br />

up to the nearest power of two; however, since T need not have any m<strong>on</strong>ot<strong>on</strong>icity<br />

properties we are not able to do this for f.<br />

Now by using the binary expansi<strong>on</strong> of the values of f(x) ≥ 0 at each point, we<br />

see<br />

<br />

that it is possible to write f as the sum of a sequence functi<strong>on</strong>s of the form<br />

n 2 χFn in such a way the summ<strong>and</strong>s are bounded pointwise by f, 1 1<br />

2f, 4f, <strong>and</strong><br />

so <strong>on</strong>. Since Lpθ,qθ is a Banach space (specifically the triangle inequality holds)<br />

we can just sum the pieces back together. (A similar decompositi<strong>on</strong> is possible<br />

under a quasi-norm, but a little cunning is required to avoid the summability being<br />

swamped by the c<strong>on</strong>stants from the triangle inequality.)<br />

Now we have reduced to c<strong>on</strong>sidering f = 2nχFn <strong>and</strong> g = 2mχEm , let us<br />

compute:<br />

<br />

|g(x)[T f](x)| dx <br />

<br />

|Fn| 1/pj |Em| 1/q′ <br />

j<br />

<br />

A,B∈2 Z<br />

n,m<br />

<br />

n:|Fn|∼A<br />

2 n 2 m min<br />

j∈{0,1}<br />

2 n A 1/pθ<br />

<br />

1<br />

p −<br />

min A j<br />

j∈{0,1}<br />

1<br />

1<br />

p q<br />

θ B<br />

′ −<br />

j<br />

1<br />

q ′ <br />

θ<br />

<br />

m:|Em|∼B<br />

5<br />

2 m B 1/q′<br />

<br />

θ .<br />

Once again we recognize the structure of a bilinear form with vectors indexed over<br />

2Z . With a little effort, we see that the matrix has the form<br />

<br />

min A<br />

j∈{0,1}<br />

1<br />

p −<br />

1 1<br />

p0 B 1<br />

q ′ −<br />

1<br />

1<br />

q ′ j−θ 0<br />

<strong>and</strong> so is bounded <strong>on</strong> ℓ r (2 Z ) by Schur’s test. (It is essential here that p0 = p1 <strong>and</strong><br />

q0 = q<strong>1.</strong>) On the other h<strong>and</strong>, by Lemma 4,<br />

<br />

<br />

<br />

2 n A 1/pθ<br />

r ≈ <br />

n<br />

2 |Fn| 1/pθ<br />

r ∗ r<br />

≈ f p L θ ,r ≈ 1<br />

A∈2 Z<br />

n:|Fn|∼A<br />

n<br />

<strong>and</strong> similarly for g, though we use power r ′ . Putting these all together completes<br />

the proof. <br />

Corollary 8 (Marcinkiewicz interpolati<strong>on</strong> theorem). Suppose 1 <strong>≤</strong> p0 < p1 <strong>≤</strong> <strong>∞</strong><br />

<strong>and</strong> T is a sublinear operator that obeys<br />

<br />

(10)<br />

T fL p0 ,<strong>∞</strong> fLp0 <strong>and</strong> <br />

T fL p1 ,<strong>∞</strong> fLp1 uniformly for measurable functi<strong>on</strong>s f. Then for any θ ∈ (0, 1),<br />

T fL p θ fL p θ<br />

where 1/pθ = (1 − θ)/p0 + θ/p1 <strong>and</strong> similarly, qθ = (1 − θ)/q0 + θ/q<strong>1.</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!