28.06.2013 Views

Spin Connection Resonance in the Bedini Machine - Alpha Institute ...

Spin Connection Resonance in the Bedini Machine - Alpha Institute ...

Spin Connection Resonance in the Bedini Machine - Alpha Institute ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16 1 <strong>Sp<strong>in</strong></strong> <strong>Connection</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> Bed<strong>in</strong>i Mach<strong>in</strong>e<br />

1.4.4 Computation of <strong>the</strong> energy balance<br />

The <strong>the</strong>ory should provide a method to estimate <strong>the</strong> energy balance of <strong>the</strong><br />

Bed<strong>in</strong>i mach<strong>in</strong>e. Accord<strong>in</strong>g to <strong>the</strong> previous section it is assumed that <strong>the</strong><br />

excess energy comes from <strong>the</strong> spacetime processes <strong>in</strong> <strong>the</strong> extended unit volume,<br />

where <strong>the</strong>y are evoked by <strong>the</strong> transducer. So a calculation has to compare<br />

<strong>the</strong> energy density of <strong>the</strong> <strong>in</strong>put fields (E)driv<strong>in</strong>g or (B)driv<strong>in</strong>g to <strong>the</strong> energy of<br />

<strong>the</strong> total fields be<strong>in</strong>g present <strong>in</strong> <strong>the</strong> resonance case. The result may depend on<br />

whe<strong>the</strong>r we consider <strong>the</strong> energy of <strong>the</strong> force fields only or whe<strong>the</strong>r we <strong>in</strong>clude<br />

<strong>the</strong> effects on <strong>the</strong> spacetime potential A. In <strong>the</strong> first case we can def<strong>in</strong>e <strong>the</strong><br />

energy densities for <strong>in</strong>put and output:<br />

u<strong>in</strong> = ɛ0<br />

2 (E2 )driv<strong>in</strong>g + 1<br />

(B<br />

2µ0<br />

2 )driv<strong>in</strong>g, (1.68)<br />

uout = ɛ0<br />

2 E2 + 1<br />

B<br />

2µ0<br />

2 . (1.69)<br />

The result<strong>in</strong>g total energies <strong>the</strong>n are obta<strong>in</strong>ed by <strong>in</strong>tegrat<strong>in</strong>g over <strong>the</strong> unit<br />

volume and time:<br />

<br />

E<strong>in</strong> = u<strong>in</strong> d 3 rdt (1.70)<br />

<br />

Eout = uout d 3 rdt (1.71)<br />

and <strong>the</strong> “coefficient of performance” is<br />

COP = Eout<br />

. (1.72)<br />

E<strong>in</strong><br />

Alternatively, <strong>the</strong> output energy can be related to <strong>the</strong> spacetime potential.<br />

From <strong>the</strong> m<strong>in</strong>imal prescription of momentum density p<br />

p → p + eA (1.73)<br />

we can def<strong>in</strong>e <strong>the</strong> k<strong>in</strong>etic energy density of <strong>the</strong> field by<br />

u = e2 A 2<br />

2m<br />

(1.74)<br />

where m is <strong>the</strong> “mass” of <strong>the</strong> field volume. Accord<strong>in</strong>g to <strong>the</strong> de Broglie equation<br />

m = ω<br />

c 2<br />

(1.75)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!