29.06.2013 Views

SBRT&StereoscopicIGRT_2012 [Compatibility Mode]

SBRT&StereoscopicIGRT_2012 [Compatibility Mode]

SBRT&StereoscopicIGRT_2012 [Compatibility Mode]

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IGRT and SBRT Programs with<br />

Siemens Accelerators and ExacTrac<br />

ExacTrac<br />

Stereoscopic XX-ray<br />

XX-ray<br />

ray System<br />

System<br />

Dimitris Mihailidis Mihailidis, , Ph.D.<br />

Charleston Radiation Therapy, Charleston, West Virginia<br />

QUESTION:<br />

Can Stereoscopic x-Ray IG Technology convert a<br />

conventional Siemens (Primus or Oncor) linac into<br />

a “precision” IG - SBRT delivery machine ?<br />

Description of the Systems<br />

BrainLab ExacTrac System:<br />

Two X-ray tubes.<br />

Two amorphous silicon detectors (20x20 cm 2 ).<br />

Infrared Polaris system.<br />

Touch screen and arm.<br />

512x512 Matrix<br />

X-Ray phantom.<br />

ISO phantom.<br />

Rando pelvis phantom.<br />

Reference star or markers.<br />

Linear Accelerators with features<br />

specifically suitable for SBRT<br />

* Slide courtesy of Brian Kavanagh / University of Colorado<br />

Introduction and Purpose<br />

Implement Image Guidance (IG) on a<br />

Siemens Linac (Primus or Oncor).<br />

Necessary components to include for IG<br />

upgrade.<br />

<strong>Compatibility</strong> of components to provide an<br />

IG solution.<br />

Transition to an SBRT program.<br />

Siemens PRIMUS with ExacTrac System<br />

In-room monitor<br />

Infrared camera<br />

Imaging<br />

panels<br />

X-ray tube<br />

1


Siemens linac preparation<br />

Gantry rotation – radiation isocenter<br />

X-Jaws 1.02 mm<br />

Y-Jaws 0.06 mm<br />

TG-142 requirements for IMRT & SBRT:<br />

Mechanical and radiation isocenter verification:<br />

Gantry rotation (


Scan direction<br />

MLC picket fence test for Siemens<br />

center-to-center<br />

2 cm<br />

The Technology at CRTC for SBRT<br />

• Siemens Primus and Oncor Linacs.<br />

Scan direction<br />

• Philips large bore CT simulator (4D-CT capability).<br />

• Philips Pinnacle 3 Treatment Planning System.<br />

• BrainLab ExacTrac 6D-Stereoscopic X-ray Image<br />

Guidance System.<br />

Planning System Commissioning<br />

Philips Pinnacle Pinnacle3 v8.0m with with DMPO in in<br />

step step-and and-shoot shoot mode.<br />

Have strong<br />

and<br />

frequent engineering support !<br />

Move on with SBRT<br />

Utilize more accurate patient immobilization<br />

devices.<br />

Utilized 4D-CT simulation for appropriate sites<br />

(e.g., lung, liver, etc), ITV approach.<br />

Utilized highly conformal multi-beam treatment<br />

planning and intensity modulation.<br />

Utilized image guidance for patient daily setup.<br />

Utilized on-line patient surveillance and setup<br />

correction during treatment.<br />

Utilized 5 and 10 mm MLC width for delivery.<br />

Small field size measurements<br />

<strong>Mode</strong>l fit to the data<br />

BEAM MODEL<br />

3


DMPO<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

Small field size measurements<br />

OUTPUT FACTORS<br />

0.1cc Scanning IC<br />

Diode Perp. (norm to 5x5)<br />

Microchamber<br />

XV Film<br />

Small fields-MLC shaped<br />

Pinnacle Hi Res<br />

Pinnacle Lo Res<br />

0.40<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00<br />

Direct irect Machine achine Parameter arameter Optimization ptimization<br />

• DMPO produces final segments at the end of the<br />

optimization process. NO conversion is required.<br />

Automatically converts the ODM to MLC control<br />

points.<br />

• The MLC leaf positions and the weights of the<br />

segments are optimized at once (equivalent to DAO).<br />

• The time to prepare a plan is substantially reduced in<br />

DMPO.<br />

• You can filter the final control points according to<br />

area and monitor units.<br />

Dosimetric Comparison of MLC systems<br />

Linac MLC system MLC width<br />

Siemens Primus (X-jaws) Optifocus double-focused (divergent) - 58 leaves 10 mm<br />

Siemens Oncor (X-jaws) Double-focused (divergent)- 82 leaves 10 mm<br />

Siemens Artiste (X-jaws) 160MLC (rounded) - 160 leaves 5 mm<br />

Varian Trilogy (tertiary) Millennium (rounded) - 120 leaves 5 mm<br />

Elekta Synergy-S BM Beam Modulator (rounded) - 80 leaves 4 mm<br />

Elekta Synergy Elekta MLC (rounded) - 80 leaves 10 mm<br />

Novalis TX (tertiary) HD micro-MLC – 120 leaves 2.5 mm<br />

Detectors for small field measurements<br />

How important is the MLC system in<br />

multi multi-beam beam SBRT treatment planning?<br />

Method of comparison<br />

“RING”: A special ring-structure around the TV, 1 cm expansion of<br />

the TV – to evaluate the sparing of normal structures adjacent to TV.<br />

________________________________________________________________<br />

CONFORMITY INDEX:<br />

TV = target volume<br />

PIV = prescription isodose volume<br />

PVTV = is the TV included in PIV<br />

Paddick, J. Neurosurg. (Suppl. 3) 93:219-222, 2000<br />

CI = ( PIV / PVTV ) / ( PVTV / TV )<br />

CI = 1, perfect conformity<br />

Nakamura JL, et al., Int. J. Radiat. Oncol. Biol.<br />

Phys. 51, 1313-1319 (2001).<br />

The IL was chosen according to the criteria:<br />

(1) being the greatest IL that covers 95% of TV while<br />

(2) delivering ≥95% of the prescription dose to 99% of the TV.<br />

4


CI<br />

Comparison: Conformity Index<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Conformity Index (CI)<br />

4.64 (Lung-3D) 4.64(Lung-IM) 7.63(Brain-IM) 9.85(Lung-3D) 25.78(Spine-IM)<br />

Target Volume (cc)<br />

3D-CRT vs. Intensity Modulation<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

Oncor (10mm)<br />

Artiste (5mm)<br />

Varian (5mm)<br />

NovalisTX (2.5mm)<br />

Synergy (10mm)<br />

SynergyBM (4mm)<br />

Comparison: MLC systems<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

LUNG: 3D CRT<br />

Oncor: 10 mm Novalis TX: 2.5 mm<br />

4500 cGy<br />

3600 cGy<br />

Conclusions of comparisons<br />

4275 cGy<br />

Our study is the first to include the majority of today’s MLC<br />

systems in a comprehensive way and has shown no apparent<br />

indication that smaller MLCs can lead to optimal plans, if<br />

multi-field techniques (IMRT or 3D) are utilized in SBRT.<br />

However, we believe that small tumor volumes would benefit<br />

from small MLC widths and single fraction SRS, instead.<br />

Tanyi, JA, Radiation Oncology 4:22 (2009)<br />

5mm Varian<br />

2.5mm Novalis TX<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

Comparisons: 3D conformal vs. Intensity Modulation<br />

V olum e (% )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Peri-tunoral Ring Volume<br />

4.64 cc Lung target<br />

50%(IM) 80%(IM) 90%(IM) 50%(3D) 80%(3D) 90%(3D)<br />

Isodose line<br />

Oncor (10mm)<br />

Artiste (5mm)<br />

Varian (5mm)<br />

NovalisTX (2.5mm)<br />

Synergy (10mm)<br />

SynergyBM (4mm)<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

Comparison: Lung IMRT- IMRT all MLC systems<br />

10mm<br />

5mm 2.5mm<br />

10mm 5mm<br />

4mm<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

SBRT – LUNG<br />

NO – GATING!<br />

WHY ?<br />

100% Rx<br />

90% Rx<br />

80% Rx<br />

50% Rx<br />

5


Patient Immobilization<br />

With arms over the head.<br />

Flat lung board with T-bar holder for the arms.<br />

Vacuum Bag<br />

Maximum Intensity Projection (MIP)<br />

CT data is acquired using a Bellows or RPM<br />

device that records a breathing wave.<br />

Maximum intensity values are assigned to pixels<br />

at locations where a tumor moves to over time.<br />

Are a derived dataset of images that show a<br />

“composite” of the tumor volume over the time<br />

period that the CT data was acquired.<br />

4D CT Simulation for LUNG SBRT<br />

CT Scanning procedure for moving target<br />

One free breathing scan – 3 mm slices, entire chest.<br />

One shorter, time-correlated scan – 3 mm slices, to<br />

include the tumor area.<br />

Breathing Waveform is acquired along with CT data<br />

using a Bellows or RPM device.<br />

The CT data acquired in one breath can be binned into<br />

10 equally spaced intervals along the waveform and<br />

reconstructed.<br />

The 10 intervals are called Phases.<br />

Moving Target virtual simulation - Fusion<br />

GTV<br />

MIP dataset<br />

Volume propagation from MIP dataset<br />

to<br />

free breathing dataset<br />

ITV<br />

Free Breathing<br />

dataset<br />

6


Treatment planning<br />

DMPO - optimization<br />

SBRT - LUNG<br />

Patient setup verification<br />

prior to treatment<br />

IMAGE GUIDANCE<br />

Multiple non-coplanar beams<br />

PTV=ITV + 5mm margin<br />

www.charlestonradiation.com<br />

WE HAVE NOTICED:<br />

2-3 segments allow for<br />

dose compensation due<br />

to lack of resolution of<br />

the 10mm leaf width.<br />

Mihailidis, et al., AAPM<br />

2009, Med. Phys. 36,<br />

(2009) 2660<br />

Allow for low low-level level Intensity Modulation<br />

Treatment Isocenter<br />

DVH results<br />

Step-and-shoot mode:<br />

• 2-3 segments per beam.<br />

• 50Gy in 5 fxs.<br />

• Optimization objectives<br />

-heart<br />

-ribs<br />

-normal tissues<br />

Mihailidis, et al., AAPM<br />

2009, Med. Phys. 36,<br />

(2009) 2660<br />

Ipsilateral lung<br />

ExacTrac setup for lung SBRT<br />

Virtual isocenter for IG<br />

ITV<br />

PTV 50Gy<br />

www.charlestonradiation.com<br />

ET reconstructed views<br />

7


ET x-ray<br />

DRR<br />

Before Fusion - misalignment<br />

After fusion – shifts to be implemented<br />

Match of x-ray and DRR<br />

SHIFTS<br />

Patient setup and immobilization<br />

ExacTrac IR markers<br />

www.charlestonradiation.com<br />

Excluded from fusion area<br />

Fusion preparation<br />

SBRT - Brain<br />

Fusion MRI – TP CT<br />

TP CT MRI<br />

Vargo J, Plants B, Welch C, Mihailidis D, et al., ASTRO 2010, IJROBP 78 (No. 3 Suppl), S279 (2010)<br />

8


SBRT brain positioning and planning<br />

Multiple non-coplanar beams<br />

Vargo J, Plants B, Welch C, Mihailidis D, et al., ASTRO 2010, IJROBP 78 (No. 3 Suppl), S279 (2010)<br />

DRR<br />

x-ray<br />

DRR<br />

SBRT - BRAIN<br />

Patient setup verification<br />

prior to treatment<br />

IMAGE GUIDANCE<br />

Fusion<br />

x-ray AFTER<br />

SHIFTS<br />

BEFORE<br />

www.charlestonradiation.com<br />

Prescription:<br />

40 Gy in 5 fxs<br />

788 MU<br />

Sample isodose and DVH<br />

PTV<br />

Vargo J, Plants B, Welch C, Mihailidis D, et al., ASTRO 2010, IJROBP 78 (No. 3 Suppl), S279 (2010)<br />

Patient setup with IR markers<br />

from TPS<br />

IR marker<br />

Continuous IG<br />

objectives<br />

www.charlestonradiation.com<br />

Allow for live patient survaillance with the IR<br />

camera and markers.<br />

Perform a second IG verification between<br />

treatment fields (residual shifts).<br />

Compare reference orthogonal treatment ports<br />

with orthogonal DRRs.<br />

Keep rotations to less than 3° if possible,<br />

otherwise…improvise.<br />

Wood Shims<br />

www.charlestonradiation.com<br />

9


6D-IGRT accuracy: Infrared vs. stereoscopic x-ray<br />

Conclusions<br />

ExacTrac Stereoscopic x-Ray IG system, in<br />

combination with other technologies, provides<br />

accurate IG that allows the implementation of an<br />

SBRT program,<br />

IF<br />

additional precautions are taken.<br />

6D-corrections and residual setup errors<br />

Comply with published recommendations:<br />

10


THANK YOU !<br />

NRAO Green Bank Observatory, West Virginia<br />

http://www.gb.nrao.edu/<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!