29.06.2013 Views

(x2 + y2)ey2-x2 Solution. fx

(x2 + y2)ey2-x2 Solution. fx

(x2 + y2)ey2-x2 Solution. fx

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

§14.7 #15. Find the local maximum and minimum values and saddle<br />

point(s) of the function.<br />

<strong>Solution</strong>.<br />

f(x, y) = (x 2 + y 2 )e <strong>y2</strong> −x 2<br />

<strong>fx</strong>(x, y) = 2xe <strong>y2</strong>−<strong>x2</strong> + (x 2 + y 2 )(−2x)e <strong>y2</strong>−<strong>x2</strong> = (−2x 3 + 2x − 2xy 2 )e <strong>y2</strong> −x 2<br />

fy(x, y) = 2ye <strong>y2</strong>−<strong>x2</strong> + (x 2 + y 2 )(2y)e <strong>y2</strong>−<strong>x2</strong> = (2y 3 + 2y + 2x 2 y)e <strong>y2</strong> −x 2<br />

(−2x 3 + 2x − 2xy 2 )e <strong>y2</strong> −x 2<br />

(2y 3 + 2y + 2x 2 y)e <strong>y2</strong> −x 2<br />

−2x(x 2 − 1 + y 2 ) = 0<br />

2y(y 2 + 1 + x 2 ) = 0<br />

= 0<br />

= 0<br />

If x = 0 (first equation), then the second equation becomes<br />

2y(y 2 + 1) = 0,<br />

so y = 0. We get a critical point (0, 0).<br />

If y = 0 (second equation), then the first equation becomes<br />

−2x(x 2 − 1) = 0,<br />

so x = 0 or x = ±1. We get a critical points (0, 0), (±1, 0).<br />

This leaves the case<br />

x 2 − 1 + y 2 = 0<br />

y 2 + 1 + x 2 = 0<br />

Adding the two equations gives 2x 2 + 2y 2 = 0, which has solution (0, 0).<br />

So the critical points are (0, 0), (1, 0), and (−1, 0).<br />

<strong>fx</strong>x(x, y) = (−6x 2 + 2 − 2y 2 )e <strong>y2</strong>−<strong>x2</strong> + (−2x 3 + 2x − 2xy 2 )(−2x)e <strong>y2</strong>−<strong>x2</strong> fyy(x, y) = (6y 2 + 2 + 2x 2 )e <strong>y2</strong>−<strong>x2</strong> + (2y 3 + 2y + 2x 2 y)(2y)e <strong>y2</strong>−<strong>x2</strong> <strong>fx</strong>y(x, y) = (4xy)e <strong>y2</strong>−<strong>x2</strong> + (−2x 3 + 2x − 2xy 2 )(2y)e <strong>y2</strong>−<strong>x2</strong> 1


• Critical point (0, 0).<br />

<strong>fx</strong>x(0, 0) = 2, fyy(0, 0) = 2, <strong>fx</strong>y(0, 0) = 0<br />

<br />

<br />

D(0, 0) = <br />

<strong>fx</strong>x<br />

<br />

<strong>fx</strong>y <br />

<br />

=<br />

<br />

<br />

2<br />

0<br />

<br />

0 <br />

<br />

2 = 4 > 0<br />

fyx fyy<br />

For the critical point (0, 0), D(0, 0) = 4 > 0, <strong>fx</strong>x(0, 0) = 4 > 0, therefore<br />

(0, 0) is a local minimum. We have f(0, 0) = 0.<br />

• Critical points (±1, 0).<br />

<strong>fx</strong>x(±1, 0) = −4, fyy(±1, 0) = 2, <strong>fx</strong>y(±, 0) = 0<br />

<br />

<br />

D(±1, 0) = <br />

<strong>fx</strong>x<br />

<br />

<strong>fx</strong>y <br />

<br />

=<br />

<br />

<br />

−4<br />

0<br />

<br />

0 <br />

<br />

2 = −8 < 0<br />

fyx fyy<br />

For the critical points (±1, 0), D(±1, 0) = −8 < 0, therefore (±1, 0)<br />

are saddle points. We have f(±1, 0) = 1/e.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!