29.06.2013 Views

§4.12 Orthogonal Sets of Vectors and the Gram-Schmidt Process ...

§4.12 Orthogonal Sets of Vectors and the Gram-Schmidt Process ...

§4.12 Orthogonal Sets of Vectors and the Gram-Schmidt Process ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>§4.12</strong> <strong>Orthogonal</strong> <strong>Sets</strong> <strong>of</strong> <strong>Vectors</strong> <strong>and</strong> <strong>the</strong> <strong>Gram</strong>-<strong>Schmidt</strong><br />

<strong>Process</strong>, HW #1, 3, 15, 17, 19, 23, 25<br />

Definition<br />

Let V be an inner product space.<br />

1. Two vectors u <strong>and</strong> v in V are said to be orthogonal if<br />

〈u, v〉 = 0.<br />

2. A set <strong>of</strong> nonzero vectors {v1, v2, . . . , vk} in V is called an<br />

orthogonal set <strong>of</strong> vectors if 〈vj, vj〉 = 0, whenever i = j.<br />

3. A vector v in V is called a unit vector if v = 1.<br />

4. An orthogonal set <strong>of</strong> unit vectors is called an orthonormal<br />

set <strong>of</strong> vectors. Thus {v1, v2, . . . , vk} in V is an orthonormal<br />

set if <strong>and</strong> only if<br />

◮ 〈vi, vj〉 = 0 whenever i = j.<br />

◮ 〈vi, vi〉 = 1 for all i = 1, 2, . . . , k.


Given a nonzero vector v, <strong>the</strong> vector<br />

u = v<br />

v<br />

will have <strong>the</strong> same direction as v <strong>and</strong> have length 1. It is <strong>the</strong> unit<br />

vector with direction v.


Example<br />

Verify that {(−2, 1, 3, 0), (0, −3, 1, −6), (−2, −4, 0, 2)} is an<br />

orthogonal set <strong>of</strong> vectors in R 4 , <strong>and</strong> use it to construct an<br />

orthogonal set <strong>of</strong> vectors in R 4 .


Example<br />

Verify that f1(x) = 1, f2(x) = sin x, <strong>and</strong> f3(x) = cos x are<br />

orthogonal in C 0 [−π, π], <strong>and</strong> use it to construct an orthogonal set<br />

<strong>of</strong> vectors in C 0 [−π, π].


Definition<br />

A basis {v1, v2, . . . , vn} for a (finite-dimensiona) inner product<br />

space is called an orthogonal basis if 〈vi, vj〉 = 0 whenever i = j,<br />

<strong>and</strong> it is called an orthonormal basis if each vector also has<br />

length 1, i.e., 〈vi, vi〉 = 1 for all i = 1, 2, . . . , n.


Theorem<br />

If {v1, v2, . . . , vk} is an orthogonal set <strong>of</strong> nonzero vectors in an<br />

inner product space V , <strong>the</strong>n {v1, v2, . . . , vk} is linearly<br />

independent.


Theorem<br />

Let V be a finite dimensional inner product space with orthogonal<br />

basis {v1, v2, . . . , vn}. Then any vector v ∈ V may be expressed in<br />

terms <strong>of</strong> <strong>the</strong> basis as<br />

<br />

〈v, v1〉<br />

v =<br />

v12 <br />

v1 +<br />

<br />

〈v, v2〉<br />

v22 <br />

v2 + · · · +<br />

<br />

〈v, vn〉<br />

vn2 <br />

vn


Corollary<br />

Let V be a finite dimensional inner product space with<br />

orthonormal basis {v1, v2, . . . , vn}. Then any vector v ∈ V may be<br />

expressed in terms <strong>of</strong> <strong>the</strong> basis as<br />

v = 〈v, v 1〉v1 + 〈v, v 2〉v2 + · · · + 〈v, v n〉vn


The <strong>Gram</strong>-<strong>Schmidt</strong> <strong>Process</strong><br />

Suppose that we have a set {x1, x2, . . . , xm} <strong>of</strong> linear independent<br />

vectors in an inner product space V . The <strong>Gram</strong>-<strong>Schmidt</strong> process is<br />

a method to construct an orthogonal basis for <strong>the</strong> span <strong>of</strong> <strong>the</strong>se<br />

vectors.


We define <strong>the</strong> orthogonal projection <strong>of</strong> w onto v as<br />

P(w, v) =<br />

〈w, v〉<br />

v 2<br />

The vectors v <strong>and</strong> w − P(w, v) = w −<br />

<br />

v.<br />

<br />

〈w, v〉<br />

v2 <br />

v are orthogonal.


Let v1 = v <strong>and</strong>v2 = w − P(w, v). Then v1 <strong>and</strong> v2 are orthogonal<br />

<strong>and</strong><br />

span(v1, v2) = span(w, v).


Lemma<br />

Let {v1, v2, . . . , vk} be an orthogonal set <strong>of</strong> vectors in an inner<br />

product space V . If x ∈ V , <strong>the</strong>n <strong>the</strong> vector<br />

x − P(x, v1) − P(x, v2) − · · · − P(x, vk)<br />

is orthogonal to vi for each i.


Theorem<br />

<strong>Gram</strong>-<strong>Schmidt</strong> <strong>Process</strong><br />

Let {x1, x2, . . . , xm} be a linearly independent set <strong>of</strong> vectors in an<br />

inner product space V . Then an orthogonal basis for <strong>the</strong> subspace<br />

V spannedby <strong>the</strong>se vectors is {v1, v2, . . . , vm} where<br />

v1 = x1<br />

v2 = x2 −<br />

v3 = x3 −<br />

.<br />

vi = xi −<br />

.<br />

vm = xm −<br />

〈x2, v1〉<br />

v1<br />

v12 〈x3, v1〉<br />

v12 v1 − 〈x3, v2〉<br />

v2<br />

i−1<br />

k=1<br />

m−1 <br />

k=1<br />

〈xi, vk〉<br />

vk<br />

vk2 〈xm, vk〉<br />

vk<br />

vk2 2 v2


Example<br />

Obtain an orthogonal basis for <strong>the</strong> subspace <strong>of</strong> R n spanned by<br />

x1 = (1, 0, 1, 0), x2 = (1, 1, 1, 1), x3 = (−1, 2, 0, 1).


Example<br />

Determine an orthogonal basis for <strong>the</strong> subspace C 0 [−1, 1] spanned<br />

by <strong>the</strong> functions<br />

f1(x) = x, f2(x) = x 3 , f3(x) = x 5 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!