29.06.2013 Views

3-MCPD Esters - staging.files.cms.plus.com

3-MCPD Esters - staging.files.cms.plus.com

3-MCPD Esters - staging.files.cms.plus.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

“Indirect” Method for the Determination of<br />

3-<strong>MCPD</strong> <strong>Esters</strong>: Hydrolysis Time and<br />

Recovery Considerations for the Acid<br />

Hydrolysis Method<br />

J. D. Pinkston, D. P. Iannelli, T. R. Mertens<br />

The Procter & Gamble Company,<br />

Winton Hill Business Center,<br />

6300 Center Hill Ave.,<br />

Cincinnati, OH 45224<br />

pinkston.jd@pg.<strong>com</strong><br />

1


“3-<strong>MCPD</strong> esters”<br />

3-Monochloropropane-1,2-diol Fatty Acid <strong>Esters</strong><br />

3-<strong>MCPD</strong> esters (3-<strong>MCPD</strong> esterified with 1 or 2 fatty<br />

acids) are part of an emerging regulatory issue.<br />

3-<strong>MCPD</strong> esters have been reported in refined fats and<br />

oils by several groups (Svejkovská et al., 2004;<br />

Weißhaar, 2008; Zelinková , Svejkovská , Velísek, &<br />

Dolezal, 2006).<br />

2


Analytical Methods<br />

Methods can be classified in two general groups:<br />

“Indirect” methods: <strong>Esters</strong> are cleaved to a single<br />

<strong>com</strong>pound, “free 3-<strong>MCPD</strong>”, which is then<br />

derivatized and determined by GC/MS.<br />

(Divinova et al. Czech J Food Sci. 2004, 22, 182–189;<br />

Weiβhaar, Eur. J. Lipid Sci. Technol. 2008, 110, 183-186;<br />

Kuhlmann, Eur. J. Lipid Sci. Technol. 2011, 113, 335–344;<br />

Ermacora & Hrncirik, JAOCS 2012, 89, 211-217.).<br />

“Direct” methods: Major esters are determined<br />

directly via LC/TOFMS or LC/MS/MS.<br />

(Haines et al., JAOCS 2011, 88, 1-14.)<br />

3


Indirect Methods:<br />

Advantages and Drawbacks<br />

The indirect methods provide significant advantages:<br />

Straightforward determination of one species by GC/MS<br />

(widely available).<br />

Excellent LODs and LOQs.<br />

Only 2 standards (incl. 1 SIL internal standard) required.<br />

Detects all 3-<strong>MCPD</strong> esters.<br />

However, there are areas for potential improvement:<br />

Hydrolysis in presence of trace Cl - may result in inaccurate,<br />

higher results with indirect methods.<br />

Glycidol esters may be converted to 3-<strong>MCPD</strong> during<br />

sample prep --> overestimation of results.<br />

Sample preparation is tedious.<br />

Method does not differentiate between free 3-<strong>MCPD</strong> and/or<br />

different 3-<strong>MCPD</strong> esters.<br />

Details provided in Hrncirik et al., Eur. J. Lipid Sci. Technol.<br />

2011, 113, 361-367.<br />

4


Indirect Methods:<br />

Choices for Initial Cleavage of <strong>Esters</strong><br />

Base hydrolysis (methoxide):<br />

Fast & straightforward (minutes)<br />

Trace chloride and glycidyl esters can artificially increase<br />

the level of 3-<strong>MCPD</strong> esters detected.<br />

Free 3-<strong>MCPD</strong> is unstable under basic hydrolysis conditions,<br />

decreasing S/N ratios and sensitivity (Hrncirik et al. Eur. J.<br />

Lipid Sci. Technol. 2011, 113, 361-367.).<br />

Enzymatic hydrolysis:<br />

Few studies have been conducted (Hamlet & Sadd, Czech J.<br />

Food Sci. 2004, 22, 259-262.).<br />

Acid hydrolysis (H 2SO 4 in MeOH):<br />

Longer hydrolysis times (hours)<br />

Trace chloride can artificially increase the level of 3-<strong>MCPD</strong><br />

esters detected (though glycidyl esters are destroyed) .<br />

Free 3-<strong>MCPD</strong> is stable under acidic hydrolysis conditions.<br />

Acid hydrolysis method found to be more robust (Hrncirik et<br />

al., Eur. J. Lipid Sci. Technol. 2011, 113, 361-367.).<br />

5


Implementation/Development of the Acid<br />

Hydrolysis Indirect Method<br />

Key attributes of Ermacora & Hrncirik’s indirect acid<br />

hydrolysis method (JAOCS 2012, 89, 211-217):<br />

Interference of high chloride levels (when present)<br />

eliminated with simple H 2O extraction step.<br />

No interference from glycidyl esters.<br />

Authors suggest that time required for acid<br />

transesterification can be reduced from 16 h to 4 h without<br />

loss of accuracy, repeatability, or sensitivity.<br />

SIL di-ester (PP-3-<strong>MCPD</strong>-d5) re<strong>com</strong>mended as most<br />

appropriate internal standard.<br />

We found high recoveries of monoesters when this<br />

method was applied. (Accuracy for diesters was<br />

acceptable.)<br />

We have studied a variety of aspects of the method,<br />

including hydrolysis time.<br />

6


Key Points & Modifications to Acid Hydrolysis<br />

Method by Ermacora & Hrncirik<br />

Step in Method<br />

Choice of internal<br />

standard<br />

Initial water wash<br />

(optional in Ermacora &<br />

Hrncirik)<br />

Initial sample solvent<br />

for water wash<br />

Ermacora &<br />

Hrncirik*<br />

PP-3-<strong>MCPD</strong>-d5 No change<br />

Re<strong>com</strong>mended<br />

to remove Cl -<br />

P&G<br />

Retained – no change, but used for<br />

all samples.<br />

THF MTBE - better separation of oil-rich<br />

and water-rich phases in initial water<br />

wash (MTBE evaporated and THF<br />

added for subsequent steps)<br />

Hydrolysis time 4 hrs 24 hrs (improved accuracy for<br />

monoesters when I.S. is a diester)<br />

Selected ion monitoring<br />

ions<br />

m/z 147 (m/z 150<br />

for SIL internal<br />

standard)<br />

m/z 196 (m/z 201 for SIL I.S.) – m/z<br />

147 is <strong>com</strong>mon “bleed” ion for<br />

siloxane-based GC stationary<br />

phases.<br />

* - Ermacora & Hrncirik, JAOCS 2012, 89, 211-217.<br />

7


Abundance<br />

170000<br />

150000<br />

130000<br />

110000<br />

90000<br />

70000<br />

50000<br />

30000<br />

10000<br />

GC/MS Background Ions Considerations<br />

Choice of SIM Ion: m/z 147<br />

vs. m/z 196?<br />

Common background ion in<br />

siloxane-based column and<br />

septum “bleed” peaks in<br />

GC/MS<br />

77<br />

91<br />

104<br />

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210<br />

m/z--><br />

147<br />

EI Mass Spectrum of the<br />

PBA Derivative of 3-<strong>MCPD</strong><br />

196<br />

M ·+<br />

8


Abundance<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Choice of SIM Ion, m/z 147 vs. m/z 196?<br />

0<br />

Time (min)<br />

9.92 9.96 10.00 10.04 10.08 10.12 10.16<br />

Abundance<br />

0.33 ppm (3.0 µmolar) standard Sample near LOD (~0.04 ppm (0.4 µmolar)<br />

280<br />

240<br />

200<br />

160<br />

120<br />

80<br />

40<br />

m/z 147<br />

m/z 196<br />

interferent<br />

0 9.92 9.96 10.00 10.04 10.08 10.12 10.16<br />

Time (min)<br />

Abundance<br />

1300<br />

1100<br />

900<br />

700<br />

500<br />

300<br />

100<br />

0 9.92<br />

Time (min)<br />

9.96 10.00 10.04 10.08 10.12 10.16<br />

Abundance<br />

170<br />

165<br />

160<br />

155<br />

150<br />

145<br />

140<br />

m/z 147<br />

m/z 196<br />

interferent<br />

135<br />

Time (min)<br />

9.92 9.96 10.00 10.04 10.08 10.12 10.16<br />

9


Accuracy/Recovery vs. Hydrolysis Time<br />

CSO* spiked with PP-3-<strong>MCPD</strong> at 56.2 µmolar (=6.21 ppm “free 3-<strong>MCPD</strong>”)<br />

or with P-3-<strong>MCPD</strong> at 59.9 µmolar (=6.62 ppm “free 3-<strong>MCPD</strong>”)<br />

Monoester (w/ diester IS)<br />

CSO* spiked with P-3-<strong>MCPD</strong>,<br />

PP-3-<strong>MCPD</strong>-d5 internal standard<br />

Hydrolysis Time (hr) % recovery<br />

4 225<br />

7 143<br />

16 149<br />

24 124<br />

Monoester (w/ monoester IS)<br />

CSO* spiked with P-3-<strong>MCPD</strong>,<br />

P-3-<strong>MCPD</strong>-d5 internal standard<br />

Hydrolysis Time (hr) % recovery<br />

7 116<br />

* - Fresh Refined Cotton Seed Oil,<br />

total 3-<strong>MCPD</strong> esters: 3.29 µmolar<br />

(=0.36 ppm “free 3-<strong>MCPD</strong>”)<br />

Diester (w/ diester IS)<br />

CSO* spiked with PP-3-<strong>MCPD</strong>,<br />

PP-3-<strong>MCPD</strong>-d5 internal standard<br />

Hydrolysis Time (hr) % recovery<br />

4 108<br />

7 109<br />

16 115<br />

24 115<br />

Recoveries acceptable at any<br />

time for monoester with<br />

Rate of hydrolysis of<br />

monoester IS, and for diester<br />

monoester faster than that of<br />

with diester IS.<br />

diester, yielding high recovery<br />

for monoester at shorter<br />

hydrolysis times.<br />

10


Abundance<br />

310<br />

300<br />

290<br />

280<br />

270<br />

260<br />

250<br />

240<br />

Limit of Quantitation/Limit of Detection<br />

Selected ion monitoring (SIM)<br />

chromatogram of lowest standard<br />

m/z 196.0<br />

LOQ = 0.11 ppm<br />

S/N ≈ 8<br />

110 pg injected, splitless injection<br />

Estimated LOD (S/N ≈ 3) at 0.04 ppm<br />

11.90 11.95 12.00 12.05 12.10 12.15 12.20 12.25 12.30<br />

Time (min)<br />

11


m o l<br />

µ<br />

60<br />

58<br />

56<br />

54<br />

52<br />

50<br />

48<br />

46<br />

44<br />

Precision<br />

Protocol for measuring repeatability & intermediate<br />

precision:<br />

7 aliquots of working reference material vegetable oil<br />

prepared on 3 separate days by 1 analyst. Each sample (1<br />

per aliquot) determined in triplicate.<br />

Overview:<br />

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C injection<br />

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 aliquot<br />

1 2 3 day<br />

12


Variability by <strong>com</strong>ponent:<br />

Precision - Results<br />

Component % of Total Variability<br />

Day-to-day 66.2<br />

Injection-to-injection (within<br />

aliquot)<br />

31.6<br />

Aliquot/sample prep (within day) 2.2<br />

Instrumental repeatability:<br />

RSD: 3.6% (from 21 sets of triplicate injections)<br />

Aliquot/sample prep repeatability:<br />

RSD: 0.94% (from 3 sets of 7 aliquots)<br />

Intermediate precision, day-to-day:<br />

RSD: 5.2% (from 3 days)<br />

Intermediate precision, total (1 analyst):<br />

RSD: 6.3%<br />

13


Analyte response/Internal standard response<br />

7.000<br />

6.000<br />

5.000<br />

4.000<br />

3.000<br />

2.000<br />

1.000<br />

-1.000<br />

Linearity & Range<br />

Calibration Curve for Total 3-<strong>MCPD</strong> <strong>Esters</strong>, Acid Hydrolysis<br />

y = 0.0572x - 0.0028<br />

R² = 0.9999<br />

0.000<br />

0.0 20.0 40.0 60.0 80.0 100.0 120.0<br />

Standard Concentration (µmolar)<br />

14


Update on Direct Method<br />

We provided an update on our direct LC/MS/MS method for<br />

3-<strong>MCPD</strong> esters at the last AOCS national meeting<br />

(Pinkston & Stoffolano, 102 nd AOCS National Meeting and<br />

Exposition, May 1-4, 2011, Cincinnati, OH).<br />

Our method provided some advantages over a similar<br />

LC/TOFMS method described by Haines et al. (JAOCS<br />

2011, 88, 1-14.), notably little need for instrument<br />

cleaning.<br />

However, unresolved interferences required the use of a<br />

standard addition method (with tedious sample<br />

preparation).<br />

We are investigating a simple silica SPE step which may<br />

remove much of the interferent.<br />

We are working to develop a more standard analytical<br />

method incorporating the SPE cleanup with LC/MS/MS.<br />

15


Summary<br />

We have implemented an indirect method for total 3-<br />

<strong>MCPD</strong> esters in vegetable oils in our laboratory based<br />

upon the acid hydrolysis method of Ermacora & Hrncirik.<br />

Notable differences we re<strong>com</strong>mend:<br />

Use of MTBE as initial sample solvent for water wash.<br />

24-hr hydrolysis time<br />

GC/MS SIM ion: m/z 196<br />

Acknowledgements<br />

Thanks to Shuo Wang, Jim Jordan, Pete Stoffolano,<br />

Jaque Heisey, Katrin Schutte, Dick DePalma, and<br />

Debbie Ewald for their contributions.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!