30.06.2013 Views

Marco Baldi

Marco Baldi

Marco Baldi

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong><br />

Excellence Cluster Universe, Garching<br />

structure formation in the<br />

presence of dark<br />

interactions<br />

MGADS - Strasbourg, 1 VII 2010


Introduction<br />

outline<br />

Standard Model and non-standard models of the Universe<br />

Dynamic and interacting DE:<br />

- constant couplings [MB, V. Pettorino, G. Robbers, V. Springel - 0812.3901 (2010)]<br />

- time dependent couplings [MB - 1005.2188]<br />

Numerical methods for N-body simulations of interacting dark energy<br />

- assumptions, approximations, and their range of validity<br />

Results from high-resolution N-body runs:<br />

- Large Scale Structure: Halo Mass Function [MB, V. Pettorino - 1006.3761], Bias<br />

- Collapsed objects: Density Profiles, Concentrations, Baryon Fraction<br />

Next steps in a resurrected topic<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


The beginning of the story: evidence for DE<br />

The last decade (well, actually a bit more than that...) has provided<br />

us with a hardly doubtable evidence of the existence of some<br />

accelerating component in the Universe, dubbed Dark Energy<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


The beginning of the story: evidence for DE<br />

The last decade (well, actually a bit more than that...) has provided<br />

us with a hardly doubtable evidence of the existence of some<br />

accelerating component in the Universe, dubbed Dark Energy<br />

Tuesday, July 6, 2010<br />

Large Scale Structure<br />

[APM, 2dF, SDSS, ...]<br />

Supernovae Ia<br />

[high-z SNS, SN Cosmology Project, ...]<br />

CMB anisotropies<br />

[COBE, WMAP, ...]<br />

Gravitational Lensing<br />

[HST, ...]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


The beginning of the story: evidence for DE<br />

The last decade (well, actually a bit more than that...) has provided<br />

us with a hardly doubtable evidence of the existence of some<br />

accelerating component in the Universe, dubbed Dark Energy<br />

Large Scale Structure<br />

[APM, 2dF, SDSS, ...]<br />

Supernovae Ia<br />

[high-z SNS, SN Cosmology Project, ...]<br />

CMB anisotropies<br />

[COBE, WMAP, ...]<br />

Gravitational Lensing<br />

[HST, ...]<br />

The theoretical effort to cast all these data into a simple and<br />

consistent picture of the Universe has led to the establishment of a<br />

STANDARD MODEL...<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


The beginning of the story: evidence for DE<br />

The last decade (well, actually a bit more than that...) has provided<br />

us with a hardly doubtable evidence of the existence of some<br />

accelerating component in the Universe, dubbed Dark Energy<br />

Large Scale Structure<br />

[APM, 2dF, SDSS, ...]<br />

Supernovae Ia<br />

[high-z SNS, SN Cosmology Project, ...]<br />

CMB anisotropies<br />

[COBE, WMAP, ...]<br />

Gravitational Lensing<br />

[HST, ...]<br />

The theoretical effort to cast all these data into a simple and<br />

consistent picture of the Universe has led to the establishment of a<br />

STANDARD MODEL...<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

Standard model and non-standard models<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

Tuesday, July 6, 2010<br />

ΛCDM<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

Tuesday, July 6, 2010<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

Tuesday, July 6, 2010<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

2) The Cosmological Principle holds (FLRW metric)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

Tuesday, July 6, 2010<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

2) The Cosmological Principle holds (FLRW metric)<br />

3) The acceleration of the Universe is driven by a Cosmological Constant<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

2) The Cosmological Principle holds (FLRW metric)<br />

3) The acceleration of the Universe is driven by a Cosmological Constant<br />

What is a non-standard model?<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

What is a non-standard model?<br />

Tuesday, July 6, 2010<br />

2) The Cosmological Principle holds (FLRW metric)<br />

3) The acceleration of the Universe is driven by a Cosmological Constant<br />

Anything ≠ ΛCDM<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

What is a non-standard model?<br />

Tuesday, July 6, 2010<br />

2) The Cosmological Principle holds (FLRW metric)<br />

3) The acceleration of the Universe is driven by a Cosmological Constant<br />

Anything ≠ ΛCDM<br />

Dropping 1) Modified Gravities (ST theories, f(R) theories, TeVeS, extra dimensions, String...)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

What is a non-standard model?<br />

Tuesday, July 6, 2010<br />

2) The Cosmological Principle holds (FLRW metric)<br />

3) The acceleration of the Universe is driven by a Cosmological Constant<br />

Anything ≠ ΛCDM<br />

Dropping 1) Modified Gravities (ST theories, f(R) theories, TeVeS, extra dimensions, String...)<br />

Dropping 2) Inhomogeneous Universe (LTB models, Backreaction, ...)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Standard model and non-standard models<br />

Which is the standard model?<br />

ΛCDM<br />

1) GR is the correct and complete theory of gravity<br />

What is a non-standard model?<br />

Tuesday, July 6, 2010<br />

2) The Cosmological Principle holds (FLRW metric)<br />

3) The acceleration of the Universe is driven by a Cosmological Constant<br />

Anything ≠ ΛCDM<br />

Dropping 1) Modified Gravities (ST theories, f(R) theories, TeVeS, extra dimensions, String...)<br />

Dropping 2) Inhomogeneous Universe (LTB models, Backreaction, ...)<br />

Dropping 3)<br />

Dynamic Dark Energy models (Quintessence, k-essence, phantom, ...)<br />

Interactions of Dark Energy (Coupled DE, Unified DM, Chaplygin gas, ...)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Why bothering with non-standard models? (I)<br />

The “standard” model is standard for a reason:<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Why bothering with non-standard models? (I)<br />

The “standard” model is standard for a reason:<br />

fits well most of the data<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Why bothering with non-standard models? (I)<br />

The “standard” model is standard for a reason:<br />

fits well most of the data easy<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Why bothering with non-standard models? (I)<br />

The “standard” model is standard for a reason:<br />

fits well most of the data easy<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

economic


Why bothering with non-standard models? (I)<br />

The “standard” model is standard for a reason:<br />

fits well most of the data easy<br />

So why looking for something more “exotic”?<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

economic


Why bothering with non-standard models? (I)<br />

The “standard” model is standard for a reason:<br />

fits well most of the data easy<br />

So why looking for something more “exotic”?<br />

Easy BUT highly fine-tuned (cosmological issues):<br />

1) Only one number (Λ) but unnaturally small: FINE TUNING<br />

2) Λ domination is very recent: COINCIDENCE<br />

Tuesday, July 6, 2010<br />

ρΛ<br />

ρm<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

economic<br />

ρΛ<br />

ρpl<br />

∼ 10 −123<br />

< 10 −3 for z > 6


Why bothering with non-standard models? (II)<br />

NOT everything fits (astrophysical issues):<br />

1) Cusp-Core problem: OBSERVED CDM HALOS SHALLOWER THAN NFW<br />

[e.g. Flores & Primack 1994, Salucci & Burkert 2000, Newman et al. 2009]<br />

2) Satellite Problem: MANY FEWER SATELLITES OBSERVED THAN PREDICTED<br />

[e.g. Klypin et al. 1999, Springel 2008, (but see also e.g Maccio’ et al. 2009 MAYBE SOLVED?)]<br />

3) Void Phenomenon: TOO FEW GALAXIES FOUND IN VOIDS<br />

[e.g. Peebles 2000, Peebles & Nusser 2010]<br />

4) Cluster Baryon Fraction: SYSTEMATICALLY LOWER THAN EXPECTED<br />

[e.g. Allen et al. 2006 (but see also Giodini et al 2009!!)]<br />

5) Bulk Flows: TOO LARGE GALAXY VELOCITIES ON LARGE SCALES<br />

[e.g. Watkins et al. 2008, (but see also Erdogdu & Lahav 2009)]<br />

6) High-z massive clusters: VERY UNLIKELY TO FORM IN ΛCDM<br />

[e.g. Jee et al. 2009, Rosati et al 2009]<br />

7) The Bullet Cluster: EXCEEDINGLY RARE OBJECT IN A ΛCDM UNIVERSE<br />

[Lee & Komatsu 2010]<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Dynamic and interacting<br />

Dynamic DE: a scalar field in a self-interaction potential<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Dynamic and interacting<br />

Dynamic DE: a scalar field in a self-interaction potential<br />

¨φ +3H ˙ φ + dV<br />

dφ =0<br />

Tuesday, July 6, 2010<br />

[Wetterich 1988]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

Time dependent couplings [MB 1005.2188]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Time dependent couplings [MB 1005.2188]<br />

Why consider time variations of the coupling?<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Time dependent couplings [MB 1005.2188]<br />

Why consider time variations of the coupling?<br />

1) There is no reason why β should be a constant. β(ϕ) is a more natural assumption<br />

2) A varying (growing) β could have larger effects on astrophysical observables at late<br />

times with a weaker impact on CMB and background expansion: INTERESTING.<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Time dependent couplings [MB 1005.2188]<br />

Why consider time variations of the coupling?<br />

1) There is no reason why β should be a constant. β(ϕ) is a more natural assumption<br />

2) A varying (growing) β could have larger effects on astrophysical observables at late<br />

times with a weaker impact on CMB and background expansion: INTERESTING.<br />

What changes with a time dependent coupling?<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Time dependent couplings [MB 1005.2188]<br />

Why consider time variations of the coupling?<br />

1) There is no reason why β should be a constant. β(ϕ) is a more natural assumption<br />

2) A varying (growing) β could have larger effects on astrophysical observables at late<br />

times with a weaker impact on CMB and background expansion: INTERESTING.<br />

What changes with a time dependent coupling?<br />

There is no general analytic solution.<br />

Assume some generic forms of coupling evolution and find numerical solutions:<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Time dependent couplings [MB 1005.2188]<br />

Why consider time variations of the coupling?<br />

1) There is no reason why β should be a constant. β(ϕ) is a more natural assumption<br />

2) A varying (growing) β could have larger effects on astrophysical observables at late<br />

times with a weaker impact on CMB and background expansion: INTERESTING.<br />

What changes with a time dependent coupling?<br />

There is no general analytic solution.<br />

Assume some generic forms of coupling evolution and find numerical solutions:<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

β = β0a β1<br />

β = β0e β1φ/M


Time dependent couplings [MB 1005.2188]<br />

Why consider time variations of the coupling?<br />

1) There is no reason why β should be a constant. β(ϕ) is a more natural assumption<br />

2) A varying (growing) β could have larger effects on astrophysical observables at late<br />

times with a weaker impact on CMB and background expansion: INTERESTING.<br />

What changes with a time dependent coupling?<br />

There is no general analytic solution.<br />

Assume some generic forms of coupling evolution and find numerical solutions:<br />

<br />

1.000<br />

0.100<br />

0.010<br />

Background evolution<br />

MDE<br />

Growing MDE<br />

0.001<br />

-10 -8 -6 -4 -2 0<br />

N ln a<br />

Tuesday, July 6, 2010<br />

RP5 in <strong>Baldi</strong> et al. (2010)<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

w <br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

Equation of state<br />

RP5 in <strong>Baldi</strong> et al. (2010)<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

1 10<br />

z + 1<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

β = β0a β1<br />

β = β0e β1φ/M


Tuesday, July 6, 2010<br />

Features of interacting dark energy<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Features of interacting dark energy<br />

1) MASS VARIATION<br />

of coupled matter particles<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


m c<br />

Features of interacting dark energy<br />

1) MASS VARIATION<br />

of coupled matter particles<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

Mass correction for different coupled dark energy models<br />

CDM ( = 0, c=0)<br />

RP1 ( = 0.143, c=0.04)<br />

RP2 ( = 0.143, c=0.08)<br />

RP3 ( = 0.143, c=0.12)<br />

RP4 ( = 0.143, c=0.16)<br />

RP5 ( = 0.143, c=0.2)<br />

0.9<br />

0 10 20 30 40 50<br />

z<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


m c<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

Features of interacting dark energy<br />

1) MASS VARIATION<br />

of coupled matter particles<br />

Mass correction for different coupled dark energy models<br />

CDM ( = 0, c=0)<br />

RP1 ( = 0.143, c=0.04)<br />

RP2 ( = 0.143, c=0.08)<br />

RP3 ( = 0.143, c=0.12)<br />

RP4 ( = 0.143, c=0.16)<br />

RP5 ( = 0.143, c=0.2)<br />

0.9<br />

0 10 20 30 40 50<br />

z<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

2) MODIFIED EXPANSION<br />

due to the Early DE component


m c<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

Features of interacting dark energy<br />

1) MASS VARIATION<br />

of coupled matter particles<br />

Mass correction for different coupled dark energy models<br />

CDM ( = 0, c=0)<br />

RP1 ( = 0.143, c=0.04)<br />

RP2 ( = 0.143, c=0.08)<br />

RP3 ( = 0.143, c=0.12)<br />

RP4 ( = 0.143, c=0.16)<br />

RP5 ( = 0.143, c=0.2)<br />

0.9<br />

0 10 20 30 40 50<br />

z<br />

Tuesday, July 6, 2010<br />

2) MODIFIED EXPANSION<br />

due to the Early DE component<br />

3•10 4<br />

2•10 4<br />

1•10 4<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

H (km s -1 Mpc -1 )<br />

Hubble functions for different coupled dark energy models<br />

CDM ( = 0, c=0)<br />

RP1 ( = 0.143, c=0.04)<br />

RP2 ( = 0.143, c=0.08)<br />

RP3 ( = 0.143, c=0.12)<br />

RP4 ( = 0.143, c=0.16)<br />

RP5 ( = 0.143, c=0.2)<br />

0 20 40 60 80 100<br />

z


Tuesday, July 6, 2010<br />

How to implement all this in a code? (III)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

How to implement all this in a code? (III)<br />

Particle-Particle<br />

+<br />

Particle-Mesh<br />

=<br />

GADGET-3<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Results (I): halo mass function and cluster counts<br />

Number counts in coupled dark energy models: CONSTANT and<br />

VARIABLE couplings [MB & V. Pettorino, 1006.3761]<br />

The recent detection [Jee et al (2009)] of a massive custer at z~1.4 might be a challenge for the<br />

standard model: the probability of such an object in ΛCDM has been estimated to be ~0.005.<br />

N(>M) (h -1 Mpc) -3<br />

N/N CDM<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10.0<br />

1.0<br />

0.1<br />

10 12<br />

Tuesday, July 6, 2010<br />

N=256 3<br />

L=320Mpc/h<br />

DM only<br />

M max=3.05E+15<br />

M max=1.46E+15<br />

M max=9.56E+14<br />

z = 0.0<br />

10 13<br />

10 14<br />

MFoF [h -1 M O•<br />

]<br />

= 0.25<br />

= 0.5 e 2<br />

CDM<br />

10 15<br />

10 16<br />

Maybe non gaussianity?<br />

[Jimenez&Verde (2009)]<br />

NEED A LARGE fNL (~300)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

INTERACTING DE:<br />

The extra force acting between CDM<br />

particles and the extra friction term<br />

determine a faster growth of density<br />

perturbations.<br />

The number density of halos above a<br />

given mass M at any redshift z is<br />

correspondingly enhanced.


Results (II): bias<br />

The fifth-force determines an “effective” violation of the Weak<br />

Equivalence Principle for CONSTANT and VARIABLE couplings<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

N=2x512 3 , L=80Mpc/h, Hydro


Results (II): bias<br />

The fifth-force determines an “effective” violation of the Weak<br />

Equivalence Principle for CONSTANT and VARIABLE couplings<br />

R(k)/R CDM(k)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Tuesday, July 6, 2010<br />

CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

0.1 1.0 10.0 100.0<br />

k [ h Mpc -1 z=3.00000<br />

0.5<br />

]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

GRAVITATIONAL BIAS<br />

Since baryons are not coupled<br />

they do not feel any fifth-force.<br />

Baryon and CDM perturbations<br />

grow with a different rate, and the<br />

two components develop a purely<br />

gravitational bias at all scales.<br />

The bias is enhanced by<br />

nonlinearities at small scales and<br />

grows with time.<br />

N=2x512 3 , L=80Mpc/h, Hydro


The fifth-force determines an “effective” violation of the Weak<br />

Equivalence Principle for CONSTANT and VARIABLE couplings<br />

R(k)/R CDM(k)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Tuesday, July 6, 2010<br />

CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

Results (II): bias<br />

0.1 1.0 10.0 100.0<br />

k [ h Mpc -1 z=1.00000<br />

0.5<br />

]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

GRAVITATIONAL BIAS<br />

Since baryons are not coupled<br />

they do not feel any fifth-force.<br />

Baryon and CDM perturbations<br />

grow with a different rate, and the<br />

two components develop a purely<br />

gravitational bias at all scales.<br />

The bias is enhanced by<br />

nonlinearities at small scales and<br />

grows with time.<br />

N=2x512 3 , L=80Mpc/h, Hydro


The fifth-force determines an “effective” violation of the Weak<br />

Equivalence Principle for CONSTANT and VARIABLE couplings<br />

R(k)/R CDM(k)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Tuesday, July 6, 2010<br />

CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

Results (II): bias<br />

0.1 1.0 10.0 100.0<br />

k [ h Mpc -1 z=0.200000<br />

0.5<br />

]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

GRAVITATIONAL BIAS<br />

Since baryons are not coupled<br />

they do not feel any fifth-force.<br />

Baryon and CDM perturbations<br />

grow with a different rate, and the<br />

two components develop a purely<br />

gravitational bias at all scales.<br />

The bias is enhanced by<br />

nonlinearities at small scales and<br />

grows with time.<br />

N=2x512 3 , L=80Mpc/h, Hydro


The fifth-force determines an “effective” violation of the Weak<br />

Equivalence Principle for CONSTANT and VARIABLE couplings<br />

R(k)/R CDM(k)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Tuesday, July 6, 2010<br />

CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

Results (II): bias<br />

0.1 1.0 10.0 100.0<br />

k [ h Mpc -1 z=0.00000<br />

0.5<br />

]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

GRAVITATIONAL BIAS<br />

Since baryons are not coupled<br />

they do not feel any fifth-force.<br />

Baryon and CDM perturbations<br />

grow with a different rate, and the<br />

two components develop a purely<br />

gravitational bias at all scales.<br />

The bias is enhanced by<br />

nonlinearities at small scales and<br />

grows with time.<br />

N=2x512 3 , L=80Mpc/h, Hydro


Results (III): baryon fraction<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

Tuesday, July 6, 2010<br />

N=2x512 3 , L=80Mpc/h, Hydro<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Results (III): baryon fraction<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

Y b<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

Tuesday, July 6, 2010<br />

Evolution of the relative baryon fraction with mass<br />

10 13<br />

N=2x512 3 , L=80Mpc/h, Hydro<br />

M200 [h -1 M O•<br />

]<br />

!CDM<br />

RP1<br />

RP2<br />

RP5<br />

10 14<br />

BARYON FRACTION<br />

The different dynamics of<br />

(uncoupled) baryons and<br />

(coupled) CDM leads to a linear<br />

and nonlinear bias between the<br />

two species<br />

As a consequence, the baryon<br />

fraction of large halos is reduced<br />

in proportion to the coupling<br />

strength: RINGS A BELL?<br />

Yb ≡<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

fb<br />

Ωb/ΩM


The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM VARIABLE interaction: [<strong>Baldi</strong>, arXiv:1005.2188]<br />

Y b<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

Tuesday, July 6, 2010<br />

Results (III): baryon fraction<br />

10 13<br />

Relative baryon fraction<br />

N=2x512 3 , L=80Mpc/h, Hydro<br />

M200 [h -1 M O•<br />

]<br />

10 14<br />

CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

BARYON FRACTION<br />

The different dynamics of<br />

(uncoupled) baryons and<br />

(coupled) CDM leads to a linear<br />

and nonlinear bias between the<br />

two species<br />

As a consequence, the baryon<br />

fraction of large halos is reduced<br />

in proportion to the coupling<br />

strength: RINGS A BELL?<br />

Yb ≡<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

fb<br />

Ωb/ΩM


Resuts (IV): halo density profiles<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Resuts (IV): halo density profiles<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

! / ! crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Tuesday, July 6, 2010<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

N=2x512 3<br />

L=80Mpc/h<br />

Hydro<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

DENSITY PROFILES<br />

The combination of the friction<br />

term and of the mass variation of<br />

(coupled) CDM particles affects<br />

the virial equiibrium of collapsed<br />

objects.<br />

The two effects induce a global<br />

increase of the total energy of the<br />

systems which slightly expand. This<br />

produces shallower density<br />

profiles in the inner regions of<br />

CDM halos: RINGS A BELL?


This result is in stark contrast with previous claims, which found the<br />

opposite behavior for the density profiles of CDM halos<br />

! / ! crit<br />

MB et al., 0812.3901 (MNRAS 2010)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Tuesday, July 6, 2010<br />

Resuts (IV): halo density profiles<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

Macciò et al., 2004


The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

! / ! crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Tuesday, July 6, 2010<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

N=2x512 3<br />

L=80Mpc/h<br />

Hydro<br />

Resuts (IV): halo density profiles<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

DENSITY PROFILES<br />

The combination of the friction<br />

term and of the mass variation of<br />

(coupled) CDM particles affects<br />

the virial equiibrium of collapsed<br />

objects.<br />

The two effects induce a global<br />

increase of the total energy of the<br />

systems which slightly expand. This<br />

produces shallower density<br />

profiles in the inner regions of<br />

CDM halos: RINGS A BELL?


The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

! ! / / ! crit<br />

10 5<br />

10 5<br />

10 4<br />

10 4<br />

10 3<br />

10 3<br />

10 2<br />

10 2<br />

10 1<br />

10 1<br />

Tuesday, July 6, 2010<br />

Resuts (IV): halo density profiles<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

N=2x512 3<br />

L=80Mpc/h<br />

Hydro<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M200("CDM) = 2.82510e+14 h M O•<br />

-1 M O•<br />

10 100<br />

R (h<br />

1000<br />

-1 10 100<br />

R (h kpc)<br />

1000<br />

-1 kpc)<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

DENSITY PROFILES<br />

The combination of the friction<br />

term and of the mass variation of<br />

(coupled) CDM particles affects<br />

the virial equiibrium of collapsed<br />

objects.<br />

The two effects induce a global<br />

increase of the total energy of the<br />

systems which slightly expand. This<br />

produces shallower density<br />

profiles in the inner regions of<br />

CDM halos: RINGS A BELL?


Resuts (IV): halo density profiles<br />

Are NFW density profiles too steep also at cluster scales?<br />

! / ! crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Tuesday, July 6, 2010<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)<br />

[Newman et al. 2009]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

Abell 611


The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM VARIABLE interaction: [<strong>Baldi</strong>, arXiv:1005.2188]<br />

M / crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Tuesday, July 6, 2010<br />

CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

z = 0.00000<br />

Resuts (IV): halo density profiles<br />

Density profiles for Group nr. 6<br />

M200(CDM) = 1.44298e+14 h -1 M O•<br />

N=2x512 3<br />

L=80Mpc/h<br />

Hydro<br />

10 100 1000<br />

r [ h -1 kpc ]<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

DENSITY PROFILES<br />

The combination of the friction<br />

term and of the mass variation of<br />

(coupled) CDM particles affects<br />

the virial equilibrium of collapsed<br />

objects.... BUT:<br />

If the coupling grows in time,<br />

there is also a decrease of the<br />

gravitational potential energy of<br />

halos. Two effects are competing,<br />

and can determine both shallower<br />

and steeper density profiles<br />

depending on the existence of a<br />

“Growing ϕMDE” phase.


Some first results (IV)<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

Tuesday, July 6, 2010<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Some first results (IV)<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM CONSTANT interaction: [<strong>Baldi</strong> et al., MNRAS 2010]<br />

c mean<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Tuesday, July 6, 2010<br />

10 13<br />

M200 [h -1 M O•<br />

]<br />

!CDM<br />

RP1<br />

RP2<br />

RP5<br />

RP5 NO GF<br />

10 14<br />

N=2x512 3<br />

L=80Mpc/h<br />

Hydro<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

CONCENTRATIONS<br />

Consistently with the results on<br />

density profiles, the<br />

concentrations of halos are found<br />

to be lower in coupled<br />

cosmologies with constant<br />

couplings than in ΛCMD.<br />

This confirms the picture: mass is<br />

moving outwards from the<br />

innermost regions of halos due to<br />

the extra physics coming from the<br />

DE-CDM interaction.<br />

Possible observational effects for<br />

strong lensing and galactic dynamics.


Some first results (IV)<br />

The first hydrodynamical high-resolution N-body simulations for a weak<br />

DE-CDM VARIABLE interaction: [<strong>Baldi</strong>, arXiv:1005.2188]<br />

c mean<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Tuesday, July 6, 2010<br />

N=2x512 3<br />

L=80Mpc/h<br />

Hydro<br />

10 13<br />

M200 [h -1 M O•<br />

]<br />

10 14<br />

CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

CONCENTRATIONS<br />

Consistently with the results on<br />

density profiles, the concentrations<br />

of halos are found to be lower or<br />

higher in coupled cosmologies than<br />

in ΛCMD, according to the<br />

presence of a “Growing ϕMDE”<br />

phase:<br />

GϕMDE → Friction at work →<br />

→ halo “heating” →<br />

→ lower concentrations<br />

NO GϕMDE → NO friction →<br />

→ Potential energy<br />

decreases in time →<br />

higher concentrations


Tuesday, July 6, 2010<br />

the highlights<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Maccio’ et al 2004<br />

Constant β<br />

Tuesday, July 6, 2010<br />

the highlights<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Maccio’ et al 2004<br />

Constant β<br />

Tuesday, July 6, 2010<br />

the highlights<br />

MB et al 2008 (2010)<br />

Constant β<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

! / ! crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)


Maccio’ et al 2004<br />

Constant β<br />

MB 2010 (1005.2188)<br />

Variable β<br />

Tuesday, July 6, 2010<br />

M / crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

z = 0.00000<br />

Density profiles for Group nr. 6<br />

M200(CDM) = 1.44298e+14 h -1 M O•<br />

10 100 1000<br />

r [ h -1 kpc ]<br />

the highlights<br />

MB et al 2008 (2010)<br />

Constant β<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

! / ! crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)


Maccio’ et al 2004<br />

Constant β<br />

MB 2010 (1005.2188)<br />

Variable β<br />

Tuesday, July 6, 2010<br />

M / crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

CDM<br />

EXP010a2<br />

EXP015a3<br />

EXP010e2<br />

EXP010e3<br />

EXP015e3<br />

z = 0.00000<br />

Density profiles for Group nr. 6<br />

M200(CDM) = 1.44298e+14 h -1 M O•<br />

10 100 1000<br />

r [ h -1 kpc ]<br />

the highlights<br />

MB et al 2008 (2010)<br />

Constant β<br />

Li & Barrow (1005.4231)<br />

Constant β<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010<br />

! / ! crit<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Halo Density profiles for CDM and baryons for Group nr. 0<br />

"CDM<br />

RP1<br />

RP2<br />

RP5<br />

M200("CDM) = 2.82510e+14 h -1 M O•<br />

10 100 1000<br />

R (h -1 kpc)


Tuesday, July 6, 2010<br />

concluding...<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

concluding...<br />

The standard cosmological model requires<br />

extreme fine tuning and still shows some<br />

problems at small scales;<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

concluding...<br />

The standard cosmological model requires<br />

extreme fine tuning and still shows some<br />

problems at small scales;<br />

Baryonic physics might resolve these<br />

tensions, but would not address the fine<br />

tuning at all;<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

concluding...<br />

The standard cosmological model requires<br />

extreme fine tuning and still shows some<br />

problems at small scales;<br />

Baryonic physics might resolve these<br />

tensions, but would not address the fine<br />

tuning at all;<br />

Scalar field models without a coupling also<br />

fail in reproducing the present Universe<br />

even at the background level<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010


Tuesday, July 6, 2010<br />

concluding...<br />

The standard cosmological model requires<br />

extreme fine tuning and still shows some<br />

problems at small scales;<br />

Baryonic physics might resolve these<br />

tensions, but would not address the fine<br />

tuning at all;<br />

Scalar field models without a coupling also<br />

fail in reproducing the present Universe<br />

even at the background level<br />

Coupled dark energy models, with constant<br />

or variable couplings, provide possible<br />

solutions to both the fine tuning and the<br />

small scale problems of ΛCDM...<br />

<strong>Marco</strong> <strong>Baldi</strong> - MGADS, Strasbourg 16 VI 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!