30.06.2013 Views

Problems and Alternatives to Lambda Cold Dark Matter - Berkeley ...

Problems and Alternatives to Lambda Cold Dark Matter - Berkeley ...

Problems and Alternatives to Lambda Cold Dark Matter - Berkeley ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Problems</strong> <strong>and</strong> <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Lambda</strong> <strong>Cold</strong> <strong>Dark</strong> <strong>Matter</strong><br />

Tonatiuh Ma<strong>to</strong>s<br />

http://www.fis.cinvestav.mx/~tma<strong>to</strong>s/<br />

http://www.iac.edu.mx<br />

The LCDM<br />

Some <strong>Problems</strong> of the LCDM<br />

Some <strong>Alternatives</strong>


• Space-time: FLRW<br />

• <strong>Matter</strong>: DM (p = 0), DE (p = -ρ), b (p = 0),<br />

rad (p = 1/3 ρ), ν (p = 1/3 ρ), etc.


• Space-time: FLRW<br />

• <strong>Matter</strong>: DM (p = 0), DE (p = -ρ), b (p = 0),<br />

rad (p = 1/3 ρ), ν (p = 1/3 ρ), etc.<br />

• Inflation<br />

• BBN<br />

• CMB<br />

• Structure formation<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

4


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

CDM Paradigme<br />

• 1.- The DM fluctuation spectrum at recombination is detemined by a small<br />

number of physical paramenters.<br />

4


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

CDM Paradigme<br />

• 1.- The DM fluctuation spectrum at recombination is detemined by a small<br />

number of physical paramenters.<br />

• 2.- After recombination, the amplitude of the baryonic fluctuations rapidly<br />

grows <strong>to</strong> match that of the DM fluctuations.<br />

4


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

CDM Paradigme<br />

• 1.- The DM fluctuation spectrum at recombination is detemined by a small<br />

number of physical paramenters.<br />

• 2.- After recombination, the amplitude of the baryonic fluctuations rapidly<br />

grows <strong>to</strong> match that of the DM fluctuations.<br />

• 3.- Smaller-mass fluctutions grow <strong>to</strong> nonlineartity <strong>and</strong> virialize <strong>and</strong> then are<br />

hirarchically clustered within successively larger bound systems.<br />

4


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

CDM Paradigme<br />

• 1.- The DM fluctuation spectrum at recombination is detemined by a small<br />

number of physical paramenters.<br />

• 2.- After recombination, the amplitude of the baryonic fluctuations rapidly<br />

grows <strong>to</strong> match that of the DM fluctuations.<br />

• 3.- Smaller-mass fluctutions grow <strong>to</strong> nonlineartity <strong>and</strong> virialize <strong>and</strong> then are<br />

hirarchically clustered within successively larger bound systems.<br />

10 8−12 M⊙<br />

• 4.- Ordinary matter in bound systems of <strong>to</strong>tal mass cools rapidly<br />

enough within the DM halos <strong>to</strong> form galaxies, while larger mass fluctutations<br />

form clusters<br />

4


z=18.3<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


z=18.3<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


z=5.7<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


z=1.4<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


z=0<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

7


The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

Ωχ h 2 = 3 × 10−27 cm 3 s −1<br />

σv<br />

σv ∼ 3 × 10 −26 cm 3 s −1<br />

7


C<strong>and</strong>idates:<br />

Axions<br />

Sterile neutrinos<br />

MSSM: neutralino,<br />

gravitino, etc.<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

Ωχ h 2 = 3 × 10−27 cm 3 s −1<br />

σv<br />

σv ∼ 3 × 10 −26 cm 3 s −1<br />

7


C<strong>and</strong>idates:<br />

Axions<br />

Sterile neutrinos<br />

MSSM: neutralino,<br />

gravitino, etc.<br />

The St<strong>and</strong>ard Model of<br />

Cosmology: LCDM<br />

Ωχ h 2 = 3 × 10−27 cm 3 s −1<br />

σv<br />

σv ∼ 3 × 10 −26 cm 3 s −1<br />

Observations:<br />

1.- Detection of products of<br />

annihilation or decay of these particles<br />

2.-Interactions with nuclei in<br />

underground detec<strong>to</strong>rs<br />

7


Dama/Libra<br />

8


Dama/Libra<br />

8


But a light WIMP, (10-100GeV,<br />

CoGeNT collaboration) is in<br />

tension with the first<br />

XENON100 results.<br />

Aprile, E. et al. First dark matter results from the<br />

XENON100 experiment. arXiv:1005.0380.<br />

Dama/Libra<br />

8


• 1 km 3 Antartic ice with<br />

• Fo<strong>to</strong>electric sensors<br />

• Ready in 2011


IceCube Neutrino Telescope in Antartic<br />

• 1 km 3 Antartic ice with<br />

• Fo<strong>to</strong>electric sensors<br />

• Ready in 2011


ANTARES –Telescopio de Neutrinos en el<br />

Mediterraneo


ANTARES –Telescopio de Neutrinos en el<br />

Mediterraneo<br />

11


γ<br />

χχ → γγ


Telescopio HESS,<br />

Namibia (2004)<br />

γ<br />

rays satellites<br />

GLAST Satellite<br />

Start 11. Juni 2008<br />

χχ → γγ<br />

MAGIC I, II(const), La Palma


LHC<br />

LHC in CERN (Genf)<br />

2009


SuperCDMS 1TG<br />

Lux (3 T liq Xe)<br />

Xenon 1T<br />

Xenon 100<br />

Direct search<br />

of WIMP’s<br />

Gianfranco Ber<strong>to</strong>ne, Nature,468(2010)389<br />

CDMS II<br />

4 parameters<br />

7 parameters


SuperCDMS 1TG<br />

Lux (3 T liq Xe)<br />

Xenon 1T<br />

Xenon 100<br />

Direct search<br />

of WIMP’s<br />

Gianfranco Ber<strong>to</strong>ne, Nature,468(2010)389<br />

CDMS II<br />

4 parameters<br />

7 parameters


The St<strong>and</strong>ard Model of<br />

Cosmology: <strong>Problems</strong><br />

• Extreme fine tuning<br />

• Coincidence<br />

• Cuspy central density profiles<br />

• Missing Satellites Problem<br />

• No-fit of the early assembly of galaxies<br />

• Galaxies seems <strong>to</strong> be simpler<br />

• Voids are <strong>to</strong>o empty<br />

• No-detection of DM<br />

• etc.


The St<strong>and</strong>ard Model of<br />

Cosmology: <strong>Problems</strong><br />

• Cuspy central density profiles<br />

• Missing Satellites Problem<br />

• No-fit of the early assembly of galaxies<br />

• Galaxies seems <strong>to</strong> be simpler<br />

• Voids are <strong>to</strong>o empty<br />

• No-detection of DM<br />

• etc.


Galaxy´s density<br />

Observed<br />

Theory<br />

ρNFW = 1<br />

x<br />

ρNFW ∼ 1<br />

x<br />

ρ ∼ 1<br />

x α<br />

0 < α < 1<br />

δ0ρ0<br />

(1 + x) 2<br />

17


Galaxy’s Density<br />

Galaxy´s density<br />

Observed<br />

Theory<br />

ρNFW = 1<br />

x<br />

ρNFW ∼ 1<br />

x<br />

ρ ∼ 1<br />

x α<br />

0 < α < 1<br />

δ0ρ0<br />

(1 + x) 2<br />

17


W. J. G. de Blok, Stacy S. McGaugh, Albert Bosma, <strong>and</strong> Vera C. Rubin. ApJ Letters 552(2001)L24<br />

18


Galaxy’s Center: Observations<br />

W. J. G. de Blok, Stacy S. McGaugh, Albert Bosma, <strong>and</strong> Vera C. Rubin. ApJ Letters 552(2001)L24<br />

18


Galaxy’s Center: Observations<br />

Joshua D. Simon, Alber<strong>to</strong> D. Bolat<strong>to</strong>, Adam Leroy, <strong>and</strong> Leo Blitz, astro-ph/0310193<br />

19


NFW<br />

Galaxy’s Center: Observations<br />

20


Galaxy’s Center: Simulations


Galaxy’s Center: Simulations<br />

F. Goberna<strong>to</strong>, et. al., NATURE, Vol 463, 14 January 2010


Galaxy’s Center: Simulations<br />

F. Goberna<strong>to</strong>, et. al., NATURE, Vol 463, 14 January 2010


Galaxy’s Center: Simulations<br />

F. Goberna<strong>to</strong>, et. al., NATURE, Vol 463, 14 January 2010


Galaxy’s Center: Simulations<br />

F. Goberna<strong>to</strong>, et. al., NATURE, Vol 463, 14 January 2010<br />

General results from several samples<br />

including THINGS, HI survey of uniform<br />

<strong>and</strong> high quality data, imply that Tri-axiality<br />

<strong>and</strong> non-circular motions cannot explain<br />

the CDM/NFW cusp/core discrepancy<br />

ej: J. van Eymeren, C. Trachternach, B. S. Koribalski <strong>and</strong> R.-<br />

J. Dettmar: A&A arXiv:0906.4654


No evidence for internal features<br />

or star formation that could be the<br />

result of tidal processes or star<br />

formation induced by the cluster<br />

environment.<br />

ej: Samantha J. Penny, Chris<strong>to</strong>pher J. Conselice,<br />

Sven De Rijcke <strong>and</strong> Enrico V. Held:<br />

Mon. Not. R. Astron. Soc. 393, 1054–1062 (2009),<br />

etc.<br />

Galaxy’s Center: Simulations<br />

F. Goberna<strong>to</strong>, et. al., NATURE, Vol 463, 14 January 2010<br />

General results from several samples<br />

including THINGS, HI survey of uniform<br />

<strong>and</strong> high quality data, imply that Tri-axiality<br />

<strong>and</strong> non-circular motions cannot explain<br />

the CDM/NFW cusp/core discrepancy<br />

ej: J. van Eymeren, C. Trachternach, B. S. Koribalski <strong>and</strong> R.-<br />

J. Dettmar: A&A arXiv:0906.4654


Stellar Mass Predictions<br />

Till Sawala, Qi Guo, Cecilia Scannapieco, Adrian Jenkins <strong>and</strong> Simon White. Mon. Not. R. Astron. To appear.<br />

23


Stellar Mass Predictions<br />

Till Sawala, Qi Guo, Cecilia Scannapieco, Adrian Jenkins <strong>and</strong> Simon White. Mon. Not. R. Astron. To appear.<br />

The dwarf galaxies formed in<br />

hydrodynamical simulations<br />

are almost two orders of<br />

magnitude more luminous<br />

than expected for haloes of<br />

this mass.<br />

23


Velocity predictions<br />

Jesús Zavala, et. al. The Astrophysical Journal, 700:1779–1793, 2009 August 1<br />

24


Velocity predictions<br />

Jesús Zavala, et. al. The Astrophysical Journal, 700:1779–1793, 2009 August 1<br />

The simulation with CDM predicts<br />

a steep rise in the VF <strong>to</strong>ward lower<br />

velocities; for Vmax = 35 km/s, it<br />

forecasts ∼10 times more sources<br />

than the ones observed. If<br />

confirmed by the complete<br />

ALFALFA survey, these results<br />

indicate a potential problem for the<br />

CDM paradigm<br />

24


Missing Satellites Problem


Missing Satellites Problem


Missing Satellites Problem<br />

26


Missing Satellites Problem<br />

26


Galaxies appear simpler than<br />

expected<br />

M. J. Dysney, et. al. Vol 455(2008)1082<br />

R90 ∝ R50<br />

Lg ∝ R 3 50<br />

MHI ∝ R 2 50<br />

Md ∝ Lg<br />

Σ = Lg/R 2 50 ∝ L 1/3<br />

g<br />

Whereas<br />

Lg/R 3 50<br />

Md/R 3 50<br />

∝ R50<br />

are independent of the size<br />

of the galaxy


Galaxies appear simpler than<br />

expected<br />

M. J. Dysney, et. al. Vol 455(2008)1082<br />

Such a degree of organization<br />

appears <strong>to</strong> be at odds with<br />

hierarchical galaxy formation, a<br />

central tenet of the cold dark<br />

matter model in cosmology.


Voids are <strong>to</strong>o empty<br />

P. J. E. Peebles & A. Nusser, Nature 465(2010)565<br />

28


Voids are <strong>to</strong>o empty<br />

P. J. E. Peebles & A. Nusser, Nature 465(2010)565<br />

It is not clear why objects<br />

that might have been<br />

assembled in such very<br />

different ways, from different<br />

ancestral objects, should<br />

have had evolutionary tracks<br />

that converged <strong>to</strong> show<br />

small dispersions around<br />

simple power law forms for<br />

their size–luminosity<br />

relations.<br />

Nair, P. B., van den Bergh, S. & Abraham,<br />

R. G. The environmental dependence of<br />

the luminosity-size relation for galaxies.<br />

Astrophys. J. 715, 606–622 (2010).<br />

28


Voids are <strong>to</strong>o empty<br />

P. J. E. Peebles & A. Nusser, Nature 465(2010)565<br />

In short, the general<br />

insensitivity of galaxies <strong>to</strong><br />

their environments is not<br />

expected in st<strong>and</strong>ard ideas. It<br />

would help if galaxies were<br />

more rapidly assembled, as<br />

they could then evolve as<br />

more nearly isolated isl<strong>and</strong><br />

universes.<br />

28


Early assembly of the most<br />

massive galaxies<br />

Chris A. Collins, et. al. Nature, 458(2009)603


Early assembly of the most<br />

massive galaxies<br />

Chris A. Collins, et. al. Nature, 458(2009)603<br />

This suggest a new<br />

picture in which<br />

brightest cluster<br />

galaxies experience an<br />

early period of rapid<br />

growth rather than<br />

prolonged hierarchical<br />

assembly.


Pieter G. van Dokkum et. al. NATURE, Vol 460, 6 August 2009. The Astrophysical Journal, 677:L5–L8, 2008 April 10<br />

30


Early Galaxies<br />

Compactness<br />

Pieter G. van Dokkum et. al. NATURE, Vol 460, 6 August 2009. The Astrophysical Journal, 677:L5–L8, 2008 April 10<br />

30


Early Galaxies<br />

Compactness<br />

Pieter G. van Dokkum et. al. NATURE, Vol 460, 6 August 2009. The Astrophysical Journal, 677:L5–L8, 2008 April 10<br />

z=2.3 Galaxies<br />

31


1E 0657-56, "Bullet Cluster”<br />

2006<br />

32


Clusters Collisons<br />

Mastropietro, C., & Burkert, A. 2008, MNRAS, 389, 967<br />

1E 0657-56, "Bullet Cluster”<br />

2006<br />

The morphology of X-ray maps, the height<br />

of the projected temperature jump <strong>and</strong> the<br />

displacement of the gas peaks are best<br />

simulated by 6:1 encounters with initial<br />

velocity 3000 km/s<br />

32


The only way <strong>to</strong> fit the observational data<br />

using NFW profiles would be <strong>to</strong> assume<br />

a mass ratio as small as 2.7:1, which<br />

would not reproduce X-ray data.<br />

Clusters Collisons<br />

Mastropietro, C., & Burkert, A. 2008, MNRAS, 389, 967<br />

1E 0657-56, "Bullet Cluster”<br />

2006<br />

The morphology of X-ray maps, the height<br />

of the projected temperature jump <strong>and</strong> the<br />

displacement of the gas peaks are best<br />

simulated by 6:1 encounters with initial<br />

velocity 3000 km/s<br />

32


MACS J0025.4-1222<br />

2008<br />

Clusters Collisons<br />

33


MACS J0025.4-1222<br />

2008<br />

Clusters Collisons<br />

J. Lee & E. Komatsu, ApJ, 718(2010)60<br />

33


MACS J0025.4-1222<br />

2008<br />

Clusters Collisons<br />

J. Lee & E. Komatsu, ApJ, 718(2010)60<br />

Gpc 3 /h 3<br />

With a large-volume (27 )<br />

cosmological N-body MICE simulation, the<br />

probability of finding 3000 km/s is between<br />

3.3 x 10 <strong>and</strong> 3.6 x .<br />

−11 10 −9<br />

33


Shaun A. Thomas, Filipe B. Abdalla, <strong>and</strong> Ofer Lahav. arXiv:1012.2272<br />

.<br />

.<br />

.<br />

0.55


Large scale structure anomaly<br />

Shaun A. Thomas, Filipe B. Abdalla, <strong>and</strong> Ofer Lahav. arXiv:1012.2272<br />

.<br />

.<br />

.<br />

0.55


Some <strong>Alternatives</strong><br />

SM Extentions GR Extentions


• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

SM Extentions GR Extentions


• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

SM Extentions GR Extentions<br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


Self-Interacting <strong>and</strong> Warm DM<br />

Rachel Kuzio de Naray, Gregory D. Martinez, James S. Bullock, Manoj Kaplinghat. ApJ161(2010) 710L<br />

38


Self-Interacting <strong>and</strong> Warm DM<br />

Rachel Kuzio de Naray, Gregory D. Martinez, James S. Bullock, Manoj Kaplinghat. ApJ161(2010) 710L<br />

39


Self-Interacting <strong>and</strong> Warm DM<br />

Rachel Kuzio de Naray, Gregory D. Martinez, James S. Bullock, Manoj Kaplinghat. ApJ161(2010) 710L<br />

ED3,4<br />

Th1,2<br />

Qρ = ¯ρ<br />

¯σ 3<br />

39


Self-Interacting <strong>and</strong> Warm DM<br />

Rachel Kuzio de Naray, Gregory D. Martinez, James S. Bullock, Manoj Kaplinghat. ApJ161(2010) 710L<br />

ED3,4<br />

Th1,2<br />

Qρ = ¯ρ<br />

¯σ 3<br />

The inferred cores do not<br />

provide motivation <strong>to</strong> prefer<br />

WDM or SIDM over other<br />

dark matter models<br />

39


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


pbar/p<br />

1e-04<br />

1e-05<br />

Pamela Constrains<br />

New Constraints from PAMELA anti-pro<strong>to</strong>n data on Annihilating <strong>and</strong> Decaying DM Ilias Cholis<br />

arXiv:1007.1160<br />

0.001<br />

m = 1 TeV, BF = 28, AMS-02 expectation<br />

W + W -<br />

m = 10 TeV, BF = 2200, AMS-02 expectation<br />

Background<br />

PAMELA Data<br />

1e-06<br />

0.1 1 10<br />

kinetic energy (GeV)<br />

100<br />

42


Pamela Constrains<br />

43


DM lifetime [s]<br />

10 27<br />

10 26<br />

10 25<br />

10 24<br />

10 23<br />

µ+µ final state - dSph, without IC<br />

Ursa Minor<br />

Ursa Major II<br />

Bootes I<br />

Sextans<br />

Fornax<br />

Draco<br />

Sculp<strong>to</strong>r<br />

Coma Berenices<br />

Galactic + EG<br />

Previous Constraints<br />

Pamela Constrains<br />

Leanna Dugger, Tesla E. Jeltemaa <strong>and</strong> Stefano Profumo, JCAP12(2010)015<br />

PAMELA<br />

PAMELA<br />

+FERMI<br />

100 1000 10000<br />

DM mass [GeV]<br />

DM lifetime [s]<br />

10 27<br />

10 26<br />

10 25<br />

10 24<br />

10 23<br />

10 22<br />

PAMELA<br />

µ+µ final state - M31<br />

NFW, point-like source, D 0 =10 28 cm 2 /s<br />

Extended source, M vir , D 0 =10 28 cm 2 /s<br />

NFW, point-like source, D 0 =10 29 cm 2 /s<br />

Extended source, M vir , D 0 =10 29 cm 2 /s<br />

PAMELA<br />

+FERMI<br />

Galactic + EG<br />

Previous Constraints<br />

43<br />

1000 10000<br />

DM mass [GeV]


DM lifetime [s]<br />

10 27<br />

10 26<br />

10 25<br />

10 24<br />

10 23<br />

µ+µ final state - dSph, without IC<br />

Ursa Minor<br />

Ursa Major II<br />

Bootes I<br />

Sextans<br />

Fornax<br />

Draco<br />

Sculp<strong>to</strong>r<br />

Coma Berenices<br />

Galactic + EG<br />

Previous Constraints<br />

Pamela Constrains<br />

Leanna Dugger, Tesla E. Jeltemaa <strong>and</strong> Stefano Profumo, JCAP12(2010)015<br />

PAMELA<br />

PAMELA<br />

+FERMI<br />

100 1000 10000<br />

DM mass [GeV]<br />

These results put strong constraints on the<br />

possibility of ascribing <strong>to</strong> decaying dark matter<br />

both the increasing positron fraction reported<br />

by PAMELA <strong>and</strong> the high-energy feature in the<br />

electron-positron spectrum measured by Fermi<br />

DM lifetime [s]<br />

10 27<br />

10 26<br />

10 25<br />

10 24<br />

10 23<br />

10 22<br />

PAMELA<br />

µ+µ final state - M31<br />

NFW, point-like source, D 0 =10 28 cm 2 /s<br />

Extended source, M vir , D 0 =10 28 cm 2 /s<br />

NFW, point-like source, D 0 =10 29 cm 2 /s<br />

Extended source, M vir , D 0 =10 29 cm 2 /s<br />

PAMELA<br />

+FERMI<br />

Galactic + EG<br />

Previous Constraints<br />

43<br />

1000 10000<br />

DM mass [GeV]


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


Extra Symmetries<br />

A. de la Macorra, C. Stephan-Ot<strong>to</strong>, Phys. Rev. Lett. 87 (2001) 271301<br />

The starting point is a dark gauge group “DG” whose particles interact with the<br />

st<strong>and</strong>ard model only via gravity.<br />

The gauge coupling constant becomes strong at lower energies, it will bind the<br />

elementary dark fields <strong>to</strong>gether at the phase transition or condensation scale Λc.<br />

Above this scale the particles are massless <strong>and</strong> at the condensation scale Λc they<br />

acquire a mass of the order of Λc.<br />

The elementary fields will form gauge invariant particles due <strong>to</strong> the strong coupling.<br />

These particles are dark “mesons” <strong>and</strong> dark “baryons”.<br />

45


Extra Symmetries<br />

A. de la Macorra, C. Stephan-Ot<strong>to</strong>, Phys. Rev. Lett. 87 (2001) 271301<br />

The starting point is a dark gauge group “DG” whose particles interact with the<br />

st<strong>and</strong>ard model only via gravity.<br />

The gauge coupling constant becomes strong at lower energies, it will bind the<br />

elementary dark fields <strong>to</strong>gether at the phase transition or condensation scale Λc.<br />

Above this scale the particles are massless <strong>and</strong> at the condensation scale Λc they<br />

acquire a mass of the order of Λc.<br />

The elementary fields will form gauge invariant particles due <strong>to</strong> the strong coupling.<br />

These particles are dark “mesons” <strong>and</strong> dark “baryons”.<br />

Ej: The model with SU(3) gauge group has 6 chiral + antichiral fields with<br />

97.5 degrees of freedom, a condensation scale Λc = 42 eV <strong>and</strong> an<br />

inverse power potential with V = Λ , n = 2/3.<br />

This model gives a warm DM with a free streaming scale λfs < 0.6 Mpc<br />

<strong>and</strong> an equation of state parameter for the DE wDEo=−0.9 with Ωm = 0.27,<br />

ΩDEo = 0.73.<br />

4+n<br />

c φ −n<br />

45


Extra Symmetries<br />

46


Extra Symmetries<br />

Cosmological Scalar Fields Unification. Perez-Lorenzana, et. al. Phys. Rev. D77, (2008), 063507<br />

Invariant under<br />

SU(1, 1)<br />

46


L = 1<br />

Extra Symmetries<br />

Cosmological Scalar Fields Unification. Perez-Lorenzana, et. al. Phys. Rev. D77, (2008), 063507<br />

Invariant under<br />

SU(1, 1)<br />

2 [∂µφ∂ µ φ + ∂µφ ∗ ∂ µ φ ∗ ]<br />

46


Extra Symmetries<br />

47


35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

4<br />

Extra Symmetries<br />

2<br />

0<br />

y0 k y<br />

-2<br />

-4<br />

-1<br />

-0,5<br />

0<br />

0,5<br />

1<br />

l k f<br />

47


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


Repulsive, Fuzzy <strong>and</strong><br />

Scalar Field DM<br />

49


Repulsive, Fuzzy <strong>and</strong><br />

Scalar Field DM<br />

49


Ideas<br />

Ma<strong>to</strong>s-Guzman 2000<br />

P. J. E. Peebles 2000


Ideas<br />

Perez-Lorenzana-et. al. 2007<br />

Ma<strong>to</strong>s-Guzman 2000<br />

P. J. E. Peebles 2000<br />

Ureña-Lopez-et. al. 2000<br />

Ureña-Lopez-Liddle 2007<br />

Cervantes-Rodriguez 2001


Bose-Einstein Condensates<br />

☐☐☐☐<br />

= 0


The Cosmology


The Cosmology<br />

Φ 2 as <strong>Dark</strong> <strong>Matter</strong>. T. Ma<strong>to</strong>s, A. Vázquez & J.A. Magaña. MNRAS, 389, (2009) 13957.


The Cosmology<br />

Φ 2 as <strong>Dark</strong> <strong>Matter</strong>. T. Ma<strong>to</strong>s, A. Vázquez & J.A. Magaña. MNRAS, 389, (2009) 13957.


Linear regime of perturbations


Linear regime of perturbations<br />

δ ¨ Φ +3Hδ ˙ Φ − 1<br />

a 2 ∇2 δΦ + V,ΦΦ δΦ +2V,Φ φ =0


Linear regime of perturbations<br />

δ ¨ Φ +3Hδ ˙ Φ +(− 1<br />

a 2 ∇2 − m 2 )δΦ +2V,Φ φ =0


Linear regime of perturbations<br />

δ ¨ Φk +3Hδ ˙ Φk +( 1<br />

a 2 k2 − m 2 )δΦk +2V,Φ φ =0


Linear regime of perturbations<br />

δ ¨ Φk +3Hδ ˙ Φk +( 1<br />

a 2 k2 − m 2 )δΦk +2V,Φ φ =0


Linear regime of perturbations<br />

δ ¨ Φk +3Hδ ˙ Φk +( 1<br />

a 2 k2 − m 2 )δΦk +2V,Φ φ =0


Galactic Collapse of Scalar Field <strong>Dark</strong> <strong>Matter</strong>.<br />

M.Alcubierre, F. S. Guzmán, T. Ma<strong>to</strong>s, D. Núñez, L. A. Ureña <strong>and</strong> P. Wiederhold. CQG 19(2002)5017. arXiv:gr-qc /0110102.


Scalar Field Fluctuation = Halo<br />

Galactic Collapse of Scalar Field <strong>Dark</strong> <strong>Matter</strong>.<br />

M.Alcubierre, F. S. Guzmán, T. Ma<strong>to</strong>s, D. Núñez, L. A. Ureña <strong>and</strong> P. Wiederhold. CQG 19(2002)5017. arXiv:gr-qc /0110102.<br />

• M ≈ 0.1 M 2 Planck/m Φ<br />

• If m Φ ≈ 10-22 eV<br />

• M ≈10 12 Mo


Weak Field Limit<br />

A. Bernal, et. al. Flat Central Density Profiles from Scalar Field <strong>Dark</strong> <strong>Matter</strong> Halo. Rev. Mex. A.A. 44, (2008), 149-160


T. Harko & C. G. Bhömer JCAP 0706:025,(2007) arXiv:0705.4158


Density Profiles<br />

T. Harko & C. G. Bhömer JCAP 0706:025,(2007) arXiv:0705.4158


Density Profiles LSB Galaxies


Density Profiles LSB Galaxies


Hydrodinamical version of the<br />

Linear regime of perturbations


Hydrodinamical version of the<br />

Linear regime of perturbations<br />

62


Hydrodinamical version of the<br />

Linear regime of perturbations<br />

65


Hydrodinamical version of the<br />

Linear regime of perturbations<br />

66


0.0001<br />

9e-05<br />

8e-05<br />

7e-05<br />

6e-05<br />

5e-05<br />

4e-05<br />

3e-05<br />

2e-05<br />

1e-05<br />

Hydrodinamical version of the<br />

Linear regime of perturbations<br />

0<br />

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012<br />

t<br />

<br />

67


SFDM


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


M. Milgrom. Acta Phys.Polon.B32:3613,2001. e-Print: astro-ph/0112069<br />

71


MOND <strong>and</strong> MOND+<br />

R. H. S<strong>and</strong>ers. The Astrophysical Journal, 512:L23–L26, 1999 February 10<br />

72


MOND <strong>and</strong> MOND+<br />

J. D. Bekenstain. PHYSICAL REVIEW D, VOLUME 70, 083509<br />

73


EG = 1<br />

β<br />

Υgm<br />

Υgg<br />

MOND <strong>and</strong> MOND+<br />

R. Reyes, R. M<strong>and</strong>elbaum, U. Seljak, T. Baldauf, J. E. Gunn, L. Lombriser & R. E. Smith. NATURE, Vol 464, 11 March 2010<br />

74


MOND <strong>and</strong> MOND+<br />

S. Mendoza, X. Hern<strong>and</strong>ez, J.C. Hidalgo & T. Bernal. arXiv: 1006.5037<br />

75


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


SM Extentions GR Extentions<br />

• Self-Interacting DM<br />

• Warm DM<br />

• Super Heavy DM<br />

• Self-Annihilating DM<br />

• Decaying DM<br />

• Extra Symmetries,<br />

• Repulsive DM<br />

• Fuzzy DM<br />

• k-essence<br />

• Scalar Field DM<br />

(BEC DM), etc.<br />

Some <strong>Alternatives</strong><br />

• Scalar Field DM (BEC DM)<br />

• MOND -> MOND+<br />

• f(R)<br />

• Extra Dimensions<br />

• etc.


f(R)<br />

Yong-Seon Song, Hiranya Peiris, <strong>and</strong> Wayne Hu. Phys.Rev.D76:063517,2007<br />

78


f(R)<br />

<strong>Dark</strong> matter as a geometric effect in f(R) gravity C. G. Böhmer, T. Harko, F. S.N. Lobo. Astroparticle Physics 29 (2008) 386–392<br />

A Model of f(R) Gravity as an Alternative for <strong>Dark</strong> <strong>Matter</strong> in Spiral Galaxies. S. Asgari. Applied Physics Research. Vol. 2, No.1, 2010<br />

79


T. Damour & Esposi<strong>to</strong>-Farèse. PRL 70(1993)2220<br />

f(R)<br />

J. Khoury & A. Weltman. PRL 93(2004)171104<br />

80


Extra Dimensions<br />

81


Hidden Brane Visible Brane<br />

Scalar Field<br />

Extra Dimensions<br />

M. A. G-Aspeitia, et. al. Gen Relativ Gravit (2011) 43:315–329<br />

b0<br />

St<strong>and</strong>ard Model<br />

81


Conclusion


Conclusion<br />

• We are in the threshold for a new<br />

era in Cosmology, Science <strong>and</strong><br />

Thought

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!