01.07.2013 Views

Kurzweil-Henstock Integral in Riesz spaces - Bentham Science

Kurzweil-Henstock Integral in Riesz spaces - Bentham Science

Kurzweil-Henstock Integral in Riesz spaces - Bentham Science

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Improper <strong>Integral</strong> <strong>Kurzweil</strong>-<strong>Henstock</strong> <strong>Integral</strong> <strong>in</strong> <strong>Riesz</strong> Spaces 85<br />

We note that, if I k is an unbounded <strong>in</strong>terval, then the element ξ k associated with I k is<br />

necessarily +∞ or −∞ : otherwise γ ( ξ k ) should be a bounded <strong>in</strong>terval and conta<strong>in</strong> an unbounded<br />

<strong>in</strong>terval: contradiction.<br />

Given any partition or decomposition Π = {( Ik, ξk)<br />

: k = 1, …, p}<br />

of [ A, B]<br />

and a function<br />

f : [ A, B]<br />

→R , we call Riemann sum of f (and we write ∑ f ) the quantity<br />

p<br />

∑ | Ik | f( ξk)<br />

,<br />

(7.1)<br />

k = 1<br />

where <strong>in</strong> the sum <strong>in</strong> (7.1) only the terms for which I k is a bounded <strong>in</strong>terval are <strong>in</strong>cluded. This can<br />

be required by simply postulat<strong>in</strong>g it or by def<strong>in</strong><strong>in</strong>g the measure of an unbounded <strong>in</strong>terval as +∞ , by<br />

requir<strong>in</strong>g f( +∞ ) = f(<br />

−∞ ) = 0 and by means of the convention 0( ⋅ +∞ ) = 0(see<br />

also [170], p. 65).<br />

We now formulate our def<strong>in</strong>ition of <strong>Kurzweil</strong>-<strong>Henstock</strong> <strong>in</strong>tegral for functions def<strong>in</strong>ed on [ A, B]<br />

.<br />

Def<strong>in</strong>ition 7.2 We say that a function f : [ A, B]<br />

→R is <strong>Kurzweil</strong>-<strong>Henstock</strong> <strong>in</strong>tegrable (<strong>in</strong> short<br />

( KH ) -<strong>in</strong>tegrable) on [ A, B]<br />

if there exists an element I ∈ R such that ∀ ε > 0 there exist a<br />

function δ ∈Δ and a positive real number P such that<br />

∑ f − I ≤ ε<br />

(7.2)<br />

Π<br />

whenever Π= {( Ik, ξk)<br />

: k = 1, … , p}<br />

is a δ -f<strong>in</strong>e partition of any bounded <strong>in</strong>terval [ ab , ] with<br />

[ ab , ] ⊃ [ AB , ] ∩[ − PP , ] and [ ab , ] ⊂ [ AB , ] . In this case we say that I is the ( KH ) -<strong>in</strong>tegral of f ,<br />

and we denote the element I by the symbol ( ) B<br />

KH ∫ f or more simply<br />

A<br />

B<br />

∫ f . Later we will prove<br />

A<br />

that our <strong>in</strong>tegral is well-def<strong>in</strong>ed, that is such an I is uniquely determ<strong>in</strong>ed.<br />

We now prove the follow<strong>in</strong>g characterization of ( KH ) -<strong>in</strong>tegrability:<br />

Theorem 7.3 A function f : [ A, B]<br />

→R is ( KH ) -<strong>in</strong>tegrable if and only if there exists J ∈ R such<br />

that ∀ ε > 0 there exists a gauge γ such that<br />

∑ f − J ≤ ε<br />

(7.3)<br />

Π<br />

whenever Π= {( I , ξ ) : k = 1, … , p}<br />

is a γ -f<strong>in</strong>e partition of [ A, B]<br />

, and <strong>in</strong> this case we have<br />

∫<br />

B<br />

A<br />

f J =<br />

.<br />

k k<br />

Proof: We beg<strong>in</strong> with the "only if" part. By hypothesis, ∀ ε > 0 there exist a function δ ∈Δ and a<br />

positive real number P such that (7.2) holds. We now def<strong>in</strong>e on [ A, B]<br />

a gauge γ <strong>in</strong> the follow<strong>in</strong>g<br />

way:<br />

⎧(<br />

ξ − δ( ξ) , ξ + δ( ξ)) if ξ∈<br />

[ AB , ] ∩ R,<br />

⎪<br />

γξ ( ) = ⎨[<br />

−∞,− P) if ξ=−∞<br />

andA=−∞,<br />

⎪<br />

⎩(<br />

P,+∞ ] if ξ =+∞ andB=+∞.<br />

We observe that every γ -f<strong>in</strong>e partition Π = {( Ik, ξk)<br />

: k = 1, … , p}<br />

of [ A, B]<br />

is such that Ik ⊂ γ ( ξk)<br />

∀ k = 1,<br />

…, p.<br />

In the case A =−∞, B = +∞ , the partition Π conta<strong>in</strong>s two unbounded <strong>in</strong>tervals,<br />

which we call J and K : of course, if <strong>in</strong>f J = −∞ and sup K = +∞ , then the ξ k ’s associated with J<br />

Π

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!