02.07.2013 Views

TP A.19 - Illustrated Principles of Pool and Billiards

TP A.19 - Illustrated Principles of Pool and Billiards

TP A.19 - Illustrated Principles of Pool and Billiards

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

technical pro<strong>of</strong><br />

<strong>TP</strong> <strong>A.19</strong><br />

Masse shot aiming method, <strong>and</strong> curved cue ball paths<br />

supporting:<br />

“The <strong>Illustrated</strong> <strong>Principles</strong> <strong>of</strong> <strong>Pool</strong> <strong>and</strong> <strong>Billiards</strong>”<br />

http://billiards.colostate.edu<br />

by David G. Alciatore, PhD, PE ("Dr. Dave")<br />

originally posted: 9/7/05 last revision: 2/19/11<br />

The cue ball trajectory is based on the equations derived in <strong>TP</strong> A.4. See <strong>TP</strong> A.4 for<br />

Equation number references <strong>and</strong> background information.<br />

initial<br />

cue ball<br />

direction<br />

(v )<br />

yo<br />

y<br />

R<br />

z<br />

R A<br />

a<br />

A<br />

F ~<br />

top view<br />

front view<br />

c<br />

x<br />

x<br />

final<br />

cue ball<br />

direction<br />

(v )<br />

f<br />

F ~ F ~<br />

<br />

a: <strong>of</strong>fset right <strong>of</strong> center<br />

b: <strong>of</strong>fset below center<br />

R: resting point on the table<br />

A: impact line aim point on the table<br />

z<br />

b<br />

R A<br />

side view<br />

y<br />

technical pro<strong>of</strong>


The cue ball is assumed to be struck in the y direction with the angled impulse as shown<br />

above. From linear impulse <strong>and</strong> momentum, the initial cue ball speed components, after cue<br />

stick impact, are:<br />

vxo<br />

0<br />

~<br />

F<br />

v yo cos <br />

m<br />

v cos<br />

where v e is the effective speed <strong>of</strong> a straight-on impact.<br />

From angular impulse <strong>and</strong> momentum, the spin components <strong>of</strong> the cue ball about the x <strong>and</strong> y<br />

axes, after cue stick impact, are related to the impulse according to:<br />

~ 2 <br />

Fb I <br />

2<br />

xo mR <br />

5 <br />

~<br />

2 <br />

Fa sin 5 <br />

e<br />

xo<br />

2<br />

Iyo mR yo<br />

Therefore, the initial spin components, using Equation 2, can be written as:<br />

5ve<br />

xo b 2<br />

5<br />

2R<br />

5<br />

sin 2<br />

2<br />

a<br />

ve R<br />

( 1)<br />

( 2)<br />

( 3)<br />

( 4)<br />

( )<br />

yo ( 6)<br />

We can now find the final cue ball direction from Equation 23 in <strong>TP</strong> A.4:<br />

tan<br />

c<br />

5v<br />

<br />

5v<br />

xo<br />

yo<br />

2R<br />

2R<br />

yo<br />

xo<br />

5ve<br />

0 asin<br />

R<br />

asin<br />

<br />

<br />

5ve<br />

5v<br />

b<br />

R<br />

e cos <br />

cos<br />

R<br />

b As proved by Coriolis, the final cue ball direction can also be predicted from the geometry<br />

shown in the illustration above. From the top view, the final cue ball direction can be<br />

expressed as:<br />

tan<br />

a<br />

c ____ <br />

RA<br />

( 7)<br />

( 8)


From the side view in the illustration above, it can be shown (see the figure below) that:<br />

Equation 9 can be rearranged to give:<br />

b RAsin<br />

R cos <br />

b<br />

<br />

____<br />

( 9)<br />

<br />

RA<br />

<br />

R<br />

____ R cos<br />

RA 10<br />

sin<br />

Using Equation 10 in Equation 8 results in the same expression as Equation 7. Therefore, the<br />

aiming method proposed by Coriolis is shown to be valid. Note that the friction between the<br />

ball <strong>and</strong> the table during cue stick impact is is not accounted for in this analysis, but Coriolis<br />

also showed that this friction has no effect on the final cue ball direction.<br />

With typcial conditions, the final CB angle usually comes up a little short <strong>of</strong> the angle<br />

predicted by the Coriolis method. This could be due in part to squirt <strong>and</strong> multiple-body<br />

collision effects associated with jamming the cue ball between the tip <strong>and</strong> slate.<br />

Now we can define the cue ball trajectory based on the analyses above <strong>and</strong> in <strong>TP</strong> A.4.<br />

NOTE: All parameters are expressed in metric (SI) equivalent values for dimensionless analysis<br />

ball properties:<br />

D <br />

2.25in m<br />

R <br />

D<br />

2<br />

D 0.057<br />

coefficient <strong>of</strong> friction between the cue ball <strong>and</strong> table cloth:<br />

gravity<br />

μ 0.2<br />

g<br />

g g <br />

9.807<br />

m<br />

s 2<br />

( )


From Equation 1, 2, 5, <strong>and</strong> 6 above,<br />

vxo 0<br />

ωxoveb 5v e<br />

2R 2<br />

b<br />

<br />

vyoveϕ vecos( ϕ)<br />

ωyovea ϕ<br />

5v e<br />

2R 2<br />

asin( ϕ)<br />

<br />

From Equation 14 in <strong>TP</strong> A.4,<br />

vCoxvea b ϕ<br />

vxo Rωyo vea ϕ<br />

<br />

vCoyvea b ϕ<br />

vyoveϕ Rωxo veb vCoxvea b ϕ<br />

2<br />

<br />

vCo vea b ϕ<br />

From Equation 20 in <strong>TP</strong> A.4,<br />

<br />

2v Co vea b ϕ<br />

Δtvea b ϕ<br />

<br />

7μg From Equations 21 <strong>and</strong> 22 in <strong>TP</strong> A.4,<br />

<br />

2<br />

vCoy vea b ϕ<br />

<br />

<br />

vCox vea b ϕ<br />

vxf vea b ϕ<br />

vxo μg Δt<br />

v<br />

vCo vea b ϕ<br />

ea b ϕ<br />

<br />

<br />

<br />

vCoy vea b ϕ<br />

vyf vea b ϕ<br />

vyoveϕ μg Δt<br />

v<br />

vCo vea b ϕ<br />

ea b ϕ<br />

From Equations 24 <strong>and</strong> 25 in <strong>TP</strong> A.4,<br />

vxot xc vea b ϕ t<br />

ycvea b ϕ t<br />

<br />

vyo veϕ <br />

<br />

b ϕ<br />

μgvCox vea b ϕ<br />

t<br />

2v Co ve a<br />

2<br />

<br />

<br />

t<br />

<br />

b ϕ<br />

μgvCoy vea b ϕ<br />

t<br />

2v Co ve a<br />

2


From the analysis in <strong>TP</strong> A.4, the entire cue ball path is defined by:<br />

xv ea b ϕ t<br />

ΔT Δtvea b ϕ<br />

xcvea b ϕ t<br />

if t ΔT<br />

xcvea b ϕ ΔT<br />

vxf vea b ϕ(<br />

t ΔT)<br />

<br />

yv ea b ϕ t<br />

ΔT Δtvea b ϕ<br />

ycvea b ϕ t<br />

if t ΔT<br />

ycvea b ϕ ΔT<br />

vyf vea b ϕ(<br />

t ΔT)<br />

<br />

From Equation 7 above, the final cue ball angle can be found with:<br />

θc( ab ϕ)<br />

angle( Rcos( ϕ)<br />

basin(<br />

ϕ)<br />

)<br />

Parameters used in plots below:<br />

T 5<br />

t 00.01 T<br />

number <strong>of</strong> seconds to display<br />

0.01 second plotting increment<br />

otherwise<br />

otherwise<br />

Equation for the final direction: Equation for the ball (for scale)<br />

xf () t<br />

t<br />

T 2 xball t ( ) Rcos t π<br />

<br />

T 2<br />

yf ( ab ϕ t)<br />

<br />

xf () t<br />

tanθc( ab ϕ)<br />

<br />

yball( t)<br />

R sin t π<br />

<br />

<br />

T 2<br />

various effective impact speeds (in mph, converted to m/s):<br />

v1 <br />

6mph m<br />

v2 <br />

9mph m<br />

v3 <br />

s<br />

s<br />

12mph m<br />

s


ϕt <br />

yv<br />

1<br />

ab ϕt yv 2 a<br />

0.6<br />

yv<br />

3<br />

ab ϕt 0.4<br />

y<br />

f<br />

( ab ϕt) y<br />

ball<br />

() t<br />

0.2<br />

<br />

b ϕt b ϕt yv<br />

1<br />

ab ϕt yv 2 a<br />

yv 3 a<br />

y<br />

f<br />

( ab ϕt) y<br />

ball<br />

() t<br />

ϕ 75deg a 0.25R b 0.25R 0<br />

0 0.2 0.4 0.6<br />

0.2<br />

0<br />

0.2<br />

0.4<br />

xv 2<br />

a <br />

<br />

xv<br />

1<br />

abϕt bϕt xv 3<br />

abϕt x f<br />

() t x<br />

ball<br />

() t<br />

ϕ 85deg a 0.25R b 0.25R 0 0.2 0.4 0.6<br />

xv 2<br />

a <br />

<br />

xv<br />

1<br />

ab ϕt b ϕt xv 3<br />

ab ϕt x f<br />

() t x<br />

ball<br />

() t


Comparison <strong>of</strong> draw <strong>and</strong> follow shot swerve for a medium-fast-speed shot under<br />

typical ball <strong>and</strong> table conditions:<br />

v <br />

6mph m<br />

s<br />

a 0.5Rcos( 45deg) bdraw a bfollow a<br />

ϕdraw 4deg ϕfollow 3deg initial aiming line with a typical amount <strong>of</strong> squirt (2 degrees):<br />

xaim() t<br />

<br />

b follow<br />

ϕ follow<br />

t<br />

yva b draw<br />

ϕ draw<br />

t<br />

yva<br />

y<br />

aim<br />

() t<br />

t<br />

y<br />

T<br />

aim() t <br />

2<br />

1.5<br />

1<br />

0.5<br />

same amount <strong>of</strong> English for both:<br />

1:30pm (follow) or 4:30pm (draw)<br />

same amount <strong>of</strong> top or bottom spin for both<br />

slightly higher cue elevation for the draw shot,<br />

but typical values<br />

xaim() t<br />

tan( 2deg) 0<br />

0 0.05 0.1 0.15 0.2<br />

xva <br />

xva b draw<br />

ϕ draw<br />

t<br />

b follow<br />

ϕ follow<br />

t<br />

x<br />

aim<br />

() t<br />

The draw shot exhibits more "effective squirt" (the net effect <strong>of</strong> both squirt <strong>and</strong> swerve, AKA<br />

squerve) over the shorter shot distances (0-4.5 ft); but, over longer shot distances (>4.5 ft), the<br />

follow shot exhibits more "effective squirt." The crossover distance (4.5 ft) depends on shot<br />

speed <strong>and</strong> ball/table conditions.<br />

Here are the final cue-ball trajectory angles after sliding ceases <strong>and</strong> rolling begins:<br />

2.193 deg<br />

θc ab drawϕdraw<br />

<br />

0.784 deg<br />

θc ab followϕfollow


Final cue ball angle for various cue stick elevations:<br />

θ<br />

c<br />

( ab ϕ)<br />

deg<br />

150<br />

100<br />

50<br />

a 0.25R b 0.25R ϕ 0deg1 deg 90deg 0<br />

0 20 40 60 80 100<br />

ϕ<br />

deg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!