02.07.2013 Views

Comparison of bisector-point and double-angle-bisect draw systems

Comparison of bisector-point and double-angle-bisect draw systems

Comparison of bisector-point and double-angle-bisect draw systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

technical pro<strong>of</strong><br />

technical pro<strong>of</strong><br />

TP A.21<br />

<strong>Comparison</strong> <strong>of</strong> <strong><strong>bisect</strong>or</strong>-<strong>point</strong> <strong>and</strong> <strong>double</strong>-<strong>angle</strong>-<strong>bisect</strong> <strong>draw</strong> <strong>systems</strong><br />

cut<br />

<strong>angle</strong><br />

( φ)<br />

OB<br />

CB<br />

GB<br />

original<br />

line <strong>of</strong><br />

centers<br />

P<br />

θ<br />

aiming<br />

line<br />

supporting:<br />

“The Illustrated Principles <strong>of</strong> Pool <strong>and</strong> Billiards”<br />

http://billiards.colostate.edu<br />

by David G. Alciatore, PhD, PE ("Dr. Dave")<br />

originally posted: 11/29/05 last revision: 11/29/05<br />

change in<br />

cue ball<br />

<strong>angle</strong><br />

( θc) θ<br />

<strong><strong>bisect</strong>or</strong><br />

final cue<br />

ball direction<br />

ball radius: R := 1.125⋅in 2R<br />

distance<br />

between<br />

CB <strong>and</strong> OB<br />

O<br />

θ<br />

d<br />

C<br />

φ<br />

θ+β<br />

β<br />

G<br />

P<br />

φ+β<br />

R<br />

ghost ball<br />

center<br />

Note - the change in cue ball <strong>angle</strong> θ c (e.g., see TP A.20) is related to the <strong><strong>bisect</strong>or</strong> <strong>angle</strong> θ according to:<br />

θc =<br />

180⋅deg − 2⋅θ − β


From the tri<strong>angle</strong> formed by C, P, <strong>and</strong> the perpendicular from P to OC,<br />

tan( β)<br />

βθd ,<br />

( )<br />

( )<br />

R⋅sin θ<br />

=<br />

d − R⋅cos θ<br />

( ) := atan2( d − R⋅cos( θ)<br />

, R⋅sin( θ)<br />

)<br />

Applying the law <strong>of</strong> sines to tri<strong>angle</strong> OGP gives:<br />

⎡⎣ ( ) ⎤⎦<br />

sin 180⋅deg − θ + β<br />

φθ, d<br />

2R ⋅<br />

( ) ⎛<br />

:= asin⎜ ⎝<br />

=<br />

sin θ β θ d , +<br />

sin( φ + β)<br />

R<br />

( ( ) ) ⎞<br />

2 ⎠<br />

−<br />

βθd ( , )<br />

The <strong>double</strong>-<strong>angle</strong>-<strong>bisect</strong> system (see Bob Jewett's October, 1995 BD article) predicts:<br />

φ ( dab θ)<br />

θ<br />

:=<br />

2<br />

Here's how the methods compare for two different CB-OB distances:<br />

d1 := 1ft ⋅<br />

d2 := 6ft ⋅<br />

θ := 0⋅deg .. 60⋅deg φ<br />

dab<br />

( θ)<br />

deg<br />

( )<br />

φθd ,<br />

1<br />

deg<br />

( )<br />

φθd ,<br />

2<br />

deg<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60<br />

So the two <strong>systems</strong> agree fairly well for small cut <strong>angle</strong> shots. There is more disagrement<br />

at bigger cut <strong>angle</strong>s, especially when the distance between the CB <strong>and</strong> OB is large.<br />

θ<br />

deg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!