02.07.2013 Views

C H A P T E R 3 Exponential and Logarithmic Functions

C H A P T E R 3 Exponential and Logarithmic Functions

C H A P T E R 3 Exponential and Logarithmic Functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 3<br />

<strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

Section 3.1 <strong>Exponential</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs . . . . . . . . . 265<br />

Section 3.2 <strong>Logarithmic</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs . . . . . . . . 273<br />

Section 3.3 Properties of Logarithms . . . . . . . . . . . . . . . . . 281<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations . . . . . . . . . 289<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models . . . . . . . . . . 303<br />

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317<br />

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329<br />

Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333


CHAPTER 3<br />

<strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

Section 3.1 <strong>Exponential</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs<br />

■ You should know that a function of the form where is called an exponential<br />

function with base a.<br />

■ You should be able to graph exponential functions.<br />

■ You should know formulas for compound interest.<br />

(a) For n compoundings per year:<br />

(b) For continuous compoundings: A Pert r<br />

A P1 n<br />

.<br />

nt<br />

f x a a > 0, a 1,<br />

.<br />

x ,<br />

Vocabulary Check<br />

1. algebraic 2. transcendental 3. natural exponential; natural<br />

n nt<br />

4. 5. A Pert r<br />

A P1 <br />

1. f5.6 3.4 5.6 946.852 2. fx 2.3 x 2.3 32 3.488 3. f 5 0.006<br />

4. f x 2 3 5x 2 3 50.3 0.544 5.<br />

gx 50002 x 50002 1.5 6.<br />

1767.767<br />

f x 2001.2 12x<br />

2001.2 1224<br />

1.274 10 25<br />

7. fx 2<br />

Increasing<br />

Asymptote: y 0<br />

Intercept: 0, 1<br />

Matches graph (d).<br />

x 8. f x 2 rises to the right.<br />

Asymptote: y 1<br />

Intercept: 0, 2<br />

Matches graph (c).<br />

x 1 9. fx 2<br />

Decreasing<br />

Asymptote: y 0<br />

Intercept: 0, 1<br />

Matches graph (a).<br />

x<br />

10. fx 2 rises to the right.<br />

Asymptote: y 0<br />

x2 11.<br />

Intercept:<br />

0, 1<br />

4<br />

Matches graph (b).<br />

f x 1 2 x<br />

x 2<br />

1 0 1 2<br />

f x<br />

4 2 1 0.5 0.25<br />

Asymptote: y 0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

1<br />

2<br />

3<br />

x<br />

265


266 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

12.<br />

14.<br />

16.<br />

17.<br />

19.<br />

f x 1 2 x<br />

2x x 2 1 0 1 2<br />

f x<br />

0.25<br />

Asymptote:<br />

5<br />

4<br />

3<br />

2<br />

y<br />

−3 −2 −1<br />

−1<br />

f x 6 x<br />

Asymptote:<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

y 0<br />

1<br />

1<br />

0.5<br />

y 0<br />

2<br />

2<br />

3<br />

3<br />

1 2 4<br />

x 2 1 0 1 2<br />

f x<br />

f x 4 x3 3<br />

0.028 0.167 1 6 36<br />

x 1 0 1 2 3<br />

f x<br />

3.004<br />

Asymptote: y 3<br />

3.016<br />

x<br />

x<br />

3.063<br />

3.25<br />

7<br />

6<br />

5<br />

4<br />

2<br />

1<br />

13.<br />

15.<br />

f x 6 x<br />

x 2 1 0 1 2<br />

f x<br />

−3 −2 −1 1 2 3 4 5<br />

gx 3x4 f x 3x , 18.<br />

Because gx f x 4, the graph of g can be obtained<br />

by shifting the graph of f four units to the right.<br />

gx 5 2x f x 2x , 20.<br />

Because gx 5 f x, the graph of g can be obtained<br />

by shifting the graph of f five units upward.<br />

4<br />

y<br />

Asymptote:<br />

5<br />

4<br />

3<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

f x 2 x1<br />

Asymptote:<br />

−3 −2 −1<br />

−1<br />

36 6 1 0.167 0.028<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

y 0<br />

1<br />

y 0<br />

1<br />

2<br />

x 2 1 0 1 2<br />

f x<br />

x<br />

0.125<br />

2<br />

3<br />

0.25<br />

f x 4 x , gx 4 x 1<br />

3<br />

x<br />

0.5<br />

x<br />

1 2<br />

Because gx f x 1, the graph of g can be obtained<br />

by shifting the graph of f one unit upward.<br />

f x 10<br />

Because gx f x 3, the graph of g can be<br />

obtained by reflecting the graph of f in the y-axis <strong>and</strong><br />

shifting f three units to the right. (Note: This is equivalent<br />

to shifting f three units to the left <strong>and</strong> then reflecting the<br />

graph in the y-axis.)<br />

x , gx 10x3


f x 7 2 x<br />

, gx 7 2 x6<br />

21.<br />

Because gx fx 6, the graph of g can be<br />

obtained by reflecting the graph of f in the x-axis <strong>and</strong><br />

y-axis <strong>and</strong> shifting f six units to the right. (Note: This is<br />

equivalent to shifting f six units to the left <strong>and</strong> then<br />

reflecting the graph in the x-axis <strong>and</strong> y-axis.)<br />

23.<br />

y 2 x2<br />

−3<br />

3<br />

−1<br />

3<br />

24.<br />

y 3 x 25.<br />

3<br />

−3 3<br />

−1<br />

Section 3.1 <strong>Exponential</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 267<br />

22.<br />

gx 0.3<br />

gx fx 5, hence the graph of g can be obtained<br />

by reflecting the graph of f in the x-axis <strong>and</strong> shifting the<br />

resulting graph five units upward.<br />

x f x 0.3 5<br />

x ,<br />

fx 3 x2 1 26.<br />

27. f3 4 e34 0.472 28. fx ex e3.2 24.533 29. f 10 2e510 3.857 1022 30.<br />

33.<br />

35.<br />

f x 1.5e 12x 31. f 6 5000e 0.066 7166.647 32.<br />

1.5e 120 1.956 10 52<br />

f x e x<br />

x 2 1 0 1 2<br />

f x<br />

Asymptote:<br />

0.135<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

f x 3e x4<br />

x<br />

f x<br />

8<br />

0.055<br />

Asymptote:<br />

y 0<br />

1<br />

y 0<br />

0.368<br />

2<br />

7<br />

−8 −7 −6 −5 −4 −3 −2 −1 1<br />

3<br />

0.149<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

x<br />

x<br />

1 2.718 7.389<br />

6<br />

0.406<br />

5<br />

1.104<br />

4<br />

3<br />

34.<br />

36.<br />

−1<br />

4<br />

0<br />

f x e x<br />

Asymptote:<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

y 0<br />

1<br />

2<br />

5<br />

3<br />

f x 250e 0.05x<br />

x<br />

y 4 x1 2<br />

−6 3<br />

3<br />

−3<br />

250e 0.0520 679.570<br />

x 2 1 0 1 2<br />

f x<br />

f x 2e 0.5x<br />

Asymptote:<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1<br />

−1<br />

7.389 2.718 1 0.368 0.135<br />

x 2 1 0 1 2<br />

f x<br />

5.437 3.297 2 1.213 0.736<br />

y<br />

y 0<br />

1<br />

2<br />

3<br />

4<br />

x


268 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

37.<br />

39.<br />

42.<br />

45.<br />

48.<br />

51.<br />

f x 2e x2 4<br />

x 2 1 0 1 2<br />

f x<br />

Asymptote:<br />

−3 −2 −1<br />

9<br />

8<br />

7<br />

6<br />

5<br />

3<br />

2<br />

1<br />

y<br />

4.037<br />

1<br />

2<br />

y 4<br />

3<br />

4<br />

4.100<br />

5<br />

6<br />

7<br />

x<br />

4.271<br />

4.736<br />

y 1.08 5x 40.<br />

−7<br />

x 1 3<br />

1 1 1 3 x1 27 46.<br />

3 x1 3 3<br />

5 x1<br />

5 x1<br />

5 x1<br />

x 2<br />

5 3<br />

x 1 3<br />

x 4<br />

7<br />

−1<br />

1 5 3<br />

5<br />

st 3e 0.2t 43.<br />

20<br />

−16 17<br />

−2<br />

125 49.<br />

6<br />

2 x3 2 4<br />

x 3 4<br />

x 7<br />

38.<br />

−4 8<br />

f x 2 e x5<br />

Asymptote:<br />

−1<br />

x 0 2 4 5 6<br />

f x<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

1<br />

y<br />

1<br />

2<br />

2.007 2.050 2.368 3 4.718<br />

3<br />

y 2<br />

2 x3 16 47.<br />

e 3x2 e 3 50.<br />

3x 2 3<br />

3x 1<br />

x 1<br />

3<br />

e x2 3 e 2x 52.<br />

x 2 3 2x<br />

x 2 2x 3 0<br />

x 3x 1 0<br />

x 3 or x 1<br />

y 1.08 5x 41.<br />

6<br />

−2<br />

gx 1 e x 44.<br />

−3<br />

4<br />

0<br />

3<br />

4<br />

5<br />

6<br />

7<br />

e x2 6 e 5x<br />

x 2 6 5x<br />

x 2 5x 6 0<br />

x 3x 2 0<br />

x 3 or x 2<br />

8<br />

−10<br />

x<br />

st 2e 0.12t<br />

22<br />

0<br />

hx e x2<br />

4<br />

−2 4<br />

0<br />

2 x2 1<br />

32<br />

2 x2 2 5<br />

x 2 5<br />

x 3<br />

e 2x1 e 4<br />

2x 1 4<br />

2x 5<br />

x 5<br />

2<br />

23


53.<br />

54.<br />

55.<br />

P $2500, r 2.5%, t 10 years<br />

Compounded n times per year:<br />

Compounded continuously: A Pe rt 2500e 0.02510<br />

58. A Pe rt 12,000e 0.06t<br />

r<br />

A P1 n nt<br />

0.025<br />

25001 <br />

n 10n<br />

n 1 2 4 12 365<br />

Section 3.1 <strong>Exponential</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 269<br />

Continuous<br />

Compounding<br />

A $3200.21 $3205.09 $3207.57 $3209.23 $3210.04 $3210.06<br />

P $1000, r 4%, t 10 years<br />

Compounded n times per year:<br />

0.04<br />

A 10001 <br />

n 10n<br />

Compounded continuously: A 1000e 0.0410<br />

n 1 2 4 12 365<br />

Continuous<br />

Compounding<br />

A $1480.24 $1485.95 $1488.86 $1490.83 $1491.79 $1491.82<br />

P $2500, r 3%, t 20 years<br />

Compounded n times per year:<br />

r<br />

A P1 n nt<br />

0.03<br />

25001 <br />

n 20n<br />

Compounded continuously: A Pe rt 2500e 0.0320<br />

n 1 2 4 12 365<br />

Continuous<br />

Compounding<br />

A $4515.28 $4535.05 $4545.11 $4551.89 $4555.18 $4555.30<br />

56. P $1000, r 6%, t 40 years<br />

Compounded n times per year:<br />

0.06<br />

A 10001 <br />

n 40n<br />

Compounded continuously: A 1000e 0.0640<br />

n 1 2 4 12 365<br />

Continuous<br />

Compounding<br />

A $10,285.72 $10,640.89 $10,828.46 $10,957.45 $11,021.00 $11,023.18<br />

57. A Pe rt 12,000e 0.04t<br />

t 10 20 30 40 50<br />

A $17,901.90 $26,706.49 $39,841.40 $59,436.39 $88,668.67<br />

t 10 20 30 40 50<br />

A $21,865.43 $39,841.40 $72,595.77 $132,278.12 $241,026.44


270 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

59. A Pe rt 12,000e 0.065t<br />

t 10 20 30 40 50<br />

A $22,986.49 $44,031.56 $84,344.25 $161,564.86 $309,484.08<br />

60. A Pe rt 12,000e 0.035t<br />

61.<br />

64.<br />

t 10 20 30 40 50<br />

A $17,028.81 $24,165.03 $34,291.81 $48,662.40 $69,055.23<br />

A 25,000e 0.087525 62.<br />

$222,822.57<br />

4<br />

p 50001 <br />

4 e<br />

(a) 1200<br />

0.002x<br />

0<br />

0<br />

(b) When x 500:<br />

p 50001 <br />

2000<br />

4<br />

4 e0.002500 $421.12<br />

(c) Since 600, 350.13 is on the graph in part (a), it<br />

appears that the greatest price that will still yield a<br />

dem<strong>and</strong> of at least 600 units is about $350.<br />

In 2000, <strong>and</strong> the population is given by<br />

P10 152.26e0.003910 t 10<br />

146.44 million.<br />

(c) In 2010, <strong>and</strong> the population is given by<br />

P20 152.26e0.003920 t 20<br />

140.84 million.<br />

A 5000e 0.07550 63. C10 23.951.04 10 $35.45<br />

$212,605.41<br />

65.<br />

Vt 100e 4.6052t<br />

(a)<br />

(b)<br />

V1 10,000.298 computers<br />

V1.5 10,004.472 computers<br />

(c) V2 1,000,059.63 computers<br />

66. (a)<br />

Since the growth rate is negative,<br />

the population is decreasing.<br />

(b) In 1998, <strong>and</strong> the population is given by<br />

P8 152.26e0.00398 P 152.26e<br />

0.0039 0.39%,<br />

t 8<br />

147.58 million.<br />

0.0039t 67. Q 25<br />

(a) Q0 25 grams<br />

(b) Q1000 16.21 grams<br />

(c) 30<br />

1<br />

2 t1599<br />

68.<br />

(a) When t 0: Q 101 Q 101 2 t5715<br />

(b)<br />

2 05715<br />

101 10 grams<br />

When t 2000: Q 101 2 20005715<br />

7.85 grams<br />

(c)<br />

Mass of 14 C (in grams)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Q<br />

4000 8000<br />

Time (in years)<br />

0 5000<br />

0<br />

t


69.<br />

y <br />

(a)<br />

70. (a)<br />

100<br />

1 7e 0.069x<br />

110<br />

0 120<br />

0<br />

Section 3.1 <strong>Exponential</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 271<br />

71. True. The line is a horizontal asymptote for the<br />

graph of fx 10x y 2 72. False, e e is an irrational number.<br />

2.<br />

271,801<br />

99,990 .<br />

73.<br />

Atmospheric pressure<br />

(in pascals)<br />

fx 3 x2 74.<br />

3 x 3 2<br />

3 x 1<br />

3 2<br />

1<br />

9 3x <br />

hx<br />

Thus, fx gx, but fx hx.<br />

75. <strong>and</strong> f x 164x fx 164 <br />

x 76.<br />

4 2x<br />

1 4 2x<br />

1<br />

120,000<br />

100,000<br />

4 2 4 x <br />

4 x2<br />

gx<br />

80,000<br />

60,000<br />

40,000<br />

20,000<br />

Thus, fx gx hx.<br />

P<br />

5 10 15 20<br />

Altitude (in km)<br />

25<br />

h<br />

162 2 x<br />

162 2x <br />

hx<br />

(b)<br />

x Sample Data Model<br />

0 12 12.5<br />

25 44 44.5<br />

50 81 81.82<br />

75 96 96.19<br />

100 99 99.3<br />

(b) p 107,428e0.150h 107,428e 0.1508<br />

32,357 pascals<br />

gx 2 2x6<br />

2 2x 2 6<br />

642 2x <br />

642 2 x<br />

644 x <br />

hx<br />

Thus, gx hx but gx fx.<br />

fx 5 x 3<br />

gx 5 3x 5 3 5 x<br />

hx 5 x3 5 x 5 3 <br />

Thus, none are equal.<br />

(c) When x 36:<br />

y <br />

100<br />

63.14%.<br />

1 7e0.06936 2<br />

100<br />

(d) 100 <br />

when<br />

3 1 7e<br />

x 38 masses.<br />

0.069x


272 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

77.<br />

78. (a)<br />

81.<br />

y 3 x <strong>and</strong> y 4 x<br />

−2<br />

3<br />

y = 4x −1<br />

fx x 2 e x (b)<br />

5<br />

−2 7<br />

−1<br />

Decreasing:<br />

Increasing:<br />

Relative maximum: 2, 4e<br />

Relative minimum: 0, 0<br />

2 , 0, 2, <br />

0, 2<br />

<br />

y 2 25 x 2<br />

y ±25 x 2<br />

gx x2 3x<br />

x 2 y 2 25 82.<br />

−2<br />

6<br />

−2<br />

Decreasing: 1.44, <br />

Increasing: , 1.44<br />

Relative maximum: 1.44, 4.25<br />

0.5<br />

79. fx 1 <strong>and</strong> gx e (Horizontal line)<br />

0.5 80. The functions (c) <strong>and</strong> (d) 2 are exponential.<br />

x<br />

3x f<br />

g<br />

2<br />

1<br />

−1<br />

4<br />

x x<br />

−3 3<br />

0<br />

y<br />

As x → , fx → gx.<br />

As x → , fx → gx.<br />

1<br />

y = 3 x<br />

83. f x <br />

Vertical asymptote: x 9<br />

2<br />

9 x<br />

Horizontal asymptote: y 0<br />

x<br />

f x<br />

11<br />

1<br />

10<br />

2<br />

2<br />

x<br />

8<br />

(a)<br />

x 2 1 0 1 2<br />

3 x<br />

4 x<br />

1<br />

9<br />

1<br />

16<br />

1<br />

3<br />

1<br />

4<br />

4 x < 3 x when x < 0.<br />

(b) 4 x > 3 x when x > 0.<br />

7<br />

2 1<br />

1 3 9<br />

1 4 16<br />

−18 −15 −6<br />

12<br />

9<br />

6<br />

3<br />

−3<br />

−3<br />

−6<br />

−9<br />

y<br />

3<br />

x<br />

10<br />

x 2 <br />

y x 2 <strong>and</strong> y x 2, x ≥ 2<br />

y<br />

x y 2


84. f x 7 x<br />

Domain: , 7<br />

x<br />

y<br />

9<br />

2<br />

Section 3.2 <strong>Logarithmic</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs<br />

Section 3.2 <strong>Logarithmic</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 273<br />

■ You should know that a function of the form y loga x, where a > 0, a 1, <strong>and</strong> x > 0, is called<br />

a logarithm of x to base a.<br />

■ You should be able to convert from logarithmic form to exponential form <strong>and</strong> vice versa.<br />

y log a x ⇔ a y x<br />

■ You should know the following properties of logarithms.<br />

(a)<br />

(b)<br />

(c)<br />

(d) a Inverse Property<br />

(e) If loga x loga y, then x y.<br />

■ You should know the definition of the natural logarithmic function.<br />

log loga a<br />

a x x<br />

x x since ax ax loga a 1 since a<br />

.<br />

1 loga 1 0 since a<br />

a.<br />

0 1.<br />

log e x ln x, x > 0<br />

■ You should know the properties of the natural logarithmic function.<br />

(a)<br />

(b)<br />

(c)<br />

(d) e Inverse Property<br />

(e) If ln x ln y, then x y.<br />

■ You should be able to graph logarithmic functions.<br />

ln x ln e<br />

x<br />

x x since ex ex ln e 1 since e<br />

.<br />

1 ln 1 0 since e<br />

e.<br />

0 1.<br />

Vocabulary Check<br />

3 6 7<br />

4 3 2 1 0<br />

1. logarithmic 2. 10 3. natural; e<br />

4. a 5. x y<br />

loga x x<br />

1. log 4 64 3 ⇒ 4 3 64 2. log 3 81 4 ⇒ 3 4 81 3. log 7 1<br />

49 2 ⇒ 72 1<br />

49<br />

4. log 1<br />

1000 3 ⇒ 103 1<br />

1000<br />

5. log 32 4 2<br />

5 ⇒ 3225 4 6. log 16 8 3<br />

4 ⇒ 1634 8<br />

7. log 36 6 1<br />

2 ⇒ 3612 6 8. log 8 4 2<br />

3 ⇒ 823 4 9. 5 3 125 ⇒ log 5 125 3<br />

10. 8 2 64 ⇒ log 8 64 2 11. 81 14 3 ⇒ log 81 3 1<br />

4<br />

6<br />

4<br />

2<br />

−4<br />

−6<br />

y<br />

−4 −2<br />

−2<br />

2<br />

4 6 8<br />

x<br />

85. Answers will vary.<br />

12. 9 32 27 ⇒ log 9 27 3<br />

2


274 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

13. 6 2 1<br />

36 ⇒ log 6 1<br />

36 2 14. 4 3 1<br />

64 ⇒ log 4 1<br />

64 3 15. 70 1 ⇒ log 7 1 0<br />

16. 103 0.001 ⇒ log10 0.001 3 17.<br />

f16 log2 16 4 since 24 fx log2 x<br />

16<br />

22.<br />

25.<br />

28.<br />

31.<br />

gx log b x 23.<br />

gb 3 log b b 3 3<br />

b 3 b 3<br />

f 12.5 1.097<br />

since<br />

f x log x 26.<br />

Since 1.5 log1.5 1 0.<br />

0 1,<br />

f4 5 log4 f x log x 24.<br />

5 0.097<br />

f 1<br />

500 log 1<br />

f x log x<br />

f 75.25 1.877<br />

500<br />

2.699<br />

f x log x 27. since 34 34 log3 34 4<br />

log1.5 1 29. since 1 log 1 .<br />

30.<br />

fx log 4 x<br />

Domain: x > 0 ⇒ The domain is 0, .<br />

x-intercept:<br />

1, 0<br />

Vertical asymptote:<br />

x 0<br />

y log 4 x ⇒ 4 y x<br />

x 1 4 2<br />

f x<br />

1<br />

4<br />

1<br />

33. y log3 x 2<br />

Domain: 0, <br />

x-intercept:<br />

log 3 x 2 0<br />

0 1<br />

2 log 3 x<br />

3 2 x<br />

9 x<br />

The x-intercept is 9, 0.<br />

Vertical asymptote:<br />

y log 3 x 2<br />

1<br />

2<br />

log 3 x 2 y ⇒ 3 2y x<br />

x 27 9 3 1<br />

x 0<br />

1<br />

3<br />

y 1 0 1 2 3<br />

2<br />

1<br />

−1 1 2 3<br />

6<br />

4<br />

2<br />

−2<br />

−4<br />

−6<br />

y<br />

−1<br />

−2<br />

y<br />

2 4 6 8 10 12<br />

x<br />

x<br />

32. gx log6 x<br />

Domain: 0, <br />

x-intercept:<br />

1, 0<br />

Vertical asymptote:<br />

y log 6 x ⇒ 6 y x<br />

1<br />

6<br />

9 log 9 15<br />

Since 9log aloga 9 15 15.<br />

x x,<br />

x 0<br />

x 1 6 6<br />

1<br />

2<br />

y 1 0 1<br />

34. hx log4x 3<br />

Domain:<br />

The domain is 3, .<br />

x-intercept:<br />

log 4x 3 0<br />

4 0 x 3<br />

1 x 3<br />

4 x<br />

The x-intercept is 4, 0.<br />

Vertical asymptote:<br />

−2<br />

−4<br />

y log 4x 3 ⇒ 4 y 3 x<br />

1<br />

4<br />

18.<br />

x 3 > 0 ⇒ x > 3<br />

x 3 4 7 19<br />

y 1 0 1 2<br />

fx log 16 x<br />

f4 log 16 4 1<br />

2<br />

19.<br />

f1 log7 1 0 since 70 fx log7 x 20.<br />

1<br />

since 101 fx log x 21. gx loga x<br />

f10 log 10 1 10<br />

ga 2 log a a 2<br />

6<br />

4<br />

2<br />

2<br />

1<br />

−1 1 2 3<br />

−1<br />

−2<br />

x 3 0 ⇒ x 3<br />

y<br />

y<br />

since 16 12 4<br />

2 by the Inverse Property<br />

2 4 6 8 10<br />

x<br />

x


35. fx log6x 2<br />

Domain: x 2 > 0 ⇒ x > 2<br />

The domain is 2, .<br />

x-intercept:<br />

0 log 6x 2<br />

0 log 6x 2<br />

6 0 x 2<br />

1 x 2<br />

1 x<br />

The x-intercept is 1, 0.<br />

Vertical asymptote: x 2 0 ⇒ x 2<br />

y log 6x 2<br />

y log 6x 2<br />

6 y 2 x<br />

x 4<br />

f x<br />

1<br />

1<br />

1 5<br />

6<br />

0 1 2<br />

1 35<br />

36<br />

4<br />

2<br />

−2<br />

−4<br />

y<br />

6<br />

Section 3.2 <strong>Logarithmic</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 275<br />

x<br />

36.<br />

y log 5x 1 4<br />

Domain:<br />

The domain is 1, .<br />

x-intercept:<br />

log 5x 1 4 0<br />

log 5x 1 4<br />

626<br />

625 x<br />

The x-intercept is<br />

Vertical asymptote:<br />

x 1 > 0 ⇒ x > 1<br />

5 4 x 1<br />

1<br />

625 x 1<br />

626 625 , 0.<br />

x 1 0 ⇒ x 1<br />

y log 5x 1 4 ⇒ 5 y4 1 x<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

2 3 4 5 6<br />

x 1.00032 1.0016 1.008 1.04 1.2<br />

y 1 0 1 2 3<br />

37.<br />

Domain:<br />

The domain is<br />

x-intercept:<br />

The x-intercept is 5, 0.<br />

Vertical asymptote:<br />

x<br />

0 ⇒ x 0<br />

5<br />

The vertical asymptote is the y-axis.<br />

x<br />

1 ⇒ x 5<br />

5 x<br />

log<br />

100<br />

5 x<br />

y log<br />

x<br />

> 0 ⇒ x > 0<br />

5<br />

0, .<br />

y<br />

4<br />

0 5<br />

2<br />

x<br />

−2<br />

4 6 8<br />

−4<br />

x<br />

5 x 1 2 3 4 5 6 7<br />

y 0.70 0.40 0.22 0.10 0 0.08 0.15<br />

38.<br />

y logx<br />

Domain: x > 0 ⇒ x < 0<br />

The domain is , 0.<br />

x-intercept:<br />

logx 0<br />

The x-intercept is 1, 0.<br />

Vertical asymptote:<br />

10 0 x<br />

1 x<br />

x 0<br />

y logx ⇒ 10 y x<br />

x<br />

1<br />

100<br />

1<br />

10<br />

y 2 1 0 1<br />

−3 −2 −1 1<br />

2<br />

1<br />

−1<br />

−2<br />

y<br />

1<br />

x<br />

10<br />

x


276 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

39. fx log3 x 2 40. fx log3 x<br />

Asymptote: x 0<br />

Asymptote: x 0<br />

Point on graph: 1, 2<br />

Point on graph: 1, 0<br />

Matches graph (c).<br />

Matches graph (f).<br />

The graph of f x is obtained by shifting the graph of gx<br />

upward two units.<br />

f x reflects gx in the x- axis.<br />

41.<br />

43.<br />

fx log 3x 2 42.<br />

Asymptote:<br />

Point on graph:<br />

x 2<br />

1, 0<br />

Matches graph (d).<br />

The graph of f x is obtained by reflecting the graph of<br />

gx about the x- axis <strong>and</strong> shifting the graph two units to<br />

the left.<br />

fx log 31 x log 3x 1 44.<br />

Asymptote:<br />

Point on graph:<br />

x 1<br />

0, 0<br />

Matches graph (b).<br />

The graph of f x is obtained by reflecting the graph of<br />

gx about the y- axis <strong>and</strong> shifting the graph one unit to<br />

the right.<br />

45. ln 1<br />

2 0.693 . . . ⇒ e0.693 . . . 1<br />

2<br />

fx log 3x 1<br />

Asymptote:<br />

Point on graph:<br />

x 1<br />

2, 0<br />

Matches graph (e).<br />

f x shifts gx one unit to the right.<br />

fx log 3x<br />

Asymptote:<br />

Point on graph:<br />

x 0<br />

1, 0<br />

Matches graph (a).<br />

f x reflects gx in the x axis then reflects that graph in<br />

the y- axis.<br />

46. ln 2<br />

5 0.916 . . . ⇒ e0.916 . . . 2<br />

5<br />

47. ln 4 1.386 . . . ⇒ e 1.386 . . . 4 48. ln 10 2.302 . . . ⇒ e 2.302 . . . 10<br />

49. ln 250 5.521 . . . ⇒ e 5.521 . . . 250 50. ln 679 6.520 . . . ⇒ e 6.520 . . . 679<br />

51. ln 1 0 ⇒ e 0 1 52. ln e 1 ⇒ e 1 e<br />

53. e 3 20.0855 . . . ⇒ ln 20.0855 . . . 3 54. e 2 7.3890 . . . ⇒ ln 7.3890 . . . 2<br />

55. e 12 1.6487 . . . ⇒ ln 1.6487 . . . 1<br />

2<br />

56. e 13 1.3956 . . . ⇒ ln 1.3956 . . . 1<br />

3<br />

57. e 0.5 0.6065 . . . ⇒ ln 0.6065 . . . 0.5 58. e 4.1 0.0165 . . . ⇒ ln 0.0165 . . . 4.1<br />

59. e x 4 ⇒ ln 4 x 60. e 2x 3 ⇒ ln 3 2x<br />

61. fx ln x 62. fx 3 ln x<br />

f18.42 ln 18.42 2.913<br />

f0.32 3 ln 0.32 3.418<br />

63. gx 2 ln x<br />

g0.75 2 ln 0.75 0.575<br />

64.<br />

g1 2 ln 1<br />

gx ln x<br />

2 0.693


65.<br />

gx ln x 66.<br />

ge by the Inverse Property<br />

3 ln e3 3<br />

Section 3.2 <strong>Logarithmic</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 277<br />

gx ln x<br />

ge 2 ln e 2 2<br />

67.<br />

ge by the Inverse Property<br />

23 ln e23 2<br />

gx ln x 68.<br />

3<br />

ge52 ln e52 5<br />

gx ln x<br />

2<br />

69.<br />

f x lnx 1<br />

Domain:<br />

The domain is 1, .<br />

x- intercept:<br />

0 lnx 1<br />

e 0 x 1<br />

2 x<br />

x 1 > 0 ⇒ x > 1<br />

The x-intercept<br />

is 2, 0.<br />

−1<br />

−1<br />

Vertical asymptote: x 1 0 ⇒ x 1<br />

x<br />

f x<br />

1.5 2 3 4<br />

0.69<br />

71. gx lnx<br />

73.<br />

Domain:<br />

The domain is , 0.<br />

x-intercept:<br />

e 0 x<br />

1 x<br />

The x-intercept is 1, 0.<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

0 0.69 1.10<br />

Vertical asymptote: x 0 ⇒ x 0<br />

x<br />

0 lnx<br />

gx<br />

x > 0 ⇒ x < 0<br />

0.5<br />

0.69<br />

1<br />

2<br />

y<br />

1<br />

2 3 4 5<br />

−3 −2 −1 1<br />

3<br />

0 0.69 1.10<br />

y 1 logx 1 74.<br />

−1<br />

2<br />

−2<br />

5<br />

2<br />

1<br />

−2<br />

y<br />

x<br />

x<br />

70.<br />

72.<br />

hx lnx 1<br />

Domain:<br />

The domain is 1, .<br />

x-intercept:<br />

lnx 1 0<br />

e 0 x 1<br />

1 x 1<br />

0 x<br />

The x-intercept is 0, 0.<br />

Vertical asymptote:<br />

x 1 > 0 ⇒ x > 1<br />

y lnx 1 ⇒ e y 1 x<br />

−2 2 4 6 8<br />

x 1 0 ⇒ x 1<br />

x 0 1.72 6.39 19.09<br />

y 0 1 2 3<br />

1<br />

0.39<br />

2<br />

fx ln3 x<br />

Domain: 3 x > 0 ⇒ x < 3<br />

The domain is , 3.<br />

x-intercept:<br />

ln3 x 0<br />

e 0 3 x<br />

1 3 x<br />

2 x<br />

The x-intercept is 2, 0.<br />

Vertical asymptote: 3 x 0 ⇒ x 3<br />

y ln3 x ⇒ 3 e y x<br />

x 2.95 2.86 2.63 2 0.28<br />

y 3 2 1 0 1<br />

fx logx 1 75. y1 lnx 1<br />

2<br />

−1 5<br />

−2<br />

0<br />

3<br />

−3<br />

y<br />

3<br />

2<br />

6<br />

4<br />

2<br />

−2 −1 1 2 4<br />

−1<br />

−2<br />

−3<br />

y<br />

9<br />

x<br />

x


278 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

76.<br />

79.<br />

81.<br />

83.<br />

85.<br />

fx lnx 2 77.<br />

3<br />

−4 5<br />

−3<br />

log 2x 1 log 2 4 80.<br />

x 1 4<br />

x 3<br />

log2x 1 log 15 82.<br />

2x 1 15<br />

x 7<br />

lnx 2 ln 6 84.<br />

x 2 6<br />

x 4<br />

lnx 2 2 ln 23 86.<br />

x 2 2 23<br />

x 2 25<br />

x ±5<br />

When x $1254.68:<br />

1254.68<br />

t 12.542 ln<br />

20 years<br />

1254.68 1000<br />

(b) Total amounts: 1100.651230 $396,234.00<br />

(c) Interest charges:<br />

1254.681220 $301,123.20<br />

301,123.20 150,000 $151,123.20<br />

(d) The vertical asymptote is x 1000. The closer the payment<br />

is to $1000 per month, the longer the length of the<br />

mortgage will be. Also, the monthly payment must be<br />

greater than $1000.<br />

y ln x 2 78.<br />

0<br />

5<br />

−1<br />

396,234 150,000 $246,234<br />

9<br />

log 2x 3 log 2 9<br />

x 3 9<br />

x 12<br />

log5x 3 log 12<br />

5x 3 12<br />

5x 9<br />

x 9<br />

5<br />

lnx 4 ln 2<br />

x 4 2<br />

x 6<br />

lnx 2 x ln 6<br />

x 2 x 6<br />

x 2 x 6 0<br />

x 3x 2 0<br />

(b)<br />

fx 3 ln x 1<br />

4<br />

−5 10<br />

−6<br />

x 2 or x 3<br />

87.<br />

x<br />

t 12.542 ln , x > 1000<br />

x 1000 88.<br />

ln K<br />

t <br />

0.095<br />

(a) When x $1100.65:<br />

(a)<br />

K 1 2 4 6 8 10 12<br />

1100.65<br />

t 12.542 ln<br />

30 years<br />

1100.65 1000 t 0 7.3 14.6 18.9 21.9 24.2 26.2<br />

The number of years required to multiply the original<br />

investment by K increases with K. However, the larger<br />

the value of K, the fewer the years required to increase<br />

the value of the investment by an additional multiple<br />

of the original investment.<br />

25<br />

20<br />

15<br />

10<br />

5<br />

t<br />

2 4 6 8 10 12<br />

K


89.<br />

98.<br />

ft 80 17 logt 1, 0 ≤ t ≤ 12<br />

(a)<br />

(b)<br />

(c)<br />

fx <br />

(a)<br />

100<br />

0 12<br />

0<br />

f0 80 17 log 1 80.0<br />

f4 80 17 log 5 68.1<br />

(d) f10 80 17 log 11 62.3<br />

ln x<br />

x<br />

x 1 5 10<br />

f x<br />

10 2<br />

10 4<br />

10 6<br />

0 0.322 0.230 0.046 0.00092 0.0000138<br />

Section 3.2 <strong>Logarithmic</strong> <strong>Functions</strong> <strong>and</strong> Their Graphs 279<br />

90.<br />

10 log<br />

(a)<br />

I<br />

1012 10 log 1<br />

10 log 102<br />

10 12 10 log1012 120 decibels<br />

(b)<br />

10<br />

(c) No, the difference is due to the logarithmic<br />

relationship between intensity <strong>and</strong> number of<br />

decibels.<br />

12 10 log1010 100 decibels<br />

91. False. Reflecting gx about the line y x will determine 92. True, log3 27 3 ⇒ 3<br />

the graph of f x.<br />

3 27.<br />

93.<br />

96.<br />

fx 3 x , gx log 3 x 94.<br />

2<br />

1<br />

−2 −1 1 2<br />

−1<br />

−2<br />

y<br />

f<br />

f <strong>and</strong> g are inverses. Their graphs<br />

are reflected about the line y x.<br />

g<br />

x<br />

fx 5 x , gx log 5 x 95 .<br />

2<br />

1<br />

−2 −1 1 2<br />

−1<br />

−2<br />

y<br />

f<br />

f <strong>and</strong> g are inverses. Their graphs<br />

are reflected about the line y x.<br />

fx 10 x , gx log 10 x 97. (a)<br />

2<br />

1<br />

−2 −1 1 2<br />

−1<br />

−2<br />

y<br />

f<br />

g<br />

f <strong>and</strong> g are inverses. Their graphs are reflected<br />

about the line y x.<br />

x<br />

g<br />

x<br />

(b)<br />

fx ln x,<br />

The natural log function<br />

grows at a slower rate<br />

than the square root<br />

function.<br />

fx ln x,<br />

gx x<br />

gx 4 x<br />

The natural log function<br />

grows at a slower rate than<br />

the fourth root function.<br />

fx e x , gx ln x<br />

2<br />

1<br />

−2 −1 1 2<br />

−1<br />

−2<br />

y<br />

f<br />

f <strong>and</strong> g are inverses. Their graphs<br />

are reflected about the line y x.<br />

0<br />

0<br />

15<br />

0<br />

0<br />

(b) As x → , fx → 0.<br />

(c)<br />

0.5<br />

0<br />

0<br />

100<br />

40<br />

g<br />

g<br />

f<br />

f<br />

g<br />

x<br />

1000<br />

20,000


280 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

99. (a) False. If were an exponential function of then<br />

but not 0. Because one point is<br />

is not an exponential function of<br />

(c) True.<br />

For<br />

y 3, 23 y 1, 2<br />

8<br />

1 y 0, 2<br />

2<br />

0 a 2, x 2<br />

1<br />

y x a<br />

.<br />

y<br />

a<br />

1, 0, y<br />

x.<br />

1 y a a,<br />

x y x,<br />

(b) True. y loga x<br />

,<br />

For a 2, y log2 x.<br />

x 1, log2 1 0<br />

x 2, log2 2 1<br />

x 8, log2 8 3<br />

(d) False. If y were a linear function of x, the slope<br />

between 1, 0 <strong>and</strong> 2, 1 <strong>and</strong> the slope between<br />

2, 1 <strong>and</strong> 8, 3 would be the same. However,<br />

3 1 2 1<br />

<strong>and</strong> m2 <br />

8 2 6 3<br />

Therefore, y is not a linear function of x.<br />

.<br />

m 1 0<br />

1 1<br />

2 1<br />

100. so, for example, if there is no value of y for which 2 If a 1, then every power<br />

of a is equal to 1, so x could only be 1. So, loga x is defined only for 0 < a < 1 <strong>and</strong> a > 1.<br />

y y loga x ⇒ a a 2,<br />

4.<br />

y x,<br />

102. 101. fx ln x<br />

(a) 4<br />

(b) Increasing on 1, <br />

Decreasing on 0, 1<br />

−1<br />

−2<br />

8<br />

(c) Relative minimum:<br />

1, 0<br />

For Exercises 103–108, use <strong>and</strong> gx x3 f x 3x 2<br />

1.<br />

103.<br />

105.<br />

107.<br />

f g2 f 2 g2 104.<br />

32 2 2 3 1<br />

8 7<br />

15<br />

fg6 f 6g6 106.<br />

36 26 3 1<br />

20215<br />

4300<br />

f g7 f g7 108.<br />

f 7 3 1<br />

f 342<br />

3342 2<br />

1028<br />

(a) hx lnx2 1<br />

−9<br />

Therefore,<br />

8<br />

−4<br />

f x gx 3x 2 x 3 1<br />

3x 2 x 3 1<br />

3x x 3 3<br />

f g1 31 1 3 3<br />

3 1 3<br />

1.<br />

Therefore, f 3 0 2<br />

0 g 03 1 2.<br />

f x 3x 2<br />

<br />

gx x3 1<br />

g f (x g f x g3x 2 3x 2 3 1<br />

Therefore,<br />

g f 3 3 3 2 3 1<br />

7 3 1 344.<br />

9<br />

(b) Increasing on 0, <br />

Decreasing on , 0<br />

(c) Relative minimum:<br />

0, 0


Section 3.3 Properties of Logarithms<br />

■ You should know the following properties of logarithms.<br />

(a)<br />

(b)<br />

(c)<br />

(d) loga un n loga u<br />

loga u<br />

v log loga x <br />

logauv loga u loga v<br />

a u loga v<br />

log10 x<br />

loga x <br />

log10 a<br />

logb x<br />

logb a<br />

■ You should be able to rewrite logarithmic expressions using these properties.<br />

12. log 14 5 <br />

14. log 20 0.125 <br />

16. log 3 0.015 <br />

Section 3.3 Properties of Logarithms 281<br />

log 5 ln 5<br />

<br />

log14 ln14 1.161 13. log log 0.4 ln 0.4<br />

90.4 0.417<br />

log 9 ln 9<br />

log 0.125<br />

log 20<br />

log 0.015<br />

log 3<br />

log a x <br />

ln u<br />

lnuv ln u ln v<br />

ln u ln v<br />

v<br />

ln u n n ln u<br />

Vocabulary Check<br />

1. change-of-base 2.<br />

3.<br />

This is the Product Property. Matches (c).<br />

4.<br />

This is the Power Property. Matches (a).<br />

5. loga This is the Quotient Property. Matches (b).<br />

u<br />

v loga u loga v<br />

ln un log x ln x<br />

<br />

log a ln a<br />

logauv loga u loga v<br />

n ln u<br />

1. (a)<br />

4. (a)<br />

7. (a)<br />

log 5 x <br />

(b) log 5 x <br />

log 13 x <br />

(b) log 13 x <br />

(b) log 2.6 x <br />

10. log 7 4 <br />

log 2.6 x <br />

log x<br />

log 5<br />

ln x<br />

ln 5<br />

log x<br />

log13<br />

ln x<br />

ln13<br />

log x<br />

log 2.6<br />

ln x<br />

ln 2.6<br />

2. (a)<br />

5. (a)<br />

8. (a)<br />

log 3 x <br />

(b) log 3 x <br />

ln x<br />

ln 3<br />

ln x<br />

ln a<br />

log x<br />

log 3<br />

logx 3 log310<br />

<br />

10 log x<br />

(b) logx 3 ln310<br />

<br />

10 ln x<br />

log 7.1 x <br />

(b) log 7.1 x <br />

log x<br />

log 7.1<br />

ln x<br />

ln 7.1<br />

3. (a)<br />

6. (a)<br />

(b) log 15 x <br />

ln 0.125<br />

<br />

ln 20 0.694 15. log log 1250 ln 1250<br />

15 1250 2.633<br />

log 15 ln 15<br />

ln 0.015<br />

<br />

ln 3 3.823 17. log4 8 log2 8<br />

log2 4 log2 23 3<br />

log2 22 <br />

2<br />

log 15 x <br />

log x<br />

log15<br />

ln x<br />

ln15<br />

logx 3 log34<br />

<br />

4 log x<br />

(b) logx 3 ln34<br />

<br />

4 ln x<br />

9. log 3 7 <br />

log 4 ln 4<br />

<br />

log 7 ln 7 0.712 11. log log 4 ln 4<br />

12 4 <br />

log12 ln12 2.000<br />

log 7 ln 7<br />

1.771<br />

log 3 ln 3


282 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

18.<br />

21.<br />

log 24 2 3 4 log 2 4 2 log 2 3 4 19.<br />

2 log 2 4 4 log 2 3<br />

2 log 2 2 2 4 log 2 3<br />

4 log 2 2 4 log 2 3<br />

4 4 log 2 3<br />

ln5e 6 ln 5 ln e 6 22.<br />

ln 5 6<br />

6 ln 5<br />

log5 1<br />

250 log5 1<br />

125 1<br />

2 20.<br />

log5 1<br />

125 log5 1<br />

2<br />

log 5 5 3 log 5 2 1<br />

3 log 5 2<br />

ln 6 2 ln e<br />

ln 6 2<br />

log 9<br />

3<br />

300 log 100<br />

log 3 log 100<br />

log 3 log 10 2<br />

log 3 2 log 10<br />

log 3 2<br />

ln 6<br />

e 2 ln 6 ln e2 23. log 3 9 2 log 3 3 2<br />

24. log5 1<br />

125 log5 53 3 log5 5 31 3 25. log 4 1<br />

28 4 log2 23 3<br />

4 log2 2 3<br />

41 3<br />

4<br />

26. log6 3 6 log6 613 1<br />

3 log 1<br />

6 6 31 1<br />

3<br />

28.<br />

0.2 log 3 3 4<br />

0.24 0.8<br />

27. log 4 16 1.2 1.2log 4 16 1.2 log 4 4 2 1.22 2.4<br />

log3 810.2 0.2 log3 81 29. log39 is undefined. 9 is not in the domain of log3 x.<br />

30. log216 is undefined because<br />

16 is not in the domain of<br />

log2 x.<br />

31. ln e4.5 4.5 32. 3 ln e<br />

121<br />

12<br />

4 34 ln e<br />

33.<br />

36.<br />

ln 1<br />

ln 1 lne 34.<br />

e<br />

0 1<br />

ln e<br />

2<br />

0 1<br />

2 1<br />

1<br />

2<br />

2 ln e 6 ln e 5 ln e 12 ln e 5<br />

ln e12<br />

e 5<br />

ln e 7<br />

7<br />

ln 4 e 3 ln e 34<br />

3<br />

ln e<br />

4<br />

3<br />

4 1<br />

3<br />

4<br />

37.<br />

log 5 75 log 5 3 log 5 75<br />

3<br />

35. ln e 2 ln e 5 2 5 7<br />

log 5 25<br />

log 5 5 2<br />

2 log 5 5<br />

38. log4 2 log4 32 log4 412 log4 452 39. log4 5x log4 5 log4 x<br />

1<br />

2 log 5<br />

4 4 2 log4 4<br />

1<br />

21 5<br />

21<br />

3<br />

2


53.<br />

55.<br />

ln<br />

3 x<br />

y<br />

1 x<br />

ln<br />

3 y<br />

1<br />

ln x ln y<br />

3<br />

1<br />

3<br />

1<br />

ln x ln y<br />

3<br />

ln x4 y<br />

z 5 ln x4 y ln z 5 56.<br />

ln x 4 ln y ln z 5<br />

4 ln x 1<br />

ln y 5 ln z<br />

2<br />

54.<br />

Section 3.3 Properties of Logarithms 283<br />

40. log3 10z log3 10 log3 z 41. log8 x4 4 log8 x 42. log y<br />

log y log 2<br />

2<br />

43.<br />

57.<br />

59.<br />

log5 5<br />

x log5 5 log5 x 44. log6 z3 3 log6 z 45. lnz ln z12 1<br />

ln z<br />

2<br />

1 log 5 x<br />

46. ln 3 t ln t13 1<br />

3 ln t 47.<br />

49.<br />

51.<br />

ln z 2 lnz 1, z > 1<br />

log 5 x2<br />

y 2 z 3 log 5 x 2 log 5 y 2 z 3 58.<br />

log 5 x 2 log 5 y 2 log 5 z 3 <br />

2 log 5 x 2 log 5 y 3 log 5 z<br />

ln 4 x 3 x 2 3 1<br />

4 ln x3 x 2 3 60.<br />

1<br />

4ln x 3 lnx 2 3<br />

1<br />

43 ln x lnx 2 3<br />

3<br />

4 ln x 1 2<br />

4 lnx 3<br />

ln x ln y 2 ln z<br />

ln zz 1 2 ln z lnz 1 2 50.<br />

a 1<br />

log2 log2a 1 log2 9 52.<br />

9<br />

1<br />

2 log 2a 1 log 2 3 2<br />

1<br />

2 log 2a 1 2 log 2 3, a > 1<br />

ln xyz 2 ln x ln y ln z 2 48.<br />

ln x2 1<br />

x 3 lnx2 1 ln x 3<br />

ln x2 x2<br />

ln<br />

y3 y312 lnx 1x 1 ln x 3<br />

lnx 1 lnx 1 3 ln x<br />

6<br />

ln<br />

x2 1 ln 6 lnx2 1<br />

1 x2<br />

ln<br />

2 y3 1<br />

2 ln x2 ln y 3 <br />

1<br />

2 ln x 3 ln y<br />

2<br />

ln x 3<br />

ln y<br />

2<br />

x y4<br />

log2 z4 log2 x y4 log2 z4 log 2 x log 2 y 4 log 2 z 4<br />

1<br />

2 log 2 x 4 log 2 y 4 log 2 z<br />

log xy4<br />

z 5 log xy4 log z 5<br />

log x log y 4 log z 5<br />

log x 4 log y 5 log z<br />

lnx 2 x 2 lnx 2 x 2 12<br />

lnxx 2 12 <br />

log 4x 2 y log 4 log x 2 log y<br />

ln 6 lnx 2 1 12<br />

ln 6 1<br />

2 lnx2 1<br />

ln x lnx 2 12<br />

ln x 1<br />

2 lnx 2<br />

log 4 2 log x log y


284 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

61. ln x ln 3 ln 3x 62. ln y ln t ln yt ln ty 63. log 4 z log 4 y log 4 z<br />

y<br />

64. log 5 8 log 5 t log 5 8<br />

t<br />

65. 2 log 2x 4 log 2x 4 2 66. 2<br />

3 log 7z 2 log 7z 2 23<br />

67. 1<br />

4 log 3 5x log 35x 14 log 3 4 5x 68. 4 log 6 2x log 62x 4 log 6 1<br />

16x 4<br />

69.<br />

71.<br />

ln x 3 lnx 1 ln x lnx 13 70. 2 ln 8 5 lnz 4 ln 82 lnz 45 x<br />

ln<br />

x 13 log x 2 log y 3 log z log x log y 2 log z 3 72.<br />

log x<br />

y2 log z3 log xz3<br />

y2 73. ln x 4lnx 2 lnx 2 ln x 4 lnx 2x 2<br />

74.<br />

75.<br />

76.<br />

ln x 4 lnx 2 4<br />

ln x lnx 2 4 4<br />

x<br />

ln<br />

x2 44 4ln z lnz 5 2 lnz 5 4ln zz 5 lnz 5 2<br />

lnzz 5 4 lnz 5 2<br />

ln z4 z 5 4<br />

z 5 2<br />

1<br />

3 2 lnx 3 ln x lnx2 1 1<br />

3 lnx 32 ln x lnx 2 1<br />

1<br />

3 ln xx 32 lnx 2 1<br />

ln 3<br />

xx 32<br />

x2 <br />

1<br />

1 xx 32<br />

ln<br />

3 x2 1<br />

23 ln x lnx 1 lnx 1 2ln x 3 lnx 1 lnx 1<br />

2ln x 3 lnx 1 lnx 1<br />

2ln x 3 lnx 1x 1<br />

x<br />

2 ln<br />

3<br />

x2 1<br />

x<br />

ln<br />

3<br />

x2 1 2<br />

ln 64 lnz 4 5<br />

ln 64z 4 5<br />

3 log 3 x 4 log 3 y 4 log 3 z log 3 x 3 log 3 y 4 log 3 z 4<br />

log 3 x 3 y 4 log 3 z 4<br />

log3 x3y4 z4


77.<br />

78.<br />

80.<br />

82.<br />

1<br />

3 log8 y 2 log8 y 4 log8 y 1 1<br />

log8 y log<br />

3<br />

8 y 42 log8 y 1<br />

log770 1<br />

2 log 1<br />

7 70 <br />

2 log7 7 log7 10 81.<br />

10 log<br />

1<br />

2 1 log 7 10<br />

1 1<br />

<br />

2 2 log7 10<br />

1<br />

2 log710 by Property 1 <strong>and</strong> Property 3<br />

I<br />

1012 Difference 10 log<br />

10log3.16 10 7 log1.26 10 5 <br />

3.16 107<br />

10log1.26 105 10log2.5079 10 2 <br />

10log250.79<br />

24 dB<br />

3.16 105<br />

1.26 107<br />

12 10 log<br />

10<br />

1<br />

3 log 8 y y 42 log 8 y 1<br />

log 8 3 y y 42 log8y 3<br />

y 4<br />

y 1 <br />

2 log8 y 1<br />

1<br />

2log4x 1 2 log4x 1 6 log4 x 1<br />

2log4x 1 log4x 12 log4 x6 log 4x 6 x 1x 1<br />

79. log2 The second <strong>and</strong> third expressions are equal by Property 2.<br />

32<br />

4 log2 32 log2 4 log2 32<br />

log2 4<br />

1<br />

2log 4x 1x 1 2 log 4 x 6<br />

log 4x 1x 1 log 4 x 6<br />

10<br />

12 <br />

83.<br />

Section 3.3 Properties of Logarithms 285<br />

10 log<br />

I<br />

1012 10log I log 10 12 <br />

10log I 12<br />

120 10 log I<br />

When I 106 :<br />

120 10 log 10 6<br />

120 106<br />

60 decibels<br />

120 10 log2I<br />

120 10log 2 log I<br />

120 10 log I 10 log 2<br />

With both stereos playing, the music is<br />

decibels louder.<br />

10 log 2 3


286 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

84.<br />

f t 90 15 logt 1, 0 ≤ t ≤ 12<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

f t 90 logt 1 15<br />

f 0 90<br />

f 4 90 15 log4 1 79.5<br />

f 12 90 15 log12 1 73.3<br />

95<br />

0<br />

70<br />

12<br />

(f) The average score will be 75 when t 9 months. See<br />

graph in (e).<br />

85. By using the regression feature on a graphing calculator we obtain y 256.24 20.8 ln x.<br />

86. (a)<br />

87.<br />

(b)<br />

(d)<br />

80<br />

0<br />

0<br />

See graph in (a).<br />

0.07<br />

0<br />

0<br />

T <br />

30<br />

T 21 54.40.964 t<br />

T 54.40.964 t 21<br />

1<br />

0.0012t 0.016<br />

T 21<br />

1<br />

21<br />

0.0012t 0.016<br />

30<br />

0<br />

0<br />

(e) Since the scatter plot of the original data is so<br />

nicely exponential, there is no need to do the<br />

transformations unless one desires to deal with<br />

smaller numbers. The transformations did not<br />

make the problem simpler.<br />

Taking logs of temperatures led to a linear scatter<br />

plot because the log function increases very slowly<br />

as the x-values<br />

increase. Taking the reciprocals of<br />

the temperatures led to a linear scatter plot because<br />

of the asymptotic nature of the reciprocal function.<br />

80<br />

30<br />

(c)<br />

(g)<br />

75 90 15 logt 1<br />

15 15 logt 1<br />

1 logt 1<br />

10 1 t 1<br />

t (in minutes)<br />

5<br />

0<br />

0<br />

t 9 months<br />

T C<br />

T 21 C<br />

0 78 57 4.043 0.0175<br />

5 66 45 3.807 0.0222<br />

10 57.5 36.5 3.597 0.0274<br />

15 51.2 30.2 3.408 0.0331<br />

20 46.3 25.3 3.231 0.0395<br />

25 42.5 21.5 3.068 0.0465<br />

30 39.6 18.6 2.923 0.0538<br />

lnT 21 0.037t 4<br />

T e 0.037t4 21<br />

This graph is identical to T in (b).<br />

30<br />

lnT 21<br />

1T 21<br />

fx ln x 88. fax fa fx,<br />

a > 0, x > 0<br />

False, f0 0 since 0 is not in the domain of fx.<br />

f1 ln 1 0<br />

True, because fax ln ax ln a ln x fa fx.


89. False. fx f2 ln x ln 2 ln x<br />

2<br />

91. False.<br />

95.<br />

98.<br />

101.<br />

fu 2fv ⇒ ln u 2 ln v ⇒ ln u ln v 2 ⇒ u v 2<br />

93. Let <strong>and</strong> then bx u <strong>and</strong> by x logb u y logb v,<br />

v.<br />

u<br />

v<br />

f x log 2 x <br />

−3<br />

bx<br />

bxy<br />

by Then log buv log bb xy x y log b u log b v.<br />

<br />

2<br />

3<br />

−3<br />

−1 5<br />

−2<br />

log x ln x<br />

<br />

log 2 ln 2<br />

log x ln x<br />

<br />

log14 ln14<br />

6<br />

96.<br />

f x log 14 x 99.<br />

f x ln<br />

fx hx by Property 2<br />

x ln x<br />

, gx , hx ln x ln 2<br />

2 ln 2<br />

lnx 2 90. f x false<br />

1<br />

2 fx;<br />

f x log 4 x <br />

2<br />

−1 5<br />

−1<br />

−2<br />

<br />

2<br />

−2<br />

Section 3.3 Properties of Logarithms 287<br />

94. Let then <strong>and</strong> un bnx u b .<br />

x<br />

x logb u,<br />

log b u n log b b nx nx n log b u<br />

log x ln x<br />

<br />

log 4 ln 4<br />

log x ln x<br />

<br />

log 11.8 ln 11.8<br />

5<br />

97.<br />

f x log 11.8 x 100.<br />

2<br />

1<br />

−1<br />

−2<br />

y<br />

g<br />

f = h<br />

1 2 3 4<br />

can’t be simplified further.<br />

f x lnx ln x12 1 1<br />

ln x <br />

2 2 fx<br />

f x ln x<br />

92. If f x < 0,<br />

then 0 < x < 1.<br />

True<br />

x<br />

f x log 12 x<br />

−3<br />

<br />

<br />

2<br />

log x ln x<br />

<br />

log12 ln12<br />

3<br />

−3<br />

f x log 12.4 x<br />

−1 5<br />

−2<br />

log x ln x<br />

<br />

log 12.4 ln 12.4<br />

6


288 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

102.<br />

ln 2 0.6931, ln 3 1.0986, ln 5 1.6094<br />

ln 2 0.6931<br />

ln 3 1.0986<br />

ln 4 ln2 2 ln 2 ln 2 0.6931 0.6931 1.3862<br />

ln 5 1.6094<br />

ln 6 ln2 3 ln 2 ln 3 0.6931 1.0986 1.7917<br />

ln 8 ln 2 3 3 ln 2 30.6931 2.0793<br />

ln 9 ln 3 2 2 ln 3 21.0986 2.1972<br />

ln 10 ln5 2 ln 5 ln 2 1.6094 0.6931 2.3025<br />

ln 12 ln2 2 3 ln 2 2 ln 3 2 ln 2 ln 3 20.6931 1.0986 2.4848<br />

ln 15 ln5 3 ln 5 ln 3 1.6094 1.0986 2.7080<br />

ln 16 ln 2 4 4 ln 2 40.6931 2.7724<br />

ln 18 ln3 2 2 ln 3 2 ln 2 2 ln 3 ln 2 21.0986 0.6931 2.8903<br />

ln 20 ln5 2 2 ln 5 ln 2 2 ln 5 2 ln 2 1.6094 20.6931 2.9956<br />

103. 24xy2<br />

16x 3 y<br />

24xx3 3x4<br />

<br />

16yy2 <br />

2y3, x 0 104. 2x2<br />

3y 3<br />

3y<br />

2x23 105. 18x 3 y 4 3 18x 3 y 4 3 18x3 y 4 3<br />

107.<br />

109.<br />

18x3y4 1 if x 0, y 0. 106.<br />

3 3x 2 2x 1 0 108.<br />

3x 1x 1 0<br />

3x 1 0 ⇒ x 1<br />

3<br />

x 1 0 ⇒ x 1<br />

2 x<br />

<br />

3x 1 4<br />

3x 1x 24<br />

3x 2 x 8 0<br />

x 1 ± 12 438<br />

23<br />

<br />

1 ± 97<br />

6<br />

110.<br />

xyx 1 y 1 1 <br />

<br />

<br />

4x 2 5x 1 0<br />

4x 1x 1 0<br />

4x 1 0 ⇒ x 1<br />

4<br />

x 1 0 ⇒ x 1<br />

The zeros are x 1<br />

4 , 1.<br />

The zeros are<br />

1 ±31<br />

.<br />

2<br />

3y3<br />

2x2 27y3<br />

3 8x6 xy<br />

x 1 y 1<br />

xy<br />

1x 1y<br />

xy xy2<br />

<br />

y xxy x y<br />

2 ±22 4215<br />

22<br />

5 2x<br />

<br />

x 1 3<br />

53 2xx 1<br />

15 2x 2 2x<br />

x<br />

2 ±124<br />

x<br />

4<br />

1 ±31<br />

x<br />

2<br />

0 2x 2 2x 15


Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations<br />

Vocabulary Check<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 289<br />

■ To solve an exponential equation, isolate the exponential expression, then take the logarithm of both sides.<br />

Then solve for the variable.<br />

1. 2.<br />

■ To solve a logarithmic equation, rewrite it in exponential form. Then solve for the variable.<br />

1. 2.<br />

■ If <strong>and</strong> we have the following:<br />

1.<br />

2. ax ay e<br />

a > 0 a 1<br />

loga x loga y ⇔ x y<br />

⇔ x y<br />

ln x a x<br />

log ln e<br />

a x x<br />

x loga a x<br />

x x<br />

■ Check for extraneous solutions.<br />

1. solve 2. (a) x y (b) x y<br />

3. extraneous<br />

(c) x (d) x<br />

1. 4<br />

(a) x 5<br />

2x7 64 2. 2<br />

(a) x 1<br />

3x1 32<br />

(b)<br />

(b)<br />

(c)<br />

4 257 4 3 64<br />

Yes, x 5 is a solution.<br />

x 2<br />

4 227 43 1<br />

64 64<br />

No, x 2 is not a solution.<br />

3.<br />

(a)<br />

3e 2e252 3ee25 x 2 e<br />

75<br />

25<br />

3ex2 75 4. 2e<br />

(a)<br />

5x2 12<br />

No, x 2 e is not a solution.<br />

25<br />

x 2 ln 25<br />

3e 2ln 252 3e ln 25 325 75<br />

Yes, x 2 ln 25 is a solution.<br />

x 1.219<br />

3e 1.2192 3e 3.219 75<br />

Yes, x 1.219 is a solution.<br />

(b)<br />

(b)<br />

2 311 2 2 1<br />

4<br />

No, x 1 is not a solution.<br />

x 2<br />

2 321 2 7 128<br />

No, x 2 is not a solution.<br />

2e 5152ln 62 2e2ln 62<br />

Yes, x is a solution.<br />

1<br />

2 ln 6<br />

5<br />

x <br />

x 1<br />

2 ln 6<br />

5<br />

2e ln 6 2 6 12<br />

ln 6<br />

5 ln 2<br />

2e 5[ln 65 ln 22 ln 6ln 22<br />

2e<br />

2e<br />

2 97.9995 195.999<br />

ln 6<br />

No, x is not a solution.<br />

5 ln 2<br />

(c)<br />

x 0.0416<br />

2.5852<br />

2e 50.04162 2e 1.792 26.00144 12<br />

Yes, x 0.0416 is an approximate solution.


290 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

5. log43x 3 ⇒ 3x 4<br />

(a) x 21.333<br />

3 ⇒ 3x 64 6. log2x 3 10<br />

(a)<br />

x 1021<br />

(b)<br />

(c)<br />

321.333 64<br />

Yes, 21.333 is an approximate solution.<br />

x 4<br />

34 12 64<br />

No, x 4 is not a solution.<br />

x 64<br />

3<br />

3 64<br />

3 64<br />

Yes, x is a solution.<br />

64<br />

3<br />

(b)<br />

(c)<br />

log 21021 3 log 21024<br />

Since 2 x 1021 is a solution.<br />

10 1024,<br />

x 17<br />

log 217 3 log 220<br />

Since 2 x 17 is not a solution.<br />

10 20,<br />

x 10 2 3 97<br />

log 297 3 log 2100<br />

Since 10 is not a solution.<br />

2 2 3<br />

10 100,<br />

7.<br />

(a)<br />

No, is not a solution.<br />

(b)<br />

Yes, x is a solution.<br />

(c)<br />

x 163.650<br />

1<br />

23 e5.8 ln2<br />

<br />

1<br />

23 e5.8 3 lne5.8 x <br />

5.8<br />

1<br />

23 e5.8 x <br />

<br />

1<br />

ln2<br />

23 ln 5.8<br />

1<br />

x <br />

23 ln 5.8 3 lnln 5.8 5.8<br />

1<br />

ln2x 3 5.8 8.<br />

23 ln 5.8<br />

(a)<br />

Yes, x 1 e is a solution.<br />

(b)<br />

x 45.701<br />

ln45.701 1 ln44.701 3.8<br />

Yes, x 45.701 is an approximate solution.<br />

(c)<br />

x 1 ln 3.8<br />

3.8<br />

ln1 e3.8 1 ln e3.8 x 1 e<br />

3.8<br />

3.8<br />

lnx 1 3.8<br />

9.<br />

13.<br />

17.<br />

4 x 4 2<br />

x 2<br />

ln2163.650 3 ln 330.3 5.8<br />

Yes, x 163.650 is an approximate solution.<br />

4 x 16 10.<br />

ln x ln 2 0 14.<br />

ln x ln 2<br />

x 2<br />

ln x 1 18.<br />

e ln x e 1<br />

x e 1<br />

x 0.368<br />

3 x 243 11.<br />

3 x 3 5<br />

x 5<br />

ln x ln 5 0 15.<br />

e ln x e 7<br />

x e 7<br />

ln x ln 5<br />

x 5<br />

x 0.000912<br />

x 5<br />

ln1 ln 3.8 1 lnln 3.8 0.289<br />

No, x 1 ln 3.8 is not a solution.<br />

1<br />

2 x<br />

32 12.<br />

2 x 2 5<br />

x 5<br />

e x 2 16.<br />

ln e x ln 2<br />

x ln 2<br />

x 0.693<br />

1<br />

4 x<br />

64<br />

4 x 4 3<br />

x 3<br />

x 3<br />

e x 4<br />

ln e x ln 4<br />

x ln 4<br />

x 1.386<br />

ln x 7 19. log4 x 3 20. log5 x 3<br />

4 log 4 x 4 3<br />

x 4 3<br />

x 64<br />

x 5 3<br />

x 1<br />

125<br />

or 0.008


21.<br />

25.<br />

28.<br />

31.<br />

34.<br />

e x2<br />

x 2 x 2 2x<br />

2x 2 2x 0<br />

2xx 1 0<br />

e x2 2x 29.<br />

x 0, x 1<br />

2e x 10 32.<br />

e x 5<br />

ln e x ln 5<br />

x ln 5 1.609<br />

6 x 10 47 35.<br />

6 x 37<br />

x log 6 37<br />

x <br />

ln 37<br />

ln 6<br />

x 2.015<br />

37. 5t2 0.20 38.<br />

40.<br />

fx gx 22.<br />

2 x 8<br />

2 x 2 3<br />

x 3<br />

Point of intersection:<br />

3, 8<br />

5 t2 1<br />

5<br />

5 t2 5 1<br />

t<br />

2 1<br />

t 2<br />

27 x 9<br />

27 x 27 23<br />

x 2<br />

3<br />

Point of intersection:<br />

2<br />

3, 9<br />

e x e x2 2 26.<br />

x x 2 2<br />

0 x 2 x 2<br />

0 x 1x 2<br />

x 1 or x 2<br />

2 x3 32<br />

x 3 log 2 32<br />

x 3 5<br />

x 8<br />

fx gx 23.<br />

x 2 2x 8 0<br />

x 4x 2 0<br />

3 x 5<br />

log 3 3 x log 3 5<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 291<br />

43 x 20 30.<br />

e x 91<br />

4<br />

x log 3 5 <br />

x 1.465<br />

ln e x ln 91<br />

4<br />

x ln 91<br />

4<br />

3.125<br />

log 5<br />

log 3<br />

or ln 5<br />

ln 3<br />

4e x 91 33.<br />

3 2x 80 36.<br />

ln 3 2x ln 80<br />

2x ln 3 ln 80<br />

x <br />

3t <br />

ln 80<br />

1.994<br />

2 ln 3<br />

4 3t 0.10 39.<br />

ln 4 3t ln 0.10<br />

3t ln 4 ln 0.10<br />

ln 0.10<br />

ln 4<br />

ln 0.10<br />

t 0.554<br />

3 ln 4<br />

fx gx 24.<br />

log 3 x 2<br />

x 3 2<br />

x 9<br />

Point of intersection:<br />

9, 2<br />

e 2 x e x2 8 27.<br />

2x x 2 8<br />

x 2, x 4<br />

25 x 32<br />

5 x 16<br />

x log 516<br />

x <br />

ln 16<br />

ln 5<br />

x 1.723<br />

e x 9 19<br />

e x 28<br />

ln e x ln 28<br />

x ln 28 3.332<br />

6 5x 3000<br />

ln 6 5x ln 3000<br />

5x ln 6 ln 3000<br />

5x <br />

x <br />

3 x1 27<br />

3 x1 3 3<br />

x 1 3<br />

x 4<br />

fx gx<br />

lnx 4 0<br />

x 2 x 1 0<br />

e lnx4 e 0<br />

x 4 1<br />

Point of intersection: 5, 0<br />

e x2 3 e x2<br />

ln 3000<br />

ln 6<br />

ln 3000<br />

5 ln 6<br />

x 5<br />

x 2 3 x 2<br />

By the Quadratic Formula<br />

x 1.618 or x 0.618.<br />

0.894


292 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

41.<br />

43.<br />

46.<br />

49.<br />

2 3x 565 42.<br />

ln 2 3x ln 565<br />

3 x ln 2 ln 565<br />

3 ln 2 x ln 2 ln 565<br />

x ln 2 ln 565 3 ln 2<br />

x ln 2 3 ln 2 ln 565<br />

x <br />

3 ln 2 ln 565<br />

ln 2<br />

3 <br />

ln 565<br />

ln 2<br />

6.142<br />

810 3x 12 44.<br />

10 3x 12<br />

8<br />

log 10 3x log 3<br />

2<br />

3x log 3<br />

2<br />

x 1 3<br />

log<br />

3 2<br />

0.059<br />

83 6x 40 47.<br />

3 6x 5<br />

ln 3 6x ln 5<br />

6 x ln 3 ln 5<br />

6 x <br />

x <br />

ln 5<br />

ln 3<br />

ln 5<br />

6<br />

ln 3<br />

x 6 <br />

ln 5<br />

4.535<br />

ln 3<br />

500e x 300 50.<br />

e x 3<br />

5<br />

x ln 3<br />

5<br />

x ln 3<br />

5<br />

ln 5<br />

3 0.511<br />

10 x6 7<br />

5<br />

log 10 x6 log 7<br />

5<br />

x 6 log 7<br />

5<br />

x 6 log 7<br />

5<br />

6.146<br />

8 2x 431<br />

ln 8 2x ln 431<br />

2 x ln 8 ln 431<br />

2 ln 8 x ln 8 ln 431<br />

x ln 8 ln 431 ln 8 2<br />

x ln 8 ln 431 ln 64<br />

x <br />

5 10 x6 7 45.<br />

e 3x 12 48.<br />

3x ln 12<br />

x <br />

ln 12<br />

3<br />

0.828<br />

1000e 4x 75 51.<br />

e 4x 3<br />

40<br />

ln e 4x ln 3<br />

40<br />

4x ln 3<br />

40<br />

x 1 3<br />

4 ln 40<br />

0.648<br />

2e x 2<br />

e x 1<br />

x ln 1 0<br />

ln 431 ln 64<br />

ln 8<br />

35 x1 21<br />

5 x1 7<br />

ln 5 x1 ln 7<br />

x 1 ln 5 ln 7<br />

x 1 <br />

e 2x 50<br />

ln e 2x ln 50<br />

2x ln 50<br />

x <br />

4.917<br />

ln 7<br />

ln 5<br />

x 1 <br />

ln 50<br />

2<br />

1.956<br />

ln 7<br />

2.209<br />

ln 5<br />

7 2ex 5 52. 14 3ex 11<br />

3e x 25<br />

e x 25<br />

3<br />

ln e x ln 25<br />

3<br />

x ln 25<br />

3<br />

2.120


53.<br />

55.<br />

57.<br />

59.<br />

62 3x1 7 9<br />

6 2 3x1 16<br />

2 3x1 8<br />

3<br />

log 2 2 3x1 log 2 8<br />

3<br />

8 log83<br />

3x 1 log2 3 log 2<br />

e 2x 4e x 5 0 56.<br />

e x 1e x 5 0<br />

or e<br />

(No solution) x ln 5 1.609<br />

x e 5<br />

x 1<br />

e 2x 3e x 4 0<br />

e x 1e x 4 0<br />

e x 10 ⇒ e x 1<br />

e x > 0<br />

Not possible since for all x.<br />

or ln83<br />

ln 2<br />

x 1<br />

3 log83<br />

1 0.805<br />

log 2<br />

e x 40 ⇒ e x 4 ⇒ x ln 4 1.386<br />

500<br />

100 e x2 20 60.<br />

500 20100 e x2 <br />

25 100 e x2<br />

e x2 75<br />

x<br />

ln 75<br />

2<br />

x 2 ln 75 8.635<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 293<br />

54.<br />

58.<br />

400 3501 e x <br />

8<br />

1 ex<br />

7<br />

8<br />

1 ex<br />

7<br />

1<br />

ex<br />

7<br />

ln 1<br />

ln ex<br />

7<br />

x ln 1<br />

7<br />

x ln 7 1<br />

x ln 7<br />

x ln 7 1.946<br />

84 62x 13 41<br />

84 62x 28<br />

4 62x 3.5<br />

6 2x log 4 3.5<br />

6 2x <br />

ln 3.5<br />

ln 4<br />

2x 6 <br />

x 3 <br />

e 2x 5e x 6 0<br />

e x 2e x 3 0<br />

ln 3.5<br />

ln 4<br />

ln 3.5<br />

2.548<br />

2 ln 4<br />

e x 2 or e x 3<br />

x ln 2 0.693 or x ln 3 1.099<br />

e 2x 9e x 36 0<br />

e x 2 9e x 36 0<br />

Because the discriminant is 9 there<br />

is no solution.<br />

2 4136 63,<br />

400<br />

350 61.<br />

1 ex 3000<br />

2 e2x 2<br />

3000 22 e 2x <br />

1500 2 e 2x<br />

1498 e 2x<br />

ln 1498 2x<br />

x <br />

ln 1498<br />

2<br />

3.656


294 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

62.<br />

64.<br />

66.<br />

68.<br />

119<br />

e6x 7<br />

14<br />

119 7e 6x 14<br />

17 e 6x 14<br />

31 e 6x<br />

ln 31 ln e 6x<br />

ln 31 6x<br />

x <br />

ln 31<br />

6<br />

2.471<br />

4 <br />

40 9t<br />

21 65.<br />

3.938225 9t 21<br />

ln 3.938225 9t ln 21<br />

9t ln 3.938225 ln 21<br />

t <br />

ln 21<br />

0.247<br />

9 ln 3.938225<br />

0.878<br />

16 <br />

26 3t<br />

30 67.<br />

0.878<br />

ln16 <br />

26 3t<br />

ln 30<br />

0.878<br />

3t ln16 <br />

26 ln 30<br />

t <br />

1 ln 3.75 x<br />

1 ln 3.75 x<br />

2.322 x<br />

The zero is 2.322.<br />

0.572<br />

f x 4e x1 15<br />

ln 30<br />

3 ln16 0.878 0.409<br />

26 <br />

0 4e x1 15 −5 5<br />

15 4e x1<br />

3.75 e x1<br />

ln 3.75 x 1<br />

20<br />

−20<br />

63.<br />

0.065<br />

1 <br />

365 365t<br />

4<br />

0.065<br />

ln1 <br />

365 365t<br />

ln 4<br />

0.065<br />

365t ln1 <br />

365 ln 4<br />

t <br />

t <br />

0.10<br />

1 <br />

12 12t<br />

2<br />

0.10<br />

ln1 <br />

12 12t<br />

ln 2<br />

0.10<br />

12t ln1 <br />

12 ln 2<br />

gx 6e 1x 25<br />

Algebraically:<br />

6e 1x 25<br />

e 1x 25<br />

6<br />

1 x ln 25<br />

6 <br />

x 1 ln 25<br />

6 <br />

x 0.427<br />

The zero is x 0.427.<br />

69. f x 3e3x2 962<br />

Algebraically:<br />

3e 3x2 962<br />

e 3x2 962<br />

3<br />

3x<br />

2<br />

ln 962<br />

3 <br />

x 2 962<br />

ln 3 3 <br />

x 3.847<br />

The zero is x 3.847.<br />

ln 4<br />

365 ln1 0.065 21.330<br />

365 <br />

ln 2<br />

12 ln1 0.10 6.960<br />

12 <br />

6<br />

−6 15<br />

−30<br />

300<br />

−6 9<br />

−1200


70.<br />

72.<br />

75.<br />

79.<br />

83.<br />

gx 8e 5<br />

2x3 11 71.<br />

8e 2x3 11 −3 7<br />

e 2x3 1.375<br />

2x<br />

3<br />

ln 1.375<br />

x 1.5 ln 1.375<br />

x 0.478<br />

The zero is 0.478.<br />

f x e 1.8x 7 73.<br />

e 1.8x 7 0<br />

e 1.8x 7<br />

e 1.8x 7<br />

1.8x ln 7<br />

x <br />

x 1.081<br />

The zero is 1.081.<br />

13<br />

−5 5<br />

−7<br />

ln 7<br />

1.8<br />

ln x 3 76.<br />

x e 3 0.050<br />

log x 6 80.<br />

x 10 6<br />

1,000,000.000<br />

ln x 2 1 84.<br />

x 2 e 1<br />

x 2 e 2<br />

x e 2 2<br />

5.389<br />

−15<br />

e ln x e 2<br />

x e 2 7.389<br />

Algebraically:<br />

e 0.125t 80<br />

e 0.125t 8<br />

0.125t ln 8<br />

t <br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 295<br />

ht e 0.125t 8 74.<br />

t 16.636<br />

The zero is t 16.636.<br />

−40 40<br />

2<br />

−10<br />

ln 8<br />

0.125<br />

gt e 0.09t 3<br />

Algebraically:<br />

e 0.09t 3 −20 40<br />

0.09t ln 3<br />

t <br />

ln 3<br />

0.09<br />

t 12.207<br />

The zero is t 12.207.<br />

f x e 2.724x 29<br />

e 2.724x 29<br />

2.724x ln 29<br />

x <br />

ln 29<br />

2.724<br />

x 1.236<br />

The zero is 1.236.<br />

10<br />

−5 5<br />

ln x 2 77. ln 2x 2.4 78. ln 4x 1<br />

10 log 3z 10 2<br />

3z 100<br />

z 100<br />

3<br />

33.333<br />

2x e 2.4<br />

x e2.4<br />

2<br />

5.512<br />

−35<br />

8<br />

−4<br />

e ln 4x e 1<br />

4x e<br />

log 3z 2 81. 3 ln 5x 10 82. 2 ln x 7<br />

lnx 8 5 85.<br />

e lnx8 e 5<br />

x 8 e 5<br />

x 8 e 10<br />

x e 10 8<br />

22,034.466<br />

ln 5x 10<br />

3<br />

5x e 103<br />

x e103<br />

5<br />

3 ln x 2<br />

ln x 2<br />

3<br />

x e 23<br />

0.513<br />

5.606<br />

x e<br />

0.680<br />

4<br />

ln x 7<br />

2<br />

e ln x e 72<br />

x e 72 33.115<br />

7 3 ln x 5 86. 2 6 ln x 10<br />

6 ln x 8<br />

ln x 4<br />

3<br />

e ln x e 43<br />

x e 43<br />

0.264


296 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

87.<br />

6 log 30.5x 11 88.<br />

log 30.5x 11<br />

6<br />

3 log 30.5x 3 116<br />

0.5x 3 116<br />

x 23 116 14.988<br />

x e2<br />

1 e2 1.157<br />

This negative value is extraneous. The equation has<br />

no solution.<br />

5 log 10x 2 11<br />

log 10x 2 11<br />

5<br />

10 log 10x2 10 115<br />

x 2 10 115<br />

x 10 115 2 160.489<br />

89.<br />

x1 e2 e2 x e2x e2 x e2x e2 x e2x 1<br />

x<br />

ln x lnx 1 2 90.<br />

x<br />

ln 2<br />

x 1<br />

e2<br />

x 1<br />

x<br />

1 ± 1 4e<br />

x <br />

2<br />

1 1 4e<br />

The only solution is x 1.223.<br />

2<br />

2 xx 1 e<br />

x e 0<br />

1<br />

elnxx1 e1 ln x lnx 1 1<br />

lnxx 1 1<br />

91.<br />

93.<br />

ln x lnx 2 1 92.<br />

lnxx 2 1<br />

xx 2 e 1<br />

x 2 2x e 0<br />

x <br />

<br />

2 ± 4 4e<br />

2<br />

2 ± 21 e<br />

2<br />

1 ± 1 e<br />

The negative value is extraneous. The only solution is<br />

x 1 1 e 2.928.<br />

ln x 5 lnx 1 lnx 1 94.<br />

x 1<br />

lnx 5 lnx 1<br />

x 5 <br />

x 2 5x 6 0<br />

x 2x 3 0<br />

x 1<br />

x 1<br />

x 5x 1 x 1<br />

x 2 6x 5 x 1<br />

x 2 or x 3<br />

Both of these solutions are extraneous, so the equation<br />

has no solution.<br />

95. log22x 3 log2x 4<br />

2x 3 x 4<br />

x 7<br />

ln x lnx 3 1<br />

lnxx 3 1<br />

e lnxx3 e 1<br />

xx 3 e 1<br />

x 2 3x e 0<br />

x <br />

3 ± 9 4e<br />

2<br />

3 9 4e<br />

The only solution is x 0.729.<br />

2<br />

lnx 1 lnx 2 ln x<br />

x 1<br />

ln ln x<br />

x 2<br />

x 1<br />

x<br />

x 2<br />

3 ±32 411<br />

21<br />

x 1 x 2 2x<br />

x<br />

3 ±13<br />

x<br />

2<br />

0 x 2 3x 1<br />

3.303 x<br />

(The negative apparent solution is extraneous.)


96.<br />

97.<br />

0 x<br />

1 ± 17<br />

x <br />

2<br />

Quadratic Formula<br />

Choosing the positive value of x (the negative value is<br />

extraneous), we have<br />

2 x 4 x<br />

x 4<br />

2 logx 4 log x logx 2<br />

x 4<br />

log<br />

x logx 2<br />

x 4<br />

x 2<br />

x<br />

2x<br />

98.<br />

99.<br />

logx 6 log2x 1<br />

x <br />

x 6 2x 1<br />

7 x<br />

1 17<br />

2<br />

1.562.<br />

x<br />

4<br />

412<br />

x 1 log4xx1 412 x 2x 1<br />

x 2x 2<br />

x 2<br />

x 2<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 297<br />

The apparent solution x 7 is extraneous, because the domain of the logarithm function is positive numbers,<br />

<strong>and</strong> 7 6 <strong>and</strong> 27 1 are negative. There is no solution.<br />

log4 x log4x 1 <br />

x 1<br />

log4 <br />

x 1 2<br />

1<br />

2<br />

101. log 8x log1 x 2<br />

8x<br />

log 2<br />

1 x<br />

The only solution is x <br />

8x 1001 x<br />

8x<br />

102<br />

1 x<br />

4x 2 100x 625 625x<br />

4x 2 725x 625 0<br />

2x 251 x 25 25x<br />

2x 25 25x<br />

2x 25 2 25x 2<br />

x 725 ± 7252 44625<br />

24<br />

2529 533<br />

8<br />

180.384.<br />

<br />

x 0.866 (extraneous) or x 180.384<br />

100.<br />

725 ± 515,625<br />

8<br />

log 2 x log 2x 2 log 2x 6<br />

log 2xx 2 log 2x 6<br />

xx 2 x 6<br />

x 2 x 6 0<br />

x 3x 2 0<br />

x 3 or x 2<br />

The value x 3 is extraneous. The only solution is<br />

x 2.<br />

log 3 x log 3x 8 2<br />

log 3xx 8 2<br />

3 log 3x 2 8x 3 2<br />

x 2 8x 9<br />

x 2 8x 9 0<br />

x 9x 1 0<br />

x 9 or x 1<br />

The value x 1 is extraneous. The only solution is<br />

x 9.<br />

<br />

2529 ± 533<br />

8


298 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

102.<br />

103.<br />

105.<br />

log 4x log12 x 2<br />

4x<br />

log 2<br />

12 x<br />

10 log4x(12x 10 2<br />

4x<br />

100<br />

12 x<br />

4x 1200 100x<br />

x 2 600x 90,000 625x<br />

x 2 1225x 90,000 0<br />

The only solution is x <br />

y 2 2 x<br />

From the graph we have<br />

x 2.807 when y 7.<br />

Algebraically:<br />

2 x 7<br />

ln 2 x ln 7<br />

x ln 2 ln 7<br />

x <br />

4x 10012 x <br />

4x 1200 100x<br />

x 300 25x<br />

x 300 2 25x 2<br />

ln 7<br />

2.807<br />

ln 2<br />

x 1225 ± 12252 4190,000<br />

2<br />

x <br />

x <br />

1225 ± 1,140,625<br />

2<br />

1225 ± 12573<br />

2<br />

x 78.500 extraneous or x 1146.500<br />

1225 12573<br />

2<br />

1146.500.<br />

y 10<br />

1 7 104.<br />

−8 10<br />

y 5<br />

1 3 106.<br />

y 2 ln x<br />

From the graph we have<br />

x 20.086 when y 3.<br />

Algebraically:<br />

3 ln x 0<br />

ln x 3<br />

x e 3 20.086<br />

−5<br />

−1<br />

−2<br />

30<br />

500 1500e x2<br />

1<br />

ex2<br />

3<br />

ln 1<br />

3 x<br />

2<br />

2 ln 1<br />

x<br />

3<br />

2.197 x<br />

The solution is x 2.197.<br />

10 4 lnx 2 0<br />

4 lnx 2 10<br />

lnx 2 2.5<br />

e lnx2 e 2.5<br />

x 2 e 2.5<br />

x e 2.5 2<br />

x 14.182<br />

The solution is x 14.182.<br />

−2<br />

−5<br />

800<br />

−200<br />

18<br />

−3<br />

10<br />

30


107. (a)<br />

109.<br />

A Pe rt (b)<br />

5000 2500e 0.085t<br />

2 e 0.085t<br />

ln 2 0.085t<br />

ln 2<br />

t<br />

0.085<br />

t 8.2 years<br />

p 500 0.5e 0.004x <br />

(a)<br />

p 350<br />

350 500 0.5e 0.004x <br />

300 e 0.004x<br />

0.004x ln 300<br />

x 1426 units<br />

4<br />

110. p 50001 <br />

4 e<br />

(a) When p $600:<br />

0.002x<br />

0.12 1 <br />

4<br />

0.88<br />

4 e0.002x 0.48 0.88e 0.002x<br />

6<br />

e0.002x<br />

11<br />

ln 6<br />

ln e0.002x<br />

11<br />

ln 6<br />

11 0.002x<br />

x ln611<br />

0.002<br />

111. V 6.7e<br />

(a) 10<br />

48.1t , t ≥ 0<br />

0<br />

0<br />

A Pe rt 108. (a)<br />

7500 2500e 0.085t<br />

3 e 0.085t<br />

ln 3 0.085t<br />

ln 3<br />

t<br />

0.085<br />

(b)<br />

4<br />

600 50001 <br />

4 e0.002x 4<br />

4 e 0.002x<br />

4 3.52 0.88e 0.002x<br />

1500<br />

303 units<br />

t 12.9 years<br />

p 300<br />

400 e 0.004x<br />

0.004x ln 400<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 299<br />

300 500 0.5e 0.004x <br />

x 1498 units<br />

r 0.12 (b)<br />

A Pe rt<br />

5000 2500e 0.12t<br />

2 e 0.12t<br />

ln 2 ln e 0.12t<br />

ln 2 0.12t<br />

ln 2<br />

t<br />

0.12<br />

t 5.8 years<br />

(b) When p $400:<br />

0.08 1 <br />

4<br />

0.92<br />

4 e0.002x 4 3.68 0.92e 0.002x<br />

0.32 0.92e 0.002x<br />

8<br />

e0.002x<br />

23<br />

ln 8<br />

ln e0.002x<br />

23<br />

ln 8<br />

23 0.002x<br />

x ln823<br />

0.002<br />

(b) As t → , V → 6.7. (c)<br />

Horizontal asymptote: V 6.7<br />

The yield will approach<br />

6.7 million cubic feet per acre.<br />

4<br />

4 e 0.002x<br />

528 units<br />

r 0.12<br />

A Pe rt<br />

7500 2500e 0.12t<br />

3 e 0.12t<br />

ln 3 ln e 0.12t<br />

ln 3 0.12t<br />

ln 3<br />

t<br />

0.12<br />

4<br />

400 50001 <br />

4 e0.002x 1.3 6.7e 48.1t<br />

1.3<br />

e48.1t<br />

6.7<br />

ln 13 48.1<br />

<br />

67 t<br />

t 9.2 years<br />

t 48.1<br />

29.3 years<br />

ln1367


300 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

112. N 6810<br />

When N 21:<br />

0.04x 113. y 7312 630.0 ln t, 5 ≤ t ≤ 12<br />

7312 630.0 ln t 5800<br />

114.<br />

21 6810 0.04x <br />

21<br />

100.04x<br />

68<br />

log 10 21<br />

68 0.04x<br />

x log 102168<br />

0.04<br />

9000 4381 1883.6 ln t<br />

4619 1883.6 ln t<br />

ln t 4619<br />

2.45222<br />

1883.6<br />

t e 2.45222 11.6<br />

12.76 inches<br />

y 4381 1883.6 ln t, 5 ≤ t ≤ 13<br />

630.0 ln t 1512<br />

ln t 2.4<br />

t e 2.4 11<br />

t 11 corresponds to the year 2001.<br />

Since t 5 represents 1995, t 11.6 indicates that the number of daily fee golf facilities in the U.S.<br />

reached 9000 in 2001.<br />

115. (a) From the graph shown in the textbook, we see horizontal asymptotes at y 0 <strong>and</strong> y 100.<br />

These represent the lower <strong>and</strong> upper percent bounds; the range falls between 0% <strong>and</strong> 100%.<br />

(b) Males<br />

50 <br />

1 e 0.6114x69.71 2<br />

e 0.6114x69.71 1<br />

0.6114x 69.71 ln 1<br />

0.6114x 69.71 0<br />

116. P <br />

(a) 1.0<br />

0.83<br />

1 e0.2n 0 40<br />

0<br />

100<br />

1 e 0.6114x69.71<br />

x 69.71 inches<br />

(b) Horizontal asymptotes: P 0, P 0.83<br />

The upper asymptote, P 0.83, indicates that the<br />

proportion of correct responses will approach 0.83<br />

as the number of trials increases.<br />

Females<br />

50 <br />

1 e 0.66607x64.51 2<br />

e 0.6667x64.51 1<br />

0.66607x 64.51 ln 1<br />

0.66607x 64.51 0<br />

100<br />

1 e 0.66607x64.51<br />

x 64.51 inches<br />

(c) When P 60% or P 0.60:<br />

0.60 <br />

1 e 0.2n 0.83<br />

0.60<br />

0.83<br />

1 e 0.2n<br />

e0.2n 0.83<br />

1<br />

0.60<br />

ln e0.2n ln 0.83<br />

1 0.60<br />

ln<br />

n <br />

0.83<br />

0.2n ln<br />

0.60<br />

0.2<br />

0.83<br />

1 0.60<br />

1<br />

5 trials


117. y 3.00 11.88 ln x <br />

(a)<br />

36.94<br />

x<br />

x 0.2 0.4 0.6 0.8 1.0<br />

(b)<br />

200<br />

0<br />

0<br />

y 162.6 78.5 52.5 40.5 33.9<br />

The model seems to fit the data well.<br />

(c) When y 30:<br />

1.2<br />

30 3.00 11.88 ln x 36.94<br />

x<br />

Add the graph of y 30 to the graph in part (a) <strong>and</strong><br />

estimate the point of intersection of the two graphs.<br />

We find that x 1.20 meters.<br />

(d) No, it is probably not practical to lower the number<br />

of gs experienced during impact to less than 23<br />

because the required distance traveled at y 23 is<br />

x 2.27 meters. It is probably not practical to<br />

design a car allowing a passenger to move forward<br />

2.27 meters (or 7.45 feet) during an impact.<br />

True by Property 1 in Section 3.3.<br />

Section 3.4 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Equations 301<br />

119. logauv loga u loga v 120. logau v loga uloga v<br />

121.<br />

log au v log a u log a v 122.<br />

False.<br />

1.95 log100 10<br />

log 100 log 10 1<br />

False.<br />

2.04 log 1010 100 log 10 10log 10 100 2<br />

u<br />

logav True by Property 2 in Section 3.3.<br />

loga u loga v 123. Yes, a logarithmic equation can<br />

have more than one extraneous<br />

solution. See Exercise 93.<br />

124.<br />

(a) A 2Pe This doubles your money.<br />

(b)<br />

rt 2Pert A Pe<br />

<br />

rt 125. Yes.<br />

Time to Double Time to Quadruple<br />

4P Pert 2P Pert (c)<br />

A Pe 2rt Pe rt e rt e rt Pe rt <br />

A Pe r2t Pe rt e rt e rt Pe rt <br />

Doubling the interest rate yields the same result as<br />

doubling the number of years.<br />

If 2 > e (i.e., rt < ln 2),<br />

then doubling your<br />

investment would yield the most money. If<br />

rt > ln 2, then doubling either the interest rate<br />

or the number of years would yield more money.<br />

rt<br />

118. T 201 72h (a) From the graph in the textbook we see a horizontal<br />

asymptote at T 20. This represents the room<br />

temperature.<br />

(b)<br />

ln47<br />

ln 2<br />

2 e rt<br />

ln 2 rt<br />

ln 2<br />

t<br />

r<br />

100 201 72 h <br />

ln 4<br />

7<br />

5 1 72 h <br />

4 72 h <br />

4<br />

2h<br />

7<br />

ln 2h<br />

ln 4<br />

h ln 2<br />

7<br />

h<br />

h 0.81 hour<br />

4 e rt<br />

ln 4 rt<br />

2 ln 2<br />

t<br />

r<br />

Thus, the time to quadruple is twice as long as the<br />

time to double.


302 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

126. (a) When solving an exponential equation, rewrite the<br />

original equation in a form that allows you to use the<br />

One-to-One Property if <strong>and</strong> only if or<br />

rewrite the original equation in logarithmic form <strong>and</strong><br />

use the Inverse Property loga ax a x y<br />

x.<br />

x ay 127.<br />

130.<br />

132.<br />

134.<br />

48x 2 y 5 16x 2 y 4 3y 128.<br />

4 x y2 3y<br />

3<br />

10 2<br />

310 2<br />

<br />

10 4<br />

310 2<br />

<br />

6<br />

<br />

3 10 2<br />

<br />

10 2 10 2<br />

<br />

10 2<br />

2<br />

1<br />

10 1<br />

2<br />

8<br />

6<br />

4<br />

2<br />

y<br />

−6 −4 −2<br />

−2<br />

−4<br />

−6<br />

2 4 6 8<br />

6<br />

4<br />

1<br />

y<br />

−6 −4 −2<br />

−2<br />

−6<br />

2<br />

4<br />

6<br />

x<br />

x<br />

(b) When solving a logarithmic equation, rewrite the<br />

original equation in a form that allows you to use the<br />

One-to-One Property if <strong>and</strong> only if<br />

or rewrite the original equation in exponential<br />

form <strong>and</strong> use the Inverse Property aloga x loga x loga y<br />

x y<br />

x.<br />

32 225 16 2 25 129.<br />

42 10<br />

131. f x x 9<br />

Domain: all real numbers x<br />

133.<br />

y- intercept: 0, 9<br />

y-axis<br />

symmetry<br />

x<br />

y<br />

0<br />

±1<br />

±2<br />

9 10 11 12<br />

gx 2x,<br />

x 2 4,<br />

325 3 15 3 375<br />

±3<br />

x < 0<br />

x ≥ 0<br />

Domain: all real numbers xx-<br />

intercept: 2, 0<br />

y-intercept:<br />

0, 4<br />

135. log6 9 log10 9 ln 9<br />

<br />

log10 6 ln 6 1.226 136. log3 4 log10 4 ln 4<br />

1.262<br />

log10 3 ln 3<br />

137. log34 5 log10 5 ln 5<br />

<br />

log1034 ln34 5.595 138. log8 22 log10 22 ln 22<br />

1.486<br />

log10 8 ln 8<br />

x<br />

y<br />

3<br />

6<br />

2<br />

4<br />

1<br />

2<br />

0.5<br />

1<br />

3 125 3 5 3 3<br />

14<br />

12<br />

8<br />

6<br />

4<br />

2<br />

−8 −6 −4 −2 2 4 6 8<br />

−2<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−4 −3 −2 −1 1 3 4<br />

−3<br />

y<br />

y<br />

0 1 2 3<br />

4 3 2 5<br />

x<br />

x


Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models<br />

■ You should be able to solve growth <strong>and</strong> decay problems.<br />

(a) <strong>Exponential</strong> growth if<br />

(b) <strong>Exponential</strong> decay if b > 0 <strong>and</strong> y ae<br />

■ You should be able to use the Gaussian model<br />

bx b > 0 <strong>and</strong> y ae<br />

.<br />

bx .<br />

y ae xb2 c .<br />

■ You should be able to use the logistic growth model<br />

a<br />

y .<br />

1 berx ■ You should be able to use the logarithmic models<br />

y a b ln x, y a b log x.<br />

Vocabulary Check<br />

1.<br />

4.<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 303<br />

1. y ae 2. y a b ln x; y a b log x 3. normally distributed<br />

bx ; y aebx 4. bell; average value 5. sigmoidal<br />

y 2e x4 2.<br />

This is an exponential growth<br />

model. Matches graph (c).<br />

y 3e x22 5 5.<br />

This is a Gaussian model.<br />

Matches graph (a).<br />

y 6e x4 3.<br />

This is an exponential decay<br />

model. Matches graph (e).<br />

y lnx 1 6.<br />

This is a logarithmic model shifted<br />

left one unit. Matches graph (d).<br />

y 6 logx 2<br />

This is a logarithmic function<br />

shifted up six units <strong>and</strong> left two<br />

units. Matches graph (b).<br />

4<br />

y <br />

1 e<br />

This is a logistic growth model.<br />

Matches graph (f).<br />

2x<br />

7. Since the time to double is given by<br />

2000 1000e <strong>and</strong> we have<br />

0.035t<br />

A 1000e0.035t , 8. Since the time to double is given by<br />

1500 750e <strong>and</strong> we have<br />

0.105t A 750e<br />

,<br />

0.105t ,<br />

2 e 0.035t<br />

ln 2 ln e 0.035t<br />

ln 2 0.035t<br />

t <br />

ln 2<br />

19.8 years.<br />

0.035<br />

Amount after 10 years: A 1000e 0.35 $1419.07<br />

1500 750e 0.105t<br />

2 e 0.105t<br />

ln 2 ln e 0.105t<br />

ln 2 0.105t<br />

t <br />

ln 2<br />

6.60 years.<br />

0.105<br />

Amount after 10 years: A 750e 0.10510 $2143.24


304 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

9. Since A 750e when t 7.75, we have<br />

the following.<br />

rt <strong>and</strong> A 1500 10. Since A 10,000e <strong>and</strong> A 20,000 when t 12,<br />

we have<br />

rt<br />

1500 750e 7.75r<br />

2 e 7.75r<br />

ln 2 ln e 7.75r<br />

ln 2 7.75r<br />

r <br />

ln 2<br />

0.089438 8.9438%<br />

7.75<br />

Amount after 10 years: A 750e 0.08943810 $1834.37<br />

The time to double is given by<br />

1000 500e 0.110t<br />

t <br />

r ln1505.00500<br />

10<br />

ln 2<br />

6.3 years.<br />

0.110<br />

20,000 10,000e 12r<br />

2 e 12r<br />

ln 2 ln e 12r<br />

ln 2 12r<br />

r <br />

ln 2<br />

12<br />

Amount after 10 years:<br />

0.057762 5.7762%.<br />

A 10,000e 0.05776210 $17,817.97<br />

11. Since when<br />

we have the following.<br />

1505.00 500e<br />

0.110 11.0%<br />

10r<br />

A 500e<br />

t 10,<br />

rt <strong>and</strong> A $1505.00 12. Since <strong>and</strong> when we have<br />

19,205<br />

19,205 600e<br />

e10r<br />

600 10r<br />

A 600e A 19,205 t 10,<br />

rt<br />

ln 19,205<br />

600 ln e10r<br />

ln 19,205<br />

600 10r<br />

The time to double is given by<br />

1200 600e 0.3466t<br />

t <br />

r ln19,205600<br />

10<br />

ln 2<br />

2 years.<br />

0.3466<br />

0.3466 or 34.66%.<br />

13. Since <strong>and</strong> when<br />

we have the following.<br />

10,000.00 Pe<br />

10,000.00<br />

P $6376.28<br />

e0.04510 ln 2<br />

The time to double is given by t 15.40 years.<br />

0.045 0.04510<br />

A Pe A 10,000.00 t 10,<br />

0.045t 14. Since <strong>and</strong> when we have<br />

P <br />

ln 2<br />

The time to double is given by t 34.7 years.<br />

0.02 2000<br />

2000 Pe<br />

e0.0210 $1637.46.<br />

0.0210<br />

A Pe A 2000 t 10,<br />

0.02t<br />

15.<br />

0.075<br />

500,000 P1 <br />

12 1220<br />

P <br />

500,000<br />

0.075<br />

1 <br />

12 1220<br />

500,000<br />

$112,087.09<br />

240 1.00625<br />

16.<br />

r<br />

A P1 n nt<br />

0.12<br />

500,000 P1 <br />

12 12(40)<br />

P $4214.16


17.<br />

P 1000, r 11%<br />

(a)<br />

(c)<br />

n 1<br />

1 0.11 t 2<br />

t ln 1.11 ln 2<br />

t <br />

n 365<br />

0.11<br />

1 <br />

365 365t<br />

2<br />

ln 2<br />

6.642 years<br />

ln 1.11<br />

0.11<br />

365t ln1 ln 2<br />

365<br />

t <br />

18. P 1000, r 10.5% 0.105<br />

19.<br />

20.<br />

21.<br />

(a) n 1<br />

(c)<br />

t <br />

n 365<br />

t <br />

3P Pe rt<br />

ln 3 rt<br />

ln 3<br />

t<br />

r<br />

60<br />

0<br />

0<br />

3 e rt<br />

ln 2<br />

6.94 years<br />

ln1 0.105<br />

ln 2<br />

365 ln1 0.105 6.602 years<br />

365 <br />

0.16<br />

ln 2<br />

365 ln1 0.11 6.302 years<br />

365 <br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 305<br />

(b)<br />

0.11<br />

1 <br />

12 12t<br />

2<br />

0.11<br />

12t ln1 <br />

12 ln 2<br />

(d) Compounded continuously<br />

e 0.11t 2<br />

0.11t ln 2<br />

t <br />

(b) n 12<br />

t <br />

n 12<br />

t <br />

ln 2<br />

6.301 years<br />

0.11<br />

(d) Compounded continuously<br />

t <br />

ln 2<br />

12 ln1 0.105 6.63 years<br />

12 <br />

ln 2<br />

6.601 years<br />

0.105<br />

r 2% 4% 6% 8% 10% 12%<br />

t <br />

ln 3<br />

r<br />

(years) 54.93 27.47 18.31 13.73 10.99 9.16<br />

Using the power regression feature of a graphing utility, t 1.099r 1 .<br />

3P P1 r t<br />

ln 3 ln1 r t<br />

ln 3 t ln1 r<br />

ln 3<br />

t<br />

ln1 r<br />

3 1 r t<br />

r 2% 4% 6% 8% 10% 12%<br />

t <br />

ln 3<br />

ln1 r<br />

(years) 55.48 28.01 18.85 14.27 11.53 9.69<br />

ln 2<br />

12 ln1 0.11 6.330 years<br />

12


306 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

22.<br />

24.<br />

27.<br />

60 23. Continuous compounding results in faster growth.<br />

0<br />

0<br />

0.16<br />

Using the power regression feature of a graphing utility,<br />

t 1.222r 1 .<br />

2<br />

A = 1 + 0.055 ( 365 ) 365t<br />

[[[[<br />

0 10<br />

0<br />

A = 1 + 0.06[[[[ t<br />

From the graph, 2% compounded<br />

daily grows faster than 6% simple<br />

interest.<br />

5 1<br />

25.<br />

1<br />

2 C Cek5715 28.<br />

0.5 e k5715<br />

ln 0.5 ln e k5715<br />

ln 0.5 k5715<br />

k <br />

ln 0.5<br />

5715<br />

Given y 2 grams after 1000<br />

years, we have<br />

2 Celn 0.557151000<br />

C 2.26 grams.<br />

0.5 e k1599<br />

ln 0.5 ln e k1599<br />

ln 0.5 k1599<br />

k <br />

ln 0.5<br />

1599<br />

A 1 0.075t <strong>and</strong> A e 0.07t<br />

Amount (in dollars)<br />

Given C 10 grams after<br />

1000 years, we have<br />

y 10eln 0.515991000<br />

6.48 grams.<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

A<br />

A = e0.07t<br />

A = 1 + 0.075[[[[ t<br />

2 4 6 8 10<br />

Time (in years)<br />

1<br />

2 C Cek1599 26.<br />

1<br />

2 C Cek5715 29.<br />

1<br />

ek5715<br />

2<br />

ln 1<br />

ln ek5715<br />

2<br />

ln 1<br />

k5715<br />

2<br />

k ln12<br />

5715<br />

Given C 3 grams, after 1000<br />

years we have<br />

y 3e ln1257151000<br />

y 2.66 grams.<br />

t<br />

1<br />

C Cek1599<br />

2<br />

1<br />

ek1599<br />

2<br />

ln 1<br />

ln ek1599<br />

2<br />

ln 1<br />

k1599<br />

2<br />

k ln12<br />

1599<br />

Given y 1.5 grams after 1000<br />

years, we have<br />

1.5 Ce ln1215991000<br />

C 2.31 grams.<br />

1<br />

C Cek24,100<br />

2<br />

0.5 e k24,100<br />

ln 0.5 ln e k24,100<br />

ln 0.5 k24,100<br />

k <br />

ln 0.5<br />

24,100<br />

Given y 2.1 grams after 1000<br />

years, we have<br />

2.1 Celn 0.524,1001000<br />

C 2.16 grams.


30.<br />

33.<br />

35.<br />

36.<br />

1<br />

2 C Cek24,100 31.<br />

1<br />

ek24,100<br />

2<br />

ln 1<br />

ln ek24,100<br />

2<br />

ln 1<br />

k24,100<br />

2<br />

k ln12<br />

24,100<br />

Given y 0.4 grams after 1000<br />

years, we have<br />

0.4 Ce ln1224,1001000<br />

C 0.41 grams.<br />

ln15<br />

4<br />

—CONTINUED—<br />

10 e b3<br />

ln 10 3b<br />

Thus, y e 0.7675x .<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 307<br />

y ae bx 32.<br />

1 ae b0 ⇒ 1 a<br />

ln 10<br />

b ⇒ b 0.7675<br />

3<br />

y ae bx 34.<br />

5 ae b0 ⇒ 5 a<br />

1 5e b4<br />

1<br />

e4b<br />

5<br />

ln 1<br />

4b 5<br />

b ⇒ b 0.4024<br />

Thus, y 5e 0.4024x .<br />

P 2430e 0.0029t<br />

(a) Since the exponent is negative, this is an exponential<br />

decay model. The population is decreasing.<br />

(b) For 2000, let t 0: P 2430 thous<strong>and</strong> people<br />

For 2003, let t 3: P 2408.95 thous<strong>and</strong> people<br />

Country 2000 2010<br />

Bulgaria 7.8 7.1<br />

Canada 31.3 34.3<br />

China 1268.9 1347.6<br />

United Kingdom 59.5 61.2<br />

United States 282.3 309.2<br />

ln 1<br />

4<br />

ln 1<br />

4<br />

ln14<br />

3<br />

y ae bx<br />

1<br />

eb3<br />

4<br />

ln e3b<br />

3b<br />

Thus, y e 0.4621x .<br />

(c)<br />

y ae bx<br />

1<br />

2 aeb0 ⇒ a 1<br />

2<br />

5 1<br />

2 eb4<br />

10 e 4b<br />

ln 10 ln e 4b<br />

ln 10 4b<br />

1 ae b0 ⇒ 1 a<br />

ln 10<br />

b ⇒ b 0.5756<br />

4<br />

Thus, y 1<br />

2 e0.5756x .<br />

b ⇒ b 0.4621<br />

2.3 million 2300 thous<strong>and</strong><br />

2300 2430e 0.0029t<br />

2300<br />

e0.0029t<br />

2430<br />

ln 2300<br />

2430 0.0029t<br />

t ln23002430<br />

0.0029<br />

18.96<br />

The population will reach 2.3 million (according to<br />

the model) during the later part of the year 2018.


308 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

36. —CONTINUED—<br />

37.<br />

(a) Bulgaria:<br />

For 2030, use t 30.<br />

y 7.8e million<br />

0.009430 5.88<br />

China:<br />

a 7.8<br />

7.1 7.8e b10<br />

ln 7.1<br />

10b ⇒ b 0.0094<br />

7.8<br />

a 1268.9<br />

1347.6 1268.9e b10<br />

ln 1347.6<br />

10b ⇒ b 0.00602<br />

1268.9<br />

For 2030, use t 30.<br />

y 1268.9e million<br />

0.0060230 1520.06<br />

United Kingdom:<br />

a 59.5<br />

61.2 59.5e b10<br />

ln 61.2<br />

10b ⇒ b 0.00282<br />

59.5<br />

For 2030, use t 30.<br />

y 59.5e million<br />

0.0028230 64.7<br />

Canada:<br />

34.3 31.3e b10<br />

ln 34.3<br />

10b ⇒ b 0.00915<br />

31.3<br />

For 2030, use t 30.<br />

y 31.3e million<br />

0.0091530 41.2<br />

United States:<br />

a 31.3<br />

a 282.3<br />

309.2 282.3e b10<br />

ln 309.2<br />

10b ⇒ b 0.0091<br />

282.3<br />

For 2030, use t 30.<br />

y 282.3e million<br />

0.009130 370.9<br />

(b) The constant b determines the growth rates. The greater the rate of growth, the greater the value of b.<br />

(c) The constant b determines whether the population is increasing b > 0 or decreasing b < 0.<br />

y 4080e kt 38.<br />

When t 3, y 10,000:<br />

10,000 4080e k3<br />

10,000<br />

4080<br />

e3k<br />

ln 10,000<br />

4080 3k<br />

k ln10,0004080<br />

3<br />

0.2988<br />

When y 4080e hits<br />

0.298824 t 24:<br />

5,309,734<br />

y 10e kt<br />

65 10e k14<br />

ln 65<br />

14k ⇒ k 0.1337<br />

10<br />

For 2010, t 20:<br />

y 10e million<br />

0.133720 $144.98


39.<br />

41.<br />

43.<br />

N 100e kt 40.<br />

300 100e 5k<br />

3 e 5k<br />

ln 3 ln e 5k<br />

ln 3 5k<br />

k <br />

N 100e 0.2197t<br />

200 100e 0.2197t<br />

t <br />

ln 3<br />

5<br />

0.2197<br />

ln 2<br />

3.15 hours<br />

0.2197<br />

R 1<br />

10 12et8223<br />

(a)<br />

(b)<br />

t<br />

8223<br />

R 1<br />

8 14<br />

1<br />

1012et8223 1<br />

814 e t8223 1012<br />

8 14<br />

1012<br />

ln 814 <br />

1<br />

1012et8223 1<br />

1311 e t8223 1012<br />

13 11<br />

t 1012<br />

ln 8223 1311 0, 30,788, 2, 18,000<br />

(a)<br />

m <br />

t 8223 ln 1012<br />

14 8 12,180 years old<br />

t 8223 ln 1012<br />

1311 4797 years old<br />

Linear model:<br />

V 6394t 30,788<br />

—CONTINUED—<br />

18,000 30,788<br />

2 0<br />

b 30,788<br />

6394<br />

(b)<br />

ln 4500<br />

2k<br />

7697<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 309<br />

42.<br />

N 250e kt<br />

280 250e k10<br />

1.12 e 10k<br />

k <br />

N 250eln 1.1210t<br />

500 250eln 1.1210t<br />

2 eln 1.1210t<br />

ln 1.12<br />

ln 2 10 t t <br />

ln 1.12<br />

10<br />

y Ce kt<br />

ln 1<br />

5715k<br />

2<br />

ln 2<br />

61.16<br />

ln 1.1210<br />

1<br />

C Ce5715k<br />

2<br />

k ln12<br />

5715<br />

hours<br />

The ancient charcoal has only 15% as much radioactive<br />

carbon.<br />

0.15C Celn 0.55715t<br />

ln 0.15 <br />

t <br />

ln 0.5<br />

5715 t<br />

5715 ln 0.15<br />

ln 0.5<br />

a 30,788 (c)<br />

18,000 30,788e k2<br />

4500<br />

e2k<br />

7697<br />

k 1 4500<br />

ln 0.268<br />

2 7697<br />

<strong>Exponential</strong> model: V 30,788e 0.268t<br />

15,642 years<br />

32,000<br />

0 4<br />

0<br />

The exponential model<br />

depreciates faster in the<br />

first two years.


310 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

43. —CONTINUED—<br />

44.<br />

45.<br />

46.<br />

(d)<br />

1 3<br />

(e) The linear model gives a higher value for the car for the<br />

first two years, then the exponential model yields a higher<br />

$24,394 $11,606<br />

value. If the car is less than two years old, the seller would<br />

most likely want to use the linear model <strong>and</strong> the buyer the<br />

V 30,788e $23,550 $13,779<br />

exponential model. If it is more than two years old, the<br />

opposite is true.<br />

0.268t<br />

t<br />

V 6394t 30,788<br />

0, 1150, 2, 550<br />

(a)<br />

(c)<br />

m <br />

V 300t 1150<br />

1200<br />

550 1150<br />

2 0<br />

0 4<br />

0<br />

300<br />

The exponential model depreciates faster in the<br />

first two years.<br />

(e) The slope of the linear model means that the computer<br />

depreciates $300 per year, then loses all value in<br />

the third year. The exponential model depreciates<br />

faster in the first two years but maintains value longer.<br />

St 1001 e kt <br />

(a)<br />

85 100e k<br />

85<br />

100 ek<br />

0.85 e k<br />

ln 0.85 ln e k<br />

k ln 0.85<br />

k 0.1625<br />

St 1001 e 0.1625t <br />

N 301 e kt <br />

(a)<br />

15 1001 e k1 <br />

N 19, t 20<br />

19 301 e 20k <br />

30e 20k 11<br />

e 20k 11<br />

30<br />

ln e 20k ln 11<br />

30<br />

20k ln 11<br />

30<br />

k 0.050<br />

So, N 301 e 0.050 .<br />

(b)<br />

(d)<br />

(b)<br />

550 1150e k2<br />

ln 550<br />

2k ⇒ k 0.369<br />

1150<br />

Sales<br />

(in thous<strong>and</strong>s of units)<br />

V 1150e 0.369t<br />

t 1 3<br />

V 300t 1100<br />

V 1150e 0.369t<br />

120<br />

90<br />

60<br />

30<br />

S<br />

5 10 15 20 25 30<br />

Time (in years)<br />

$850 $250<br />

$795 $380<br />

(c) S5 1001 e 0.16255 55.625 55,625 units<br />

(b)<br />

N 25<br />

25 301 e 0.050t <br />

5<br />

e0.050t<br />

30<br />

ln 5<br />

ln e0.050t<br />

30<br />

ln 5<br />

30 0.050t<br />

t ln530<br />

36 days<br />

0.050<br />

t


47.<br />

49.<br />

y 0.0266e x1002 450 , 70 ≤ x ≤ 116 48. (a)<br />

(a)<br />

0.04<br />

70 115<br />

0<br />

(b) The average IQ score of an adult student is 100.<br />

pt <br />

1000<br />

(a) p5 <br />

203 animals<br />

1 9e0.16565 (b)<br />

(c)<br />

1 9e 0.1656t 2<br />

1200<br />

0<br />

0<br />

1000<br />

1 9e 0.1656t<br />

500 <br />

9e 0.1656t 1<br />

e 0.1656t 1<br />

9<br />

1000<br />

1 9e 0.1656t<br />

t months<br />

ln19<br />

13<br />

0.1656<br />

40<br />

The horizontal asymptotes are p 0 <strong>and</strong> p 1000.<br />

The asymptote with the larger p-value,<br />

p 1000,<br />

indicates that the population size will approach 1000<br />

as time increases.<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 311<br />

50.<br />

0.9<br />

4 7<br />

0<br />

(b) The average number of hours per week a student uses<br />

the tutor center is 5.4.<br />

S 500,000<br />

1 0.6e kt<br />

(a)<br />

1 0.6e 4k 5<br />

3<br />

So, S <br />

(b) When t 8:<br />

500,000<br />

1 0.6e0.0263t. k 1<br />

4k ln<br />

10<br />

ln 4 9 0.0263<br />

10<br />

9 <br />

S <br />

300,000 500,000<br />

1 0.6e 4k<br />

0.6e 4k 2<br />

3<br />

e 4k 10<br />

9<br />

500,000<br />

287,273 units sold.<br />

1 0.6e0.02638 51. since<br />

(a) 7.9 log I ⇒ I 107.9 R log I0 1.<br />

79,432,823<br />

I<br />

log I<br />

I0 52. R log since I0 1.<br />

(a) R log 80,500,000 7.91<br />

I<br />

log I<br />

I0 53.<br />

(b)<br />

8.3 log I ⇒ I 10 8.3 199,526,231<br />

(c) 4.2 log I ⇒ I 10 4.2 15,849<br />

10 log I<br />

(a)<br />

where I0 10<br />

I0 12 wattm2 .<br />

10 log 1010<br />

10 12 10 log 102 20 decibels<br />

(c) 10 log 108<br />

10 12 10 log 104 40 decibels<br />

(b)<br />

(b)<br />

R log 48,275,000 7.68<br />

(c) R log 251,200 5.40<br />

10 log 105<br />

10 12 10 log 107 70 decibels<br />

(d) 10 log 1<br />

10 12 10 log 1012 120 decibels


312 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

54. where I0 1012 wattm2 I 10 log I<br />

I0 55.<br />

57.<br />

59.<br />

61.<br />

(a)<br />

10 11 10 log 1011<br />

10 12 10 log 101 10 decibels<br />

(c) 10 4 10 log 104<br />

10 12 10 log 108 80 decibels<br />

10 log I<br />

<br />

10<br />

log I<br />

I 0<br />

10 10 10 log II 0<br />

10 10 I<br />

I 0<br />

I 0<br />

I I 0 10 10<br />

% decrease I 0 109.3 I 0 10 8.0<br />

I 010 9.3<br />

100 95%<br />

pH logH 58.<br />

log2.3 10 5 4.64<br />

5.8 logH 60.<br />

5.8 logH <br />

10 5.8 10 logH <br />

10 5.8 H <br />

H 1.58 10 6 mole per liter<br />

2.9 logH 62.<br />

2.9 logH <br />

H 10 2.9 for the apple juice<br />

8.0 logH <br />

8.0 logH <br />

H 10 8 for the drinking water<br />

102.9 8 105.1<br />

10<br />

times the hydrogen ion<br />

concentration of drinking water<br />

T 70<br />

63. t 10 ln<br />

98.6 70<br />

At 9:00 A.M. we have:<br />

85.7 70<br />

t 10 ln 6 hours<br />

98.6 70<br />

From this you can conclude that the person died at 3:00 A.M.<br />

56.<br />

(b)<br />

10 2 10 log 102<br />

10 12 10 log 1014 140 decibels<br />

(d) 10 2 10 log 102<br />

10 12 10 log 1010 100 decibels<br />

10 log 10 I<br />

10 10 I<br />

I 0<br />

I I 010 10<br />

I 0<br />

% decrease I 0 108.8 I 0 10 7.2<br />

I 0 10 8.8<br />

pH logH <br />

log11.3 10 6 4.95<br />

3.2 logH <br />

10 3.2 H <br />

H 6.3 10 4<br />

pH 1 logH <br />

pH 1 logH <br />

10 pH1 H <br />

10 pH1 H <br />

10 pH 10 H <br />

mole per liter<br />

100 97%<br />

The hydrogen ion concentration is increased by<br />

a factor of 10.


64. Interest:<br />

65.<br />

Principal:<br />

(a)<br />

P 120,000, t 35, r 0.075, M 809.39<br />

800<br />

0<br />

0<br />

Pr r<br />

u M M 1 12 12 12t<br />

Pr r<br />

v M 1 12 12 12t<br />

u<br />

v<br />

35<br />

(b) In the early years of the mortgage, the majority of the<br />

monthly payment goes toward interest. The principal<br />

<strong>and</strong> interest are nearly equal when t 26 years.<br />

u 120,000<br />

(a)<br />

150,000<br />

0<br />

0<br />

<br />

0.075t<br />

1<br />

1 12t<br />

1 1<br />

0.07512<br />

66. t1 40.757 0.556s 15.817 ln s<br />

t 2 1.2259 0.0023s 2<br />

(a) Linear model: t3 0.2729s 6.0143<br />

(b)<br />

24<br />

<strong>Exponential</strong> model: or<br />

t4 1.53851.0296s t4 1.5385e0.02913s 25<br />

20<br />

0<br />

(d) Model : t1 Model t2: Model : t3 Model : t4 t 2<br />

t4 t1 t3 100<br />

<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 313<br />

(c) P 120,000, t 20, r 0.075, M 966.71<br />

15.8 15.9 S 1 <br />

20 19.6 2.0<br />

3.4 3.6 5 4.6 7 6.7 9.3 9.4 12 12.5 <br />

15.8 15.9 S4 <br />

20 21.2 2.6<br />

3.4 3.7 5 4.9 7 6.6 9.3 8.9 S 3 <br />

15.8 15.8 20 18.5 5.6<br />

12 11.9 <br />

3.4 2.2 5 4.9 7 7.6 9.3 10.4 <br />

12 13.1 <br />

15.8 15.9 S 2 3.4 3.3 5 4.9 7 7 9.3 9.5 12 12.5 <br />

20 19.9 1.1<br />

The quadratic model, t2, best fits the data.<br />

800<br />

0<br />

0<br />

u<br />

v<br />

20<br />

The interest is still the majority of the monthly payment<br />

in the early years. Now the principal <strong>and</strong> interest are<br />

nearly equal when t 10.729 11 years.<br />

(b) From the graph, u $120,000 when t 21 years. It<br />

would take approximately 37.6 years to pay $240,000 in<br />

interest. Yes, it is possible to pay twice as much in interest<br />

charges as the size of the mortgage. It is especially likely<br />

when the interest rates are higher.<br />

(c)<br />

s 30 40 50 60 70 80 90<br />

t1 3.6 4.6 6.7 9.4 12.5 15.9 19.6<br />

t2 3.3 4.9 7.0 9.5 12.5 15.9 19.9<br />

t3 2.2 4.9 7.6 10.4 13.1 15.8 18.5<br />

t4 3.7 4.9 6.6 8.8 11.8 15.8 21.2<br />

Note: Table values will vary slightly depending on the<br />

model used for t 4 .


314 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

67. False. The domain can be the set of real numbers for a<br />

logistic growth function.<br />

68. False. A logistic growth function never has an x-intercept.<br />

69. False. The graph of f x is the graph of gx shifted<br />

70. True. Powers of e are always positive, so if a > 0, a<br />

upward five units.<br />

Gaussian model will always be greater than 0, <strong>and</strong> if<br />

a < 0, a Gaussian model will always be less than 0.<br />

71. (a) <strong>Logarithmic</strong><br />

73.<br />

(b) Logistic<br />

(c) <strong>Exponential</strong> (decay)<br />

(d) Linear<br />

(e) None of the above (appears to be a combination<br />

of a linear <strong>and</strong> a quadratic)<br />

(f) <strong>Exponential</strong> (growth)<br />

1, 2, 0, 5 74.<br />

(a)<br />

(b)<br />

−3 −2 −1 1 2 3<br />

−1<br />

d 0 1 2 5 2 2 1 2 3 2 10<br />

(c) Midpoint:<br />

(d) m <br />

(b)<br />

(−1, 2)<br />

3<br />

2<br />

1<br />

y<br />

5 (0, 5)<br />

<br />

1 0<br />

,<br />

2<br />

2 5<br />

5 2 3<br />

3<br />

0 1 1<br />

−2<br />

−2<br />

−4<br />

−6<br />

−8<br />

2 4 6 8 10 14<br />

(14, −2)<br />

d 14 3 2 2 3 2<br />

(c) Midpoint:<br />

(d) m <br />

11 2 5 2 146<br />

<br />

3 14<br />

,<br />

2<br />

3 2<br />

2 3<br />

14 3 5<br />

11<br />

x<br />

2 1 7<br />

,<br />

2 2<br />

x<br />

2<br />

17<br />

2<br />

1<br />

,<br />

2<br />

72. Answers will vary.<br />

4, 3, 6, 1<br />

(a)<br />

(b)<br />

(−6, 1)<br />

−6 −4<br />

2 4 6<br />

−2<br />

−4<br />

−6<br />

(4, −3)<br />

d 6 4 2 1 3 2<br />

(c) Midpoint:<br />

(d) m <br />

75. 3, 3, 14, 2 76. 10, 4, 7, 0<br />

(a)<br />

y<br />

(a)<br />

y<br />

8<br />

6<br />

4<br />

2<br />

(3, 3)<br />

(b)<br />

6<br />

4<br />

2<br />

y<br />

100 16 116 229<br />

6<br />

4<br />

2<br />

−2<br />

−2<br />

−4<br />

−6<br />

(c) Midpoint:<br />

(d) m <br />

<br />

6 4<br />

,<br />

2<br />

3 1<br />

3 1 4<br />

<br />

4 6 10 2<br />

5<br />

2<br />

4 6 8 10<br />

d 10 7 2 4 0 2<br />

9 16 25 5<br />

<br />

(7, 0)<br />

4 0 4<br />

<br />

10 7 3<br />

(10, 4)<br />

7 10<br />

,<br />

2<br />

0 4<br />

x<br />

2 1, 1<br />

x<br />

2 17<br />

2<br />

, 2


77. <br />

(a)<br />

1<br />

, 1<br />

2<br />

79.<br />

81.<br />

83.<br />

(b)<br />

1<br />

−<br />

2<br />

d 3 1<br />

<br />

4<br />

(c) Midpoint:<br />

(d) m <br />

Line<br />

4 , 3<br />

4<br />

1<br />

1<br />

2<br />

1<br />

−<br />

2<br />

, 0<br />

78.<br />

y<br />

1<br />

4 2<br />

1<br />

4 2<br />

<br />

(( , −<br />

1<br />

2<br />

1<br />

4<br />

3<br />

4<br />

2 2<br />

(( , 0<br />

0 1<br />

1<br />

8<br />

12 34<br />

,<br />

2<br />

14 0<br />

0 14 14<br />

1<br />

34 12 14<br />

Slope: m 3<br />

y-intercept: 0, 10<br />

1<br />

x<br />

4 2<br />

2<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−2 −2<br />

2<br />

6<br />

5<br />

8<br />

8<br />

, 1<br />

8<br />

y 10 3x y<br />

80.<br />

10 12<br />

y 2x y<br />

2 3 82.<br />

y 2x 0 2 3<br />

Parabola<br />

Vertex: 0, 3<br />

−6<br />

2<br />

−2<br />

−2<br />

3x y<br />

2 4y 0 84.<br />

Parabola<br />

Vertex:<br />

Focus:<br />

Directrix: y 1<br />

0,<br />

3<br />

1<br />

x<br />

0, 0<br />

3<br />

2 4<br />

3 y<br />

3x 2 4y<br />

−4<br />

−4 −3 −2 −1<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1<br />

2<br />

2<br />

4<br />

3<br />

6<br />

4<br />

x<br />

x<br />

x<br />

Section 3.5 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> Models 315<br />

<br />

y<br />

(a)<br />

7 1<br />

,<br />

3 6 , 2, 1<br />

3<br />

(b)<br />

−1 1 2 3<br />

2<br />

−<br />

3<br />

1<br />

3<br />

(( , −<br />

d 2<br />

7<br />

<br />

3<br />

(c) Midpoint:<br />

<br />

(d) m <br />

Line<br />

2<br />

1<br />

−2<br />

3<br />

(( ,<br />

7<br />

3<br />

32 1<br />

2 2<br />

9.25<br />

23 73<br />

,<br />

2<br />

13 16<br />

y 4x 1<br />

1<br />

6<br />

3 2<br />

1 1<br />

<br />

3 6 2<br />

2<br />

13 16 12 1<br />

<br />

23 73 3 6<br />

Slope: m 4<br />

y-intercept: 0, 1<br />

y 2x 2 7x 30<br />

2x 5x 6<br />

2x 7<br />

4 2 289<br />

8<br />

Parabola<br />

Vertex:<br />

7 4 , 289 8 <br />

x-intercepts: 5<br />

2 , 0, 6, 0<br />

x 2 8y 0<br />

Parabola<br />

Vertex: 0, 0<br />

Focus:<br />

x 2 8y<br />

0, 2<br />

Directrix: y 2<br />

x<br />

5<br />

3<br />

2<br />

−3 −2 −1<br />

−1<br />

−2<br />

−3<br />

y<br />

1<br />

, <br />

6 12<br />

−4 2 4 8<br />

−5<br />

−6<br />

−30<br />

−35<br />

−4<br />

y<br />

2<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

y<br />

1<br />

2<br />

4<br />

3<br />

6<br />

x<br />

x<br />

x


316 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

85.<br />

87.<br />

89.<br />

91.<br />

y <br />

Vertical asymptote: x <br />

Horizontal asymptote: y 0<br />

1<br />

3<br />

−3<br />

4<br />

1 3x<br />

−2<br />

3<br />

1<br />

y<br />

−1<br />

−1<br />

−2<br />

−3<br />

x 2 y 8 2 25<br />

Circle<br />

Center: 0, 8<br />

Radius: 5<br />

f x 2 x1 5<br />

Horizontal asymptote:<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y<br />

−6 −4 −2 2 4 6 8 10<br />

1<br />

2<br />

x<br />

y 5<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−8 −6 −4 −2<br />

x 5 3 1 0 1 3 5<br />

f x<br />

f x 3 x 4<br />

5.02 5.06 5.3 5.5 6 9 21<br />

Horizontal asymptote: y 4<br />

x<br />

x 4 2 1 0 1 2<br />

f x<br />

3.99 3.89 3.67 3 1 5<br />

y<br />

2<br />

4<br />

6<br />

8<br />

x<br />

86.<br />

88.<br />

90.<br />

y <br />

Vertical asymptote: x 2<br />

x2<br />

4<br />

x 2 <br />

x 2 x 2<br />

Slant asymptote:<br />

10<br />

−8 −6 −4<br />

4<br />

Parabola<br />

Vertex:<br />

P 1<br />

4<br />

Focus:<br />

Directrix: y 2.75<br />

8<br />

6<br />

4<br />

2<br />

4, 3<br />

y<br />

4, 3.25<br />

y x 2<br />

x 4 2 y 7 4<br />

f x 2 x1 1<br />

Horizontal asymptote:<br />

−2<br />

2<br />

−4<br />

−6<br />

−8<br />

−10<br />

x 4 2 y 7 4<br />

x 4 2 y 3<br />

y<br />

x<br />

x<br />

y 1<br />

−2 2 4 6 8<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

x 2 1 0 1 2<br />

f x<br />

3<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−6 −5 −4 −3 −2 −1<br />

−2<br />

−3<br />

−5<br />

y<br />

2<br />

2<br />

3<br />

4<br />

3<br />

2<br />

x<br />

5<br />

4<br />

y<br />

9<br />

8<br />

x


92.<br />

f x 3 x 4<br />

Horizontal asymptote: y 4<br />

x 2 1 0 1 2<br />

f x<br />

3 8<br />

9<br />

3 2<br />

3<br />

93. Answers will vary.<br />

3 1 5<br />

Review Exercises for Chapter 3<br />

1.<br />

4.<br />

7.<br />

f x 6.1 x 2.<br />

f 2.4 6.1 2.4 76.699<br />

f x 1278 x5<br />

f 1 1278 15 4.181<br />

fx 4 x 8.<br />

Intercept:<br />

0, 1<br />

Horizontal asymptote: x-axis<br />

Increasing on: , <br />

Matches graph (c).<br />

5<br />

2<br />

1<br />

−5 −4 −3 −2 −1<br />

−2<br />

−3<br />

−4<br />

−5<br />

5.<br />

y<br />

1 2 3 4 5<br />

f 3 30 3 361.784<br />

x<br />

f x 30 x 3.<br />

1456.529<br />

Review Exercises for Chapter 3 317<br />

f x 2 0.5x<br />

f 2 0.5 0.337<br />

f 11 70.211 f x 70.2<br />

<br />

x 6.<br />

f 0.8 1450.8 f x 145<br />

3.863<br />

x fx 4 x 9.<br />

Intercept:<br />

0,1<br />

Horizontal asymptote: y 0<br />

Decreasing on: , <br />

Matches graph (d).<br />

fx 4 x<br />

Intercept:<br />

0, 1<br />

Horizontal asymptote: x-axis<br />

Decreasing on: , <br />

Matches graph (a).<br />

10. fx 4<br />

Intercept: 0, 2<br />

Horizontal asymptote: y 1<br />

Increasing on: , <br />

Matches graph (b).<br />

x 1 11.<br />

gx 5<br />

Since gx fx 1, the graph<br />

of g can be obtained by shifting<br />

the graph of f one unit to the right.<br />

x1<br />

fx 5x 12. f x 4<br />

Because gx fx 3, the<br />

graph of g can be obtained by<br />

shifting the graph of f three units<br />

downward.<br />

x , gx 4x 3<br />

13.<br />

15.<br />

fx 1 2 x<br />

gx 1<br />

2 x2<br />

Since gx fx 2, the graph of g can be obtained<br />

by reflecting the graph of f about the x-axis <strong>and</strong> shifting<br />

f two units to the left.<br />

f x 4 x 4<br />

Horizontal asymptote: y 4<br />

x 1 0 1 2 3<br />

f x<br />

8 5 4.25 4.063 4.016<br />

−4<br />

−2<br />

8<br />

2<br />

y<br />

f x 2 3 x<br />

, gx 8 2 3 x<br />

14.<br />

Because gx fx 8, the graph of g can be<br />

obtained by reflecting the graph of f in the x-axis <strong>and</strong><br />

shifting the graph of f eight units upward.<br />

2<br />

4<br />

x


318 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

16.<br />

18.<br />

20.<br />

f x 4 x 3<br />

Horizontal asymptote:<br />

−6 −5 −4 −3 −2 −1<br />

1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

y<br />

1<br />

2<br />

3<br />

y 3<br />

x 2 1 0 1 2<br />

f x<br />

f x 2.65 x1<br />

3.063 3.25 4 7 19<br />

Horizontal asymptote:<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

1<br />

2<br />

3<br />

x<br />

y 0<br />

x 3 1 0 1 3<br />

f x<br />

f x 2 x6 5<br />

0.020 0.142 0.377 1 7.023<br />

Horizontal asymptote:<br />

6<br />

4<br />

2<br />

y<br />

−2 2 4 6 10<br />

−2<br />

−4<br />

−6<br />

x<br />

y 5<br />

x 0 5 6 7 8 9<br />

f x<br />

4.984 4.5 4 3 1 3<br />

x<br />

17.<br />

19.<br />

21.<br />

f x 2.65 x1<br />

Horizontal asymptote:<br />

−6 −3 3 6 9<br />

−3<br />

−6<br />

−9<br />

−12<br />

−15<br />

y<br />

y 0<br />

x 2 1 0 1 2<br />

f x<br />

0.377<br />

f x 5 x2 4<br />

1<br />

Horizontal asymptote:<br />

−4<br />

−2<br />

8<br />

6<br />

2<br />

y<br />

2<br />

4<br />

2.65<br />

x<br />

x<br />

y 4<br />

x 1 0 1 2 3<br />

f x<br />

4.008<br />

4.04<br />

4.2<br />

f x 1 2 x<br />

3 2x 3<br />

Horizontal asymptote:<br />

−4<br />

−2<br />

8<br />

6<br />

2<br />

y<br />

2<br />

y 3<br />

x 2<br />

1 0 1 2<br />

f x<br />

3.25<br />

3.5<br />

4 5 7<br />

4<br />

x<br />

5 9<br />

7.023<br />

18.61


22.<br />

23.<br />

f x 1 8 x2<br />

5<br />

Horizontal asymptote: y 5<br />

x 3 2 1 0 2<br />

f x<br />

3 x2 1<br />

9<br />

3 x2 3 2<br />

x 2 2<br />

x 4<br />

3 4 4.875 4.984 5<br />

24.<br />

1 3 x2<br />

1 3 x2<br />

1 3 x2<br />

1 3 4<br />

x 2 4<br />

x 2<br />

−4<br />

81 25.<br />

3 4<br />

2<br />

−2<br />

−4<br />

−6<br />

y<br />

2<br />

4<br />

5x 7 15<br />

5x 22<br />

x 22<br />

5<br />

Review Exercises for Chapter 3 319<br />

x<br />

e 5x7 e 15 26.<br />

e 82x e 3<br />

8 2x 3<br />

2x 11<br />

x 11<br />

2<br />

27. e 8 2980.958 28. e 58 1.868 29. e 1.7 0.183 30. e 0.278 1.320<br />

31.<br />

33.<br />

hx e x2<br />

x 2 1 0 1 2<br />

hx<br />

2.72 1.65 1 0.61 0.37<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

−4 −3 −2 −1 1 2 3 4<br />

y<br />

f x e x2<br />

x 3 2 1 0 1<br />

f x<br />

0.37<br />

−6 −5 −4 −3 −2 −1 1 2<br />

7<br />

6<br />

2<br />

1<br />

x<br />

1 2.72 7.39 20.09<br />

y<br />

x<br />

32.<br />

34.<br />

hx 2 e x2<br />

x 2 1 0 1 2<br />

y 0.72 0.35 1 1.39 1.63<br />

3<br />

−4 −3 −1 1 2 3 4<br />

−2<br />

−3<br />

−4<br />

−5<br />

st 4e 2t , t > 0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

1<br />

2<br />

y<br />

t 1 2 3 4<br />

y 0.07 0.54 1.47 2.05 2.43<br />

1 2 3 4 5<br />

x<br />

t


320 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

0.065<br />

35. A 35001 <br />

n 10n<br />

or A 3500e0.06510 n 1 2 4 12 365<br />

Continuous<br />

Compounding<br />

A $6569.98 $6635.43 $6669.46 $6692.64 $6704.00 $6704.39<br />

0.05<br />

36. A 20001 <br />

n 30n<br />

or A 2000e0.0530 n 1 2 4 12 365 Continuous<br />

A $8643.88 $8799.58 $8880.43 $8935.49 $8962.46 $8963.38<br />

37.<br />

(a) F (b) F2 0.487 (c) F5 0.811<br />

1<br />

Ft) 1 e<br />

2 0.154<br />

t3<br />

38.<br />

40.<br />

41.<br />

44.<br />

Vt 14,0003 4 t<br />

(a)<br />

15,000<br />

0<br />

0<br />

10<br />

(b) V2 14,000<br />

(c) According to the model, the car depreciates most<br />

rapidly at the beginning. Yes, this is realistic.<br />

3<br />

4 2 $7875<br />

Q 1001 2 t14.4<br />

39. (a)<br />

A 50,000e 0.087535 $1,069,047.14<br />

(b) The doubling time is<br />

ln 2<br />

7.9 years.<br />

0.0875<br />

(a) For grams (b) For t 10: Q 100 grams<br />

1<br />

1<br />

t 0: Q 100<br />

(c)<br />

Mass of 241 Pu (in grams)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Q<br />

log 4 64 3<br />

t<br />

20 40 60 80 100<br />

Time (in years)<br />

2 014.4 100<br />

4 3 64 42.<br />

e 0 1 45.<br />

ln 1 0<br />

log25 125 3<br />

25<br />

2<br />

32 125 43.<br />

f 1000 log 1000<br />

log 10 3 3<br />

2 1014.4 61.79<br />

e 0.8 2.2255 . . .<br />

ln 2.2255 . . . 0.8<br />

f x log x 46. log 9 3 log 9 9 12 1<br />

2


47.<br />

50.<br />

g1 8 log21 8 log2 23 gx log2 x<br />

3<br />

3x 10 5<br />

3x 15<br />

x 5<br />

48.<br />

log 83x 10 log 8 5 51.<br />

53. gx log7 x ⇒ x 7<br />

Domain: 0, <br />

y<br />

55.<br />

x-intercept:<br />

1, 0<br />

Vertical asymptote: x 0<br />

x 1 7 49<br />

gx<br />

1<br />

7<br />

1<br />

f x log<br />

Domain: 0, <br />

x<br />

3<br />

x-intercept:<br />

3, 0<br />

Vertical asymptote:<br />

x 0<br />

0 1 2<br />

x 0.03 0.3 3 30<br />

f x<br />

2<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−2 −1<br />

−1<br />

−2<br />

⇒ x<br />

3 10y ⇒ x 310 y <br />

1<br />

57. f x 4 logx 5<br />

Domain: 5, <br />

x-intercept:<br />

9995, 0<br />

0 1<br />

3<br />

2<br />

1<br />

−1<br />

−1<br />

−2<br />

−3<br />

Since 4 logx 5 0 ⇒ logx 5 4<br />

Vertical asymptote: x 5<br />

y<br />

1<br />

2<br />

f 1 4 log4 1<br />

fx log4 x 49.<br />

4 1<br />

2<br />

lnx 9 ln 4 52.<br />

3<br />

x 5 10 4<br />

x 10 4 5 9995.<br />

3<br />

x 9 4<br />

4<br />

4<br />

x 5<br />

5<br />

x<br />

x<br />

54. gx log5 x ⇒ 5<br />

Domain: 0, <br />

y x<br />

log 5 x 0<br />

x 5 0<br />

x 1<br />

x-intercept:<br />

Vertical asymptote: x 0<br />

Review Exercises for Chapter 3 321<br />

1, 0<br />

log 4x 7 log 4 14<br />

x 7 14<br />

x 7<br />

ln2x 1 ln11<br />

2x 1 11<br />

x 1 5 25<br />

gx<br />

1<br />

25<br />

1<br />

5<br />

56. f x 6 log x<br />

Domain: 0, <br />

6 log x 0<br />

x-intercept:<br />

2 1 0 1 2<br />

log x 6<br />

x 10 6<br />

x 0.000001<br />

0.000001, 0<br />

Vertical asymptote: x 0<br />

2x 12<br />

x 6<br />

3<br />

2<br />

1<br />

−1 1 2 3 4 5<br />

−1<br />

−2<br />

−3<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−2<br />

−2<br />

x 1 2 4 6 8 10<br />

f x<br />

x 4<br />

3 2 1 0 1<br />

f x<br />

4 3.70 3.52 3.40 3.30 3.22<br />

6 6.3 6.6 6.8 6.9 7<br />

−6<br />

y<br />

y<br />

2<br />

−4 −3 −2 −1<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

4<br />

1<br />

6<br />

2<br />

8<br />

x<br />

10<br />

x<br />

x


322 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

58. f x logx 3 1<br />

Domain: 3, <br />

logx 3 1 0<br />

logx 3 1<br />

x-intercept:<br />

x 3 10 1<br />

x 3.1<br />

3.1, 0<br />

Vertical asymptote: x 3<br />

x 4 5 6 7 8<br />

f x<br />

1 1.3 1.5 1.6 1.7<br />

59. ln 22.6 3.118 60. ln 0.98 0.020 61. ln e 12 12<br />

62. ln e7 7 63. ln7 5 2.034 64. ln 3<br />

8 1.530<br />

65. fx ln x 3<br />

Domain: 0, <br />

x-intercept:<br />

ln x 3 0<br />

ln x 3<br />

x e 3<br />

e 3 , 0<br />

Vertical asymptote: x 0<br />

x 1 2 3<br />

f x<br />

1<br />

2<br />

3 3.69 4.10 2.31 1.61<br />

67. hx lnx<br />

Domain: , 0 0,<br />

x-intercepts: ±1, 0<br />

2 2 lnx 69.<br />

Vertical asymptote: x 0<br />

x<br />

±0.5<br />

±1<br />

±2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−1 1 2 3 4 5<br />

1<br />

4<br />

−4 −3 −2 −1<br />

±3<br />

±4<br />

4<br />

3<br />

2<br />

1<br />

−3<br />

−4<br />

y 1.39 0 1.39 2.20 2.77<br />

h 116 loga 40 176 70.<br />

h55 116 log55 40 176<br />

53.4 inches<br />

y<br />

1<br />

2<br />

3<br />

4<br />

x<br />

s 25 <br />

27.16 miles<br />

x<br />

13 ln1012<br />

ln 3<br />

66. fx lnx 3<br />

Domain: 3, <br />

lnx 3 0<br />

x 3 e 0<br />

x-intercept:<br />

x 4<br />

4, 0<br />

−1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

−4<br />

−5<br />

Vertical asymptote: x 3<br />

x 3.5 4 4.5 5 5.5<br />

y 0.69 0 0.41 0.69 0.92<br />

68. fx <br />

Domain: 0, <br />

1<br />

4 ln x<br />

1<br />

4 ln x 0<br />

ln x 0<br />

x e 0<br />

x 1<br />

x-intercept:<br />

Vertical asymptote: x 0<br />

1<br />

2<br />

1, 0<br />

3<br />

2<br />

y<br />

1<br />

2<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

y<br />

4<br />

4<br />

2<br />

−2<br />

−4<br />

y<br />

5<br />

6<br />

7<br />

8<br />

9<br />

2 4 6 8<br />

1 2 3 4 5 6<br />

x 1 2 3<br />

y 0.17 0 0.10 0.17 0.23 0.27<br />

71.<br />

log 4 9 <br />

log 4 9 <br />

5<br />

2<br />

log 9<br />

1.585<br />

log 4<br />

ln 9<br />

1.585<br />

ln 4<br />

x<br />

x<br />

x


72.<br />

75.<br />

77.<br />

80.<br />

83.<br />

85.<br />

log 12 200 <br />

log 12 200 <br />

1.255<br />

log 200<br />

log 12<br />

ln 200<br />

ln 12<br />

2.132 73.<br />

2.132<br />

log 2 2 log 3<br />

log 12 5 <br />

log 12 5 <br />

log 5<br />

2.322 74.<br />

log12<br />

ln 5<br />

2.322<br />

ln12<br />

log 18 log2 3 2 76.<br />

ln 20 ln2 2 5<br />

2 ln 2 ln 5 2.996<br />

log 10 7x 4 log 7 log x 4 81.<br />

log 7 4 log x<br />

2 ln x 2 ln y ln z<br />

3.585<br />

Review Exercises for Chapter 3 323<br />

log 3 0.28 <br />

log 3 0.28 <br />

log 0.28<br />

log 3<br />

ln 0.28<br />

ln 3<br />

log 2 1<br />

12 log 2 1 log 2 12 0 log2 2 3<br />

2 log 2 2 2 log 2 3 2 <br />

1.159<br />

1.159<br />

log 3<br />

log 2<br />

78. ln 3e4 ln 3 ln e4 79. log5 5x2 log5 5 log5 x2 ln 3 4<br />

2.90<br />

ln x 2 y 2 z ln x 2 ln y 2 ln z 84.<br />

lnx 3 ln x ln y<br />

lnx 3 ln x ln y<br />

log 3 6<br />

3<br />

x log 3 6 log 3 3 x 82.<br />

log 33 2 log 3 x 13<br />

log 3 3 log 3 2 1<br />

3 log 3 x<br />

1 log 3 2 1<br />

3 log 3 x<br />

x 3<br />

ln xy lnx 3 ln xy 86.<br />

ln 3xy 2 ln 3 ln x ln y 2<br />

ln 3 ln x 2 ln y<br />

y 1<br />

ln 4 2 y 1<br />

2 ln 4 <br />

1 2 log 5 x<br />

log 7 x<br />

4 log 7 x log 7 4<br />

2 lny 1 2 ln 4<br />

log 7 x 12 log 7 4<br />

1<br />

2 log 7 x log 7 4<br />

2 lny 1 ln 16, y > 1<br />

87. log2 5 log2 x log2 5x 88. log6 y 2 log6 z log6 y log6 z2 y<br />

89. ln x 1<br />

4 ln y ln x ln 4 y ln x<br />

4<br />

91.<br />

1<br />

3 log 8x 4 7 log 8 y log 8 3 x 4 log8 y 7 92.<br />

log 8y 7 3 x 4<br />

log 6 y<br />

z 2<br />

90. 3 ln x 2 lnx 1 ln x3 lnx 12 ln x 3 x 1 2<br />

2 log x 5 logx 6 log x 2 logx 6 5<br />

x<br />

log<br />

2<br />

x 65 1<br />

log<br />

x2x 65


324 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

93.<br />

94. 5 lnx 2 lnx 2 3 ln x lnx 25 lnx 2 ln x3 95. t 50 log<br />

(a) Domain: 0 ≤ h < 18,000<br />

18,000<br />

18,000 h<br />

(b)<br />

100<br />

0 20,000<br />

0<br />

Vertical asymptote: h 18,000<br />

96. Using a calculator gives<br />

100.<br />

104.<br />

108.<br />

1<br />

ln2x 1 2 lnx 1 ln2x 1 lnx 12<br />

2<br />

s 84.66 11 ln t.<br />

e x 6 101.<br />

ln e x ln 6<br />

x ln 6 1.792<br />

ln x 3 105.<br />

x e 3 0.0498<br />

e 3x2 40<br />

ln e 3x2 ln 40<br />

3x 2 ln 40<br />

x <br />

ln 40 2<br />

3<br />

2x 1<br />

ln<br />

x 12 lnx 2 5 lnx 2 ln x 3 <br />

lnx 2 5 ln x 3 x 2<br />

x 25<br />

ln<br />

x3x 2<br />

97. 8 x 512 98.<br />

8 x 8 3<br />

x 3<br />

log 4 x 2 102.<br />

x 4 2 16<br />

ln e x ln12<br />

14e 3x2 560 109.<br />

0.563<br />

e x 12 106.<br />

x ln 12 2.485<br />

(c) As the plane approaches its absolute ceiling, it climbs at<br />

a slower rate, so the time required increases.<br />

18,000<br />

(d) 50 log<br />

5.46 minutes<br />

18,000 4000<br />

6 x 1<br />

216<br />

6 x 6 3<br />

x 3<br />

6 log 6 x 6 1<br />

x 1<br />

6<br />

99.<br />

e x 3<br />

x ln 3<br />

log6 x 1 103. ln x 4<br />

e 3x 25 107.<br />

ln e 3x ln 25<br />

3x ln 25<br />

x <br />

ln 25<br />

3<br />

1.073<br />

2 x 13 35 110.<br />

2 x 22<br />

x log 2 22<br />

<br />

log 22<br />

log 2<br />

x 4.459<br />

or ln 22<br />

ln 2<br />

6 x 28 8<br />

6 x 20<br />

x <br />

x e 4<br />

e 4x e x2 3<br />

4x x 2 3<br />

log 6 6 x log 6 20<br />

0 x 2 4x 3<br />

0 x 1x 3<br />

x 1 or x 3<br />

x log 6 20<br />

ln 20<br />

ln 6<br />

1.672


111.<br />

113.<br />

115.<br />

117.<br />

45 x 68 112.<br />

5 x 17<br />

ln 5 x ln 17<br />

x ln 5 ln 17<br />

x <br />

e 2x 7e x 10 0 114.<br />

e x 2e x 5 0<br />

e x 2 or e x 5<br />

ln e x ln 2 ln e x ln 5<br />

x ln 2 0.693 x ln 5 1.609<br />

2 10<br />

0.6x 3x 0 116.<br />

Graph y1 2 .<br />

0.6x 3x<br />

The x-intercepts are at<br />

x 0.392 <strong>and</strong> at x 7.480.<br />

Graph y1 25e <strong>and</strong><br />

y2 12.<br />

0.3x<br />

The graphs intersect at<br />

x 2.447.<br />

−10<br />

25e 16<br />

0.3x 12 118.<br />

e ln 3x e 8.2<br />

3x e 8.2<br />

x e8.2<br />

3<br />

1213.650<br />

−6<br />

−2<br />

−10<br />

10<br />

18<br />

5x e 7.2<br />

x e7.2<br />

5<br />

267.886<br />

e 2x 6e x 8 0<br />

e x 2e x 4 0<br />

e x 2 or e x 4<br />

x ln 2 x ln 4<br />

Review Exercises for Chapter 3 325<br />

x 0.693 x 1.386<br />

4 0.2x x 0<br />

Graph y1 4 .<br />

0.2x x<br />

The x-intercepts are at<br />

x 7.038 <strong>and</strong> at<br />

x 1.527.<br />

4e 1.2x 9<br />

Graph y1 4e <strong>and</strong> y2 9.<br />

1.2x<br />

The graphs intersect at<br />

x 0.676.<br />

119. ln 3x 8.2 120. ln 5x 7.2 121. 2 ln 4x 15<br />

ln 3x 15<br />

4<br />

ln 17<br />

ln 5<br />

3x e 154<br />

x e154<br />

3<br />

1.760<br />

14.174<br />

ln x<br />

2<br />

3<br />

e lnx3 e 2<br />

x<br />

e2<br />

3<br />

x 3e 2 22.167<br />

212 x 190<br />

12 x 95<br />

ln 12 x ln 95<br />

x ln 12 ln 95<br />

122. 4 ln 3x 15 123. ln x ln 3 2 124.<br />

x <br />

ln 95<br />

1.833<br />

ln 12<br />

−12 6<br />

−6<br />

ln 4x 15<br />

2<br />

e ln 4x e 7.5<br />

4x e 7.5<br />

12<br />

−2<br />

9<br />

−3<br />

x 1<br />

4 e7.5 452.011<br />

lnx 8 3<br />

1<br />

lnx 8 3<br />

2<br />

lnx 8 6<br />

x 8 e 6<br />

x e 6 8 395.429<br />

6


326 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

125.<br />

127.<br />

129.<br />

log 8x 1 log 8x 2 log 8x 2 128.<br />

log 8x 1 log 8 x 2<br />

x 2<br />

x 1 <br />

x 1x 2 x 2<br />

x 2 x 2 x 2<br />

x 2 0<br />

x 0<br />

x 2<br />

x 2<br />

Since x 0 is not in the domain of log8x 1 or of<br />

log8x 2, it is an extraneous solution. The equation<br />

has no solution.<br />

log1 x 1 130.<br />

1 x 10 1<br />

1 1<br />

10 x<br />

x 0.900<br />

log 6x 2 log 6 x log 6x 5<br />

log 6 x 2<br />

x log 6x 5<br />

x 2<br />

x 5<br />

x<br />

x 2 x 2 5x<br />

0 x 2 4x 2<br />

x 2 ± 6, Quadratic Formula<br />

Only x 2 6 0.449 is a valid solution.<br />

logx 4 2<br />

x 4 10 2<br />

x 100 4<br />

x 104<br />

131. 2 lnx 3 3x 8 132.<br />

Graph y1 2 lnx 3 3x <strong>and</strong> y2 8.<br />

Graph y1 6 logx2 6 logx<br />

1 x.<br />

2 1 x 0<br />

133.<br />

lnx 1 2 126. ln x ln 5 4<br />

1<br />

lnx 1 2<br />

2<br />

10<br />

−9 9<br />

−2<br />

(1.64, 8)<br />

The graphs intersect at approximately 1.643, 8.<br />

The solution of the equation is x 1.643.<br />

Graph y1 4 lnx 5 x <strong>and</strong> y2 10.<br />

−6<br />

lnx 1 4<br />

e lnx1 e 4<br />

x 1 e 4<br />

4 lnx 5 x 10<br />

11<br />

−1<br />

x e 4 1 53.598<br />

12<br />

The graphs do not intersect. The equation has no solution.<br />

ln x<br />

4<br />

5<br />

12<br />

−8 16<br />

−4<br />

x<br />

e4<br />

5<br />

x 5e 4 272.991<br />

The x-intercepts are at x 0, x 0.416, <strong>and</strong> x 13.627.


134.<br />

136.<br />

138.<br />

x 2 logx 4 0 135.<br />

Let y1 x 2 logx 4.<br />

12<br />

−8 16<br />

−4<br />

The x-intercepts are at x 3.990 <strong>and</strong> x 1.477.<br />

283 93 logd 65<br />

218 93 logd<br />

logd 218<br />

93<br />

d 10 21893 220.8 miles<br />

37550 7550e 0.0725t<br />

3 e 0.0725t<br />

ln 3 ln e 0.0725t<br />

ln 3 0.0725t<br />

S 93 logd 65 137. y 3e2x3 y 4e 2x3 139.<br />

<strong>Exponential</strong> growth model<br />

Matches graph (b).<br />

t <br />

Review Exercises for Chapter 3 327<br />

ln 3<br />

15.2 years<br />

0.0725<br />

<strong>Exponential</strong> decay model<br />

Matches graph (e).<br />

y lnx 3<br />

<strong>Logarithmic</strong> model<br />

Vertical asymptote: x 3<br />

Graph includes 2, 0<br />

Matches graph (f).<br />

140. y 7 logx 3 141. y 2e<br />

<strong>Logarithmic</strong> model<br />

Gaussian model<br />

Vertical asymptote:<br />

Matches graph (d).<br />

x 3<br />

Matches graph (a).<br />

x423 142.<br />

6<br />

y <br />

1 2e<br />

Logistics growth model<br />

Matches graph (c).<br />

2x<br />

143.<br />

y ae bx 144.<br />

2 ae b0 ⇒ a 2<br />

3 2e b4<br />

1.5 e 4b<br />

ln 1.5 4b ⇒ b 0.1014<br />

Thus, y 2e 0.1014x .<br />

y ae bx<br />

1<br />

2 aeb0 ⇒ a 1<br />

2<br />

5 1<br />

2 eb5<br />

10 e 5b<br />

ln 10 5b<br />

ln 10<br />

b<br />

5<br />

b 0.4605<br />

y 1<br />

2 e0.4605x


328 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

145.<br />

147. (a)<br />

P 3499e 0.0135t 146.<br />

4.5 million 4500 thous<strong>and</strong><br />

4500 3499e 0.0135t<br />

4500<br />

e0.0135t<br />

3499<br />

ln 4500<br />

0.0135t<br />

3499<br />

t ln45003499<br />

0.0135<br />

18.6 years<br />

According to this model, the population of South<br />

Carolina will reach 4.5 million during the year 2008.<br />

(b)<br />

13.8629%<br />

A 10,000e 0.138629<br />

$11,486.98<br />

157<br />

150. N <br />

1 5.4e<br />

(a) When N 50:<br />

0.12t<br />

50 <br />

1 5.4e 0.12t 157<br />

50<br />

5.4e 0.12t 107<br />

50<br />

e 0.12t 107<br />

270<br />

0.12t ln 107<br />

270<br />

157<br />

1 5.4e 0.12t<br />

t ln107270<br />

0.12<br />

7.7 weeks<br />

k ln710<br />

3<br />

The population one year ago:<br />

N4 2000e 0.118894<br />

1243 bats<br />

y Ce kt<br />

1<br />

C Ce250,000k<br />

2<br />

ln 1<br />

ln e250,000k<br />

2<br />

ln 1<br />

250,000k<br />

2<br />

k ln12<br />

250,000<br />

When t 5000, we have<br />

y Ce ln12250,0005000 0.986C 98.6%C.<br />

After 5000 years, approximately 98.6% of the<br />

radioactive uranium II will remain.<br />

2 e<br />

ln 2 5r<br />

ln 2<br />

r<br />

5<br />

r 0.138629<br />

5r<br />

20,000 10,000er5 148. <strong>and</strong> so<br />

<strong>and</strong>:<br />

3k ln 7<br />

10<br />

7<br />

1400 2000e<br />

e3k<br />

10 3k<br />

N 2000ekt N0 2000 N3 1400 149.<br />

(a) Graph y1 0.0499e<br />

0.05<br />

x712 y 0.0499e<br />

40 ≤ x ≤ 100<br />

128 .<br />

x712128 ,<br />

0.11889<br />

(b) When N 75:<br />

75 <br />

1 5.4e 0.12t 157<br />

75<br />

5.4e 0.12t 82<br />

75<br />

e 0.12t 82<br />

405<br />

0.12t ln 82<br />

405<br />

157<br />

1 5.4e 0.12t<br />

t ln82405<br />

0.12<br />

40 100<br />

0<br />

(b) The average test score is 71.<br />

13.3 weeks


151.<br />

10 log<br />

I<br />

125 10 log1016<br />

I<br />

12.5 log1016<br />

10 12.5 I<br />

10 16<br />

I<br />

1016 I 10 3.5 wattcm 2<br />

152.<br />

R log I since I 0 1.<br />

(a)<br />

(b)<br />

(c)<br />

log I 8.4<br />

log I 6.85<br />

log I 9.1<br />

Problem Solving for Chapter 3 329<br />

I 10 8.4 251,188,643<br />

I 10 6.85 7,079,458<br />

I 10 9.1 1,258,925,412<br />

153. True. By the inverse properties, log b b 2x 2x. 154. False. ln x ln y lnxy lnx y<br />

155. Since graphs (b) <strong>and</strong> (d) represent exponential decay, b <strong>and</strong> d are negative.<br />

Since graph (a) <strong>and</strong> (c) represent exponential growth, a <strong>and</strong> c are positive.<br />

Problem Solving for Chapter 3<br />

1.<br />

y a y<br />

x 2.<br />

y 1 0.5 x<br />

y 2 1.2 x<br />

y 3 2.0 x<br />

y 4 x<br />

−4 −3 −2 −1 1 2<br />

The curves <strong>and</strong> cross the line<br />

From checking the graphs it appears that will cross<br />

y a for 0 ≤ a ≤ 1.44.<br />

x<br />

y 1.2 y x.<br />

y x<br />

x<br />

y 0.5x 7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

y 3<br />

y 4<br />

y 1<br />

y 2<br />

3 4<br />

x<br />

y 1 e x<br />

y 2 x 2<br />

y 3 x 3<br />

y5 x y4 x<br />

0 6<br />

0<br />

The function that increases at the fastest rate for “large”<br />

values of x is (Note: One of the intersection<br />

points of <strong>and</strong> is approximately<br />

<strong>and</strong> past this point e This is not shown on the<br />

graph above.)<br />

x > x3 y x 4.536, 93<br />

.<br />

3<br />

y ex y1 ex .<br />

3. The exponential function, increases at a faster rate<br />

than the polynomial function y xn y e<br />

.<br />

x , 4. It usually implies rapid growth.<br />

5. (a) fu v auv 6.<br />

(b) f2x a2x 7. (a)<br />

a u a v<br />

fu fv<br />

a x 2<br />

fx 2<br />

6<br />

y = e x y 1<br />

−6 6<br />

−2<br />

(b)<br />

y 2<br />

y = e x<br />

−2<br />

f x2 gx2 ex ex 2<br />

e2x 2 e 2x<br />

4<br />

4<br />

4<br />

1<br />

6 (c)<br />

−6 6<br />

2<br />

y = e x<br />

24<br />

y 3<br />

y 1<br />

y 5<br />

ex ex 2 2<br />

6<br />

−6 6<br />

y3 −2<br />

y 2<br />

y 4<br />

e2x 2 e2x <br />

4


330 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

8.<br />

10.<br />

y4 1 x x2 x3 x4<br />

<br />

1! 2! 3! 4!<br />

y 4<br />

6<br />

−6 6<br />

−2<br />

y = e x<br />

As more terms are added, the polynomial approaches<br />

ex 1 x<br />

e<br />

x2 x3 x4 x5<br />

. . .<br />

1! 2! 3! 4! 5! x .<br />

x ay 1<br />

a y 1<br />

xa y 1 a y 1<br />

xa y a y x 1<br />

a y x 1 x 1<br />

a y <br />

x 1<br />

x 1<br />

y log a x 1<br />

x 1 <br />

x 1<br />

lnx 1<br />

f<br />

ln a<br />

1x 9.<br />

e 2y xe y 10<br />

e y x ± x2 4<br />

2<br />

fx ax 1<br />

ax , a > 0, a 1 11. Answer (c).<br />

1<br />

12. (a) The steeper curve represents the investment earning compound interest,<br />

because compound interest earns more than simple interest. With simple<br />

interest there is no compounding so the growth is linear.<br />

(b) Compound interest formula:<br />

Simple interest formula:<br />

A 5001 0.07<br />

1 1t 5001.07 t<br />

A Prt P 5000.07 t 500<br />

(c) One should choose compound interest since the earnings would be higher.<br />

2 tk 1<br />

1<br />

13. y1 c1 <strong>and</strong><br />

1<br />

c12 tk1 1<br />

c22 tk2 c1 <br />

c 2<br />

1<br />

t <br />

1<br />

y2 c22 tk2 2 tk 2 tk 1<br />

ln c1 c2 t<br />

<br />

k2 t 1<br />

k ln<br />

1 2<br />

ln c1 ln c2 t 1<br />

<br />

k2 1 1<br />

k ln<br />

1 2<br />

ln c 1 ln c 2<br />

1k 2 1k 1 ln12<br />

fx e x e x<br />

y e x e x<br />

x e y e y<br />

x e2y 1<br />

e y<br />

xe y e 2y 1<br />

Quadratic Formula<br />

Choosing the positive quantity for we have<br />

Thus, f 1x ln x x2 4<br />

2 .<br />

y ln x x2 4<br />

2 .<br />

y 61 e<br />

The graph passes through 0, 0 <strong>and</strong> neither (a) nor (b) pass<br />

through the origin. Also, the graph has y-axis symmetry <strong>and</strong><br />

a horizontal asymptote at y 6.<br />

x22 Growth of investment<br />

(in dollars)<br />

4000<br />

3000<br />

2000<br />

1000<br />

A<br />

e y<br />

Compounded Interest<br />

Simple Interest<br />

5 10 15 20 25 30<br />

Time (in years)<br />

14. B B0a through 0, 500 <strong>and</strong> 2, 200<br />

kt<br />

B 0 500<br />

200 500a k2<br />

2<br />

a2k<br />

5<br />

2<br />

loga 2k 5<br />

1<br />

2 loga 2<br />

k 5<br />

−4 −3 −2 −1 1 2<br />

B 500a 12 loga25t 500a loga 25 t2 500 2<br />

5 t2<br />

4<br />

3<br />

2<br />

1<br />

−4<br />

t<br />

y<br />

3 4<br />

x


15. (a)<br />

17.<br />

18.<br />

(b)<br />

(c)<br />

y 252.6061.0310 t<br />

y 400.88t 2 1464.6t 291,782<br />

2,900,000<br />

y 2<br />

y 1<br />

0 85<br />

200,000<br />

(d) Both models appear to be “good fits” for the data, but<br />

neither would be reliable to predict the population of<br />

the United States in 2010. The exponential model<br />

approaches infinity rapidly.<br />

ln x 2 ln x 2<br />

ln x 2 2 ln x 0<br />

ln xln x 2 0<br />

ln x 0 or ln x 2<br />

x 1 or x e 2<br />

y ln x<br />

y 1 x 1<br />

y 2 x 1 1<br />

2x 1 2<br />

y 3 x 1 1<br />

2x 1 2 1<br />

3x 1 3<br />

(a) 4<br />

(b) 4<br />

(c)<br />

−4<br />

y 1<br />

y = ln x<br />

−3 9<br />

y = ln x<br />

−3 9<br />

y2 19.<br />

The pattern implies that<br />

ln x x 1 1<br />

2x 12 1<br />

3x 13 1<br />

4x 14 y<br />

. . . .<br />

4 x 1 1<br />

2x 12 1<br />

3x 13 1<br />

4x 14 20.<br />

ln y lnab x <br />

ln y ln a ln b x<br />

ln y ln a x ln b<br />

ln y ln bx ln a<br />

Slope: m ln b<br />

y-intercept: 0, ln a<br />

−4<br />

Problem Solving for Chapter 3 331<br />

16. Let <strong>and</strong> Then <strong>and</strong><br />

x abn x a<br />

.<br />

m<br />

loga x m logab x n.<br />

am a<br />

b n<br />

a mn a<br />

b<br />

a mn1 1<br />

b<br />

loga 1 m<br />

1<br />

b n<br />

1 loga 1 m<br />

<br />

b n<br />

1 log a 1<br />

b log a x<br />

log ab x<br />

4<br />

−4<br />

y 3<br />

y = ln x<br />

−3 9<br />

4<br />

−3 9<br />

−4<br />

y = ln x<br />

y abx y ax 21. y 80.4 11 ln x<br />

b<br />

ln y lnax b <br />

ln y ln a ln x b<br />

ln y ln a b ln x<br />

ln y b ln x ln a<br />

Slope: m b<br />

y-intercept: 0, ln a<br />

30<br />

y 4<br />

100 1500<br />

0<br />

y300 80.4 11 ln 300 17.7 ft 3 min


332 Chapter 3 <strong>Exponential</strong> <strong>and</strong> <strong>Logarithmic</strong> <strong>Functions</strong><br />

22. (a) cubic feet per minute<br />

(b)<br />

ln x 65.4<br />

450<br />

15<br />

30<br />

(c) Total air space required: 38230 11,460 cubic feet<br />

15 80.4 11 ln x<br />

Let x floor space in square feet <strong>and</strong> h 30 feet.<br />

11 ln x 65.4<br />

V xh<br />

11<br />

11,460 x30<br />

x 382<br />

23. (a)<br />

x e 65.411<br />

x 382 cubic feet of air space per child.<br />

(b) The data could best be modeled by a logarithmic<br />

model.<br />

(c) The shape of the curve looks much more logarithmic<br />

than linear or exponential.<br />

(d)<br />

25. (a)<br />

9 24. (a)<br />

0 9<br />

0<br />

y 2.1518 2.7044 ln x<br />

9<br />

0 9<br />

0<br />

(e) The model is a good fit to the actual data.<br />

(b) The data could best be modeled by a linear model.<br />

(c) The shape of the curve looks much more linear than<br />

exponential or logarithmic.<br />

(d)<br />

9 26. (a)<br />

0 9<br />

0<br />

y 0.7884x 8.2566<br />

9<br />

0 9<br />

0<br />

(e) The model is a good fit to the actual data.<br />

If the ceiling height is 30 feet, the minimum number of<br />

square feet of floor space required is 382 square feet.<br />

(b) The data could best be modeled by an exponential<br />

model.<br />

(c) The data scatter plot looks exponential.<br />

(d)<br />

36<br />

0 9<br />

0<br />

y 3.1141.341 x<br />

36<br />

0 9<br />

0<br />

(e) The model graph hits every point of the scatter plot.<br />

(b) The data could best be modeled by a logarithmic<br />

model.<br />

(c) The data scatter plot looks logarithmic.<br />

(d)<br />

10<br />

0 9<br />

0<br />

y 5.099 1.92 lnx<br />

10<br />

0 9<br />

0<br />

(e) The model graph hits every point of the scatter plot.


Chapter 3 Practice Test<br />

1. Solve for x: x 35 8.<br />

2. Solve for x: 3 x1 1<br />

81 .<br />

3. Graph fx 2 x .<br />

4. Graph gx e x 1.<br />

5. If $5000 is invested at 9% interest, find the amount after three years if the interest is compounded<br />

(a) monthly. (b) quarterly. (c) continuously.<br />

6. Write the equation in logarithmic form: 7 2 1<br />

49 .<br />

7. Solve for x: x 4 log 2 1<br />

64 .<br />

8. Given evaluate logb 4 logb 2 0.3562 <strong>and</strong> logb 5 0.8271, 825.<br />

9. Write 5 ln x as a single logarithm.<br />

1<br />

ln y 6 ln z<br />

2<br />

10. Using your calculator <strong>and</strong> the change of base formula, evaluate log 9 28.<br />

11. Use your calculator to solve for N: log 10 N 0.6646<br />

12. Graph y log 4 x.<br />

13. Determine the domain of fx log 3x 2 9.<br />

14. Graph y lnx 2.<br />

15. True or false:<br />

16. Solve for x: 5 x 41<br />

ln x<br />

lnx y<br />

ln y<br />

17. Solve for x: x x 2 log 5 1<br />

25<br />

18. Solve for x: log 2 x log 2x 3 2<br />

19. Solve for x: ex e x<br />

3<br />

4<br />

20. Six thous<strong>and</strong> dollars is deposited into a fund at an annual interest rate of 13%. Find the time required<br />

for the investment to double if the interest is compounded continuously.<br />

Practice Test for Chapter 3 333

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!