02.07.2013 Views

C H A P T E R 2 Polynomial and Rational Functions

C H A P T E R 2 Polynomial and Rational Functions

C H A P T E R 2 Polynomial and Rational Functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 2<br />

<strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models . . . . . . . . . . . . . 136<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree . . . . . . . . . 151<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division . . . . . . . . . . . . 168<br />

Section 2.4 Complex Numbers . . . . . . . . . . . . . . . . . . . . 180<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> . . . . . . . . . . . . . . 187<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> . . . . . . . . . . . . . . . . . . . . 205<br />

Section 2.7 Nonlinear Inequalities . . . . . . . . . . . . . . . . . . 222<br />

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237<br />

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br />

Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262


CHAPTER 2<br />

<strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models<br />

136<br />

You should know the following facts about parabolas.<br />

■ f x ax is a quadratic function, <strong>and</strong> its graph is a parabola.<br />

■ If a > 0, the parabola opens upward <strong>and</strong> the vertex is the point with the minimum y-value.<br />

If a < 0, the parabola opens downward <strong>and</strong> the vertex is the point with the maximum y-value.<br />

■ The vertex is b2a, f b2a.<br />

■ To find the x-intercepts (if any), solve<br />

2 bx c, a 0,<br />

ax 2 bx c 0.<br />

■ The st<strong>and</strong>ard form of the equation of a parabola is<br />

f x ax h 2 k<br />

where a 0.<br />

(a) The vertex is h, k.<br />

(b) The axis is the vertical line x h.<br />

Vocabulary Check<br />

1. nonnegative integer; real 2. quadratic; parabola 3. axis or axis of symmetry<br />

4. positive; minimum 5. negative; maximum<br />

1. f x x 2 opens upward <strong>and</strong> has vertex 2, 0.<br />

Matches graph (g).<br />

2 2. f x x 4 opens upward <strong>and</strong> has vertex 4, 0.<br />

Matches graph (c).<br />

2<br />

3. f x x opens upward <strong>and</strong> has vertex 0, 2.<br />

Matches graph (b).<br />

2 2 4. f x 3 x opens downward <strong>and</strong> has vertex 0, 3.<br />

Matches graph (h).<br />

2<br />

5. f x 4 x 2 opens downward<br />

<strong>and</strong> has vertex 2, 4. Matches graph (f).<br />

2 x 22 4 6. f x x 1 opens upward <strong>and</strong> has vertex<br />

1, 2. Matches graph (a).<br />

2 2<br />

7. f x x 3 opens downward <strong>and</strong> has<br />

vertex 3, 2. Matches graph (e).<br />

2 2 8. f x x 4 opens downward <strong>and</strong> has vertex 4, 0.<br />

Matches graph (d).<br />

2


9. (a)<br />

(c)<br />

10. (a)<br />

(c)<br />

y 1<br />

2 x2 (b)<br />

Vertical shrink<br />

y 3<br />

2 x2<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3<br />

−1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3<br />

−1<br />

Vertical stretch<br />

y x 2 1 (b)<br />

5<br />

4<br />

3<br />

2<br />

−3 −2 −1 1 2 3<br />

−1<br />

Vertical translation one unit upward<br />

y x 2 3<br />

10<br />

8<br />

6<br />

−6 −4 −2 2 4 6<br />

−2<br />

y<br />

y<br />

y<br />

y<br />

Vertical translation three units upward<br />

x<br />

x<br />

x<br />

x<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 137<br />

(d)<br />

(d)<br />

y 1<br />

8 x2<br />

Vertical shrink <strong>and</strong> reflection in the x-axis<br />

y 3x 2<br />

6<br />

4<br />

2<br />

−6 −4 4 6<br />

−2<br />

−4<br />

−6<br />

6<br />

4<br />

2<br />

−6 −4 −2 2 4 6<br />

Vertical stretch <strong>and</strong> reflection in the x-axis<br />

y x 2 1<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 2 3<br />

−2<br />

Vertical translation one unit downward<br />

y x 2 3<br />

8<br />

6<br />

4<br />

−6 –4 4 6<br />

−4<br />

y<br />

y<br />

y<br />

y<br />

Vertical translation three units downward<br />

x<br />

x<br />

x<br />

x


138 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

11. (a)<br />

(c)<br />

12. (a)<br />

(c)<br />

y x 12 (b) y 3x2 1<br />

−2 −1 1 2 3 4<br />

−1<br />

Horizontal translation one unit to the right<br />

y 1<br />

3 x2 3<br />

−6<br />

5<br />

4<br />

3<br />

y<br />

8<br />

6<br />

4<br />

2<br />

−4<br />

y<br />

−2 2 6<br />

−2<br />

x<br />

x<br />

Horizontal stretch <strong>and</strong> a vertical translation three units<br />

downward<br />

y 1<br />

2x 2 2 1 (b)<br />

Horizontal translation two units to the right, vertical<br />

1<br />

shrink each<br />

y-value is multiplied by 2, reflection in<br />

the x-axis, <strong>and</strong> vertical translation one unit upward<br />

−8<br />

−6<br />

−4<br />

8<br />

6<br />

4<br />

y<br />

−6 −4 −2 2 6 8 10<br />

y 1<br />

2x 2 2 1<br />

6<br />

4<br />

2<br />

−4<br />

−6<br />

−8<br />

y<br />

2 4 6<br />

x<br />

x<br />

Horizontal translation two units to the left, vertical<br />

1<br />

shrink each<br />

y-value is multiplied by 2, reflection in<br />

x-axis, <strong>and</strong> vertical translation one unit downward<br />

(d)<br />

5<br />

4<br />

3<br />

−3 −2 −1<br />

−1<br />

Horizontal shrink <strong>and</strong> a vertical translation one unit upward<br />

y x 3 2<br />

10<br />

−8 −6 −4 −2 2 4<br />

−2<br />

y<br />

8<br />

2<br />

1<br />

y<br />

2 3<br />

Horizontal translation three units to the left<br />

y 1<br />

2x 1 2 3<br />

10<br />

x<br />

x<br />

Horizontal translation one unit to the right, horizontal<br />

stretch (each x-value is multiplied by 2), <strong>and</strong> vertical<br />

translation three units downward<br />

(d) y 2x 12 4<br />

8<br />

6<br />

4<br />

−8 −6 −4 2 6 8<br />

−4<br />

−6<br />

7<br />

4<br />

3<br />

2<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

y<br />

y<br />

x<br />

x<br />

Horizontal translation one unit to the left, horizontal<br />

1<br />

shrink each<br />

x-value is multiplied by 2, <strong>and</strong> vertical translation<br />

four units upward


13.<br />

f x x 2 5 14.<br />

Vertex:<br />

Axis of symmetry: x 0 or the y-axis<br />

Find x-intercepts:<br />

x 2 5 0<br />

x 2 5<br />

0, 5<br />

x ±5<br />

x-intercepts:<br />

5, 0, 5, 0<br />

1<br />

2 x2 4 0<br />

x 2 8<br />

x-intercepts:<br />

x ±8 ±22<br />

22, 0, 22, 0<br />

2<br />

1<br />

−4 −3 −1 1 3 4<br />

−2<br />

−3<br />

−6<br />

y<br />

3<br />

2<br />

1<br />

−4 −3 −1 1 2 3 4<br />

−2<br />

−3<br />

−5<br />

x<br />

x<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 139<br />

hx 25 x 2<br />

Vertex:<br />

0, 25<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

25 x 2 0<br />

x 2 25<br />

x ±5<br />

x-intercepts: ±5, 0<br />

16 1<br />

4 x2 0<br />

x 2 64<br />

x ±8<br />

x-intercepts: ±8, 0<br />

x 0<br />

15. f x <br />

Vertex: 0, 4<br />

Axis of symmetry: x 0 or the y-axis<br />

Find x-intercepts:<br />

y<br />

1<br />

2x2 4 1<br />

2x 02 4 16.<br />

Vertex: 0, 16<br />

Axis of symmetry: x 0<br />

Find x-intercepts:<br />

17.<br />

19.<br />

f x x 5 y<br />

2 6 18.<br />

Vertex:<br />

5, 6<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

x 5 2 6 0<br />

x 5 2 6<br />

x 5 ±6<br />

x 5<br />

x 5 ± 6<br />

x-intercepts: 5 6, 0, 5 6, 0<br />

20<br />

16<br />

12<br />

−20 −12 4 8<br />

−8<br />

x<br />

f x 16 1<br />

4 x2 1<br />

4 x2 16<br />

f x x 6 2 3<br />

Vertex:<br />

6, 3<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

x 6 2 3 0<br />

x 6 2 3<br />

Not possible for real x<br />

No x-intercepts<br />

x 6<br />

hx x2 8x 16 x 42 20. gx x2 2x 1 x 12 Vertex:<br />

4, 0<br />

Axis of symmetry: x 4<br />

x-intercept: 4, 0<br />

20<br />

16<br />

12<br />

8<br />

4<br />

y<br />

−4 4 8 12 16<br />

x<br />

Vertex:<br />

1, 0<br />

Axis of symmetry: x 1<br />

x-intercept: 1, 0<br />

30<br />

−20 −10<br />

10 20<br />

y<br />

18<br />

12<br />

9<br />

6<br />

3<br />

y<br />

−9 −6 −3<br />

−3<br />

50<br />

40<br />

30<br />

20<br />

10<br />

y<br />

3 6 9<br />

−20 −10 10 20 30<br />

−4 −3 −2 −1 1 2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

x<br />

x<br />

x<br />

x


140 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

21.<br />

fx x 2 x 5<br />

4<br />

Vertex:<br />

x2 x 1 1 5<br />

4 4 4<br />

1<br />

x 2 2<br />

1<br />

1<br />

, 1 2<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

x2 x 5<br />

0<br />

4<br />

x <br />

Not a real number<br />

No x-intercepts<br />

x 1<br />

2<br />

1 ± 1 5<br />

2<br />

5<br />

4<br />

3<br />

1<br />

y<br />

−2 −1 1 2 3<br />

23. f x x2 2x 5 24.<br />

Vertex:<br />

x 2 2x 1 1 5<br />

x 1 2 6<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

x-intercepts: 1 6, 0, 1 6, 0<br />

−4 2 6<br />

−2<br />

−4<br />

1, 6<br />

x 2 2x 5 0<br />

x 2 2x 5 0<br />

6<br />

y<br />

x <br />

x 1<br />

2 ± 4 20<br />

2<br />

1 ± 6<br />

x<br />

x<br />

22.<br />

f x x 2 3x 1<br />

4<br />

Vertex:<br />

x2 3x 9 9 1<br />

4 4 4<br />

3<br />

x 2 2<br />

2<br />

3, 2 2<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

x2 3x 1<br />

0<br />

4<br />

x <br />

x 3<br />

2<br />

3 ±9 1<br />

2<br />

3<br />

± 2<br />

2<br />

x-intercepts: 3 ± 2, 0 2<br />

−5 −4 −3 −2 −1 1 2<br />

f x x 2 4x 1 x 2 4x 1<br />

Vertex:<br />

2, 5<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

x-intercepts:<br />

2 ± 5, 0<br />

−6 −5 −3 −2 −1 1 2<br />

5<br />

4<br />

2<br />

1<br />

−2<br />

−3<br />

y<br />

x<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

x 2 4x 4 4 1<br />

x 2 2 5<br />

x 2<br />

x 2 4x 1 0<br />

x 2 4x 1 0<br />

x <br />

4 ± 16 4<br />

2<br />

2 ± 5<br />

y<br />

x


25.<br />

27.<br />

29.<br />

hx 4x 2 4x 21<br />

Vertex:<br />

Vertex:<br />

4x2 x 1 1<br />

4 4 21 4<br />

1<br />

4x 2 2<br />

20<br />

1<br />

, 20 2<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

4x 2 4x 21 0<br />

x <br />

f x 1<br />

4 x2 2x 12<br />

1<br />

4x 2 8x 16 1<br />

416 12<br />

1<br />

4x 4 2 16<br />

4, 16<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

1<br />

4 x2 2x 12 0<br />

x 2 8x 48 0<br />

x 4x 12 0<br />

x 4 or x 12<br />

x 1<br />

2<br />

4 ± 16 336<br />

24<br />

Not a real number ⇒ No x-intercepts<br />

x 4<br />

x-intercepts: 4, 0, 12, 0<br />

−8 −4<br />

4 8<br />

−8<br />

4<br />

−12<br />

−16<br />

−20<br />

y<br />

4 8 16<br />

f x x 2 2x 3 x 1 2 4 30.<br />

Vertex:<br />

1, 4<br />

Axis of symmetry: x 1<br />

x-intercepts: 3, 0, 1, 0<br />

20<br />

10<br />

y<br />

−8 7<br />

5<br />

−5<br />

x<br />

x<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 141<br />

26.<br />

28.<br />

2x2 1<br />

f x 2x<br />

x 1<br />

2 2 x 1<br />

Vertex:<br />

1<br />

2x 4 2<br />

2 1<br />

1<br />

16<br />

1<br />

2x 4 2<br />

7<br />

8<br />

1 7<br />

,<br />

4 8<br />

Axis of symmetry:<br />

Find x- intercepts:<br />

2 x 2 x 1 0<br />

x <br />

Not a real number<br />

No x-intercepts<br />

Vertex:<br />

Axis of symmetry:<br />

Find x-intercepts:<br />

1<br />

3 x2 3x 6 0<br />

x 2 9x 18 0<br />

x 3x 6 0<br />

x 1<br />

4<br />

1 ± 1 8<br />

22<br />

f x 1<br />

3x 2 3x 6<br />

1<br />

3x 2 9x 6<br />

1<br />

3x2 9x 81<br />

4 1<br />

381 4 6<br />

1<br />

3x 9<br />

9 3<br />

2 , 4<br />

2 2<br />

3<br />

4<br />

x 9<br />

2<br />

x-intercepts: 3, 0, 6, 0<br />

f x x 2 x 30<br />

x 2 x 30<br />

6<br />

5<br />

4<br />

3<br />

1<br />

−3 −2 −1 1 2 3<br />

2<br />

−2<br />

−2<br />

−4<br />

−6<br />

x2 x 1<br />

4 1<br />

4 30<br />

x 1<br />

2 2 121<br />

4<br />

Vertex:<br />

Axis of symmetry: x <br />

x-intercepts: 6, 0, 5, 0<br />

1<br />

2<br />

y<br />

y<br />

4 6<br />

8 10<br />

1<br />

2, 121<br />

4 −10 10<br />

35<br />

−80<br />

x<br />

x


142 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

31.<br />

33.<br />

gx x 2 8x 11 x 4 2 5 32.<br />

Vertex:<br />

4, 5<br />

Axis of symmetry:<br />

x 4<br />

x-intercepts: 4 ± 5, 0<br />

Vertex:<br />

2x 4 2 1<br />

4, 1<br />

Axis of symmetry:<br />

x 4<br />

x-intercepts: 4 ± 1<br />

22, 0<br />

14<br />

−18 12<br />

f x 2x 48<br />

2 16x 31 34.<br />

−6<br />

−6 12<br />

35. gx <br />

Vertex: 2, 3<br />

4<br />

1<br />

2x2 4x 2 1<br />

2x 22 3 36.<br />

Axis of symmetry:<br />

x 2<br />

x-intercepts: 2 ± 6, 0<br />

−12<br />

−8 4<br />

−4<br />

f x x 2 10x 14<br />

Vertex:<br />

x 2 10x 25 25 14<br />

x 5 2 11<br />

5, 11 −20 10<br />

Axis of symmetry:<br />

x 5<br />

x-intercepts: 5 ± 11, 0<br />

f x 4x 2 24x 41<br />

Vertex:<br />

4x 2 6x 41<br />

4x 2 6x 9 36 41<br />

4x 3 2 5<br />

3, 5<br />

Axis of symmetry:<br />

No x-intercepts<br />

Vertex:<br />

Axis of symmetry:<br />

x 3<br />

f x 3<br />

5x 2 6x 5<br />

3<br />

5x 2 6x 9 27<br />

5 3<br />

3<br />

5x 32 42<br />

5<br />

x 3<br />

x-intercepts: 3 ± 14, 0<br />

37. 1, 0 is the vertex.<br />

38. 0, 1 is the vertex.<br />

y ax 1 2 0 ax 1 2<br />

Since the graph passes through the point 0, 1, we have:<br />

1 a0 1 2<br />

1 a<br />

y 1x 1 2 x 1 2<br />

5<br />

−15<br />

0<br />

0 6<br />

3, 42<br />

5 −14 10<br />

f x ax 0 2 1 ax 2 1<br />

−20<br />

Since the graph passes through 1, 0,<br />

0 a1 2 1<br />

1 a.<br />

So, y x 2 1.<br />

39. 1, 4 is the vertex.<br />

40. 2, 1<br />

is the vertex.<br />

y ax 1 2 4<br />

Since the graph passes through the point 1, 0, we have:<br />

0 a1 1 2 4<br />

4 4a<br />

1 a<br />

y 1x 1 2 4 x 1 2 4<br />

f x ax 2 2 1<br />

Since the graph passes through 0, 3,<br />

3 a0 2 2 1<br />

3 4a 1<br />

4 4a<br />

1 a.<br />

So, y x 2 2 1.<br />

6<br />

−10


41. 2, 2 is the vertex.<br />

42. 2, 0 is the vertex.<br />

y ax 2 2 2<br />

Since the graph passes through the point 1, 0, we have:<br />

0 a1 2 2 2<br />

2 a<br />

y 2x 2 2 2<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 143<br />

f x ax 2 2 0 ax 2 2<br />

Since the graph passes through 3, 2,<br />

2 a3 2 2<br />

2 a.<br />

So, y 2x 2 2 .<br />

43. 2, 5 is the vertex.<br />

44. 4, 1 is the vertex.<br />

f x ax 2 2 5<br />

Since the graph passes through the point 0, 9, we have:<br />

9 a0 2 2 5<br />

4 4a<br />

1 a<br />

fx 1x 2 2 5 x 2 2 5<br />

f x ax 4 2 1<br />

Since the graph passes through 2, 3,<br />

3 a2 4 2 1<br />

3 4a 1<br />

4 4a<br />

1 a.<br />

So, f x x 4 2 1.<br />

45. 3, 4 is the vertex.<br />

46. 2, 3 is the vertex.<br />

fx ax 3 2 4<br />

Since the graph passes through the point 1, 2, we have:<br />

2 a1 3 2 4<br />

2 4a<br />

1<br />

2 a<br />

fx 1<br />

2x 3 2 4<br />

f x ax 2 2 3<br />

Since the graph passes through 0, 2,<br />

2 a0 2 2 3<br />

2 4a 3<br />

1 4a<br />

1<br />

4 a.<br />

So, f x 1<br />

4x 2 2 3.<br />

47. 5, 12 is the vertex.<br />

48. 2, 2 is the vertex.<br />

fx ax 5 2 12<br />

Since the graph passes through the point 7, 15, we have:<br />

15 a7 5 2 12<br />

3 4a ⇒ a 3<br />

4<br />

f x 3<br />

4x 5 2 12<br />

f x ax 2 2 2<br />

Since the graph passes through 1, 0,<br />

0 a1 2 2 2<br />

0 a 2<br />

2 a.<br />

So, f x 2x 2 2 2.<br />

49. is the vertex.<br />

1 3<br />

4 , 2 50. 2 , 3 is the vertex.<br />

f x ax 1<br />

4 2 3<br />

2<br />

Since the graph passes through the point<br />

we have:<br />

3<br />

2<br />

0 a2 1<br />

4 2 3<br />

2<br />

49<br />

16a ⇒ a 24 49<br />

fx 24<br />

49x 1<br />

4 2 3<br />

2<br />

2, 0,<br />

5<br />

f x ax 5<br />

2 2<br />

Since the graph passes through 2, 4,<br />

4 a2 5<br />

2 2<br />

3<br />

4<br />

4 81 3<br />

4 a 4<br />

19<br />

4<br />

4<br />

81<br />

4 a<br />

19<br />

81 a.<br />

3<br />

4<br />

f x 19<br />

81x 5<br />

2 2<br />

3<br />

4<br />

So, .


144 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

51. , 0 is the vertex.<br />

52. 6, 6 is the vertex.<br />

53.<br />

5<br />

2<br />

f x ax 5<br />

2 2<br />

Since the graph passes through the point<br />

we have:<br />

16<br />

3<br />

16<br />

3<br />

57. fx x 4<br />

x-intercepts: 0, 0, (4,0<br />

2 4x 58. f x 2x<br />

x-intercepts: 0, 0, 5, 0<br />

2 10x<br />

0 x 2 4x<br />

0 xx 4)<br />

x 0<br />

or<br />

x 4<br />

−4 8<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

−4<br />

0 2x 2 10x<br />

0 2xx 5<br />

2x 0 ⇒ x 0<br />

x 5 0 ⇒ x 5<br />

59. fx x 12<br />

x-intercepts: 3, 0, 6, 0<br />

2 9x 18 60.<br />

x-intercepts:<br />

0 x 2 9x 18<br />

0 x 3)x 6<br />

x 3<br />

5<br />

a7 2 2 2<br />

a<br />

f x 16<br />

3 x 5<br />

2 2<br />

or<br />

x 6<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

−8<br />

7<br />

2 , 16 3 ,<br />

y x 2 16 54.<br />

x-intercepts:<br />

0 x 2 16<br />

x 2 16<br />

x ±4<br />

±4, 0<br />

−4<br />

16<br />

f x ax 6 2 6<br />

Since the graph passes through<br />

3<br />

2 a61 10 62 6<br />

3 1<br />

2 100a 6<br />

9<br />

2 1<br />

100a<br />

450 a.<br />

So, f x 450x 6 . 2 6<br />

y x 2 6x 9<br />

x-intercept:<br />

3, 0<br />

0 x 2 6x 9<br />

0 x 3 2<br />

x 3 0 ⇒ x 3<br />

55. y x<br />

x-intercepts: 5, 0, 1, 0<br />

2 4x 5 56. y 2x<br />

x-intercepts:<br />

2 5x 3<br />

0 x 2 4x 5<br />

0 x 5x 1<br />

x 5<br />

or x 1<br />

1 2 , 0, 3, 0<br />

0 2x 2 5x 3<br />

0 2x 1x 3<br />

2 x 1 0 ⇒ x 1<br />

2<br />

x 3 0 ⇒ x 3<br />

−1 6<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

f x x 2 8x 20<br />

0 x 2 8x 20<br />

0 x 2x 10<br />

x 2 0 ⇒ x 2<br />

x 10 0 ⇒ x 10<br />

61 3<br />

10 , 2,<br />

2, 0, 10, 0 −4 12<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

14<br />

−6<br />

10<br />

−40


61.<br />

fx 2x 10<br />

2 7x 30 62.<br />

x-intercepts:<br />

0 2x 2 7x 30<br />

5<br />

2, 0, 6, 0<br />

x or x 6<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

5<br />

0 2x 5)x 6<br />

−40<br />

2<br />

fx 1<br />

−5<br />

10<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 145<br />

f x 4x 2 25x 21<br />

x-intercepts:<br />

7, 0, 3<br />

4, 0<br />

0 4x 2 25x 21<br />

0 x 74x 3<br />

x 7 0 ⇒ x 7<br />

4x 3 0 ⇒ x 3<br />

4<br />

63.<br />

2x 10<br />

x-intercepts: 1, 0, 7, 0<br />

2 6x 7 64.<br />

x-intercepts: 15, 0, 3, 0<br />

0 1<br />

2x 2 6x 7<br />

0 x 2 6x 7<br />

0 x 1x 7<br />

x 1<br />

or<br />

x 7<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

x 1x 3<br />

x 2 2x 3<br />

gx x 1x 3<br />

x 1x 3<br />

x 2 2x 3<br />

x 2 2x 3<br />

−10<br />

−6<br />

opens downward<br />

Note: f x ax 1x 3 has x-intercepts 1, 0<br />

<strong>and</strong> 3, 0 for all real numbers a 0.<br />

14<br />

−9 2<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

f x 7<br />

10x 2 12x 45<br />

0 7<br />

10x 2 12x 45<br />

0 x 15x 3<br />

x 15 0 ⇒ x 15<br />

x 3 0 ⇒ x 3<br />

65. f x x 1x 3 opens upward<br />

66. f x x 5x 5<br />

x 2 10x<br />

gx x 0x10<br />

x 2 10x<br />

opens downward<br />

Note: f x ax 0x 10 axx 10 has<br />

x-intercepts 0, 0 <strong>and</strong> 10, 0 for all real numbers<br />

a 0.<br />

The x-intercepts <strong>and</strong> the solutions of f x 0 are the same.<br />

x 5x 5<br />

x 2 25, opens upward<br />

gx f x, opens downward<br />

gx x 2 25<br />

67. f x x 0x 10 opens upward<br />

68. f x x 4x 8<br />

f x x 3x 1<br />

69. 22 opens upward<br />

70.<br />

x 3x 1<br />

22<br />

x 32x 1<br />

2x 2 7x 3<br />

gx 2x 2 7x 3<br />

2x 2 7x 3<br />

opens downward<br />

Note: has x-intercepts<br />

<strong>and</strong> for all real numbers a 0.<br />

1<br />

f x ax 32x 1<br />

3, 0 2, 0<br />

10<br />

−70<br />

10<br />

−18 4<br />

Note: f x ax has x-intercepts 5, 0 <strong>and</strong><br />

5, 0 for all real numbers a 0.<br />

2 25<br />

x 2 12x 32, opens upward<br />

gx f x, opens downward<br />

gx x 2 12x 32<br />

Note: f x ax 4x 8 has x-intercepts 4, 0 <strong>and</strong><br />

8, 0 for all real numbers a 0.<br />

f x 2x 5<br />

2x 2<br />

2x2 1<br />

2x <br />

2x 5<br />

5<br />

2x 2<br />

2x 2 x 10, opens upward<br />

gx f x, opens downward<br />

gx 2x 2 x 10<br />

5<br />

f x ax <br />

Note: 2x 2 has x-intercepts<br />

<strong>and</strong> 2, 0 for all real numbers a 0.<br />

−60<br />

5<br />

2 , 0


146 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

71. Let x the first number <strong>and</strong> y the second number. 72. Let x first number <strong>and</strong> y second number. Then,<br />

Then the sum is<br />

x y S, y S x. The product is<br />

75. (a)<br />

x y 110 ⇒ y 110 x.<br />

The product is Px xy x110 x 110x x2 .<br />

Px x 2 110x<br />

x 2 110x 3025 3025<br />

x 55 2 3025<br />

x 55 2 3025<br />

The maximum value of the product occurs at the vertex of<br />

Px <strong>and</strong> is 3025. This happens when x y 55.<br />

The maximum value of the product occurs at the vertex<br />

of Px <strong>and</strong> is 72. This happens when x 12 <strong>and</strong><br />

y 24 122 6. Thus, the numbers are 12 <strong>and</strong> 6.<br />

(c)<br />

y<br />

1<br />

2 x2 24x 144 144<br />

1<br />

2 x 122 144 1<br />

2 x 122 72<br />

4x 3y 200 ⇒ y 1<br />

4<br />

200 4x 50 x<br />

3 3<br />

A 2xy 2x 4<br />

8<br />

8x50 x<br />

50 x x50 x <br />

3 3 3<br />

2000<br />

0<br />

0<br />

This area is maximum when feet <strong>and</strong><br />

y feet.<br />

100<br />

x 25<br />

3 3313<br />

—CONTINUED—<br />

x<br />

x<br />

60<br />

Px xy xS x.<br />

Px Sx x 2<br />

x 2 Sx<br />

x2 Sx S2<br />

4<br />

S<br />

x 2 2<br />

S2<br />

4<br />

S2<br />

4<br />

The maximum value of the product occurs at the vertex<br />

of <strong>and</strong> is S This happens when x y S2.<br />

2 Px 4.<br />

73. Let the first number <strong>and</strong> the second number.<br />

Then the sum is<br />

The product is<br />

Px 1<br />

2 x2 24 x<br />

Px xy x 2 <br />

24x<br />

.<br />

x y <br />

74. Let the first number <strong>and</strong> the second number.<br />

24 x<br />

x 2y 24 ⇒ y .<br />

2<br />

Then the sum is<br />

The product is<br />

Px 1<br />

3 x2 42 x<br />

Px xy x 3 <br />

42x<br />

.<br />

x <br />

y <br />

42 x<br />

x 3y 42 ⇒ y .<br />

3<br />

1<br />

3 x2 42x 441 441<br />

1<br />

3 x 212 441 1<br />

3 x 212 147<br />

The maximum value of the product occurs at the vertex<br />

of Px <strong>and</strong> is 147. This happens when x 21 <strong>and</strong><br />

42 21<br />

y 7. Thus, the numbers are 21 <strong>and</strong> 7.<br />

3<br />

(b) This area is maximum when<br />

feet <strong>and</strong> y feet.<br />

100<br />

x A<br />

x 25<br />

3 3313<br />

5 600<br />

10 1066<br />

15 1400<br />

20 1600<br />

25 1666<br />

30 1600<br />

2<br />

3<br />

2<br />

3


75. —CONTINUED—<br />

(d)<br />

A 8<br />

x50 x<br />

3<br />

8<br />

3 x2 50x<br />

8<br />

3 x2 50x 625 625<br />

8<br />

3 x 252 625<br />

8<br />

3 x 252 5000<br />

3<br />

The maximum area occurs at the vertex <strong>and</strong> is<br />

square feet. This happens when feet <strong>and</strong><br />

feet. The dimensions<br />

are feet by 33 feet.<br />

1<br />

50003<br />

x 25<br />

y 200 4253 1003<br />

2x 50<br />

76. (a) Radius of semicircular ends of track:<br />

Distance around two semicircular parts of track:<br />

d 2r 2 1<br />

r <br />

y y 2 1<br />

2 y<br />

77.<br />

(b) Distance traveled around track in one lap:<br />

d y 2x 200<br />

3<br />

y 200 2x<br />

y 4<br />

9 x2 24<br />

x 12<br />

9<br />

200 2x<br />

y <br />

<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 147<br />

(c) Area of rectangular region:<br />

200 2x<br />

A xy x<br />

2<br />

2<br />

2<br />

The area is maximum when <strong>and</strong><br />

200 250<br />

y 100<br />

x 50<br />

The vertex occurs at The maximum height is y3 feet.<br />

4<br />

9 32 24<br />

b 249<br />

3.<br />

3 12 16<br />

2a 249 9<br />

78. y <br />

(a) The ball height when it is punted is the y-intercept.<br />

16<br />

2025 x2 9<br />

x 1.5<br />

5<br />

y 16<br />

2025 02 9<br />

0 1.5 1.5 feet<br />

5<br />

(b) The vertex occurs at x b<br />

2a <br />

95<br />

2162025<br />

The maximum height is<br />

—CONTINUED—<br />

f 3645 16<br />

32 <br />

2025 3645<br />

32 2<br />

9<br />

5 3645<br />

32 1.5<br />

6561<br />

64<br />

6561<br />

32<br />

3645<br />

32 .<br />

1.5 6561<br />

64<br />

(e) They are all identical.<br />

feet <strong>and</strong> y 33 feet<br />

1<br />

x 25<br />

3<br />

1<br />

200x 2x2 <br />

<br />

13,122<br />

64<br />

<br />

<br />

x2 100x<br />

x2 100x 2500 2500<br />

x 502 5000<br />

<br />

96<br />

64<br />

.<br />

6657<br />

feet 104.02 feet.<br />

64


148 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

78. —CONTINUED—<br />

79.<br />

The vertex occurs at x <br />

The cost is minimum when x 20 fixtures.<br />

b<br />

C 800 10x 0.25x<br />

10<br />

20.<br />

2a 20.25 2 0.25x2 10x 800 80.<br />

81.<br />

83.<br />

85.<br />

(c) The length of the punt is the positive x-intercept.<br />

C 100,000 110x 0.045x 2<br />

The vertex occurs at<br />

x 110<br />

1222.<br />

20.045<br />

The cost is minimum when x 1222 units.<br />

The vertex occurs at x <br />

The profit is maximum when x 350,000 units.<br />

b<br />

2a <br />

P 0.0002x<br />

140<br />

350,000.<br />

20.0002 2 140x 250,000 82.<br />

The vertex occurs at x <br />

Because x is in hundreds of dollars, 20 100 2000<br />

dollars is the amount spent on advertising that gives<br />

maximum profit.<br />

b<br />

P 230 20x 0.5x<br />

20<br />

20.<br />

2a 20.5 2<br />

Rp 25p 2 1200p 84.<br />

(a)<br />

0 16<br />

2025 x 2 9<br />

x 1.5<br />

5<br />

x 95 ± 952 41.5162025<br />

322025<br />

x 0.83031 or x 228.64<br />

The punt is approximately 228.64 ft.<br />

R20 $14,000 thous<strong>and</strong><br />

R25 $14,375 thous<strong>and</strong><br />

R30 $13,500 thous<strong>and</strong><br />

(b) The revenue is a maximum at the vertex.<br />

b 1200<br />

24<br />

2a 225<br />

R24 14,400<br />

The unit price that will yield a maximum revenue of<br />

$14,400 thous<strong>and</strong> is $24.<br />

C 4299 1.8t 1.36t 2 , 0 ≤ t ≤ 43<br />

(a)<br />

(c)<br />

5000<br />

0<br />

0<br />

43<br />

C40 2051<br />

209,128,0942051<br />

Annually: 8879 cigarettes<br />

48,308,590<br />

8879<br />

Daily: 24 cigarettes<br />

366<br />

<br />

1.8 ± 1.81312<br />

0.01580247<br />

R p 12p 2 150p<br />

(a)<br />

R$4 12$4 2 150$4 $408<br />

R$6 12$6 2 150$6 $468<br />

R$8 12$8 2 150$8 $432<br />

(b) The vertex occurs at<br />

p b 150<br />

$6.25<br />

2a 212<br />

Revenue is maximum when price $6.25 per pet.<br />

The maximum revenue is<br />

f$6.25 12$6.25 2 150$6.25 $468.75.<br />

(b) Vertex 0, 4299<br />

The vertex occurs when y 4299 which is the<br />

maximum average annual consumption. The warnings<br />

may not have had an immediate effect, but over time<br />

they <strong>and</strong> other findings about the health risks <strong>and</strong> the<br />

increased cost of cigarettes have had an effect.


86. (a) <strong>and</strong> (c)<br />

(b)<br />

(d) 1996<br />

(e) Vertex occurs at<br />

(f)<br />

950<br />

4<br />

650<br />

88. (a) <strong>and</strong> (c)<br />

y 4.303x 2 49.948x 886.28<br />

Minimum occurs at year 1996.<br />

x 18<br />

31<br />

12<br />

x b 49.948<br />

5.8<br />

2a 24.303<br />

y 4.30318 2 49.94818 886.28 1381.388<br />

There will be approximately 1,381,000 hairdressers<br />

<strong>and</strong> cosmetologists in 2008.<br />

10 80<br />

20<br />

(b)<br />

Section 2.1 Quadratic <strong>Functions</strong> <strong>and</strong> Models 149<br />

87. (a)<br />

(b)<br />

0<br />

25<br />

−5<br />

0.002s 2 0.005s 0.029 10<br />

a 2, b 5, c 10,029<br />

s 5 ± 52 4210,029<br />

22<br />

s <br />

y 0.0082x 2 0.746x 13.47<br />

2s 2 5s 10,029 0<br />

5 ± 80,257<br />

4<br />

s 72.1, 69.6<br />

100<br />

2s 2 5s 29 10,000<br />

The maximum speed if power is not to exceed<br />

10 horsepower is 69.6 miles per hour.<br />

(d) The maximum of the graph is at x 45.5, or about 45.5 mi/h.<br />

Algebraically, the maximum occurs at<br />

x mi/h.<br />

b 0.746<br />

45.5<br />

2a 20.0082<br />

89. True. The equation 12x has no real solution,<br />

so the graph has no x-intercepts.<br />

2 1 0 90. True. The vertex of is <strong>and</strong> the vertex of<br />

is 5<br />

f x 4 gx<br />

4 , 71 4 .<br />

91.<br />

ax2 b<br />

f x ax<br />

x c<br />

a 2 bx c<br />

ax2 b b2<br />

x <br />

a 4a<br />

b f 2a<br />

b2 b2<br />

c<br />

4a 2a<br />

2 b2<br />

b<br />

ax <br />

2a 2<br />

b2<br />

c<br />

4a<br />

ax b<br />

2a 2 4ac b2<br />

<br />

4a<br />

b2 b<br />

a4a2 b c<br />

2a<br />

b2 2b 2 4ac<br />

4a<br />

4a2 c<br />

b 4ac b2<br />

So, the vertex occurs at ,<br />

2a<br />

<br />

4ac b2<br />

4a<br />

4a <br />

b b<br />

, f 2a 2a .<br />

5 53<br />

, 4


150 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

92. Conditions (a) <strong>and</strong> (d) are preferable because profits<br />

would be increasing.<br />

f x ax 2 bx c<br />

94. If has two real zeros, then by the Quadratic Formula they are<br />

x b ± b2 4ac<br />

.<br />

2a<br />

The average of the zeros of f is<br />

b b 2 4ac<br />

2a<br />

b b2 4ac<br />

2a<br />

2<br />

This is the x-coordinate<br />

of the vertex of the graph.<br />

<br />

2b<br />

2a<br />

2 b<br />

2a .<br />

95. 4, 3 <strong>and</strong> 2, 1<br />

96.<br />

m <br />

1 3 2<br />

<br />

2 4 6 1<br />

3<br />

y 1 1<br />

x 2<br />

3<br />

y 1 1 2<br />

x <br />

3 3<br />

y 1 5<br />

x <br />

3 3<br />

7 3<br />

, 2 , m <br />

2 2<br />

y 2 3 7<br />

x 2 2<br />

y 2 3 21<br />

x <br />

2 4<br />

y 3 13<br />

x <br />

2 4<br />

97. <strong>and</strong><br />

The slope of the perpendicular line through is<br />

<strong>and</strong> the y-intercept is<br />

y 5<br />

m b 3.<br />

4x 3<br />

5<br />

m <br />

0, 3<br />

4<br />

4<br />

4x 5y 10 ⇒ y 5<br />

4<br />

5x 2 98. y 3x 2<br />

m 3<br />

For a parallel line, m 3. So, for 8, 4, the line is<br />

y 4 3x 8<br />

For Exercises 99–104, let <strong>and</strong> gx 8x2 f x 14x 3,<br />

.<br />

99.<br />

101.<br />

143 3 83 2 27<br />

93. Yes. A graph of a quadratic equation whose vertex is<br />

has only one x-intercept.<br />

0, 0<br />

y 4 3x 24<br />

y 3x 20.<br />

f g3 f 3 g3 100. g f 2 82 2 142 3 32 28 3 7<br />

fg4 7 f 4 7g4 7<br />

144 7 384 7 2<br />

<br />

11 128<br />

49 1408<br />

49<br />

102. f 141.5 3<br />

1.5 g 81.52 24<br />

<br />

18 4<br />

3<br />

103. f g1 fg1 f 8 148 3 109 104. g f 0 g f 0 g140 3 g3<br />

105. Answers will vary.<br />

83 2 72


Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 151<br />

You should know the following basic principles about polynomials.<br />

■ is a polynomial function of degree n.<br />

■ If f is of odd degree <strong>and</strong><br />

(a) then (b) then<br />

1. 1.<br />

2. 2.<br />

■ If f is of even degree <strong>and</strong><br />

(a) then (b) then<br />

1. 1.<br />

2. 2.<br />

■ The following are equivalent for a polynomial function.<br />

(a) is a zero of a function.<br />

(b) is a solution of the polynomial equation<br />

(c) is a factor of the polynomial.<br />

(d) is an x-intercept of the graph of f.<br />

■ A polynomial of degree n has at most n distinct zeros <strong>and</strong> at most turning points.<br />

■ A factor x a yields a repeated zero of x a of multiplicity k.<br />

(a) If k is odd, the graph crosses the x-axis at x a.<br />

(b) If k is even, the graph just touches the x-axis at x a.<br />

■ If f is a polynomial function such that a < b <strong>and</strong> fa fb, then f takes on every value between fa <strong>and</strong> fb in the<br />

interval a, b.<br />

■ If you can find a value where a polynomial is positive <strong>and</strong> another value where it is negative, then there is at least one real<br />

zero between the values.<br />

k fx anx an > 0,<br />

an < 0,<br />

fx → as x → .<br />

fx → as x → .<br />

fx → as x → .<br />

fx → as x → .<br />

an > 0,<br />

an < 0,<br />

fx → as x → .<br />

fx → as x → .<br />

fx → as x → .<br />

fx → as x → .<br />

x a<br />

x a<br />

fx 0.<br />

x a<br />

a, 0<br />

n 1<br />

, k > 1,<br />

n an1xn1 . . . a2x2 a1x a0 , an 0,<br />

Vocabulary Check<br />

1. continuous 2. Leading Coefficient Test 3.<br />

4. solution; x a; x-intercept<br />

5. touches; crosses 6. st<strong>and</strong>ard<br />

7. Intermediate Value<br />

n; n 1<br />

1. fx 2x 3 is a line with y-intercept 0, 3.<br />

2. fx x is a parabola with intercepts 0, 0 <strong>and</strong><br />

Matches graph (c).<br />

4, 0 <strong>and</strong> opens upward. Matches graph (g).<br />

2 4x<br />

3. is a parabola with x-intercepts<br />

0, 0 <strong>and</strong> <strong>and</strong> opens downward. Matches<br />

graph (h).<br />

5<br />

fx 2x<br />

2 , 0<br />

2 5x 4. has intercepts<br />

<strong>and</strong> Matches graph (f).<br />

1 1<br />

2 23, 0.<br />

1<br />

fx 2x 0, 1, 1, 0,<br />

1<br />

2 23, 0<br />

3 3x 1<br />

5. fx has intercepts 0, 0 <strong>and</strong> ±23, 0.<br />

Matches graph (a).<br />

1<br />

4x4 3x2 6. fx has y-intercept<br />

Matches graph (e).<br />

1<br />

3x3 x2 4<br />

3<br />

0, 4<br />

3.<br />

7. fx x has intercepts 0, 0 <strong>and</strong> 2, 0.<br />

Matches graph (d).<br />

4 2x3 8. fx has intercepts 0, 0, 1, 0,<br />

1, 0, 3, 0, 3, 0. Matches graph (b).<br />

1<br />

5x5 2x3 9<br />

5x


152 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

9.<br />

(a) (b) fx x3 fx x 2 2<br />

3<br />

y x3 10.<br />

y x 5<br />

(a)<br />

(c)<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 2 3 4 5<br />

−2<br />

−3<br />

−4<br />

fx x 1 5<br />

−4 −3 1 2 3 4<br />

−3<br />

−4<br />

Horizontal shift one unit to the left<br />

f x 1 1<br />

2 x5<br />

y<br />

Horizontal shift two units to the right Vertical shift two units downward<br />

(c) (d) fx x 23 fx 2<br />

1<br />

−4 −3 −2 2 3 4<br />

−2<br />

−3<br />

−4<br />

2 x3<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

−4 −3 −2 2 3 4<br />

−3<br />

−4<br />

y<br />

y<br />

y<br />

x<br />

x<br />

Reflection in the x-axis <strong>and</strong> a vertical shrink Horizontal shift two units to the right <strong>and</strong><br />

a vertical shift two units downward<br />

x<br />

x<br />

Reflection in the x-axis, vertical shrink each y-value<br />

1<br />

is multiplied by 2, <strong>and</strong> vertical shift one unit upward<br />

<br />

(b)<br />

(d)<br />

3<br />

2<br />

1<br />

−3 −2 1 2 4 5<br />

−2<br />

−3<br />

−4<br />

−5<br />

fx x 5 1<br />

y<br />

3<br />

2<br />

1<br />

−4 −3 −2 2 3 4<br />

−4<br />

−5<br />

4<br />

3<br />

2<br />

−4 −3 −2 1 2 3 4<br />

−3<br />

−4<br />

Vertical shift one unit upward<br />

f x 1<br />

2x 1 5<br />

−5 −4 −3 −2 1 2 3<br />

y<br />

y<br />

4<br />

3<br />

2<br />

1<br />

−3<br />

−4<br />

y<br />

x<br />

x<br />

x<br />

x<br />

Reflection in the x-axis, vertical shrink each y-value is<br />

1<br />

multiplied by 2, <strong>and</strong> horizontal shift one unit to the left


11.<br />

(a) (b) fx x4 fx x 3 3<br />

4<br />

y x4 12.<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 153<br />

Horizontal shift three units to the left Vertical shift three units downward<br />

(c) (d) fx 1<br />

2x 14 fx 4 x4 −4 −3 −2 1 2 3 4<br />

−1<br />

Reflection in the x-axis <strong>and</strong> then a vertical<br />

shift four units upward<br />

Horizontal shift one unit to the right <strong>and</strong> a vertical shrink<br />

each y-value is multiplied by<br />

(e) (f) fx 1 2x 4 fx 2x 2<br />

4 1<br />

<br />

2<br />

1<br />

−4 −3 −2 −1<br />

−1<br />

−2<br />

Vertical shift one unit upward <strong>and</strong> a horizontal shrink Vertical shift two units downward <strong>and</strong> a horizontal stretch<br />

each y-value is multiplied by each y-value is multiplied by 1<br />

1<br />

<br />

y x 6<br />

(a)<br />

−5 −4 −3 −2 −1 1 2 3<br />

6<br />

5<br />

3<br />

2<br />

1<br />

−2<br />

y<br />

6<br />

5<br />

y<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

fx 1<br />

8 x 6<br />

y<br />

1<br />

2 3 4<br />

x<br />

x<br />

x<br />

Vertical shrink each y-value is multiplied by <strong>and</strong><br />

reflection in the x-axis<br />

—CONTINUED—<br />

4<br />

3<br />

2<br />

1<br />

−4 −3 −2 2 3 4<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

<br />

x<br />

2<br />

1<br />

8<br />

−4 −3 −2 2 3 4<br />

−4 −3 −2 −1 1 2 3 4<br />

−4 −3 −1 1<br />

−1<br />

<br />

4<br />

3<br />

2<br />

1<br />

−4<br />

−2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

y<br />

y<br />

3 4<br />

(b) fx x 2 6 4<br />

−5 −4 −2 1 2 3<br />

−4<br />

y<br />

x<br />

x<br />

x<br />

x<br />

Horizontal shift two units to the left <strong>and</strong> vertical shift four<br />

units downward<br />

2


154 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

12. —CONTINUED—<br />

(c)<br />

(e)<br />

fx x 6 4 (d)<br />

−4 −3 −2 2 3 4<br />

Vertical shift four units downward<br />

fx 1<br />

4 x6<br />

2<br />

4<br />

3<br />

2<br />

1<br />

−8 −6 −2 2 6 8<br />

−4<br />

y<br />

y<br />

x<br />

x<br />

Horizontal stretch (each x-value is multiplied by 4),<br />

<strong>and</strong> vertical shift two units downward<br />

fx 1<br />

4 x 6 1<br />

4<br />

3<br />

2<br />

−4 −3 −2 2 3 4<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

Reflection in the x-axis, vertical shrink each y-value is<br />

multiplied by <strong>and</strong> vertical shift one unit upward<br />

(f) fx 2x6 1<br />

4,<br />

1<br />

y<br />

−4 −3 −2 −1<br />

−1<br />

−2<br />

1 2 3 4<br />

<br />

x<br />

x<br />

Horizontal shrink each x-value is multiplied by 2, <strong>and</strong><br />

vertical shift one unit downward<br />

13. fx <br />

Degree: 3<br />

1<br />

Leading coefficient: 3<br />

The degree is odd <strong>and</strong> the leading coefficient is positive.<br />

The graph falls to the left <strong>and</strong> rises to the right.<br />

1<br />

3x3 5x 14. fx 2x<br />

Degree: 2<br />

Leading coefficient: 2<br />

The degree is even <strong>and</strong> the leading coefficient is positive.<br />

The graph rises to the left <strong>and</strong> rises to the right.<br />

2 3x 1<br />

15. gx 5 <br />

Degree: 2<br />

Leading coefficient: 3<br />

The degree is even <strong>and</strong> the leading coefficient is negative.<br />

The graph falls to the left <strong>and</strong> falls to the right.<br />

7<br />

2x 3x2 16. hx 1 x<br />

Degree: 6<br />

Leading coefficient: 1<br />

The degree is even <strong>and</strong> the leading coefficient is negative.<br />

The graph falls to the left <strong>and</strong> falls to the right.<br />

6<br />

17. fx 2.1x<br />

Degree: 5<br />

Leading coefficient: 2.1<br />

The degree is odd <strong>and</strong> the leading coefficient is negative.<br />

The graph rises to the left <strong>and</strong> falls to the right.<br />

5 4x3 2 18. fx 2x<br />

Degree: 5<br />

Leading coefficient: 2<br />

The degree is odd <strong>and</strong> the leading coefficient is positive.<br />

The graph falls to the left <strong>and</strong> rises to the right.<br />

5 5x 7.5<br />

19.<br />

fx 6 2x 4x 2 5x 3 20.<br />

Degree: 3<br />

Leading coefficient: 5<br />

The degree is odd <strong>and</strong> the leading coefficient is negative.<br />

The graph rises to the left <strong>and</strong> falls to the right.<br />

fx <br />

Degree: 4<br />

3<br />

Leading coefficient: 4<br />

The degree is even <strong>and</strong> the leading coefficient is positive.<br />

The graph rises to the left <strong>and</strong> rises to the right.<br />

3x4 2x 5<br />

4<br />

<br />

1


Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 155<br />

21. ht <br />

Degree: 2<br />

2<br />

3t2 5t 3 22. fs <br />

Degree: 3<br />

7<br />

8 s3 5s2 7s 1<br />

23.<br />

25.<br />

27.<br />

29.<br />

Leading coefficient:<br />

2<br />

3<br />

The degree is even <strong>and</strong> the leading coefficient is<br />

negative. The graph falls to the left <strong>and</strong> falls to the right.<br />

fx 3x 3 9x 1; gx 3x 3 24.<br />

8<br />

−4 4<br />

−8<br />

−8<br />

12<br />

−20<br />

g<br />

g<br />

f<br />

f<br />

fx x 4 4x 3 16x; gx x 4 26.<br />

8<br />

fx x 2 25 28. (a)<br />

(a)<br />

Zeros:<br />

(b) Each zero has a multiplicity of 1 (odd multiplicity).<br />

(c)<br />

(a)<br />

0 x 2 25 x 5x 5<br />

Turning point: 1 (the vertex of the parabola)<br />

−30<br />

Zero:<br />

x ±5<br />

10<br />

−30<br />

(b) t 3 has a multiplicity of 2 (even multiplicity).<br />

(c)<br />

30<br />

0 t 2 6t 9 t 3 2<br />

Turning point: 1 (the vertex of the parabola)<br />

−18<br />

t 3<br />

4<br />

−20<br />

18<br />

Leading coefficient:<br />

7<br />

8<br />

The degree is odd <strong>and</strong> the leading coefficient is negative.<br />

The graph rises to the left <strong>and</strong> falls to the right.<br />

fx 1<br />

3 x 3 3x 2, gx 1<br />

3 x 3<br />

f<br />

g<br />

−9 9<br />

6<br />

−6<br />

fx 3x 4 6x 2 , gx 3x 4<br />

f<br />

g<br />

−6 6<br />

5<br />

−3<br />

x ±7, both with multiplicity 1<br />

(b) Multiplicity of x 7is<br />

1.<br />

(c)<br />

fx 49 x 2<br />

Multiplicity of x 7 is 1.<br />

There is one turning point.<br />

−30<br />

0 7 x7 x<br />

ht t 2 6t 9 30. (a) fx x2 10x 25<br />

55<br />

−5<br />

30<br />

x 5, with multiplicity 2<br />

(b) The multiplicity of x 5 is 2.<br />

(c)<br />

There is one turning point.<br />

−25<br />

0 x 5 2<br />

25<br />

−5<br />

15


156 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

31.<br />

fx 1<br />

(a)<br />

32. (a)<br />

33.<br />

34. (a)<br />

35.<br />

3x2 1<br />

3<br />

0 1<br />

3 x 2 1 2<br />

3 x 3<br />

1<br />

3 x 2 x 2<br />

1<br />

3 x 2x 1<br />

Zeros:<br />

x 2<br />

3<br />

x 2, x 1<br />

(b) Each zero has a multiplicity of 1 (odd multiplicity).<br />

Turning point: 1 (the vertex of the parabola)<br />

fx 1<br />

2 x2 5 3<br />

x <br />

2 2<br />

1<br />

a <br />

2 ,<br />

x 5 2 ± 5<br />

5 37 ± 2 4<br />

<br />

b 5<br />

2 ,<br />

5 ± 37<br />

,<br />

2<br />

ft t 3 4t 2 4t<br />

c 3<br />

2<br />

f x 3x 3 12x 2 3x<br />

2 2 41 2 3<br />

1<br />

2<br />

both with multiplicity 1<br />

(a) 0 3x3 12x 2 3x 3xx2 4x 1<br />

Zeros: x 0, x 2 ± 3 (by the Quadratic<br />

Formula)<br />

(b) Each zero has a multiplicity of 1 (odd multiplicity).<br />

Turning points: 2<br />

gx 5xx 2 2x 1 (b) The multiplicity of x 0 is 1.<br />

0 5xx 2 2x 1<br />

0 xx 2 2x 1<br />

For x a 1, b 2, c 1.<br />

2 2x 1,<br />

x 2 ± 2 2 411<br />

21<br />

<br />

2 ± 8<br />

2<br />

1 ± 2<br />

The zeros are 0, 1 2, <strong>and</strong> 1 2, all with<br />

multiplicity 1.<br />

(a) 0 t<br />

Zeros: t 0, t 2<br />

(b) t 0 has a multiplicity of 1 (odd multiplicity).<br />

t 2 has a multiplicity of 2 (even multiplicity).<br />

Turning points: 2<br />

3 4t2 4t tt2 4t 4 tt 22 (c)<br />

(c)<br />

(c)<br />

−6<br />

−6<br />

8<br />

−24<br />

The multiplicity of x 1 2 is 1.<br />

The multiplicity of x 1 2 is 1.<br />

There are two turning points.<br />

−1<br />

12<br />

−16<br />

4<br />

−4<br />

5 37<br />

(b) The multiplicity of is 1.<br />

2<br />

(c)<br />

(c)<br />

5 37<br />

The multiplicity of is 1.<br />

2<br />

There is one turning point.<br />

−8<br />

−7<br />

5<br />

−5<br />

3<br />

−5<br />

6<br />

4<br />

6<br />

3<br />

8


36. (a)<br />

0 with multiplicity 2, 4 <strong>and</strong> 5 with multiplicity 1.<br />

(b) The multiplicity of x 0 is 2.<br />

(c)<br />

38. (a)<br />

fx x 4 x 3 20x 2 37.<br />

x 0, 4, 5<br />

The multiplicity of x 5 is 1.<br />

The multiplicity of x 4 is 1.<br />

There are three turning points.<br />

−6<br />

0 x 2 x 2 x 20<br />

0 x 2 x 4x 5<br />

25<br />

−150<br />

x 0, ±2, all with multiplicity 1<br />

(b) The multiplicity of x 0 is 1.<br />

(c)<br />

40. (a)<br />

6<br />

f x x 5 x 3 6x 39.<br />

The multiplicity of x 2 is 1.<br />

The multiplicity of x 2 is 1.<br />

There are two turning points.<br />

−9<br />

0 xx 4 x 2 6<br />

0 xx 2 3x 2 2<br />

6<br />

−6<br />

x ±5, both with multiplicity 1<br />

(b) The multiplicity of x 5 is 1.<br />

(c)<br />

The multiplicity of x 5 is 1.<br />

There is one turning point.<br />

−6<br />

20<br />

−60<br />

9<br />

6<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 157<br />

gt t 5 6t 3 9t<br />

(a)<br />

Zeros:<br />

(b) t 0 has a multiplicity of 1 (odd multiplicity).<br />

(c)<br />

(a)<br />

0 t 5 6t 3 9t tt 4 6t 2 9 tt 2 3 2<br />

t ±3 each have a multiplicity of 2<br />

(even multiplicity).<br />

Turning points: 4<br />

−9<br />

tt 3 2<br />

t 3 2<br />

t 0, t ±3<br />

6<br />

−6<br />

fx 5x 4 15x 2 10<br />

No real zeros<br />

(b) Turning point: 1<br />

(c)<br />

0 5x 4 15x 2 10<br />

−4<br />

5x 4 3x 2 2<br />

5x 2 1x 2 2<br />

f x 2x4 2x2 40 41. gx x3 3x2 4x 12<br />

0 2x 4 2x 2 40<br />

0 2x 2 4x 5x 5<br />

(a)<br />

Zeros:<br />

40<br />

−5<br />

9<br />

4<br />

(b) Each zero has a multiplicity of 1 (odd multiplicity).<br />

(c)<br />

0 x 3 3x 2 4x 12 x 2 x 3 4x 3<br />

Turning points: 2<br />

−8<br />

x 2 4x 3 x 2x 2x 3<br />

x ± 2, x 3<br />

4<br />

−16<br />

7


158 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

42. (a)<br />

44.<br />

x ±5, 4, all with multiplicity 1<br />

(b) The multiplicity of x 5 is 1.<br />

(c)<br />

f x x 3 4x 2 25x 100 43.<br />

The multiplicity of x 5 is 1.<br />

The multiplicity of x 4 is 1.<br />

There are two turning points.<br />

−9<br />

0 x 2 x 4 25x 4<br />

0 x 2 25x 4<br />

0 x 5x 5x 4<br />

140<br />

−20<br />

9<br />

y 4x 3 4x 2 8x 8 45.<br />

(a)<br />

(b)<br />

(c)<br />

−3<br />

−11<br />

(1, 0, 1.414214, 0, 1.414214, 0<br />

0 4x 3 4x 2 8x 8<br />

0 4x 2 x 1 8x 1<br />

0 4x 2 8x 1<br />

0 4x 2 2x 1<br />

x ±2, 1<br />

(d) The intercepts match part (b).<br />

46. y <br />

(a)<br />

12<br />

1<br />

4 x 3x 2 9<br />

47.<br />

2<br />

−18 18<br />

−12<br />

(b) 0, 0, 3, 0, 3, 0<br />

fx x 2 10x<br />

Note: fx ax 0x 10 axx 10<br />

has zeros 0 <strong>and</strong> 10 for all real numbers a 0.<br />

3<br />

(c)<br />

y 4x 3 20x 2 25x<br />

(a)<br />

(b) x-intercepts:<br />

(c)<br />

−2<br />

12<br />

−4<br />

0 4x 3 20x 2 25x<br />

0 x2x 5 2<br />

x 0 or x 5<br />

2<br />

0, 0, 5 2 , 0<br />

(d) The solutions are the same as the x-coordinates<br />

of the x-intercepts.<br />

y x 5 5x 3 4x<br />

(a)<br />

(b) x-intercepts: 0, 0, ±1, 0, ±2, 0<br />

(c)<br />

0 <br />

x 0, ±3<br />

1<br />

4x3x 2 9<br />

−6 6<br />

−4<br />

0 x 5 5x 3 4x<br />

0 xx 2 1x 2 4<br />

4<br />

0 xx 1x 1x 2x 2<br />

x 0, ±1, ±2<br />

x-intercepts: 0, 0, ±3, 0<br />

(d) The intercepts match part (b).<br />

(d) The solutions are the same as the x-coordinates<br />

of the x-intercepts.<br />

fx x 0x 10 48. f x x 0x 3<br />

xx 3<br />

x 2 3x<br />

6<br />

Note: f x axx 3 has zeros 0 <strong>and</strong> 3 for all real<br />

numbers a.


49.<br />

51.<br />

53.<br />

55.<br />

57.<br />

59.<br />

61.<br />

fx x 2x 6 50.<br />

fx x 2x 6<br />

fx x 2 4x 12<br />

Note: fx ax 2x 6 has zeros 2 <strong>and</strong> 6<br />

for all real numbers a 0.<br />

fx x 0x 2x 3 52.<br />

xx 2x 3<br />

x 3 5x 2 6x<br />

Note: fx axx 2x 3 has zeros 0, 2, 3 for<br />

all real numbers a 0.<br />

fx x 4x 3x 3x 0 54.<br />

x 4x 2 9x<br />

x 4 4x 3 9x 2 36x<br />

Note: fx ax has these zeros<br />

for all real numbers a 0.<br />

4 4x3 9x2 36x<br />

fx x 1 3 x 1 3 <br />

x 1 3 x 1 3<br />

x 1 2 3 2<br />

x 2 2x 1 3<br />

x 2 2x 2<br />

Note: fx ax has these zeros for all real<br />

numbers a 0.<br />

2 2x 2<br />

fx x 2x 2<br />

x 2 2 x 2 4x 4<br />

Note: f x ax a 0, has degree 2 <strong>and</strong><br />

zero x 2.<br />

2 4x 4,<br />

f x x 3x 0x 1<br />

xx 3x 1 x 3 2x 2 3x<br />

Note: f x ax a 0, has degree 3 <strong>and</strong><br />

zeros x 3, 0, 1.<br />

3 2x2 3x,<br />

xx 3x 3 x 3 3x<br />

Note: f x ax a 0, has degree 3 <strong>and</strong> zeros<br />

x 0, 3, 3.<br />

3 3x,<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 159<br />

56.<br />

58.<br />

60.<br />

f x x 4x 5<br />

x 4x 5<br />

x 2 x 20<br />

Note: f x ax 4x 5 has zeros 4 <strong>and</strong> 5 for all<br />

real numbers a.<br />

f x x 0x 2x 5<br />

xx 2x 5<br />

xx 2 7x 10<br />

x 3 7x 2 10x<br />

Note: f x axx 2x 5 has zeros 0, 2, 5 for all<br />

real numbers a.<br />

f x x 2x 1x 0x 1x 2<br />

xx 2x 1x 1x 2<br />

xx 2 4x 2 1<br />

xx 4 5x 2 4<br />

x 5 5x 3 4x<br />

Note: f x axx 2x 1x 1x 2 has<br />

zeros 2, 1, 0, 1, 2 for all real numbers a.<br />

x 2x 42 f x x 2x 4 5 x 4 5<br />

x 2x 4 5x 4 5<br />

5<br />

xx 4 2 5x 2x 4 2 10<br />

x 3 8x 2 16x 5x 2x 2 16x 32 10<br />

x 3 10x 2 27x 22<br />

Note: f x ax has these zeros<br />

for all real numbers a.<br />

3 10x 2 27x 22<br />

f x x 8x 4<br />

x 8x 4 x 2 12x 32<br />

Note: f x ax has degree 2<br />

<strong>and</strong> zeros x 8 <strong>and</strong> 4.<br />

2 12x 32, a 0,<br />

f x x 2x 4x 7<br />

x 2x 2 11x 28 x 3 9x 2 6x 56<br />

Note: f x ax has degree<br />

3 <strong>and</strong> zeros x 2, 4, <strong>and</strong> 7.<br />

3 9x2 6x 56, a 0,<br />

f x x 0x 3x 3 62. f x x 93 x3 27x2 243x 729<br />

Note: f x ax has<br />

degree 3 <strong>and</strong> zero x 9.<br />

3 27x2 243x 729, a 0,


160 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

63.<br />

64.<br />

65.<br />

66.<br />

67.<br />

f x x 5 2 x 1x 2 x 4 7x 3 3x 2 55x 50<br />

or f x x 5x 12x 2 x4 x3 15x2 23x 10<br />

or f x x 5x 1x 22 x4 17x2 36x 20<br />

Note: Any nonzero scalar multiple of these functions would also have degree 4 <strong>and</strong> zeros x 5, 1, 2.<br />

f x x 4x 1x 3x 6 x 4 4x 3 23x 2 54x 72<br />

Note: f x ax has degree 4 <strong>and</strong> zeros x 4, 1, 3, <strong>and</strong> 6.<br />

4 4x3 23x2 54x 72, a 0,<br />

f x x 4 x 4 x 5 4x 4<br />

or f x x3x 42 x5 8x4 16x3 or f x x2x 43 x5 12x4 48x3 64x2 or f x xx 44 x5 16x4 96x3 256x2 256x<br />

Note: Any nonzero scalar multiple of these functions would also have degree 5 <strong>and</strong> zeros x 0 <strong>and</strong> 4.<br />

f x x 3 2 x 1x 5x 6 x 5 6x 4 22x 3 108x 2 189x 270<br />

or<br />

f x x 3x 1 2 x 5x 6 x 5 10x 4 14x 3 88x 2 183x 90<br />

or f x x 3x 1x 52x 6 x5 14x 4 50x3 68x2 555x 450<br />

or f x x 3x 1x 5x 62 x5 15x 4 59x3 63x2 648x 540<br />

Note: Any nonzero multiple of these functions would also have degree 5 <strong>and</strong> zeros x 3, 1, 5, <strong>and</strong> 6.<br />

f x x 3 9x xx 2 9 xx 3x 3<br />

(a) Falls to the left; rises to the right<br />

(b) Zeros: 0, 3, 3<br />

(c)<br />

x 3 2 1 0 1 2 3<br />

(d)<br />

f x<br />

(−3, 0)<br />

−12 −8 −4<br />

−4<br />

−8<br />

0 10 8 0 8 10 0<br />

12<br />

4<br />

y<br />

4<br />

(0, 0)<br />

(3, 0)<br />

8 12<br />

69. f t <br />

(a) Rises to the left; rises to the right<br />

1<br />

4t2 2t 15 1<br />

4t 12 7<br />

2<br />

(b) No real zero (no x-intercepts)<br />

(c)<br />

t 1<br />

0 1 2 3<br />

f t<br />

4.5<br />

3.75<br />

3.5<br />

x<br />

3.75<br />

4.5<br />

68.<br />

gx x 4 4x 2 x 2 x 2x 2<br />

(a) Rises to the left; rises to the right<br />

(b) Zeros:<br />

(c)<br />

(d)<br />

2, 0, 2<br />

x 0.5 1 1.5 2.5<br />

gx<br />

0.94 3 3.94 14.1<br />

4<br />

3<br />

(−2, 0)<br />

2<br />

1<br />

(0, 0) (2, 0)<br />

−4 −3 −1 1 3 4<br />

−4<br />

(d) The graph is a parabola with vertex<br />

8<br />

6<br />

2<br />

−4 −2 2 4<br />

y<br />

y<br />

t<br />

x<br />

1, 7<br />

2.


70.<br />

72.<br />

74.<br />

gx x 2 10x 16 x 2x 8<br />

(a) Falls to the left; falls to the right<br />

(b) Zeros: 2, 8<br />

(c)<br />

(d)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

x 1 3 5 7 9<br />

gx<br />

y<br />

f x 1 x 3<br />

7 5 9 5 7<br />

(2, 0) (8, 0)<br />

4 6 10<br />

(a) Rises to the left; falls to the right<br />

(b) Zero: 1<br />

(c)<br />

(d)<br />

x 2 1 0 1 2<br />

f x<br />

9 2 1 0 7<br />

3<br />

2<br />

−2 −1 2<br />

−1<br />

y<br />

(1, 0)<br />

f x 4x 3 4x 2 15x<br />

(a) Rises to the left; falls to the right<br />

(b) Zeros:<br />

(c)<br />

(d)<br />

x4x 2 4x 15<br />

x2x 52x 3<br />

3 ( − , 0( 2<br />

−4 −3 −2<br />

3 5<br />

2 , 0, 2<br />

x<br />

x 3 2 1 0 1 2 3<br />

f x<br />

x<br />

99 18 7 0 15 14 27<br />

20<br />

16<br />

12<br />

8<br />

4<br />

y<br />

(0, 0)<br />

1<br />

2<br />

(<br />

5<br />

, 0( 2<br />

3<br />

4<br />

x<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 161<br />

71.<br />

73.<br />

75.<br />

f x x 3 3x 2 x 2 x 3<br />

(a) Falls to the left; rises to the right<br />

(b) Zeros: 0, 3<br />

(c)<br />

(d)<br />

x 1 0 1 2 3<br />

f x<br />

1<br />

−1 1 2 4<br />

−3<br />

−4<br />

y<br />

4<br />

(0, 0) (3, 0)<br />

0 2 4 0<br />

fx 3x 3 15x 2 18x 3xx 2x 3<br />

(a) Falls to the left; rises to the right<br />

(b) Zeros: 0, 2, 3<br />

(c)<br />

(d)<br />

x 0 1 2 2.5 3<br />

f x<br />

y<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

(0, 0) (2, 0) (3, 0)<br />

−3 −2 −1<br />

−1<br />

1 4 5 6<br />

−2<br />

x<br />

0 6 0 1.875 0 7.875<br />

f x 5x 2 x 3 x 2 5 x<br />

(a) Rises to the left; falls to the right<br />

(b) Zeros:<br />

(c)<br />

(d)<br />

−15<br />

5<br />

(−5, 0) (0, 0)<br />

−10<br />

0, 5<br />

−20<br />

y<br />

5 10<br />

x<br />

x<br />

3.5<br />

x 5<br />

4 3 2 1 0 1<br />

f x<br />

0 16 18 12 4 0 6


162 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

76.<br />

77.<br />

f x 48x 2 3x 4<br />

(a) Rises to the left; rises to the right (d)<br />

(b) Zeros:<br />

(c)<br />

(a) Falls to the left; rises to the right<br />

(b) Zeros:<br />

(c)<br />

(d)<br />

79. gt <br />

(a) Falls to the left; falls to the right<br />

1<br />

4t 22t 22 (b) Zeros: 2, 2<br />

(c)<br />

(d)<br />

3x 2 x 2 16<br />

f x x 2 x 4<br />

(−2, 0)<br />

2<br />

0, 4<br />

x 1 0 1 2 3 4 5<br />

f x<br />

0, ±4<br />

x 5 4 3 2 1 0 1 2 3 4 5<br />

f x<br />

675 0 189 144 45 0 45 144 189 0 675<br />

y<br />

5<br />

(0, 0) (4, 0)<br />

−4 −2 2 6 8<br />

t 0 1 2 3<br />

0 0 25<br />

9<br />

4<br />

9<br />

3 2 1<br />

gt<br />

25<br />

4<br />

−3 −1 1 2 3<br />

−1<br />

−2<br />

−5<br />

−6<br />

y<br />

0 3 8 9 0 25<br />

(2, 0)<br />

4<br />

x<br />

t<br />

4<br />

4<br />

78. hx <br />

(a) Falls to the left; rises to the right<br />

1<br />

3x3x 42 (b) Zeros: 0, 4<br />

(c)<br />

(d)<br />

x 1 0 1 2 3 4 5<br />

hx<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

y<br />

25<br />

3<br />

(0, 0) (4, 0)<br />

0 3 9 0<br />

−4 −2 2 4 6 8 10 12<br />

x<br />

32<br />

3<br />

80. gx <br />

(a) Falls to the left; rises to the right<br />

1<br />

10x 12x 33 (b) Zeros:<br />

(c)<br />

(d)<br />

1, 3<br />

6<br />

4<br />

y<br />

2<br />

(−1, 0) (3, 0)<br />

−6 −4 −2 4 6 8<br />

x<br />

125<br />

3<br />

x 2 1 0 1 2 4<br />

g x<br />

(−4, 0)<br />

−6<br />

−2<br />

100<br />

−200<br />

−300<br />

y<br />

(0, 0)<br />

2<br />

(4, 0)<br />

12.5 0 2.7 3.2 0.9 2.5<br />

6<br />

x


81.<br />

83.<br />

85.<br />

Zeros: 0, 2, 2 all of multiplicity 1<br />

gx 1<br />

5x 1 2 x 32x 9<br />

−12<br />

Zeros: 1 of multiplicity 2; 3 of multiplicity 1;<br />

of multiplicity 1<br />

9<br />

2<br />

fx x 3 4x xx 2x 2 82.<br />

−9 9<br />

14<br />

−6<br />

6<br />

−6<br />

fx x 3 3x 2 3<br />

−5<br />

10<br />

−10<br />

The function has three zeros.<br />

They are in the intervals<br />

1, 0, 1, 2 <strong>and</strong> 2, 3. They<br />

are x 0.879, 1.347, 2.532.<br />

87. gx 3x4 4x3 3<br />

−5<br />

10<br />

−10<br />

18<br />

The function has two zeros.<br />

They are in the intervals<br />

2, 1 <strong>and</strong> 0, 1. They<br />

are x 1.585, 0.779.<br />

5<br />

5<br />

x<br />

3<br />

2<br />

1<br />

0 3<br />

1 1<br />

2<br />

3 3<br />

4 19<br />

x<br />

4<br />

3<br />

2<br />

1<br />

0<br />

y 1<br />

51<br />

17<br />

1<br />

1<br />

y 1<br />

509<br />

132<br />

13<br />

4<br />

3<br />

1 4<br />

2 77<br />

3 348<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 163<br />

84.<br />

86.<br />

88.<br />

f x 1<br />

4 x 4 2x 2<br />

−9 9<br />

6<br />

−6<br />

Zeros: 2.828 <strong>and</strong> 2.828 with multiplicity 1; 0, with<br />

multiplicity 2<br />

hx 1<br />

5x 2 2 3x 5 2<br />

21<br />

−12 12<br />

−3<br />

Zeros: 2, both with multiplicity 2<br />

5<br />

3,<br />

f x 0.11x 3 2.07x 2 9.81x 6.88<br />

The function has three zeros. They are in the intervals<br />

0, 1, 6, 7, <strong>and</strong> 11, 12. They are approximately 0.845,<br />

6.385, <strong>and</strong> 11.588.<br />

x y x y<br />

−4<br />

10<br />

−10<br />

The function has four zeros. They are<br />

in the intervals 4, 3, 1, 0, 0, 1,<br />

<strong>and</strong> 3, 4. They are approximately<br />

±3.113 <strong>and</strong> ±0.556.<br />

−4<br />

10<br />

−30<br />

16<br />

hx x 4 10x 2 3<br />

4<br />

0<br />

1<br />

6.88<br />

0.97<br />

2 5.34<br />

3 6.89<br />

4 6.28<br />

5 4.17<br />

6 1.12<br />

7<br />

8<br />

9<br />

10<br />

11<br />

1.91<br />

4.56<br />

6.07<br />

5.78<br />

3.03<br />

12 2.84<br />

x<br />

4<br />

3<br />

2<br />

1<br />

99<br />

0 3<br />

1<br />

2<br />

3<br />

y<br />

6<br />

21<br />

6<br />

6<br />

21<br />

6<br />

4 99


164 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

89. (a)<br />

90. (a)<br />

(b)<br />

x > 0,<br />

12 x > 0,<br />

x < 12<br />

Domain: 0 < x < 6<br />

212 x 46 xx<br />

8x12 x6 x<br />

6 x > 0<br />

x < 6<br />

(c)<br />

Volume l w h 24 2x24 4xx (c)<br />

91. (a) A l w 12 2xx 2x square inches<br />

2 12x<br />

(b)<br />

Thus, Vx 36 2x36 2xx x36 2x2 .<br />

(b) Domain:<br />

(d)<br />

Volume l w h<br />

height x<br />

length width 36 2x<br />

The length <strong>and</strong> width must be positive.<br />

3600<br />

0 18<br />

0<br />

The maximum point on the graph occurs at x 6.<br />

This agrees with the maximum found in part (c).<br />

16 feet 192 inches<br />

V l w h<br />

0 < x < 18<br />

12 2xx192<br />

384x cubic inches<br />

2 2304x<br />

(c) Since x <strong>and</strong> 12 2x cannot be negative, we have<br />

0 < x < 6 inches for the domain.<br />

(d) When the volume is a<br />

maximum with V 3456 in. . The<br />

dimensions of the gutter cross-section<br />

are 3 inches 6 inches 3 inches.<br />

3<br />

x V<br />

x 3,<br />

0 0<br />

1 1920<br />

2 3072<br />

3 3456<br />

4 3072<br />

5 1920<br />

6 0<br />

(e)<br />

The volume is a maximum of 3456 cubic inches when the<br />

height is 6 inches <strong>and</strong> the length <strong>and</strong> width are each<br />

24 inches. So the dimensions are 6 24 24 inches.<br />

720<br />

600<br />

480<br />

360<br />

240<br />

120<br />

Box Box Box<br />

Height Width Volume, V<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7 736 272 636 26<br />

36 27<br />

3388<br />

2 36 26<br />

3456<br />

V<br />

36 21<br />

36 22<br />

36 23<br />

36 24<br />

36 25<br />

1 2 3 4 5 6<br />

136 21 2 1156<br />

236 22 2 2048<br />

336 23 2 2700<br />

436 24 2 3136<br />

536 25 2 3380<br />

x 2.6 corresponds to a maximum of about<br />

665 cubic inches.<br />

4000<br />

0<br />

0<br />

Maximum: 3, 3456<br />

The maximum value is the same.<br />

6<br />

x<br />

(f) No. The volume is a product of the constant length <strong>and</strong><br />

the cross-sectional area. The value of x would remain the<br />

same; only the value of V would change if the length was<br />

changed.


92. (a)<br />

93.<br />

(c)<br />

200<br />

7<br />

140<br />

V 4<br />

3r 3 r 2 4r (b)<br />

V 4<br />

3r 3 4r 3<br />

150<br />

0<br />

0<br />

16<br />

3 r 3<br />

The model is a good fit to the actual data.<br />

13<br />

2<br />

(d)<br />

r ≥ 0<br />

r 1.93 ft<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 165<br />

V 120 ft 3 16<br />

3 r 3<br />

length 4r 7.72 ft<br />

y 1 0.139t 3 4.42t 2 51.1t 39 94.<br />

95. Midwest:<br />

97.<br />

South:<br />

y 218 $223.472 thous<strong>and</strong> $223,472<br />

Since the models are both cubic functions with positive<br />

leading coefficients, both will increase without bound<br />

as t increases, thus should only be used for short term<br />

projections.<br />

(a)<br />

y 0.056t 3 1.73t 2 23.8t 29<br />

180<br />

7<br />

120<br />

13<br />

The data fit the model closely.<br />

y 118 $259.368 thous<strong>and</strong> $259,368 96. Answers will vary.<br />

G 0.003t 3 0.137t 2 0.458t 0.839,<br />

60<br />

−10 45<br />

−5<br />

(b) The tree is growing most rapidly at t 15.<br />

102. (a) Degree: 3<br />

Leading coefficient: Positive<br />

(b) Degree: 2<br />

Leading coefficient: Positive<br />

2 ≤ t ≤ 34<br />

(c)<br />

Example: The median price of homes in the South are<br />

all lower than those in the Midwest. The curves do<br />

not intersect.<br />

y 0.009t 2 0.274t 0.458<br />

b 0.274<br />

15.222<br />

2a 20.009<br />

y15.222 2.543<br />

Vertex 15.22, 2.54<br />

(d) The x-value of the vertex in part (c) is approximately<br />

equal to the value found in part (b).<br />

98. R <br />

The point of diminishing returns (where the graph<br />

changes from curving upward to curving downward)<br />

occurs when x 200. The point is 200, 160 which<br />

corresponds to spending $2,000,000 on advertising to<br />

obtain a revenue of $160 million.<br />

1<br />

100,000x 3 600x2 99. False. A fifth degree polynomial can have at most four<br />

turning points.<br />

100. True. f x x 1 has one repeated solution.<br />

6<br />

(c) Degree: 4<br />

Leading coefficient: Positive<br />

(d) Degree: 5<br />

Leading coefficient: Positive<br />

101. True. A polynomial of degree 7 with a negative leading<br />

coefficient rises to the left <strong>and</strong> falls to the right.


166 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

103. fx x is even.<br />

4 ; fx<br />

(f)<br />

Even<br />

gx 1<br />

2<br />

Vertical shrink<br />

Even<br />

(h) gx f f x f f x f x 4 x 44 x16 Even<br />

1 4 f x 2x 104. (a) is decreasing.<br />

y2 is increasing.<br />

3<br />

5x 25 y1 <br />

3<br />

1<br />

3x 25 1 (c)<br />

Since is not always increasing or always decreasing,<br />

cannot be written in the form ax h5 Hx x<br />

Hx<br />

Hx<br />

k.<br />

5 3x3 2x 1<br />

8<br />

−12 12<br />

y<br />

2<br />

y1 −8<br />

(b) The graph is either always increasing or always<br />

decreasing. The behavior is determined by a. If<br />

a > 0, gx will always be increasing. If a < 0,<br />

gx will always be decreasing.<br />

−9 9<br />

105. 5x2 7x 24 5x 8x 3 106. 6x 3 61x2 10x x6x2 61x 10<br />

107.<br />

109.<br />

(a)<br />

gx fx 2<br />

Vertical shift two units upward<br />

gx f x 2<br />

f x 2<br />

gx<br />

Even<br />

(b) (c) gx f x x4 x 4<br />

gx f x 2<br />

Horizontal shift two units to the left Reflection in the y- axis. The graph looks the same.<br />

4 x4 7x3 15x2 x24x2 7x 15 108. y3 216 y3 63 x 2 4x 5x 3<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3<br />

−1<br />

(d) gx fx x<br />

Reflection in the x-axis<br />

4<br />

Neither odd nor even Even<br />

(e) gx f <br />

Horizontal stretch<br />

1 1 4<br />

2x 16x 2 x 2 x 28 0 110.<br />

2x 7x 4 0<br />

2 x 7 0 ⇒ x 7<br />

2<br />

x 4 0 ⇒ x 4<br />

y<br />

x<br />

Even<br />

(g) gx f x x ≥ 0<br />

34 x344 x3 ,<br />

Neither odd nor even<br />

6<br />

−6<br />

x6x 1x 10<br />

y 6y 2 6y 36<br />

3x 2 22x 16 0<br />

3x 2x 8 0<br />

3x 2 0<br />

x 2<br />

3<br />

or<br />

x 8 0<br />

or x 8


111.<br />

113.<br />

115.<br />

117.<br />

12x 2 11x 5 0 112.<br />

3x 14x 5 0<br />

3x 1 0 ⇒ x 1<br />

3<br />

4x 5 0 ⇒ x 5<br />

4<br />

x 2 2x 21 0 114.<br />

x 2 2x 1 2 21 1 0<br />

x 1 2 22 0<br />

x 1 2 22<br />

x 1 ±22<br />

x 1 ± 22<br />

2 x 2 5x 20 0 116.<br />

2 x2 5 x 20 0<br />

2<br />

5 2 x 4 2<br />

185<br />

2<br />

0<br />

8 x2 5<br />

2 x 5<br />

4 2 25<br />

20 0<br />

8<br />

fx x 4 2<br />

Common function:<br />

5<br />

x 4 2<br />

185<br />

16<br />

y x 2<br />

Transformation: Horizontal<br />

shift four units to the left<br />

x 5<br />

±185<br />

4 4<br />

x <br />

5 ± 185<br />

4<br />

−7 −6 −5 −4 −3 −2 −1 −1<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

1<br />

x<br />

Section 2.2 <strong>Polynomial</strong> <strong>Functions</strong> of Higher Degree 167<br />

118.<br />

x 2 24x 144 0<br />

x 12 2 0<br />

x 12 0<br />

x 2 8x 2 0<br />

x 4 2 14<br />

x 12<br />

x 2 8x 2<br />

x 2 8x 16 2 16<br />

x 4 ±14<br />

3x 2 4x 9 0<br />

x2 4<br />

x 3 0<br />

3<br />

x2 4<br />

x 3<br />

3<br />

x 4 ± 14<br />

x2 4 4 4<br />

x 3 <br />

3 9 9<br />

2<br />

x 3 2<br />

31<br />

9<br />

x 2 31<br />

± 3 9<br />

x 2 31<br />

±<br />

3 3<br />

x <br />

f x 3 x 2<br />

2 ± 31<br />

3<br />

Reflection in the x-axis<br />

<strong>and</strong> vertical shift of three<br />

units upward of y x 2<br />

119. fx x 1 5 y<br />

120. f x 7 x 6<br />

Common function: y x<br />

1<br />

Horizontal shift of six units<br />

Transformation: Horizontal<br />

shift one unit to the left <strong>and</strong><br />

a vertical shift five units<br />

downward<br />

−3 −2 −1<br />

−1<br />

−2<br />

−3<br />

1 2 3<br />

x<br />

to the right, reflection in the<br />

x-axis, <strong>and</strong> vertical shift of<br />

seven units upward<br />

of y x<br />

−5<br />

4<br />

2<br />

1<br />

−4 −3 −1<br />

−1<br />

15<br />

12<br />

9<br />

6<br />

3<br />

y<br />

−2<br />

−3<br />

−4<br />

y<br />

1 3 4<br />

−3 3 6 9 12 15<br />

−3<br />

x<br />

x


168 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

121. fx 2x 9 y<br />

122. f x 10 <br />

Common function: y x<br />

Transformation: Vertical<br />

stretch each<br />

y-value is<br />

multiplied by 2 ,<br />

then a<br />

vertical shift nine units<br />

upward<br />

−6<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2<br />

x<br />

Horizontal shift of three units<br />

to the left, vertical shrink<br />

each<br />

y-value is multiplied<br />

1<br />

by 3, reflection in the x-axis<br />

<strong>and</strong> vertical shift of ten<br />

units upward of y x<br />

1<br />

3 x 3<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division<br />

You should know the following basic techniques <strong>and</strong> principles of polynomial division.<br />

■ The Division Algorithm (Long Division of <strong>Polynomial</strong>s)<br />

■ Synthetic Division<br />

■ f k is equal to the remainder of fx divided by x k (the Remainder Theorem).<br />

■ fk 0 if <strong>and</strong> only if x k is a factor of fx.<br />

Vocabulary Check<br />

1. f x is the dividend; dx is the divisor; gx is the quotient; rx is the remainder<br />

y 1 x2<br />

1. <strong>and</strong><br />

x 2<br />

x 2 ) x 2 0x 0<br />

x 2 2x<br />

x 2<br />

2x 0<br />

2x 4<br />

x<br />

Thus, <strong>and</strong> y1 y2 .<br />

2<br />

4<br />

x 2 <br />

x 2 x 2<br />

3. y1 <strong>and</strong><br />

(a) <strong>and</strong> (b)<br />

x5 3x3 x2 1<br />

−9 9<br />

6<br />

−6<br />

y 2 x 2 4<br />

x 2<br />

4<br />

y 2 x 3 4x 4x<br />

x 2 1<br />

−2<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−1 1 2<br />

2. improper; proper 3. synthetic division 4. factor 5. remainder<br />

(c)<br />

3 4 5 6 7 8 9<br />

2. <strong>and</strong><br />

39<br />

x<br />

Thus, <strong>and</strong> y1 y2 .<br />

4 3x2 1<br />

x2 x<br />

5<br />

2 8 39<br />

x2 8x<br />

5<br />

2 8x<br />

40<br />

2 x<br />

1<br />

4 5x2 x2 5 ) x4 3x2 x<br />

1<br />

2 y2 x<br />

8<br />

2 8 39<br />

x2 y1 <br />

5<br />

x4 3x2 1<br />

x2 5<br />

x5 0x4 x3 x2 0x 1 ) x5 0x4 3x3 0x2 x<br />

0x 0<br />

3 4x<br />

4x 3 0x 2 0x<br />

4x 3 0x 2 4x<br />

4x 0<br />

x<br />

Thus, <strong>and</strong> y1 y2. 5 3x3 x2 1 x3 4x 4x<br />

x2 1<br />

x


2x 4<br />

4. <strong>and</strong> y2 x 3 <br />

x<br />

(a) <strong>and</strong> (b)<br />

2 y1 <br />

x 1<br />

x3 2x2 5<br />

x2 x 1<br />

5.<br />

7.<br />

9.<br />

8<br />

−12 12<br />

−8<br />

x 3 ) 2x 2 10x 12<br />

2x 2 6x<br />

2x 2 10x 12<br />

x 3<br />

4x 12<br />

4x 12<br />

2x 4<br />

4x 5 ) 4x 3 7x 2 11x 5<br />

4x 3 5x 2<br />

4x 3 7x 2 11x 5<br />

4x 5<br />

x 4 2x 3<br />

0<br />

(c)<br />

2x 4 6.<br />

12x 2 11x<br />

12x 2 15x<br />

x 4 5x 3 6x 2 x 2<br />

x 2<br />

x 2 3x 1 8.<br />

4x 5<br />

4x 5<br />

0<br />

x 2 3x 1<br />

x 3 3x 2 1 10.<br />

x 2 ) x 4 5x 3 6x 2 x 2<br />

3x 3 6x 2<br />

3x 3 6x 2<br />

x 2<br />

x 2<br />

0<br />

x 3 3x 2 1<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division 169<br />

x 2 x 1 ) x 3 2x 2 0x 5<br />

x 3 x 2 x<br />

x 3<br />

3x 2 x 5<br />

3x 2 3x 3<br />

2x 8<br />

x<br />

Thus, <strong>and</strong> y1 y2 .<br />

3 2x2 5<br />

x2 2x 4<br />

x 3 <br />

x 1 x2 x 1<br />

x 4 ) 5x 2 17x 12<br />

5x 2 20x<br />

5x 2 17x 12<br />

x 4<br />

5x 3<br />

3x 12<br />

3x 12<br />

6x 3 4x 2<br />

0<br />

5x 3<br />

3x 2 ) 6x 3 16x 2 17x 6<br />

12x 2 17x<br />

12x 2 8x<br />

6x 3 16x 2 17x 6<br />

3x 2<br />

x 3 3x 2<br />

x 3 4x 2 3x 12<br />

x 3<br />

2 x 2 4x 3<br />

9x 6<br />

9x 6<br />

x 2 7x 18<br />

x 3 ) x 3 4x 2 3x 12<br />

7x 2 3x<br />

7x 2 21x<br />

0<br />

2x 2 4x 3<br />

18x 12<br />

18x 54<br />

42<br />

x 2 7x 18 42<br />

x 3


170 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

11.<br />

13.<br />

15.<br />

16.<br />

18.<br />

x 2 ) 7x 3<br />

7x 3<br />

x 2<br />

7x 14<br />

11<br />

7 11<br />

x 2<br />

2x 2 0x 1 ) 6x 3 10x 2 x 8<br />

6x3 10x 2 x 8<br />

2x 2 1<br />

7 12.<br />

6x 3 0x 2 3x<br />

10x 2 2x 8<br />

10x 2 0x 5<br />

2x 3<br />

3x 5 <br />

x 4 2x 3 3x 2<br />

3x 5<br />

2x 3<br />

2x 2 1<br />

x 2 2x 4<br />

x 2 2x 3 ) x 4 0x 3 3x 2 0x 1<br />

2x 3 0x 2 0x<br />

2x 3 4x 2 6x<br />

4x 2 6x 1<br />

4x 2 8x 12<br />

2x 11<br />

⇒<br />

x 3 0x 2 0x 1 ) x 5 0x 4 0x 3 0x 2 0x 7<br />

x5 7<br />

x3 1 x2 x2 7<br />

x3 1<br />

x 5 0x 4 0x 3 x 2<br />

2 x<br />

x 2 2x 1 ) 2x 3 4x 2 15x 5<br />

2x 3 4x 2 2x<br />

17x 5<br />

2x 3 4x 2 15x 5<br />

x 12 17x 5<br />

2x <br />

x 2 2x 1<br />

14.<br />

2 x 1 ) 8x 5<br />

8x 4<br />

9<br />

8x 5<br />

4 <br />

2x 1 9<br />

2x 1<br />

4<br />

x 2 0x1 ) x 3 0x 2 0x 9<br />

x 3 0x 2 x<br />

x3 9<br />

x2 x 9<br />

x <br />

1 x2 1<br />

x4 3x2 1<br />

x2 2x 3 x2 2x 11<br />

2x 4 <br />

x2 2x 3<br />

x 2 17.<br />

x 2 7<br />

19.<br />

5 3<br />

3<br />

17<br />

15<br />

2<br />

15<br />

10<br />

5<br />

3x 3 17x 2 15x 25<br />

x 5<br />

x<br />

x 9<br />

x 3 3x 2 3x 1 ) x 4 0x 3 0x 2 0x 0<br />

x 4 3x 3 3x 2 x<br />

x4 x 13 x 3 6x2 8x 3<br />

x 13 3x 3 3x 2 x 0<br />

3x 3 9x 2 9x 3<br />

25<br />

25<br />

0<br />

6x 2 8x 3<br />

3x 2 2x 5<br />

x 3


20.<br />

22.<br />

24.<br />

26.<br />

28.<br />

29.<br />

31.<br />

33.<br />

3 5<br />

5<br />

18<br />

15<br />

3<br />

7<br />

9<br />

2<br />

5x 3 18x 2 7x 6<br />

x 3<br />

2 9<br />

9<br />

18<br />

18<br />

0<br />

16<br />

0<br />

16<br />

32<br />

32<br />

9x 3 18x 2 16x 32<br />

x 2<br />

6 3<br />

3<br />

16<br />

18<br />

2<br />

3x 3 16x 2 72<br />

x 6<br />

2 5<br />

5<br />

0<br />

10<br />

10<br />

5x 3 6x 8<br />

x 2<br />

3 1<br />

0<br />

12<br />

12<br />

6<br />

6<br />

0<br />

5x 2 3x 2<br />

0<br />

72<br />

72<br />

0<br />

9x 2 16<br />

3x 2 2x 12<br />

6<br />

20<br />

26<br />

x 5 13x 4 120x 80<br />

x 3<br />

8 1<br />

1<br />

1<br />

8<br />

52<br />

44<br />

5x 2 10x 26 44<br />

x 2<br />

13<br />

3<br />

16<br />

0<br />

48<br />

48<br />

x 3 512<br />

x 8 x2 8x 64<br />

2 3<br />

3<br />

0<br />

8<br />

8<br />

0<br />

64<br />

64<br />

0<br />

144<br />

144<br />

120<br />

432<br />

312<br />

80<br />

936<br />

856<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division 171<br />

21.<br />

23.<br />

25.<br />

27.<br />

2 4<br />

4<br />

8<br />

8<br />

0<br />

9<br />

0<br />

9<br />

4x 3 8x 2 9x 18<br />

x 2<br />

10 1<br />

1<br />

0<br />

10<br />

10<br />

x 3 75x 250<br />

x 10<br />

4 5<br />

x 4 16x 3 48x 2 144x 312 856<br />

x 3<br />

512<br />

512<br />

0<br />

3x4 x 2 3x3 6x2 12x 24 48<br />

x 2<br />

6 1<br />

1<br />

180x x 4<br />

0<br />

6<br />

6<br />

0<br />

6<br />

6<br />

0<br />

12<br />

12<br />

0<br />

36<br />

36<br />

0<br />

24<br />

24<br />

180<br />

216<br />

36<br />

0<br />

48<br />

48<br />

0<br />

216<br />

216<br />

x 6 x3 6x 2 36x 36 216<br />

x 6<br />

30.<br />

32.<br />

34.<br />

5<br />

6<br />

20<br />

14<br />

5x 3 6x 2 8<br />

x 4<br />

6 10<br />

10<br />

50<br />

60<br />

10<br />

0<br />

56<br />

56<br />

10x 4 50x 3 800<br />

x 6<br />

9 1<br />

1<br />

0<br />

9<br />

9<br />

0<br />

81<br />

81<br />

18<br />

18<br />

0<br />

4x 2 9<br />

75<br />

100<br />

25<br />

250<br />

250<br />

0<br />

x 2 10x 25<br />

8<br />

224<br />

232<br />

5x 2 14x 56 232<br />

x 4<br />

0<br />

60<br />

60<br />

0<br />

360<br />

360<br />

x 3 729<br />

x 9 x2 9x 81<br />

2 3<br />

3<br />

0<br />

6<br />

6<br />

0<br />

12<br />

12<br />

800<br />

2160<br />

1360<br />

10x 3 10x 2 60x 360 1360<br />

x 6<br />

729<br />

729<br />

0<br />

0<br />

24<br />

24<br />

0<br />

48<br />

48<br />

3x 4<br />

x 2 3x 3 6x 2 12x 24 48<br />

x 2<br />

1 1<br />

1<br />

2<br />

1<br />

3<br />

5 3x 2x 2 x 3<br />

x 1<br />

3<br />

3<br />

6<br />

5<br />

6<br />

11<br />

x 2 3x 6 11<br />

x 1


172 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

35.<br />

37.<br />

39.<br />

41.<br />

43.<br />

1<br />

2<br />

4<br />

4<br />

16<br />

2<br />

14<br />

23<br />

7<br />

30<br />

4x 3 16x 2 23x 15<br />

x 12<br />

15<br />

15<br />

0<br />

4x 2 14x 30<br />

fx x 3 x 2 14x 11, k 4<br />

4 1<br />

1<br />

1<br />

4<br />

3<br />

14<br />

12<br />

2<br />

11<br />

8<br />

3<br />

fx x 4x 2 3x 2 3<br />

f4 4 3 4 2 144 11 3<br />

f x 15x 4 10x 3 6x 2 14, k 2<br />

3<br />

2<br />

3<br />

15<br />

15<br />

10<br />

10<br />

0<br />

6<br />

0<br />

6<br />

f 2<br />

3 15 2<br />

3 4 10 2<br />

3 3 6 2<br />

3 2 14 34<br />

f x x <br />

3<br />

2<br />

315x3 6x 4 34<br />

3<br />

0<br />

4<br />

4<br />

14<br />

8<br />

3<br />

34<br />

3<br />

f x x 3 3x 2 2x 14, k 2<br />

2 1<br />

1<br />

3<br />

2<br />

3 2<br />

2<br />

2 32<br />

32<br />

14<br />

6<br />

8<br />

f x x 2x 2 3 2x 32 8<br />

f 2 2 3 32 2 22 14 8<br />

f x 4x 3 6x 2 12x 4, k 1 3<br />

1 3 4<br />

4<br />

6<br />

4 43<br />

2 43<br />

12<br />

10 23<br />

2 23<br />

36.<br />

38.<br />

40.<br />

3<br />

2<br />

3<br />

3<br />

4<br />

9<br />

2<br />

1<br />

2<br />

3x 3 4x 2 5<br />

0<br />

3<br />

4<br />

3<br />

4<br />

5<br />

9<br />

8<br />

49<br />

8<br />

x 32 3x 2 1<br />

2<br />

2 1<br />

f x x 1 34x 2 2 43x 2 23 0<br />

f 1 3 41 3 3 61 3 2 121 3 4 0<br />

44. f x 3x<br />

2 2 3<br />

8<br />

10<br />

6 32 2 42<br />

3 8x2 10x 8, k 2 2<br />

3<br />

2 32<br />

8 42<br />

4<br />

4<br />

8<br />

8<br />

0<br />

0<br />

42.<br />

1<br />

5<br />

2<br />

7<br />

11<br />

14<br />

3<br />

x 3<br />

4 <br />

f x x 3 5x 2 11x 8, k 2<br />

8<br />

6<br />

2<br />

f x x 2x 2 7x 3 2<br />

8 20 22 8 2<br />

49<br />

8x 12<br />

f 2 2 3 52 2 112 8<br />

f x 10x 3 22x 2 3x 4, k 1<br />

5<br />

1<br />

5<br />

10<br />

10<br />

22<br />

2<br />

20<br />

3<br />

4<br />

7<br />

4<br />

7<br />

5<br />

f 1 5 101 5 3 221 5 2 31 f x x <br />

5 4<br />

1<br />

510x2 20x 7 13<br />

5<br />

13<br />

5<br />

2 22 3 65 13<br />

25 25 5 4 25 5<br />

f x x 3 2x 2 5x 4, k 5<br />

5 1<br />

1<br />

2<br />

5<br />

2 5<br />

5<br />

25 5<br />

25<br />

4<br />

10<br />

f x x 5 x 2 2 5 x 25 6<br />

f 5 5 3 25 2 55 4<br />

55 10 55 4 6<br />

f x x 2 2 3x 2 2 32 x 8 42 0<br />

f 2 2 32 2 3 82 2 2 102 2 8<br />

320 142 86 42 102 2 8<br />

60 422 48 322 20 102 8<br />

0<br />

6


45. fx 4x<br />

(a) 1 4 0 13<br />

4 4<br />

4 4 9<br />

3 13x 10<br />

(b) 2 4<br />

(c)<br />

(d)<br />

(b)<br />

(c)<br />

1<br />

2<br />

f 1 1<br />

f 2 4<br />

4<br />

4<br />

f 1 2 4<br />

8 4<br />

4<br />

4<br />

0<br />

2<br />

2<br />

0<br />

32<br />

32<br />

f 8 1954<br />

1<br />

3<br />

3<br />

3<br />

2 3<br />

3<br />

(d) 5 3<br />

3<br />

5<br />

1<br />

6<br />

h1 3 5<br />

3<br />

h2 17<br />

0<br />

8<br />

8<br />

13<br />

1<br />

12<br />

5<br />

6<br />

1<br />

5<br />

15<br />

10<br />

h5 199<br />

13<br />

256<br />

243<br />

10<br />

2<br />

8<br />

13<br />

16<br />

3<br />

10<br />

9<br />

1<br />

10<br />

6<br />

4<br />

10<br />

2<br />

8<br />

10<br />

50<br />

40<br />

10<br />

6<br />

4<br />

10<br />

1944<br />

1954<br />

1<br />

8<br />

3<br />

5<br />

3<br />

1<br />

16<br />

17<br />

1<br />

200<br />

199<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division 173<br />

46. gx x<br />

(a) 2 1 0 4 0<br />

2 4 0<br />

1 2 0 0<br />

6 4x 4 3x 2 2<br />

(b)<br />

(c) 3 1<br />

(d)<br />

g2 14<br />

4 1<br />

g4 3122<br />

1<br />

g3 434<br />

1 1<br />

1<br />

1<br />

g1 2<br />

0<br />

3<br />

3<br />

0<br />

1<br />

1<br />

0<br />

4<br />

4<br />

4<br />

9<br />

5<br />

4<br />

1<br />

3<br />

4<br />

16<br />

12<br />

0<br />

15<br />

15<br />

0<br />

3<br />

3<br />

3<br />

0<br />

3<br />

0<br />

48<br />

48<br />

47. hx 3x<br />

(a) 3 3 5 10 1<br />

9 42 96<br />

3 14 32 97<br />

h3 97<br />

3 5x2 10x 1 48. f x 0.4x<br />

(a) 1 0.4 1.6 0.7 0 2<br />

0.4 1.2 0.5 0.5<br />

0.4 1.2 0.5 0.5 2.5<br />

f 1 2.5<br />

4 1.6x 3 0.7x 2 2<br />

49. 2 1<br />

1<br />

0<br />

2<br />

2<br />

7<br />

4<br />

3<br />

Zeros: 2, 3, 1<br />

6<br />

6<br />

0<br />

x 3 7x 6 x 2x 2 2x 3<br />

x 2x 3x 1<br />

(b) 2 0.4<br />

(c)<br />

f 2 20<br />

5 0.4<br />

0.4<br />

0.4<br />

1.6<br />

2.0<br />

0.4<br />

f 5 65.5<br />

(d) 10 0.4<br />

50. 4 1<br />

1.6<br />

0.8<br />

2.4<br />

0.4<br />

f 10 5668<br />

1<br />

0<br />

4<br />

4<br />

Zeros: 4, 2, 6<br />

0.7<br />

2.0<br />

2.7<br />

1.6<br />

4.0<br />

5.6<br />

28<br />

16<br />

12<br />

0.7<br />

4.8<br />

5.5<br />

0<br />

13.5<br />

13.5<br />

0.7<br />

56.0<br />

56.7<br />

48<br />

48<br />

0<br />

0<br />

11<br />

11<br />

3<br />

3<br />

0<br />

0<br />

6<br />

6<br />

3<br />

45<br />

48<br />

2<br />

67.5<br />

65.5<br />

0<br />

567<br />

567<br />

2<br />

22<br />

20<br />

x 3 28x 48 x 4x 2 4x 12<br />

x 4x 6x 2<br />

3<br />

192<br />

195<br />

0<br />

144<br />

144<br />

0<br />

0<br />

0<br />

2<br />

12<br />

14<br />

2<br />

5670<br />

5668<br />

0<br />

780<br />

780<br />

2<br />

0<br />

2<br />

2<br />

432<br />

434<br />

2<br />

3120<br />

3122


174 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

51.<br />

53.<br />

1<br />

2<br />

2<br />

2<br />

3 1<br />

1<br />

3 1<br />

15<br />

1<br />

14<br />

x 1<br />

2 2x2 2x<br />

14x 20<br />

3 15x2 27x 10<br />

2x 1x 2x 5<br />

Zeros: 1<br />

2 , 2, 5<br />

1<br />

x 3 2x 2 3x 6 x 3 x 3 x 2<br />

Zeros: ±3, 2<br />

55. 1 3 1<br />

1<br />

1 3 1<br />

1<br />

2 3<br />

x<br />

x 1x 1 3 x 1 3 <br />

3 3x2 2 x 1 3 x 1 3 x 1<br />

Zeros: 1, 1 ± 3<br />

56. 2 5 1<br />

1 2<br />

2<br />

2<br />

3<br />

2 3<br />

1<br />

2 5 1<br />

1<br />

3<br />

2<br />

1<br />

27<br />

7<br />

20<br />

3<br />

2<br />

3<br />

1 3<br />

2 3<br />

2 3<br />

3<br />

3 23<br />

1 3<br />

1<br />

1<br />

2 5<br />

1 5<br />

1 5<br />

2 5<br />

10<br />

10<br />

0<br />

23<br />

23<br />

23<br />

Zeros: 2 5, 2 5, 3<br />

0<br />

6<br />

6<br />

0<br />

0<br />

1 3<br />

1 3<br />

1 3<br />

1 3<br />

57. f x 2x Factors:<br />

(a) 2 2 1 5 2<br />

4 6 2<br />

2 3 1 0<br />

3 x2 5x 2;<br />

3<br />

1<br />

1<br />

0<br />

0<br />

13<br />

7 35<br />

6 35<br />

6 35<br />

6 35<br />

2<br />

2<br />

0<br />

x x 2 5x 2 5x 3<br />

3 x 2 13x 3 <br />

Both are factors of f x since the remainders are zero.<br />

0<br />

3<br />

3<br />

0<br />

x 2, x 1<br />

52.<br />

2<br />

3<br />

48<br />

48<br />

48x 3 80x 2 41x 6 x 2<br />

348x 2 48x 9<br />

Zeros: 2<br />

3, 3<br />

4, 1<br />

4<br />

54. 2 1<br />

1<br />

2 1<br />

80<br />

32<br />

48<br />

41<br />

32<br />

9<br />

2<br />

2<br />

2 2<br />

2 2<br />

2<br />

x x 2x 2x 2<br />

3 2x2 1 2 0<br />

2x 4 <br />

Zeros: 2, 2, 2<br />

6<br />

6<br />

0<br />

x 2<br />

34x 312x 3<br />

3x 24x 34x 1<br />

2<br />

22 2<br />

22<br />

22<br />

22<br />

4<br />

4<br />

(b) The remaining factor of f x<br />

is 2x 1.<br />

(c) f x 2x 1x 2x 1<br />

(d) Zeros:<br />

1<br />

2, 2, 1<br />

(e)<br />

7<br />

−6 6<br />

−1<br />

0


58. f x 3x Factors: x 3, x 2<br />

3 2x2 19x 6;<br />

(a)<br />

3 3<br />

3<br />

2 3<br />

3<br />

2<br />

9<br />

7<br />

7<br />

6<br />

1<br />

2<br />

2<br />

19<br />

21<br />

(b) The remaining factor is 3x 1.<br />

(b)<br />

4 1<br />

1<br />

1<br />

4<br />

3<br />

0<br />

2<br />

10<br />

12<br />

2<br />

6<br />

6<br />

59. f x x Factors:<br />

(a) 5 1 4 15 58 40<br />

5 5 50 40<br />

1 1 10 8 0<br />

4 4x3 15x2 58x 40;<br />

Both are factors of since the remainders are zero.<br />

x<br />

The remaining factors are x 1 <strong>and</strong> x 2.<br />

2 f x<br />

3x 2 x 1x 2<br />

0<br />

8<br />

8<br />

0<br />

x 5, x 4<br />

60. f x 8x Factors: x 2, x 4<br />

4 14x3 71x2 10x 24;<br />

(a)<br />

2 8<br />

4 8<br />

8<br />

8<br />

14<br />

16<br />

30<br />

30<br />

32<br />

2<br />

71<br />

60<br />

11<br />

11<br />

8<br />

3<br />

10<br />

22<br />

12<br />

12<br />

(b) 8x<br />

The remaining factors are 4x 3 <strong>and</strong> 2x 1.<br />

2 2x 3 4x 32x 1<br />

0<br />

12<br />

61. Factors:<br />

(a) 1<br />

f x 6x<br />

2 6 41 9 14<br />

3 19 14<br />

6 38 28 0<br />

3 41x2 9x 14;<br />

2<br />

3<br />

6<br />

6<br />

38<br />

4<br />

42<br />

28<br />

28<br />

0<br />

24<br />

24<br />

Both are factors since the remainders are zero.<br />

(c) f x x 72x 13x 2<br />

0<br />

2x 1, 3x 2<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division 175<br />

(c)<br />

(d) Zeros:<br />

(e)<br />

(c)<br />

−4 3<br />

(c)<br />

(d) Zeros:<br />

(e)<br />

f x 3x 3 2x 2 19x 6<br />

(d) Zeros:<br />

3x 1x 3x 2<br />

1<br />

3, 3, 2<br />

35<br />

−10<br />

f x x 1x 2x 5x 4<br />

1, 2, 5, 4<br />

20<br />

−6 6<br />

−180<br />

f x 4x 32x 1x 2x 4<br />

3<br />

4, 1<br />

2, 2, 4<br />

(e) 40<br />

−3 5<br />

−380<br />

(b)<br />

f x<br />

This shows that<br />

x <br />

f x<br />

so<br />

x 7.<br />

2x 13x 2<br />

The remaining factor is x 7.<br />

1<br />

2x 2<br />

6x 42 6x 7<br />

6x 7,<br />

3<br />

(d) Zeros:<br />

(e)<br />

7, 1 2<br />

,<br />

2 3<br />

320<br />

−9 3<br />

−40


176 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

62. f x 10x<br />

Factors: 2x 5, 5x 3<br />

3 11x2 72x 45;<br />

(a)<br />

(c)<br />

(d) Zeros:<br />

(e)<br />

5<br />

2<br />

3<br />

5<br />

10<br />

10<br />

(b)<br />

fx<br />

This shows that<br />

x <br />

f x<br />

so<br />

x 3.<br />

2x 55x 3<br />

The remaining factor is x 3.<br />

5<br />

2x 3<br />

10 36 18<br />

6 18<br />

10 30 0<br />

10x 30 10x 3<br />

10x 3,<br />

5<br />

f x x 32x 55x 3<br />

3, 5 3<br />

,<br />

2 5<br />

100<br />

−4 4<br />

1<br />

−80<br />

43 1<br />

1<br />

11<br />

25<br />

36<br />

3<br />

3<br />

0<br />

0<br />

43<br />

43<br />

72<br />

90<br />

48<br />

0<br />

48<br />

18<br />

48<br />

48<br />

45<br />

45<br />

64. f x x Factors: x 43 , x 3<br />

(a) 3 1<br />

3 3x2 48x 144;<br />

(b) The remaining factor is x 43 .<br />

0<br />

0<br />

144<br />

144<br />

0<br />

63.<br />

Factors:<br />

(a)<br />

Both are factors since the remainders are zero.<br />

(b)<br />

f x<br />

This shows that<br />

x <br />

f x<br />

so<br />

x 5.<br />

2x 1x 5<br />

The remaining factor is x 5.<br />

(c) f x x 5x 52x 1<br />

1<br />

f x 2x<br />

2x 1, x 5<br />

1<br />

2 2 1 10 5<br />

1 0 5<br />

2 0 10 0<br />

5 2 0 10<br />

25 10<br />

2 25 0<br />

2x 25 2x 5<br />

2x 5,<br />

2x 5 3 x2 10x 5;<br />

(d) Zeros:<br />

(e)<br />

(c)<br />

5, 5, 1<br />

2<br />

14<br />

−6 6<br />

(d) Zeros:<br />

(e)<br />

−6<br />

f x x 43 x 43 x 3<br />

±43, 3<br />

60<br />

−8 8<br />

65.<br />

(a) The zeros of f are 2 <strong>and</strong><br />

(b) An exact zero is<br />

(c)<br />

f x x 2x<br />

x 2x 5x 5<br />

2 f x x<br />

±2.236.<br />

x 2.<br />

2 1 2 5 10<br />

2 0 10<br />

1 0 5 0<br />

5<br />

3 2x2 5x 10 66.<br />

(a) The zeros of g are<br />

(b) is an exact zero.<br />

(c)<br />

fx x 4x<br />

x 4x 2x 2<br />

2 gx x<br />

x 4, x 1.414,<br />

x 4<br />

4 1 4 2 8<br />

4 0 8<br />

1 0 2 0<br />

2<br />

3 4x 2 2x 8<br />

−240<br />

x 1.414.


67.<br />

69.<br />

71.<br />

ht t 3 2t 2 7t 2<br />

(a) The zeros of h are t 2, t 3.732, t 0.268.<br />

(b) An exact zero is t 2.<br />

(c) 2 1 2 7 2<br />

2 8 2<br />

1 4 1 0<br />

x 4 6x 3 11x 2 6x<br />

x 2 3x 2<br />

1 1<br />

1<br />

2 1<br />

ht t 2t 2 4t 1<br />

By the Quadratic Formula, the zeros of t<br />

are 2 ± 3. Thus,<br />

ht t 2t 2 3t 2 3<br />

2 4t 1<br />

1<br />

t 2t 2 3 t 2 3 .<br />

4x 3 8x 2 x 3<br />

2x 3<br />

3<br />

2<br />

4<br />

4<br />

8<br />

6<br />

2<br />

4x 3 8x 2 x 3<br />

x 3<br />

2<br />

Thus, 4x3 8x 2 x 3<br />

2x 3<br />

6<br />

1<br />

5<br />

5<br />

2<br />

3<br />

11<br />

5<br />

6<br />

6<br />

6<br />

0<br />

x 4 6x 3 11x 2 6x<br />

x 1x 2<br />

73. (a) <strong>and</strong> (b)<br />

1800<br />

3<br />

1200<br />

—CONTINUED—<br />

1<br />

3<br />

2<br />

4x 2 2x 2 22x 2 x 1<br />

13<br />

3<br />

3<br />

0<br />

x4 6x 3 11x 2 6x<br />

x 1x 2<br />

6<br />

6<br />

0<br />

0<br />

0<br />

0<br />

2x 2 x 1, x 3<br />

2 .<br />

0<br />

0<br />

0<br />

x 2 3x, x 2, 1<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division 177<br />

68.<br />

70.<br />

72.<br />

f s s 3 12s 2 40s 24<br />

(a) The zeros of f are s 6, s 0.764, s 5.236<br />

(b) s 6 is an exact zero.<br />

(c) 6 1 12 40 24<br />

6 36 24<br />

1 6 4 0<br />

f s s 6s 2 6s 4<br />

8 1<br />

s 6s 3 5s 3 5<br />

x 3 x 2 64x 64<br />

x 8<br />

1<br />

1<br />

8<br />

7<br />

x 3 x 2 64x 64<br />

x 8<br />

2 1<br />

1<br />

2 1<br />

1<br />

9<br />

2<br />

11<br />

11<br />

2<br />

9<br />

64<br />

56<br />

8<br />

5<br />

22<br />

17<br />

17<br />

18<br />

x 4 9x 3 5x 2 36x 4<br />

x 2 4<br />

64<br />

64<br />

0<br />

x 4 9x 3 5x 2 36x 4<br />

x 2 4<br />

x , x 8<br />

2 7x 8<br />

1<br />

36<br />

34<br />

2<br />

2<br />

2<br />

0<br />

x 4 9x 3 5x 2 36x 4<br />

x 2x 2<br />

4<br />

4<br />

0<br />

x , x ±2<br />

2 9x 1


178 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

73. —CONTINUED—<br />

76. True.<br />

78.<br />

(c)<br />

74. (a) <strong>and</strong> (b)<br />

1<br />

2<br />

40<br />

2<br />

0<br />

(b)<br />

(c)<br />

M 0.242t 3 12.43t 2 173.4t 2118 (d)<br />

The model is a good fit to the actual data.<br />

6<br />

6<br />

Year, t Military Personnel M<br />

3 1705 1703<br />

4 1611 1608<br />

5 1518 1532<br />

6 1472 1473<br />

7 1439 1430<br />

8 1407 1402<br />

9 1386 1388<br />

10 1384 1385<br />

11 1385 1393<br />

12 1412 1409<br />

13 1434 1433<br />

18 0.0026<br />

For the year 2008, the model predicts a monthly rate<br />

of about $49.38.<br />

1<br />

3<br />

4<br />

0.0026<br />

92<br />

2<br />

90<br />

12<br />

R 0.0026t 3 0.0292t 2 1.558t 15.632<br />

45<br />

45<br />

0<br />

184<br />

0<br />

184<br />

4<br />

92<br />

96<br />

48<br />

48<br />

0<br />

fx 2x 1x 1x 2x 33x 2x 4<br />

fx x kqx r<br />

0.0292<br />

0.0468<br />

0.0176<br />

1.558<br />

0.3168<br />

1.8748<br />

15.632<br />

33.7464<br />

49.3784<br />

(a) any quadratic<br />

where One example:<br />

fx x 2x2 5 x3 2x2 ax<br />

a > 0.<br />

5<br />

2 k 2, r 5, qx <br />

bx c<br />

18 0.242<br />

0.242<br />

12.43<br />

4.356<br />

8.074<br />

M18 1613 thous<strong>and</strong><br />

173.4<br />

145.332<br />

28.068<br />

2118<br />

505.224<br />

1612.776<br />

No, this model should not be used to predict the<br />

number of military personnel in the future. It<br />

predicts an increase in military personnel until 2024<br />

<strong>and</strong> then it decreases <strong>and</strong> will approach negative<br />

infinity quickly.<br />

75. False. If 7x 4 is a factor of f, then is a zero of f.<br />

4<br />

7<br />

77. True. The degree of the numerator is greater than the<br />

degree of the denominator.<br />

(b) any quadratic<br />

where One example:<br />

fx x 3x2 1 x3 3x2 ax<br />

a < 0.<br />

1<br />

2 k 3, r 1, qx <br />

bx c


79.<br />

83.<br />

x n 3 ) x 3n 9x 2n 27x n 27<br />

x 3n 9x 2n 27x n 27<br />

x n 3<br />

5 1<br />

1<br />

x 3n 3x 2n<br />

4<br />

5<br />

9<br />

6x 2n 27x n<br />

6x 2n 18x n<br />

3<br />

45<br />

42<br />

x 2n 6x n 9<br />

9x n 27<br />

9x n 27<br />

c<br />

210<br />

c 210<br />

x 2n 6x n 9<br />

81. A divisor divides evenly into a dividend if the remainder<br />

is zero.<br />

85.<br />

87.<br />

89.<br />

To divide evenly, c 210 must equal zero. Thus, c must<br />

equal 210.<br />

fx x 3 2 x 3x 1 3<br />

The remainder when k 3 is zero since x 3<br />

is a factor of fx.<br />

9x 2 25 0<br />

3x 53x 5 0<br />

5x 2 3x 14 0<br />

5x 7x 2 0<br />

91. 2 x2 6x 3 0<br />

0<br />

3x 5 0 ⇒ x 5<br />

3<br />

3x 5 0 ⇒ x 5<br />

3<br />

5x 7 0 ⇒ x 7<br />

5<br />

x 2 0 ⇒ x 2<br />

x b ± b2 4ac<br />

2a<br />

<br />

3 ± 3<br />

2<br />

6 ± 62 423<br />

22<br />

Section 2.3 <strong>Polynomial</strong> <strong>and</strong> Synthetic Division 179<br />

<br />

80.<br />

x n 2 ) x 3n 3x 2n 5x n 6<br />

x 3n 2x 2n<br />

x 2n 5x n<br />

x 2n 2x n<br />

x 3n 3x 2n 5x n 6<br />

x n 2<br />

x 2n x n 3<br />

3 x n 6<br />

3 x n 6<br />

0<br />

x 2n x n 3<br />

82. You can check polynomial division by multiplying the<br />

quotient by the divisor. This should yield the original<br />

dividend if the multiplication was performed correctly.<br />

84.<br />

2 1<br />

0<br />

2<br />

0<br />

4<br />

2<br />

8<br />

1<br />

20<br />

c<br />

42<br />

1 2 4 10 21 c 42<br />

To divide evenly, c 42 must equal zero. Thus, c must<br />

equal 42.<br />

86. In this case it is easier to evaluate f2 directly because<br />

f x is in factored form. To evaluate using synthetic<br />

division you would have to exp<strong>and</strong> each factor <strong>and</strong> then<br />

multiply it all out.<br />

88. 16x2 21 0<br />

90.<br />

16x 2 21<br />

4x 5 0<br />

x 2 21<br />

16<br />

x 5<br />

4<br />

x ± 21<br />

16<br />

x ± 21<br />

4<br />

8x 2 22x 15 0<br />

4x 52x 3 0<br />

6 ± 12<br />

4<br />

or<br />

or x 3<br />

2x 3 0<br />

2


180 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

92.<br />

93.<br />

95.<br />

x 2 3x 3 0<br />

x 3 ± 32 413<br />

21<br />

f x x 0x 3x 4<br />

xx 3x 4 xx 2 7x 12<br />

x 3 7x 2 12x<br />

Note: Any nonzero scalar multiple of f x would also<br />

have these zeros.<br />

x 3x 12 2 2 f x x 3x 1 2 x 1 2 <br />

x 3x 1 2x 1 2<br />

<br />

x 3x 2 2x 1<br />

x 3 x 2 7x 3<br />

Note: Any nonzero scalar multiple of f x would also<br />

have these zeros.<br />

Section 2.4 Complex Numbers<br />

■ St<strong>and</strong>ard form: a bi.<br />

If b 0, then a bi is a real number.<br />

If a 0 <strong>and</strong> b 0, then a bi is a pure imaginary number.<br />

■ Equality of Complex Numbers: a bi c di if <strong>and</strong> only if a c <strong>and</strong> b d<br />

■ Operations on complex numbers<br />

(a) Addition:<br />

(b) Subtraction:<br />

(c) Multiplication:<br />

a bi a bi c di ac bd<br />

(d) Division: <br />

c di c di c di c<br />

■ The complex conjugate of a bi is a bi:<br />

2 bc ad<br />

<br />

d 2 c2 d 2i<br />

a bia bi a 2 b 2<br />

■ The additive inverse of a bi is a bi.<br />

■ a ai for a > 0.<br />

Vocabulary Check<br />

<br />

3 ± 21<br />

2<br />

a bi c di a c b di<br />

a bi c di a c b di<br />

a bic di ac bd ad bci<br />

1. (a) iii (b) i (c) ii 2.<br />

94. f x x 6x 1<br />

1; 1<br />

x 6x 1<br />

x 2 5x 6<br />

3. principal square 4. complex conjugates<br />

96.<br />

Note: Any nonzero scalar multiple of f x would also<br />

have these zeros.<br />

x2 x 2x 22 3 2 f x x 1x 2x 2 3x 2 3<br />

x 1x 2x 2 3x 2 3<br />

<br />

x 2 x 2x 2 4x 1<br />

x 4 3x 3 5x 2 9x 2<br />

Note: Any nonzero scalar multiple of f x would also have<br />

these zeros.


1.<br />

4.<br />

7.<br />

a 10<br />

b 6<br />

Section 2.4 Complex Numbers 181<br />

a bi 10 6i 2. a bi 13 4i 3. a 1 b 3i 5 8i<br />

2b 5<br />

b 5<br />

2<br />

a 6 6<br />

a 0<br />

a 13<br />

b 4<br />

a 1 5 ⇒ a 6<br />

b 3 8 ⇒ b 5<br />

a 6 2bi 6 5i 5. 4 9 4 3i 6. 3 16 3 4i<br />

2 27 2 27i 8. 1 8 1 22i 9. 75 75i 53i<br />

2 33i<br />

10. 4 2i 11. 8 8 0i 8 12. 45<br />

13. 6i i2 6i 1 14. 4i 2 2i 41 2i 15. 0.09 0.09 i<br />

1 6i<br />

4 2i<br />

0.3i<br />

16. 0.0004 0.02i 17. 5 i 6 2i 11 i 18. 13 2i 5 6i 8 4i<br />

19.<br />

21.<br />

22.<br />

8 i 4 i 8 i 4 i 20. 3 2i 6 13i 3 2i 6 13i<br />

4<br />

2 8 5 50 2 22i 5 52i<br />

4<br />

3 32i<br />

8 18 4 32i 8 32i 4 32i 23.<br />

24. 22 5 8i 10i 17 18i 25.<br />

26. 1.6 3.2i 5.8 4.3i 4.2 7.5i 27.<br />

28.<br />

30.<br />

6 2i2 3i 12 18i 4i 6i 2 29.<br />

12 22i 6 6 22i<br />

32 72i<br />

3 11i<br />

13i 14 7i 13i 14 7i<br />

3<br />

2<br />

5<br />

2i 53<br />

14 20i<br />

11<br />

3 i 32<br />

9<br />

6<br />

1 7<br />

6 6i 1 i3 2i 3 2i 3i 2i 2<br />

5 5 11<br />

2i 3 3 i<br />

3 i 2 5 i<br />

6i5 2i 30i 12i 2 30i 12<br />

12 30i<br />

15 10 22<br />

6 i 6 6 i<br />

8i9 4i 72i 32i 2 31. 14 10 i14 10 i 14 10i2 14 10 24


182 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

32.<br />

34.<br />

3 15i3 15i 3 15i 2 33.<br />

4 9 12i<br />

5 12i<br />

3 151<br />

3 15 18<br />

2 3i 2 4 12i 9i 2 35.<br />

4 5i 2 16 40i 25i 2<br />

16 40i 25<br />

9 40i<br />

2 3i 2 2 3i 2 4 12i 9i 2 4 12i 9i 2<br />

4 12i 9 4 12i 9<br />

10<br />

36. 1 2i2 1 2i2 1 4i 4i 2 1 4i 4i 2 37. The complex conjugate of 6 3i is 6 3i.<br />

1 4i 4i 2 1 4i 4i 2<br />

8i<br />

6 3i6 3i 36 3i 2 36 9 45<br />

38. The complex conjugate of 7 12i is 7 12i.<br />

39. The complex conjugate of 1 5i is 1 5i.<br />

7 12i7 12i 49 144i 2<br />

49 144<br />

193<br />

1 5i1 5i 1 2 5i 2<br />

1 5 6<br />

40. The complex conjugate of 3 2i is 3 2i. 41. The complex conjugate of 20 25i is 25i.<br />

3 2i3 2i 9 2i 2<br />

9 2<br />

11<br />

25i25i 20i 2 20<br />

42. The complex conjugate of 15 15i is 15i. 43. The complex conjugate of 8 is 8.<br />

15i15i 15i 2 15 15<br />

44. The complex conjugate of 1 8 is 1 8.<br />

45.<br />

1 81 8 1 28 8<br />

5<br />

i<br />

46. 14 2i<br />

<br />

2i 2i<br />

48.<br />

50.<br />

5 1 i<br />

<br />

1 i 1 i<br />

9 42<br />

28i 28i<br />

7i 47.<br />

2 4i 4<br />

5 5i 5 5i 5 5<br />

2 1 i 2 2 2 i<br />

6 7i<br />

2<br />

1 2i 6 12i 7i 14i<br />

<br />

1 2i 1 2i 1 4i 2<br />

<br />

20 5i<br />

5<br />

20<br />

5<br />

5<br />

i 4 i<br />

5<br />

49.<br />

51.<br />

88 8<br />

5 i 5i<br />

<br />

i i 1 5i<br />

2 2 4 5i<br />

<br />

4 5i 4 5i 4 5i<br />

<br />

<br />

24 5i<br />

16 25<br />

3 i 3 i 3 i<br />

<br />

3 i 3 i 3 i<br />

9 6i i 2<br />

9 1<br />

6 5i 6 5i<br />

<br />

i i<br />

i<br />

i<br />

8 10i<br />

41<br />

8 10<br />

<br />

41 41 i<br />

8 6i 4 3<br />

<br />

10 5 5 i<br />

6i 5i 2<br />

5 6i<br />

1


52.<br />

53.<br />

55.<br />

57.<br />

59.<br />

8 16i<br />

2i<br />

3i<br />

4 5i2 <br />

2i 16i 32i2<br />

<br />

2i 4i2 8 4i<br />

<br />

3i<br />

16 40i 25i2 <br />

27i 120i2<br />

81 1600<br />

120 27<br />

<br />

1681 1681 i<br />

3i 9 40i<br />

<br />

9 40i 9 40i<br />

120 27i<br />

1681<br />

2 3 21 i 31 i<br />

<br />

1 i 1 i 1 i1 i<br />

<br />

2 2i 3 3i<br />

1 1<br />

1 5<br />

<br />

2 2 i<br />

1 5i<br />

<br />

2<br />

i 2i i3 8i 2i3 2i<br />

<br />

3 2i 3 8i 3 2i3 8i<br />

3i 8i2 6i 4i 2<br />

9 24i 6i 16i 2<br />

4i2 9i<br />

9 18i 16<br />

<br />

<br />

<br />

<br />

4 9i 25 18i<br />

<br />

25 18i 25 18i<br />

100 72i 225i 162i2<br />

625 324<br />

100 297i 162<br />

949<br />

62 297i<br />

949<br />

62 297<br />

<br />

949 949 i<br />

6 2 6i2i 12i 2 23 1 60.<br />

23<br />

54.<br />

56.<br />

58.<br />

<br />

<br />

<br />

Section 2.4 Complex Numbers 183<br />

5i<br />

5i<br />

2 <br />

2 3i 4 12i 9i2 5i 5 12i<br />

<br />

5 12i 5 12i<br />

25i 60i2<br />

25 144i 2<br />

60 25i<br />

169<br />

<br />

12<br />

5<br />

12 9i<br />

5<br />

60 25<br />

<br />

169 169 i<br />

2i 5 2i2 i<br />

<br />

2 i 2 i 2 i2 i <br />

52 i<br />

2 i2 i<br />

4i 2i 2 10 5i<br />

4 i 2<br />

<br />

9<br />

5 i<br />

1 i 3 1 i4 i 3i<br />

<br />

i 4 i i4 i<br />

4 i 4i i 2 3i<br />

4i i 2<br />

5 1 4i<br />

<br />

1 4i 1 4i<br />

5 20i<br />

1 16i 2<br />

5 20<br />

<br />

17 17 i<br />

5 10 5i10i<br />

50i 2 521 52<br />

61. 10 2 10i 2 10i 2 10 62. 75 2 75i 2 75i 2 75<br />

63. 3 5 7 10 3 5i7 10i<br />

21 310i 75i 50i 2<br />

21 50 75 310 i<br />

21 52 75 310 i


184 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

64.<br />

66.<br />

2 6 2 2 6i2 6i 65.<br />

<br />

6 ± 4<br />

2<br />

3 ± i<br />

4 26i 26i 6i 2<br />

4 26i 26i 61<br />

4 6 46i<br />

2 46i<br />

x a 1, b 6, c 10<br />

2 6x 10 0; 67.<br />

x 6 ± 62 4110<br />

21<br />

x 2 2x 2 0; a 1, b 2, c 2<br />

x 2 ± 22 412<br />

21<br />

<br />

<br />

2 ± 4<br />

2<br />

2 ± 2i<br />

2<br />

1 ± i<br />

4x 2 16x 17 0; a 4, b 16, c 17<br />

x 16 ± 162 4417<br />

24<br />

<br />

<br />

16 ± 16<br />

8<br />

16 ± 4i<br />

8<br />

2 ± 1<br />

2 i<br />

68. 9x2 6x 37 0; a 9, b 6, c 37 69. 4x2 16x 15 0; a 4, b 16, c 15<br />

x 6 ± 62 4937<br />

29<br />

<br />

6 ± 1296<br />

18<br />

1 36i 1<br />

± ± 2i<br />

3 18 3<br />

<br />

4 ± 176<br />

32<br />

4 ± 411i<br />

32<br />

1 11<br />

±<br />

8 8 i<br />

x 16 ± 162 4415<br />

24<br />

<br />

16 ± 16<br />

8<br />

x 12<br />

8 3<br />

2<br />

<br />

<br />

12 ± 72<br />

6<br />

12 ± 62i<br />

6<br />

<br />

16 ± 4<br />

8<br />

or x 20<br />

8 5<br />

2<br />

70.<br />

t <br />

4 ± 42 16t<br />

4163<br />

216<br />

2 4t 3 0; a 16, b 4, c 3 71. Multiply both sides by 2.<br />

x 12 ± 122 3x<br />

4318<br />

23<br />

2 12x 18 0<br />

3<br />

2 x2 6x 9 0<br />

<br />

<br />

12 ± 136<br />

28<br />

12 ± 2i34<br />

28<br />

3 34<br />

±<br />

7 14 i<br />

<br />

<br />

10 ± 1500<br />

14<br />

5 ± 515<br />

7<br />

2 ± 2i<br />

72.<br />

x 12 ± 122 14x<br />

4145<br />

214<br />

2 12x 5 0; a 14, b 12, c 5<br />

7<br />

8 x2 3 5<br />

x 0<br />

4 16<br />

73. Multiply both sides by 5.<br />

x 10 ± 102 7x<br />

4750<br />

27<br />

2 1.4x<br />

10x 50 0<br />

2 2x 10 0<br />

<br />

10 ± 1015<br />

14<br />

5 515<br />

±<br />

7 7


74. 4.5x2 3x 12 0; a 4.5, b 3, c 12 75. 6i 3 i 2 6i2i i2 x 3 ± 32 44.512<br />

24.5<br />

<br />

3 ± 207<br />

9<br />

<br />

3 ± 3i23<br />

9<br />

1 23<br />

±<br />

3 3 i<br />

76. 4i 2 2i 3 4 2i 77.<br />

79.<br />

75 3 53i 3<br />

5 3 3 3 i 3<br />

12533 1i<br />

3753i<br />

81. 1 1 1 i<br />

<br />

i3 <br />

i i i<br />

83. (a)<br />

(b)<br />

84. (a)<br />

(b)<br />

(c)<br />

z 1 9 16i, z 2 20 10i<br />

1 1<br />

<br />

z z1 1<br />

z2 2 3 8<br />

<br />

511i 5i<br />

i i<br />

i 82.<br />

i2 1<br />

1<br />

9 16i <br />

1<br />

20 10i<br />

z 340 230i 29 6i<br />

29 6i 29 6i<br />

1 3i 3 1 3 31 2 3i 313i 2 3i 3<br />

1 33i 9i 2 33i 3<br />

1 33i 9 33i<br />

8<br />

1 33i 9i 2 33i 3<br />

1 33 i 9 33i<br />

8<br />

Section 2.4 Complex Numbers 185<br />

61i 1<br />

6i 1<br />

1 6i<br />

5i 5 5i 2 i 2 i 78. i 3 1i 3 1i i<br />

80. 2 6 2i 6 8i 6 8i 4 i 2 8<br />

1<br />

2i<br />

1 1<br />

3 8i 3 8i<br />

1 3i 3 1 3 31 2 3i 313i 2 3i 3<br />

85. (a)<br />

(b)<br />

(c) 2i4 24i 4 2<br />

161 16<br />

4 2<br />

16<br />

4 16<br />

(d) 2i 4 2 4 i 4 161 16<br />

<br />

20 10i 9 16i<br />

9 16i20 10i<br />

11,240 4630i<br />

877<br />

11,240<br />

877<br />

<br />

4630<br />

877 i<br />

86. (a)<br />

87. False, if b 0 then a bi a bi a.<br />

88. True<br />

That is, if the complex number is real, the number equals<br />

its conjugate.<br />

29 6i<br />

340 230i<br />

(b)<br />

i 40 i 4 10 1 10 1<br />

i 25 i 4 6 i 1 6 i i<br />

8i 8i 1<br />

<br />

8i 64i 2 8 i<br />

(c) i50 i 412i 2 11 1<br />

(d) i 67 i 4 16 i 3 1i i<br />

i6 4<br />

i6 2<br />

x 4 x 2 14 56<br />

14 ? 56<br />

36 6 14 ? 56<br />

56 56


186 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

89. False<br />

i 44 i 150 i 74 i 109 i 61 i 4 11 i 4 37 i 2 i 4 18 i 2 i 4 27 i i 4 15 i<br />

90. 66 6i6i 6i 2 6<br />

91.<br />

92.<br />

1 11 1 37 1 1 18 1 1 27 i 1 15 i<br />

1 1 1 i i 1<br />

a 1 b 1ia 2 b 2i a 1a 2 a 1b 2i a 2b 1i b 1b 2i 2<br />

a 1a 2 b 1b 2 a 1b 2 a 2b 1i<br />

The complex conjugate of this product is a1a2 b1b2 a1b2 a2b1i. The product of the complex conjugates is:<br />

a 1 b 1 ia 2 b 2 i a 1 a 2 a 1 b 2 i a 2 b 1 i b 1 b 2 i 2<br />

a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1i<br />

Thus, the complex conjugate of the product of two complex numbers is the product of their complex conjugates.<br />

a 1 b 1i a 2 b 2i a 1 a 2 b 1 b 2i<br />

The complex conjugate of this sum is a1 a2 b1 b2i. The sum of the complex conjugates is a1 b1i a2 b2i a1 a2 b1 b2i. Thus, the complex conjugate of the sum of two complex numbers is the sum of their complex conjugates.<br />

93. 4 3x 8 6x x 2 x 2 3x 12<br />

94. x3 3x2 6 2x 4x2 x3 3x2 6 2x 4x2 95. 3x 1<br />

2x 4 3x2 12x 1<br />

2x 2<br />

4x 2 20x 25<br />

x 3 x 2 2x 6<br />

x 31<br />

x 31<br />

3x2 23<br />

2 x 2<br />

96. 2x 52 2x2 22x5 52 97. x 12 19 98. 8 3x 34<br />

99. 45x 6 36x 1 0 100. 5x 3x 11 20x 15 101.<br />

102.<br />

20x 24 18x 3 0<br />

r 2 m 1 m 2<br />

F<br />

2x 27 0<br />

2x 27<br />

x 27<br />

2<br />

r m1m2 F m1m2 <br />

F<br />

F<br />

F m1m2F F<br />

5x 15x 55 20x 15<br />

30x 40<br />

x 40<br />

30 4<br />

3<br />

3x 42<br />

x 14<br />

V 4<br />

3 a2 b<br />

3V 4a 2 b<br />

3V<br />

a2<br />

4b<br />

3V<br />

a<br />

4b<br />

F m1m2 r2 103. Let x #<br />

liters withdrawn <strong>and</strong> replaced.<br />

0.505 x 1.00x 0.605<br />

2.50 0.50x 1.00x 3.00<br />

0.50x 0.50<br />

x 1 liter<br />

a 1<br />

2 3V 3Vb<br />

<br />

b 2b


Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong><br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 187<br />

■ You should know that if f is a polynomial of degree then f has at least one zero in the complex number system.<br />

■ You should know the Linear Factorization Theorem.<br />

■ You should know the <strong>Rational</strong> Zero Test.<br />

■ You should know shortcuts for the <strong>Rational</strong> Zero Test. Possible rational zeros<br />

(a) Use a graphing or programmable calculator.<br />

(b) Sketch a graph.<br />

(c) After finding a root, use synthetic division to reduce the degree of the polynomial.<br />

■ You should know that if is a complex zero of a polynomial f, with real coefficients, then is also a complex<br />

zero of f.<br />

■ You should know the difference between a factor that is irreducible over the rationals (such as ) <strong>and</strong> a factor that is<br />

irreducible over the reals (such as x ).<br />

■ You should know Descartes’s Rule of Signs. (For a polynomial with real coefficients <strong>and</strong> a non-zero constant term.)<br />

(a) The number of positive real zeros of f is either equal to the number of variations of sign of f or is less than<br />

that number by an even integer.<br />

(b) The number of negative real zeros of f is either equal to the number of variations in sign of fx or is less than<br />

that number by an even integer.<br />

(c) When there is only one variation in sign, there is exactly one positive (or negative) real zero.<br />

■ You should be able to observe the last row obtained from synthetic division in order to determine upper or lower bounds.<br />

(a) If the test value is positive <strong>and</strong> all of the entries in the last row are positive or zero, then the test value is an upper<br />

bound.<br />

(b) If the test value is negative <strong>and</strong> the entries in the last row alternate from positive to negative, then the test value is a<br />

lower bound. (Zero entries count as positive or negative.)<br />

2 x<br />

9<br />

2 n > 0,<br />

factors of constant term<br />

<br />

factors of leading coefficient<br />

a bi<br />

a bi<br />

7<br />

Vocabulary Check<br />

1.<br />

3.<br />

1. Fundamental Theorem of Algebra 2. Linear Factorization Theorem 3. <strong>Rational</strong> Zero<br />

4. conjugate 5. irreducible; reals 6. Descarte’s Rule of Signs<br />

7. lower; upper<br />

f x xx 6 2 2.<br />

The zeros are: x 0, x 6<br />

gx x 2x 4 3 4.<br />

The zeros are: x 2, x 4<br />

6. ht t 3t 2t 3it 3i<br />

The four zeros are: 3, 2, ±3i<br />

7.<br />

f x x 2 x 3x 2 1 x 2 x 3x 1x 1<br />

The five zeros are: 0, 0, 3, ±1<br />

f x x 5x 82 5. f x x 6x ix i<br />

The three zeros are: 5, 8, 8<br />

fx x 3 3x 2 x 3<br />

Possible rational zeros: ±1, ±3<br />

The three zeros are:<br />

x 6, x i, x i<br />

Zeros shown on graph: 3, 1, 1


188 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

8.<br />

10.<br />

12.<br />

16.<br />

f x x 3 4x 2 4x 16<br />

Possible rational zeros: ±1, ±2, ±4, ±8, ±16<br />

Zeros shown on graph: 2, 2, 4<br />

Possible rational zeros:<br />

Zeros shown on graph: 1, 1<br />

±1, ±2, ±<br />

1<br />

2 , 2 , 1, 2<br />

1<br />

f x 4x<br />

1<br />

2 , ± 4<br />

5 8x 4 5x 3 10x 2 x 2<br />

f x x 3 7x 6 13.<br />

Possible rational zeros: ±1, ±2, ±3, ±6<br />

3 1<br />

1<br />

14. hx x 3 9x 2 20x 12<br />

Possible rational zeros: ±1, ±2, ±3, ±4, ±6, ±12<br />

1 1<br />

1<br />

hx x 1x 2 8x 12<br />

Thus, the rational zeros are 1, 2, 6.<br />

px x 3 9x 2 27x 27<br />

Possible rational zeros: ±1, ±3, ±9, ±27<br />

3 1<br />

x 1x 2x 6<br />

1<br />

0<br />

3<br />

3<br />

9<br />

1<br />

8<br />

9<br />

3<br />

6<br />

7<br />

9<br />

2<br />

20<br />

8<br />

12<br />

27<br />

18<br />

f x x 3x 2 6x 9<br />

x 3x 3x 3<br />

Thus, the rational zero is 3.<br />

9<br />

6<br />

6<br />

0<br />

f x x 3x 2 3x 2 x 3x 2x 1<br />

Thus, the rational zeros are 2, 1, 3.<br />

12<br />

12<br />

0<br />

27<br />

27<br />

0<br />

9.<br />

11.<br />

15. ht t3 12t2 21t 10<br />

17.<br />

fx 2x 4 17x 3 35x 2 9x 45<br />

Possible rational zeros:<br />

Zeros shown on graph: 1, 3<br />

2 , 3, 5<br />

fx x 3 6x 2 11x 6<br />

Possible rational zeros: ±1, ±2, ±3, ±6<br />

1 1<br />

1<br />

x 3 6x 2 11x 6 x 1x 2 5x 6<br />

Thus, the rational zeros are 1, 2, <strong>and</strong> 3.<br />

Possible rational zeros: ±1, ±2, ±5, ±10<br />

1 1<br />

1<br />

t 3 12t 2 21t 10 t 1t 2 11t 10<br />

Thus, the rational zeros are 1 <strong>and</strong> 10.<br />

Cx 2x 3 3x 2 1<br />

Possible rational zeros:<br />

1 2<br />

2<br />

6<br />

1<br />

5<br />

12<br />

1<br />

11<br />

3<br />

2<br />

1<br />

11<br />

5<br />

6<br />

21<br />

11<br />

10<br />

0<br />

1<br />

1<br />

±1, ±3, ±5, ±9, ±15, ±45,<br />

± 1 3 5 9 15 45<br />

2 , ± 2 , ± 2 , ± 2 , ± 2 , ± 2<br />

6<br />

6<br />

0<br />

x 1x 2x 3<br />

gx x 3 4x 2 x 4 x 2 x 4 1x 4<br />

x 4x 2 1<br />

x 4x 1x 1<br />

Thus, the rational zeros of gx are 4 <strong>and</strong> ±1.<br />

10<br />

10<br />

0<br />

t 1t 1t 10<br />

t 1 2 t 10<br />

±1, ± 1<br />

2<br />

1<br />

1<br />

0<br />

2x 3 3x 2 1 x 12x 2 x 1<br />

x 1x 12x 1<br />

x 1 2 2x 1<br />

Thus, the rational zeros are <strong>and</strong> 1<br />

2 . 1


18.<br />

19.<br />

f x 3x 3 19x 2 33x 9<br />

Possible rational zeros:<br />

3 3<br />

3<br />

f x x 33x 2 10x 3 x 33x 1x 3<br />

Thus, the rational zeros are 3, 1<br />

3 .<br />

fx 9x 4 9x 3 58x 2 4x 24<br />

Possible rational zeros:<br />

2 9<br />

9<br />

3 9<br />

9<br />

19<br />

9<br />

10<br />

9<br />

18<br />

27<br />

27<br />

27<br />

0<br />

33<br />

30<br />

58<br />

54<br />

4<br />

4<br />

0<br />

4<br />

4<br />

8<br />

12<br />

12<br />

12<br />

0<br />

9x 4 9x 3 58x 2 4x 24<br />

3<br />

±1, ±3, ±9, ± 1<br />

3<br />

9<br />

9<br />

0<br />

±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24,<br />

± 1 2 4 8 1 2 4 8<br />

3 , ± 3 , ± 3 , ± 3 , ± 9 , ± 9 , ± 9 , ± 9<br />

24<br />

24<br />

0<br />

x 2x 39x 2 4<br />

x 2x 33x 23x 2<br />

Thus, the rational zeros are <strong>and</strong> ± 2<br />

3 .<br />

2, 3,<br />

21. z4 z3 2z 4 0<br />

23.<br />

Possible rational zeros: ±1, ±2, ±4<br />

1 1<br />

1<br />

2 1<br />

1<br />

Possible rational zeros:<br />

1 2<br />

2<br />

6 2<br />

2<br />

1<br />

1<br />

2<br />

2<br />

2<br />

0<br />

7<br />

2<br />

9<br />

9<br />

12<br />

3<br />

0<br />

2<br />

2<br />

2<br />

0<br />

2<br />

26<br />

9<br />

17<br />

17<br />

18<br />

1<br />

2<br />

2<br />

4<br />

4<br />

4<br />

0<br />

23<br />

17<br />

6<br />

6<br />

6<br />

0<br />

4<br />

4<br />

0<br />

z 4 z 3 2z 4 z 1z 2z 2 2<br />

The only real zeros are 1 <strong>and</strong> 2.<br />

2y 4 7y 3 26y 2 23y 6 0<br />

The only real zeros are 1, 6, <strong>and</strong> 1<br />

2.<br />

±1, ±2, ±3, ±6, ± 1 3<br />

2 , ± 2<br />

6<br />

6<br />

0<br />

20.<br />

22.<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 189<br />

f x 2x 4 15x 3 23x 2 15x 25<br />

Possible rational zeros:<br />

5 2<br />

1 2<br />

2<br />

2<br />

1 2<br />

2<br />

15<br />

10<br />

5<br />

5<br />

2<br />

3<br />

3<br />

2<br />

5<br />

23<br />

25<br />

2<br />

2<br />

3<br />

5<br />

5<br />

5<br />

0<br />

±1, ±5, ±25, ± 1 5 25<br />

2 , ± 2 , ± 2<br />

15<br />

10<br />

5<br />

5<br />

5<br />

0<br />

25<br />

25<br />

0<br />

f x x 5x 1x 12x 5<br />

Thus, the rational zeros are 5, 1, 1, 5<br />

2 .<br />

x 4 13x 2 12x 0<br />

xx 3 13x 12 0<br />

Possible rational zeros of x<br />

±1, ±2, ±3, ±4, ±6, ±12<br />

3 13x 12:<br />

1 1<br />

1<br />

0<br />

1<br />

1<br />

13<br />

1<br />

12<br />

12<br />

12<br />

0<br />

xx 1x 2 x 12 0<br />

xx 1x 4x 3 0<br />

The real zeros are 0, 1, 4, 3.<br />

y 1y 62y 1y 1 y 12 2y y 62y 1<br />

4 7y3 26y2 23y 6 y 1y 62y2 3y 1


190 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

24.<br />

26.<br />

28.<br />

30.<br />

x 5 x 4 3x 3 5x 2 2x 0<br />

xx 4 x 3 3x 2 5x 2 0<br />

Possible rational zeros of x<br />

±1, ±2<br />

4 x3 3x2 5x 2:<br />

1 1<br />

f x 4x 3 12x 2 x 15<br />

(a) Possible rational zeros:<br />

(b)<br />

15<br />

12<br />

−9 −6 −3 6 9 12<br />

(c) Real zeros: 1, 3 5<br />

2 , 2<br />

f x 4x 4 17x 2 4<br />

(a) Possible rational zeros:<br />

(b)<br />

1<br />

2 1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

2<br />

2<br />

xx 1x 2x 2 2x 1 0<br />

xx 1x 2x 1x 1 0<br />

The real zeros are 2, 0, 1.<br />

(c) Real zeros: ±2, ± 1<br />

2<br />

y<br />

3<br />

0<br />

3<br />

−8 8<br />

9<br />

−15<br />

3<br />

4<br />

1<br />

5<br />

3<br />

2<br />

2<br />

2<br />

0<br />

2<br />

2<br />

0<br />

± 5<br />

±1, ±3, ±5, ±15, ±<br />

15 1 3 5 15<br />

2 , ± 2 , ± 4 , ± 4 , ± 4 , ± 4<br />

1 3<br />

2 , ± 2 ,<br />

x<br />

±1, ±2, ±4, ± 1 1<br />

2 , ± 4<br />

25.<br />

29.<br />

fx x 3 x 2 4x 4<br />

(a) Possible rational zeros:<br />

(b)<br />

(c) The zeros are: 2, 1, 2<br />

fx 2x 4 13x 3 21x 2 2x 8<br />

(a) Possible rational zeros:<br />

(b)<br />

16<br />

−4 8<br />

−8<br />

(c) The zeros are: 1<br />

2 , 1, 2, 4<br />

31. fx 32x<br />

(a) Possible rational zeros:<br />

3 52x2 17x 3<br />

(b)<br />

−6 −4 4 6<br />

f x 3x 3 20x 2 36x 16 27. fx 4x3 15x2 8x 3<br />

(a) Possible rational zeros:<br />

(b)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−4 −2 6 8 10 12<br />

−4<br />

−6<br />

y<br />

(c) Real zeros: 2<br />

3 , 2, 4<br />

± 2<br />

±1, ±2, ±4, ±8, ±16, ±<br />

4 8 16<br />

3 , ± 3 , ± 3 , ± 3<br />

1<br />

3 ,<br />

x<br />

6<br />

−1 3<br />

−2<br />

4<br />

2<br />

−4<br />

−6<br />

−8<br />

(a) Possible rational zeros:<br />

(b)<br />

4<br />

2<br />

(c) The zeros are: 1<br />

8, 3<br />

4, 1<br />

y<br />

−6 −4 −2 2 4 6 8 10<br />

−4<br />

−6<br />

y<br />

(c) The zeros are: 1<br />

4 , 1, 3<br />

±1, ±2, ±4<br />

x<br />

±1, ±3, ± 1<br />

2, ± 3<br />

2, ± 1<br />

4, ± 3<br />

4<br />

x<br />

±1, ±2, ±4, ±8, ± 1<br />

2<br />

± 1<br />

±1, ±3, ±<br />

3 1 3 1 3<br />

6 , ± 8 , ± 16 , ± 16 , ± 32 , ± 32<br />

1 3 1 3<br />

2 , ± 2 , ± 4 , ± 4 ,


−24<br />

(c) Real zeros: 2, 1 145<br />

±<br />

8 8<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 191<br />

32.<br />

(a) Possible rational zeros:<br />

±<br />

(b)<br />

8<br />

−8 8<br />

1<br />

f x 4x<br />

±1, ±2, ±3, ±6, ±9, ±18,<br />

3 9 1 3 9<br />

2 , ± 2 , ± 2 , ± 4 , ± 4 , ± 4<br />

3 7x 2 11x 18 33. fx x<br />

(a) From the calculator we have x ±1 <strong>and</strong> x ±1.414.<br />

(b) An exact zero is x 1.<br />

1 1 0 3 0 2<br />

1 1 2 2<br />

1 1 2 2 0<br />

4 3x2 2<br />

34. Pt t 4 7t 2 12<br />

(a)<br />

(b) 2 1<br />

(c)<br />

(c)<br />

t ±2, ±1.732<br />

1<br />

2 1<br />

1<br />

0<br />

2<br />

2<br />

7<br />

4<br />

3<br />

2<br />

2<br />

0<br />

0<br />

6<br />

6<br />

3<br />

0<br />

3<br />

6<br />

6<br />

0<br />

Pt t 2t 2t 2 3<br />

12<br />

12<br />

0<br />

t 2t 2t 3 t 3 <br />

3 6<br />

6<br />

7<br />

18<br />

11<br />

30<br />

33<br />

3<br />

9<br />

9<br />

0<br />

gx x 3x 36x 2 11x 3<br />

x 3x 33x 12x 3<br />

(c) 1 1<br />

1<br />

1<br />

1<br />

0<br />

2<br />

0<br />

2<br />

2<br />

2<br />

0<br />

fx x 1x 1x 2 2<br />

x 1x 1x 2 x 2 <br />

35.<br />

(a) hx xx4 7x3 10x2 hx x<br />

14x 24<br />

5 7x4 10x3 14x2 24x<br />

From the calculator we have x 0, 3, 4 <strong>and</strong> x ±1.414.<br />

(b) An exact zero is x 3.<br />

(c)<br />

3 1<br />

1<br />

4 1<br />

1<br />

7<br />

3<br />

4<br />

4<br />

4<br />

0<br />

10<br />

12<br />

2<br />

2<br />

0<br />

2<br />

14<br />

6<br />

8<br />

8<br />

8<br />

0<br />

hx xx 3x 4x 2 2<br />

24<br />

24<br />

0<br />

xx 3x 4x 2 x 2 <br />

36. gx 6x<br />

(a) x ±3, 1.5, 0.333<br />

(b) 3 6 11 51 99 27<br />

18 21 90 27<br />

6 7 30 9 0<br />

4 11x 3 51x 2 99x 27 37.<br />

Note: f x ax where a is any<br />

nonzero real number, has the zeros 1 <strong>and</strong> ±5i.<br />

3 x2 x<br />

25x 25,<br />

3 x2 x 1x<br />

25x 25<br />

2 f x x 1x 5ix 5i<br />

25<br />

38.<br />

f x x 4x 3ix 3i 39. f x x 6x 5 2ix 5 2i<br />

x 4x 2 9<br />

x 3 4x 2 9x 36<br />

Note: f x ax where a is<br />

any real number, has the zeros 4, 3i <strong>and</strong> 3i.<br />

3 4x 2 9x 36,<br />

x 6x 5 2ix 5 2i<br />

x 6x 5 2 2i 2 <br />

x 6x 2 10x 25 4<br />

x 6x 2 10x 29<br />

x 3 4x 2 31x 174<br />

Note: f x ax where a is any<br />

nonzero real number, has the zeros 6, <strong>and</strong> 5 ± 2i.<br />

3 4x2 31x 174,


192 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

40.<br />

45.<br />

f x x 2x 4 ix 4 i<br />

x 2x 2 8x 17<br />

x 3 10x 2 33x 34<br />

Note: f x ax where a is<br />

any real number, has the zeros 2, 4 ± i.<br />

3 10x 2 33x 34<br />

42. If 1 3i is a zero, so is its conjugate, 1 3i.<br />

44.<br />

f x x 5 2 x 1 3ix 1 3i<br />

x 2 10x 25x 2 2x 4<br />

x 4 8x 3 9x 2 10x 100<br />

Note: f x ax where<br />

a is any real number, has the zeros 5, 5, 1 ± 3i.<br />

4 8x 3 9x 2 10x 100,<br />

f x x 4 2x 3 3x 2 12x 18<br />

x 4<br />

2x 3<br />

6x 2<br />

x 2 2x 3<br />

x 6 ) x 4 2x 3 3x 2 12x 18<br />

x 4 2x 3 3x 2 12x 6<br />

12x<br />

3x2 3x<br />

0<br />

2 2x<br />

18<br />

3 3x2 18<br />

f x x 4 4x 3 5x 2 2x 6<br />

x 2 2x 2 ) x 4 4x 3 5x 2 2x 6<br />

x 4 2x 3 2x 2<br />

x 4 2x 3 7x 2 2x 6<br />

2x 3 4x 2 4x<br />

2x 3 3x 2 6x 6<br />

3x 2 6x 6<br />

3x 2 6x 0<br />

fx x 2 2x 2x 2 2x 3<br />

46. fx x4 3x3 x2 12x 20<br />

x 2 2x 3<br />

x2 4 ) x4 3x3 x2 x<br />

12x 20<br />

2 3x 5<br />

x 4 4x 2<br />

3x 3 5x 2 12x<br />

3x 3 12x<br />

5x2 5x<br />

20<br />

2 20<br />

0<br />

41. If is a zero, so is its conjugate,<br />

3x2 x 2x 32 2i 2 3 2i<br />

3 2i.<br />

f x 3x 2x 1x 3 2ix 3 2i<br />

3x 2x 1x 3 2ix 3 2i<br />

<br />

3x 2 x 2x 2 6x 9 2<br />

3x 2 x 2x 2 6x 11<br />

3x 4 17x 3 25x 2 23x 22<br />

Note: f x a3x where a is<br />

2<br />

any nonzero real number, has the zeros , 1, <strong>and</strong> 3 ±2i.<br />

4 17x3 25x2 23x 22,<br />

43.<br />

(a)<br />

(b) f x x<br />

(c) f x x 3ix 3ix 3x 3<br />

2 f x x<br />

9x 3x 3<br />

2 9x2 f x x<br />

3<br />

4 6x2 27<br />

(a)<br />

(b) f x x 6x 6x 2 f x x<br />

2x 3<br />

2 6x 2 2x 3<br />

(c) f x x 6x 6x 1 2ix 1 2i<br />

(a)<br />

(b) fx x 1 3 x 1 3 x<br />

(c) fx x 1 3 x 1 3 x 1 2 i x 1 2 i<br />

Note: Use the Quadratic Formula for (b) <strong>and</strong> (c).<br />

2 fx x<br />

2x 3<br />

2 2x 2x2 2x 3<br />

(a)<br />

(b)<br />

f x x 2 4x 2 3x 5<br />

f x x 2 3 29<br />

4x <br />

2<br />

<br />

3 29<br />

(c) f x x 2ix 2ix <br />

2<br />

3 29<br />

x <br />

2<br />

<br />

3<br />

<br />

3 29<br />

x <br />

2


47.<br />

48.<br />

fx 2x 3 3x 2 50x 75<br />

Since 5i is a zero, so is 5i.<br />

5i 2<br />

2<br />

5i 2<br />

The zero of The zeros of<br />

are x 3<br />

2x 3 is x fx<br />

2 <strong>and</strong> x ±5i.<br />

3<br />

2 .<br />

49. fx 2x<br />

Since 2i is a zero, so is 2i.<br />

4 x3 7x2 4x 4<br />

2i 2<br />

2<br />

2<br />

2i 2<br />

2<br />

3<br />

10i<br />

3 10i<br />

3 10i<br />

10i<br />

3<br />

1<br />

4i<br />

1 4i<br />

1 4i<br />

4i<br />

1<br />

50<br />

50 15i<br />

15i<br />

15i<br />

15i<br />

0<br />

f x x 3 x 2 9x 9<br />

Since 3i is a zero, so is 3i.<br />

3i 1<br />

1<br />

3i 1<br />

1<br />

1<br />

3i<br />

1 3i<br />

1 3i<br />

3i<br />

1<br />

9<br />

9 3i<br />

3i<br />

3i<br />

7<br />

8 2i<br />

1 2i<br />

1 2i<br />

2i<br />

1<br />

75<br />

75<br />

0<br />

4<br />

4 2i<br />

2i<br />

2i<br />

2i<br />

0<br />

The zeros of<br />

are <strong>and</strong> The zeros of are<br />

x ±2i, x <strong>and</strong> x 1.<br />

1<br />

2 ,<br />

x x 1.<br />

fx<br />

1<br />

2x<br />

2<br />

2 x 1 2x 1x 1<br />

0<br />

3i<br />

9<br />

9<br />

0<br />

4<br />

4<br />

0<br />

Alternate Solution<br />

The zero of x 1 is x 1. The zeros of f are x 1 <strong>and</strong> x ±3i.<br />

50. gx x 3 7x 2 x 87<br />

Since 5 2i is a zero, so is 5 2i.<br />

5 2i 1<br />

1<br />

5 2i 1<br />

1<br />

7<br />

5 2i<br />

2 2i<br />

2 2i<br />

5 2i<br />

3<br />

1<br />

14 6i<br />

15 6i<br />

15 6i<br />

15 6i<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 193<br />

Since are zeros of fx, x 5ix 5i x is a<br />

factor of fx. By long division we have:<br />

2 x ±5i<br />

25<br />

02x 3<br />

x 2 0x 25 ) 2x 3 3x 2 50x 75<br />

2x 3 0x 2 50x<br />

2x 3 3x 2 50x 75<br />

3x 2 50x 75<br />

3x 2 50x 70<br />

Thus, <strong>and</strong> the zeros of f are <strong>and</strong> x 3<br />

x ±5i<br />

fx x2 252x 3<br />

Alternate Solution<br />

Since are zeros of fx, x 2ix 2i x is a factor<br />

of fx. By long division we have:<br />

2 x ±2i<br />

4<br />

x 2 0x 4 ) 2x 4 x 3 7x 2 4x 4<br />

Thus,<br />

The zero of x 3 is x 3. The zeros of f are x 3, 5 ± 2i.<br />

0<br />

87<br />

87<br />

0<br />

2x 4 0x 3 8x 2<br />

2 x 2 x 1<br />

x 3 x 2 4x<br />

x 3 0x 2 4x<br />

x 2 0x 4<br />

x 2 0x 4<br />

fx x 2 42x 2 x 1<br />

fx x 2ix 2i2x 1x 1<br />

<strong>and</strong> the zeros of are x ±2i, x 1<br />

, <strong>and</strong> x 1.<br />

fx<br />

0<br />

2<br />

2 .


194 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

51. gx 4x<br />

Since 3 i is a zero, so is 3 i.<br />

3 23x2 34x 10<br />

3 i 4<br />

4<br />

3 i 4<br />

4<br />

23<br />

12 4i<br />

11 4i<br />

11 4i<br />

12 4i<br />

1<br />

34<br />

37 i<br />

3 i<br />

3 i<br />

3 i<br />

0<br />

10<br />

10<br />

0<br />

The zero of The zeros of are<br />

x 3 ± i <strong>and</strong> x 1<br />

4 .<br />

4x 1 is x gx<br />

1<br />

4 .<br />

52. hx 3x3 4x 2 8x 8<br />

53.<br />

Since 1 3 i is a zero, so is 1 3i.<br />

1 3i 3<br />

3<br />

1 3i 3<br />

3<br />

4<br />

3 33i<br />

1 33i<br />

1 33i<br />

3 33i<br />

2<br />

The zero of The zeros of f are x 2<br />

3x 2 is x 2<br />

, 1 ± 3i.<br />

fx x 4 3x 3 5x 2 21x 22<br />

3 .<br />

8<br />

10 23i<br />

2 23i<br />

2 23i<br />

2 23i<br />

Since 3 2 i is a zero, so is 3 2 i, <strong>and</strong><br />

is a factor of fx. By long division, we have:<br />

x 2 6x 11 ) x 4 3x 3 5x 2 21x 22<br />

Thus,<br />

x 4 6x 3 11x 2<br />

3x 3 16x 2 21x<br />

3x 3 18x 2 33x<br />

f x x 2 6x 11x 2 3x 2<br />

x 2 6x 11x 1x 2<br />

0<br />

x 2 3x 2<br />

2x 2 12x 22<br />

2x 2 12x 22<br />

8<br />

8<br />

x 3 2 i x 3 2 i x 3 2 ix 3 2 i<br />

<strong>and</strong> the zeros of f are x 3 ± 2 i, x 1, <strong>and</strong> x 2.<br />

0<br />

0<br />

x 3 2 2 i 2<br />

x 2 6x 11<br />

3<br />

Alternate Solution<br />

Since 3 ± i<br />

are zeros of gx,<br />

x 32 i2 x 3 i x 3 i x 3 ix 3 i<br />

x<br />

is a factor of gx. By long division we have:<br />

2 6x 10<br />

34x 1<br />

x 2 6x 10 ) 4x 3 23x 2 34x 10<br />

4x 3 24x 2 40x<br />

4x 3 24 x 2 36x 10<br />

x 2 36x 10<br />

Thus, <strong>and</strong> the zeros of<br />

are x 3 ± i <strong>and</strong> x 1<br />

gx x gx<br />

4.<br />

2 6x 104x 1<br />

0


54. f x x<br />

Since 1 3i is a zero, so is 1 3i.<br />

3 4x 2 14x 20 55. fx x<br />

x 5ix 5i<br />

2 25<br />

1 3i 1<br />

1<br />

1 3i 1<br />

1<br />

4<br />

1 3i<br />

3 3i<br />

3 3i<br />

1 3i<br />

The zero of x 2 is x 2.<br />

The zeros of f are x 2, 1 ± 3i.<br />

62. hx x 3 3x 2 4x 2<br />

Possible rational zeros: ±1, ±2<br />

2<br />

14<br />

12 6i<br />

2 6i<br />

2 6i<br />

2 6i<br />

0<br />

20<br />

20<br />

By the Quadratic Formula, the zeros of x<br />

2 ± 4 8<br />

are x 1 ± i.<br />

2<br />

Zeros: x 1, 1 ± i<br />

hx x 1x 1 ix 1 i<br />

2 1 1 3 4 2<br />

1 2 2<br />

1 2 2 0<br />

2x 2<br />

0<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 195<br />

The zeros of fx are x ±5i.<br />

56. f x x<br />

By the Quadratic Formula, the zeros of f x are<br />

2 x 56 57. hx x<br />

By the Quadratic Formula, the zeros of hx are<br />

2 4x 1<br />

1 ± 1 224 1 ± 223i<br />

x .<br />

2<br />

2<br />

1 223i 1 223i<br />

f x x <br />

2 x <br />

2<br />

58. gx x<br />

By the Quadratic Formula, the zeros of f x are<br />

2 10x 23 59.<br />

x2 9x2 fx x<br />

9<br />

4 81<br />

60.<br />

x <br />

10 ± 100 92<br />

2<br />

<br />

10 ± 8<br />

2<br />

gx x 5 2x 5 2<br />

Zeros: y ±5, ±5i<br />

f y y 5y 5y 5iy 5i<br />

<br />

5 ± 2.<br />

x <br />

4 ± 16 4<br />

2<br />

2 ± 3.<br />

hx x 2 3 x 2 3 <br />

x 2 3 x 2 3 <br />

x 3x 3x 3ix 3i<br />

The zeros of fx are x ±3 <strong>and</strong> x ±3i.<br />

y2 25y2 f y y<br />

25<br />

4 625 61. fz z<br />

By the Quadratic Formula, the zeros of f z are<br />

2 2z 2<br />

z <br />

2 ± 4 8<br />

2<br />

1 ± i.<br />

fz z 1 iz 1 i<br />

z 1 iz 1 i<br />

63. gx x3 6x2 13x 10<br />

Possible rational zeros:<br />

2 1<br />

By the Quadratic Formula, the zeros of x are<br />

2 4x 5<br />

x <br />

1<br />

6<br />

2<br />

4<br />

13<br />

8<br />

5<br />

4 ± 16 20<br />

2<br />

±1, ±2, ±5, ±10<br />

10<br />

10<br />

0<br />

2 ± i.<br />

The zeros of gx are x 2 <strong>and</strong> x 2 ± i.<br />

gx x 2x 2 ix 2 i<br />

x 2x 2 ix 2 i


196 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

64.<br />

65.<br />

67.<br />

f x x 3 2x 2 11x 52<br />

Possible rational zeros: ±1, ±2, ±4, ±13, ±26<br />

4 1<br />

hx x 3 x 6<br />

Possible rational zeros:<br />

2 1<br />

By the Quadratic Formula, the zeros of x are<br />

2 2x 3<br />

x <br />

1<br />

0<br />

2<br />

2<br />

2 ± 4 12<br />

2<br />

1<br />

4<br />

3<br />

±1, ±2, ±3, ±6<br />

6<br />

6<br />

0<br />

1 ± 2 i.<br />

The zeros of hx are x 2 <strong>and</strong> x 1 ± 2 i.<br />

hx x 2x 1 2 i x 1 2 i <br />

x 2x 1 2 ix 1 2 i<br />

fx 5x 3 9x 2 28x 6<br />

Possible rational zeros:<br />

±1, ±2, ±3, ±6, ± 1 2 3 6<br />

5 , ± 5 , ± 5 , ± 5<br />

1<br />

5<br />

By the Quadratic Formula, the zeros of<br />

5x are<br />

2 10x 30 5x2 2x 6<br />

x <br />

5<br />

5<br />

1<br />

2<br />

4<br />

6<br />

9<br />

1<br />

10<br />

11<br />

24<br />

2 ± 4 24<br />

2<br />

13<br />

28<br />

2<br />

30<br />

52<br />

52<br />

By the Quadratic Formula, the zeros of x are x 2 6x 13<br />

Zeros: x 4, 3 ± 2i<br />

f x x 4x 3 2ix 3 2i<br />

0<br />

6<br />

6<br />

0<br />

1 ± 5 i.<br />

The zeros of are<br />

fx x <br />

5x 1x 1 5 ix 1 5 i<br />

1<br />

x <br />

55x 1 5 i x 1 5 i <br />

1<br />

5 <strong>and</strong> x 1 ± 5 i.<br />

fx<br />

6 ± 36 52<br />

2<br />

66. hx x<br />

Possible rational zeros: ±1, ±5, ±7, ±35<br />

3 9x2 27x 35<br />

By the Quadratic Formula, the zeros of x<br />

4 ± 16 28<br />

are x 2 ± 3i.<br />

2<br />

Zeros: 5, 2 ± 3i<br />

hx x 5x 2 3ix 2 3i<br />

2 5 1 9 27 35<br />

5 20 35<br />

1 4 7 0<br />

4x 7<br />

68. gx 3x 3 4x 2 8x 8<br />

Possible rational zeros:<br />

±1, ±2, ±4, ±8, ± 1 2 4 8<br />

3 , ± 3 , ± 3 , ± 3<br />

2<br />

3<br />

By the Quadratic Formula, the zeros of<br />

3x are<br />

2 6x 12 3x2 2x 4<br />

x <br />

3<br />

3<br />

3 ± 2i.<br />

4<br />

2<br />

6<br />

2 ± 4 16<br />

2<br />

8<br />

4<br />

12<br />

8<br />

8<br />

0<br />

1 ± 3i.<br />

Zeros: x <br />

gx 3x 2x 1 3ix 1 3i<br />

2<br />

3 , 1 ± 3i


69.<br />

71.<br />

73.<br />

gx x 4 4x 3 8x 2 16x 16<br />

Possible rational zeros: ±1, ±2, ±4, ±8, ±16<br />

2 1<br />

1<br />

2 1<br />

1<br />

4<br />

2<br />

2<br />

2<br />

2<br />

0<br />

8<br />

4<br />

4<br />

4<br />

0<br />

4<br />

8<br />

8<br />

0<br />

16<br />

8<br />

8<br />

gx x 2x 2x 2 4 x 2 2 x 2ix 2i<br />

The zeros of gx are 2 <strong>and</strong> ±2i.<br />

fx x 4 10x 2 9<br />

x 2 1x 2 9<br />

16<br />

16<br />

0<br />

x ix ix 3ix 3i<br />

The zeros of fx are x ±i <strong>and</strong> x ±3i.<br />

fx x 3 24x 2 214x 740 74.<br />

Possible rational zeros:<br />

Based on the graph, try x 10.<br />

By the Quadratic Formula, the zeros of x are<br />

2 14x 74<br />

x <br />

−20<br />

10 1<br />

1<br />

2000<br />

−1000<br />

24<br />

10<br />

14<br />

14 ± 196 296<br />

2<br />

±1, ±2, ±4, ±5, ±10, ±20, ±37,<br />

±74, ±148, ±185, ±370, ±740<br />

The zeros of fx are x 10 <strong>and</strong> x 7 ± 5i.<br />

10<br />

214<br />

140<br />

74<br />

740<br />

740<br />

0<br />

7 ± 5i.<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 197<br />

70. hx x<br />

Possible rational zeros: ±1, ±3, ±9<br />

4 6x 3 10x 2 6x 9<br />

72.<br />

3 1<br />

1<br />

3 1<br />

1<br />

6<br />

3<br />

3<br />

3<br />

3<br />

0<br />

10<br />

9<br />

1<br />

0<br />

The zeros of x are x ±i.<br />

2 1<br />

Zeros:<br />

hx x 3 2 x 3, ±i<br />

x ix i<br />

1<br />

Zeros: x ±2i, ±5i<br />

1<br />

6<br />

3<br />

3<br />

3<br />

f x x 4 29x 2 100<br />

x 2 25x 2 4<br />

0<br />

3<br />

9<br />

9<br />

f x x 2ix 2ix 5ix 5i<br />

f s 2s 3 5s 2 12s 5<br />

Possible rational zeros:<br />

Based on the graph, try<br />

1<br />

2<br />

By the Quadratic Formula, the zeros of 2s are<br />

2 2s 5<br />

s <br />

2<br />

2<br />

10<br />

−10 10<br />

−10<br />

5<br />

1<br />

4<br />

12<br />

2<br />

10<br />

2 ± 4 20<br />

2<br />

5<br />

5<br />

0<br />

s 1<br />

2 .<br />

1 ± 2i.<br />

The zeros of are s 1<br />

<strong>and</strong> s 1 ± 2i.<br />

fs<br />

2<br />

0<br />

±1, ±5, ± 1 5<br />

2 , ± 2


198 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

75.<br />

78.<br />

fx 16x 3 20x 2 4x 15 76.<br />

Possible rational zeros:<br />

± 5<br />

4, ± 15<br />

4 , ± 1<br />

8, ± 3<br />

8, ± 5<br />

8, ± 15<br />

8 , ± 1<br />

16, ± 3<br />

16, ± 5<br />

16, ± 15<br />

±1, ±3, ±5, ±15, ±<br />

16<br />

1<br />

2, ± 3<br />

2, ± 5<br />

2, ± 15<br />

2 , ± 1<br />

4, ± 3<br />

4,<br />

Based on the graph, try<br />

By the Quadratic Formula, the zeros of<br />

16x are<br />

2 32x 20 44x2 8x 5<br />

x <br />

−3<br />

3<br />

4<br />

8 ± 64 80<br />

8<br />

The zeros of are x 3<br />

fx<br />

−4<br />

16<br />

16<br />

gx x 5 8x 4 28x 3 56x 2 64x 32<br />

Possible rational zeros: ±1, ±2, ±4, ±8, ±16, ±32<br />

10<br />

−10 10<br />

−10<br />

20<br />

−5<br />

20<br />

12<br />

32<br />

−5<br />

x 3<br />

4.<br />

4<br />

24<br />

20<br />

1 ± 1<br />

2 i.<br />

Based on the graph, try x 2.<br />

3<br />

4<br />

4<br />

15<br />

15<br />

0<br />

<strong>and</strong> x 1 ± 1<br />

2 i.<br />

2 1<br />

2 1<br />

2 1<br />

By the Quadratic Formula, the zeros of x are<br />

2 2x 4<br />

x <br />

1<br />

1<br />

1<br />

f x 9x 3 15x 2 11x 5<br />

Possible rational zeros:<br />

−5 5<br />

Based on the graph, try x 1.<br />

1 9<br />

By the Quadratic Formula, the zeros of 9x are<br />

2 6x 5<br />

x <br />

The zeros of are x 1 <strong>and</strong> x 1<br />

fx<br />

8<br />

2<br />

6<br />

6<br />

2<br />

4<br />

4<br />

2<br />

2<br />

9<br />

28<br />

12<br />

16<br />

8<br />

8<br />

4<br />

4<br />

2 ± 4 16<br />

2<br />

15<br />

9<br />

6<br />

6 ± 36 180<br />

18<br />

16<br />

8<br />

5<br />

−5<br />

24<br />

16<br />

8<br />

8<br />

8<br />

0<br />

11<br />

6<br />

5<br />

56<br />

32<br />

24<br />

1 ± 3i.<br />

±1, ±5, ± 1 5 1 5<br />

3 , ± 3 , ± 9 , ± 9<br />

5<br />

5<br />

0<br />

1 2<br />

±<br />

3 3 i.<br />

77.<br />

Possible rational zeros: ±1, ±2, ±<br />

20<br />

1<br />

fx 2x<br />

2<br />

4 5x3 4x2 5x 2 Based on the graph, try x 2 <strong>and</strong> x <br />

2 2 5 4 5 2<br />

2<br />

4<br />

1<br />

2<br />

2<br />

4<br />

1<br />

2<br />

0<br />

1<br />

2 .<br />

1<br />

2<br />

2<br />

2<br />

1<br />

1<br />

0<br />

2<br />

0<br />

2<br />

1<br />

1<br />

0<br />

The zeros of are<br />

The zeros of are x 2, x 1<br />

2x x ±i.<br />

fx<br />

2, <strong>and</strong> x ±i.<br />

2 2 2x2 1<br />

64<br />

48<br />

16<br />

16<br />

16<br />

The zeros of gx are x 2 <strong>and</strong> x 1 ± 3i.<br />

0<br />

32<br />

32<br />

0<br />

3<br />

± 2<br />

3i.


79.<br />

Let fx x4 gx 5x<br />

2.<br />

5 10x 5xx4 2<br />

81.<br />

83.<br />

Sign variations: 0, positive zeros: 0<br />

fx x 4 2<br />

Sign variations: 0, negative zeros: 0<br />

hx 3x 4 2x 2 1<br />

Sign variations: 0, positive zeros: 0<br />

hx 3x 4 2x 2 1<br />

Sign variations: 0, negative zeros: 0<br />

gx 2x 3 3x 2 3<br />

Sign variations: 1, positive zeros: 1<br />

gx 2x 3 3x 2 3<br />

Sign variations: 0, negative zeros: 0<br />

85. fx 5x3 x2 x 5<br />

Sign variations: 3, positive zeros: 3 or 1<br />

fx 5x 3 x 2 x 5<br />

Sign variations: 0, negative zeros: 0<br />

1 is a lower bound.<br />

80.<br />

82.<br />

84.<br />

86.<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 199<br />

hx 4x 2 8x 3<br />

Sign variations: 2, positive zeros: 2 or 0<br />

hx 4x 2 8x 3<br />

Sign variations: 0, negative zeros: 0<br />

hx 2x 4 3x 2<br />

Sign variations: 2, positive zeros: 2 or 0<br />

hx 2x 4 3x 2<br />

Sign variations: 0, negative zeros: 0<br />

f x 4x 3 3x 2 2x 1<br />

Sign variations: 3, positive zeros: 3 or 1<br />

f x 4x 3 3x 2 2x 1<br />

Sign variations: 0, negative zeros: 0<br />

f x 3x 3 2x 2 x 3<br />

Sign variations: 0, positive zeros: 0<br />

f x 3x 3 2x 2 x 3<br />

Sign variations: 3, negative zeros: 3 or 1<br />

87. fx x<br />

(a) 4 1 4 0 0 15<br />

4 0 0 0<br />

1 0 0 0 15<br />

4 is an upper bound.<br />

(b) 1 1 4 0 0 15<br />

1 5 5 5<br />

1 5 5 5 20<br />

4 4x3 15 88. fx 2x<br />

(a) 4 2 3 12 8<br />

8 20 32<br />

2 5 8 40<br />

4 is an upper bound.<br />

(b) 3 2 3 12 8<br />

6 27 45<br />

2 9 15 37<br />

3 3x 2 12x 8<br />

3 is a lower bound.<br />

3 is a lower bound.<br />

89. fx x<br />

(a) 5 1 4 0 16 16<br />

5 5 25 205<br />

1 1 5 41 189<br />

5 is an upper bound.<br />

(b) 3 1 4 0 16 16<br />

3 21 63 141<br />

1 7 21 47 125<br />

4 4x3 16x 16 90. f x 2x<br />

(a) 3 2 0 0<br />

6 18<br />

2 6 18<br />

3 is an upper bound.<br />

(b) 4 2 0<br />

8<br />

2 8<br />

4 8x 3<br />

3 is a lower bound.<br />

8<br />

54<br />

46<br />

0<br />

32<br />

32<br />

3<br />

138<br />

141<br />

8<br />

128<br />

136<br />

3<br />

544<br />

547


200 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

91.<br />

95.<br />

fx 4x 3 3x 1<br />

Possible rational zeros:<br />

1 4<br />

4<br />

0<br />

4<br />

4<br />

3<br />

4<br />

1<br />

1<br />

1<br />

0<br />

4x 3 3x 1 x 14x 2 4x 1<br />

x 12x 1 2<br />

Thus, the zeros are 1 <strong>and</strong> 1<br />

2.<br />

93. fy 4y<br />

Possible rational zeros:<br />

3 3y2 8y 6<br />

97.<br />

3<br />

4<br />

4<br />

4<br />

3<br />

3<br />

0<br />

8<br />

0<br />

8<br />

Px x 4 25<br />

4 x2 9<br />

1<br />

44x 4 25x 2 36<br />

1<br />

44x 2 9x 2 4<br />

±1, ± 1 1<br />

2 , ± 4<br />

6<br />

6<br />

0<br />

4y 3 3y 2 8y 6 y 3<br />

44y 2 8<br />

Thus, the only real zero is 3<br />

4 .<br />

y 3<br />

44y 2 2<br />

4y 3y 2 2<br />

1<br />

42x 32x 3x 2x 2<br />

The rational zeros are ± <strong>and</strong> ±2.<br />

3<br />

2<br />

±1, ±2, ±3, ±6, ± 1 3 1 3<br />

2 , ± 2 , ± 4 , ± 4<br />

f x x 3 1<br />

4 x2 x 1<br />

4 98.<br />

1<br />

44x 3 x 2 4x 1<br />

1<br />

4x 2 4x 1 14x 1<br />

1<br />

44x 1x 2 1<br />

1<br />

44x 1x 1x 1<br />

The rational zeros are 1<br />

4 <strong>and</strong> ±1.<br />

92.<br />

Possible rational zeros:<br />

3<br />

2<br />

f z 12z 3 4z 2 27z 9<br />

12<br />

12<br />

4<br />

18<br />

14<br />

f z 2z 3<br />

26z 2 7z 3<br />

2z 33z 12z 3<br />

Real zeros: 3<br />

2<br />

27<br />

21<br />

6<br />

1 3<br />

, 3 , 2<br />

± 1<br />

±1, ±3, ±9, ±<br />

3 9 1 1<br />

4 , ± 4 , ± 4 , ± 6 , ± 12<br />

1 3 9 1<br />

2 , ± 2 , ± 2 , ± 3 ,<br />

9<br />

9<br />

0<br />

94. gx 3x3 2x 2 15x 10<br />

96.<br />

Possible rational zeros:<br />

2<br />

3<br />

3<br />

3<br />

2<br />

2<br />

0<br />

15<br />

0<br />

15<br />

10<br />

10<br />

gx x 2<br />

33x 2 15 3x 2x 2 5<br />

Thus, the only real zero is 2<br />

3 .<br />

4 2<br />

2<br />

3<br />

8<br />

5<br />

23<br />

20<br />

3<br />

The rational zeros are 3, 1<br />

2 , <strong>and</strong> 4.<br />

± 5 10<br />

±1, ±2, ±5, ±10, ± 3 , ± 3<br />

1 2<br />

3 , ± 3 ,<br />

0<br />

f x <br />

Possible rational zeros: ±1, ±2, ±3, ±4, ±6, ±12,<br />

1<br />

22x 3 3x 2 23x 12<br />

12<br />

12<br />

0<br />

± 1 3<br />

2 , ± 2<br />

f x 1<br />

2x 42x 2 5x 3 1<br />

2x 42x 1x 3<br />

f z 1<br />

66z 3 11z 2 3z 2<br />

Possible rational zeros:<br />

2 6<br />

6<br />

11<br />

12<br />

1<br />

3<br />

2<br />

1<br />

2<br />

2<br />

0<br />

f x 1<br />

6x 26x 2 x 1<br />

1<br />

6x 23x 12x 1<br />

<strong>Rational</strong> zeros: 2, 1 1<br />

3 , 2<br />

±1, ±2, ± 1 1 2 1<br />

2 , ± 3 , ± 3 , ± 6


99. fx x<br />

<strong>Rational</strong> zeros: 1 x 1<br />

Irrational zeros: 0<br />

Matches (d).<br />

3 1 x 1x2 x 1<br />

103. (a)<br />

(c)<br />

9<br />

Volume of box<br />

125<br />

100<br />

75<br />

50<br />

25<br />

V<br />

15<br />

x<br />

x<br />

9 − 2x<br />

1 2 3 4 5<br />

Length of sides of<br />

squares removed<br />

The volume is maximum when x 1.82.<br />

x<br />

15 − 2x<br />

The dimensions are: length 15 21.82 11.36<br />

width 9 21.82 5.36<br />

height x 1.82<br />

1.82 cm 5.36 cm 11.36 cm<br />

x<br />

100.<br />

(b)<br />

(d)<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 201<br />

f x x 3 2<br />

x 3 2x 2 3 2x 3 4<br />

<strong>Rational</strong> zeros: 0<br />

Irrational zeros:<br />

Matches (a).<br />

1 x 3 2<br />

101. f x x<br />

<strong>Rational</strong> zeros: 3 x 0, ±1<br />

Irrational zeros: 0<br />

Matches (b).<br />

3 x xx 1x 1 102.<br />

xx<br />

xx 2x 2<br />

<strong>Rational</strong> zeros: 1 x 0<br />

Irrational zeros: 2 x ±2<br />

Matches (c).<br />

2 f x x<br />

2<br />

3 2x<br />

104. (a) Combined length <strong>and</strong> width:<br />

(b)<br />

4x y 120 ⇒ y 120 4x<br />

Volume l w h x 2 y<br />

18,000<br />

0 30<br />

0<br />

Dimensions with maximum volume:<br />

20 in. 20 in. 40 in.<br />

x 2 120 4x<br />

4x 2 30 x<br />

(c)<br />

V l w h 15 2x9 2xx<br />

x9 2x15 2x<br />

Since length, width, <strong>and</strong> height must be positive,<br />

we have 0 < x < for the domain.<br />

9<br />

56 x9 2x15 2x<br />

56 135x 48x 2 4x 3<br />

50 4x 3 48x 2 135x 56<br />

2<br />

1 7<br />

2 ,<br />

The zeros of this polynomial are 2 , <strong>and</strong> 8.<br />

x cannot equal 8 since it is not in the domain of V.<br />

[The length cannot equal 1 <strong>and</strong> the width cannot<br />

equal 7.<br />

The product of 817 56 so it<br />

showed up as an extraneous solution.]<br />

Thus, the volume is 56 cubic centimeters when<br />

centimeter or x centimeters.<br />

7<br />

x 2<br />

1<br />

2<br />

15 1<br />

1<br />

13,500 4x 2 30 x<br />

4x 3 120x 2 13,500 0<br />

x 3 30x 2 3375 0<br />

30<br />

15<br />

15<br />

0<br />

225<br />

225<br />

x 15x 2 15x 225 0<br />

3375<br />

3375<br />

Using the Quadratic Formula, x 15,<br />

15 ± 155<br />

.<br />

2<br />

15 155<br />

The value of is not possible because<br />

2<br />

it is negative.<br />

0


202 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

105.<br />

106.<br />

108. (a)<br />

76x 3 4830x 2 2,820,000 0<br />

P 76x 3 4830x 2 320,000, 0 ≤ x ≤ 60<br />

2,500,000 76x 3 4830x 2 320,000<br />

The zeros of this equation are x 46.1, x 38.4, <strong>and</strong> x 21.0. Since 0 ≤ x ≤ 60, we<br />

disregard x 21.0. The smaller remaining solution is x 38.4. The advertising expense is $384,000.<br />

The zeros of this equation are x 18.0, x 31.5, <strong>and</strong><br />

x 42.0. Because 0 ≤ x ≤ 50, disregard x 18.02.<br />

The smaller remaining solution is x 31.5, or an<br />

advertising expense of $315,000.<br />

(b)<br />

P 45x 3 2500x 2 275,000 107. (a) Current bin: V 2 3 4 24 cubic feet<br />

800,000 45x 3 2500x 2 275,000<br />

A 250 x160 x 1.5160250 (c)<br />

60,000 x 2 410x 40,000<br />

x 410 ± 4102 4120,000<br />

21<br />

<br />

x must be positive, so<br />

x <br />

0 45x 3 2500x 2 1,075,000<br />

0 9x 3 500x 2 215,000<br />

0 x 2 410x 20,000<br />

410 ± 248,100<br />

2<br />

410 248,100<br />

2<br />

44.05.<br />

60,000<br />

The new length is 250 44.05 294.05 ft <strong>and</strong> the<br />

new width is 160 44.05 204.05 ft, so the new<br />

dimensions are 204.05 ft 294.05 ft.<br />

109.<br />

C is minimum when 3x3 40x2 C 100<br />

2400x 36000 0.<br />

200 x<br />

, x ≥ 1<br />

x2 x 30<br />

The only real zero is x 40 or 4000 units.<br />

(b)<br />

A 250 2x160 x 60,000<br />

x 570 ± 5702 4220,000<br />

22<br />

x must be positive, so<br />

x <br />

New bin: V 524 120 cubic feet<br />

x 3 9x 2 26x 24 120<br />

x 3 9x 2 26x 96 0<br />

The only real zero of this polynomial is x 2. All the<br />

dimensions should be increased by 2 feet, so the new<br />

bin will have dimensions of 4 feet by 5 feet by 6 feet.<br />

2x 2 570x 20,000 0<br />

570 484,900<br />

4<br />

V 2 x3 x4 x 120<br />

31.6.<br />

The new length is 250 231.6 313.2 ft <strong>and</strong> the new<br />

width is 160 31.6 191.6 ft, so the new dimensions<br />

are 191.6 ft 313.2 ft.<br />

110. h(t 16t2 48t 6<br />

Let h 64 <strong>and</strong> solve for t.<br />

64 16t 2 48t 6<br />

16t 2 48t 58 0<br />

48 ± i1408<br />

By the Quadratic Formula we have t .<br />

32<br />

Since the equation yields only imaginary zeros, it is not<br />

possible for the ball to have reached a height of 64 feet.


111.<br />

9,000,000 0.0001x 2 60x 150,000<br />

Thus, 0 0.0001x 2 60x 9,150,000.<br />

x <br />

P R C xp C<br />

x140 0.0001x 80x 150,000<br />

0.0001x 2 60x 150,000<br />

60 ± 60<br />

0.0002<br />

300,000 ± 10,00015i<br />

Since the solutions are both complex, it is not possible<br />

to determine a price p that would yield a profit of<br />

9 million dollars.<br />

113. False. The most nonreal complex zeros it can have is<br />

two <strong>and</strong> the Linear Factorization Theorem guarantees<br />

that there are 3 linear factors, so one zero must be real.<br />

Section 2.5 Zeros of <strong>Polynomial</strong> <strong>Functions</strong> 203<br />

112. (a)<br />

A 0.0167t 3 0.508t 2 5.60t 13.4<br />

(b) 12<br />

The model is a good fit to<br />

the actual data.<br />

7<br />

0<br />

(c) A 8.5 when t 10 which corresponds to the<br />

year 2000.<br />

(d) A 9 when t 11 which corresponds to the<br />

year 2001.<br />

13<br />

(e) Yes. The degree of A is odd <strong>and</strong> the leading<br />

coefficient is positive, so as x increases, A will increase.<br />

This implies that attendance will continue to grow.<br />

114. False. f does not have real coefficients.<br />

115. gx fx. This function would have the same zeros 116. gx 3f x. This function has the same zeros as f<br />

as fx so r1, r2, <strong>and</strong> r3 are also zeros of gx.<br />

because it is a vertical stretch of f. The zeros of g are<br />

r1, r2, <strong>and</strong> r3. 117. gx fx 5. The graph of gx is a horizontal shift 118. Note that x is a zero of g if <strong>and</strong> only if<br />

of the graph of fx five units to the right so the zeros<br />

is a zero of f. The zeros of g are <strong>and</strong><br />

of gx are 5 r1 , 5 r2 , <strong>and</strong> 5 r3 .<br />

r3 2 .<br />

r1 2 , r2 2 ,<br />

gx f 2x.<br />

2x<br />

119. gx 3 fx. Since gx is a vertical shift of the graph 120. gx f x. Note that x is a zero of g if <strong>and</strong> only if<br />

of fx, the zeros of gx cannot be determined.<br />

x is a zero of f. The zeros of g are r1, r2, <strong>and</strong> r3. 121.<br />

fx x 4 4x 2 k<br />

x 2 4 ± 42 41k<br />

21<br />

x ±2 ± 4 k<br />

<br />

4 ± 24 k<br />

2<br />

2 ± 4 k<br />

(a) For there to be four distinct real roots, both <strong>and</strong> must be positive. This occurs<br />

when Thus, some possible k-values are k etc.<br />

1<br />

4 k 2 ± 4 k<br />

0 < k < 4.<br />

k 1, k 2, k 3, , k 2,<br />

(b) For there to be two real roots, each of multiplicity 2, 4 k must equal zero. Thus, k 4.<br />

(c) For there to be two real zeros <strong>and</strong> two complex zeros, must be positive <strong>and</strong><br />

must be negative. This occurs when Thus, some possible k-values are k 1, k 2, k etc.<br />

1<br />

2 4 k<br />

2 4 k<br />

k < 0.<br />

(d) For there to be four complex zeros, 2 ± 4 k must be nonreal. This occurs when k > 4. Some possible<br />

k-values are k 5, k 6, k 7.4, etc.<br />

122. (a) gx f x 2 (b) gx f 2x<br />

No. This function is a horizontal shift of f x.<br />

No. Since x is a zero of g if <strong>and</strong> only if 2x is a zero of f,<br />

Note that x is a zero of g if <strong>and</strong> only if x 2 is a<br />

the number of real <strong>and</strong> complex zeros of g is the same as<br />

zero of f; the number of real <strong>and</strong> complex zeros is<br />

not affected by a horizontal shift.<br />

the number of real <strong>and</strong> complex zeros of f.<br />

2<br />

2 ,


204 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

123. Zeros:<br />

f x x 22x 1x 3<br />

8<br />

4<br />

(−2, 0)<br />

−8<br />

2, 1<br />

2 , 3<br />

2x 3 3x 2 11x 6<br />

−4<br />

y<br />

((<br />

1<br />

, 0<br />

2<br />

(3, 0)<br />

4 8 12<br />

x<br />

Any nonzero scalar multiple of f would have the same<br />

three zeros. Let gx af x, a > 0. There are infinitely<br />

many possible functions for f.<br />

125. Answers will vary. Some of the factoring techniques are:<br />

1. Factor out the greatest common factor.<br />

2. Use special product formulas.<br />

127. (a)<br />

a 2 b 2 a ba b<br />

a 2 2ab b 2 a b 2<br />

a 2 2ab b 2 a b 2<br />

a 3 b 3 a ba 2 ab b 2 <br />

a 3 b 3 a ba 2 ab b 2 <br />

3. Factor by grouping, if possible.<br />

4. Factor general trinomials with binomial factors<br />

by “guess-<strong>and</strong>-test” or by the grouping method.<br />

5. Use the <strong>Rational</strong> Zero Test together with synthetic<br />

division to factor a polynomial.<br />

6. Use Descartes’s Rule of Signs to determine the<br />

number of real zeros. Then find any zeros <strong>and</strong><br />

use them to factor the polynomial.<br />

7. Find any upper <strong>and</strong> lower bounds for the real zeros<br />

to eliminate some of the possible rational zeros.<br />

Then test the remaining c<strong>and</strong>idates by synthetic<br />

division <strong>and</strong> use any zeros to factor the polynomial.<br />

(b)<br />

124.<br />

(−1, 0)<br />

50<br />

10<br />

y<br />

(1, 0) (4, 0)<br />

x<br />

(3, 0) 4 5<br />

126. (a) Zeros of fx: 2, 1, 4<br />

(b) The graph touches the x-axis at x 1<br />

(c) The least possible degree of the function is 4 because<br />

there are at least 4 real zeros (1 is repeated) <strong>and</strong> a<br />

function can have at most the number of real zeros<br />

equal to the degree of the function. The degree<br />

cannot be odd by the definition of multiplicity.<br />

(d) The leading coefficient of f is positive. From the<br />

information in the table, you can conclude that the<br />

graph will eventually rise to the left <strong>and</strong> to the right.<br />

(e) Answers may vary. One possibility is:<br />

(f)<br />

fx x 1 2 x 2x 4<br />

x 1 2 x 2x 4<br />

x 2 2x 1x 2 2x 8<br />

x 4 4x 3 3x 2 14x 8<br />

y<br />

(−2, 0)<br />

2 (1, 0) (4, 0)<br />

−3 −1<br />

−4<br />

−6<br />

−8<br />

−10<br />

2 3 5<br />

x2 2ax a2 b2 x a2 bi2 fx x bix bi x<br />

fx x a bix a bi<br />

x a bix a bi<br />

2 b 128. (a) f x<br />

cannot have this graph since it also has a zero at<br />

x 0.<br />

(b) gx cannot have this graph since it is a quadratic<br />

function. Its graph is a parabola.<br />

(c) hx is the correct function. It has two real zeros,<br />

x 2 <strong>and</strong> x 3.5, <strong>and</strong> it has a degree of four,<br />

needed to yield three turning points.<br />

(d) k x cannot have this graph since it also has a zero at<br />

x 1. In addition, since it is only of degree three,<br />

it would have at most two turning points.<br />

x


129. 3 6i 8 3i 3 6i 8 3i 11 9i<br />

131. 6 2i1 7i 6 42i 2i 14i 2 20 40i<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong><br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 205<br />

■ You should know the following basic facts about rational functions.<br />

(a) A function of the form where <strong>and</strong> are polynomials, is called<br />

a rational function.<br />

(b) The domain of a rational function is the set of all real numbers except those which make the denominator zero.<br />

(c) If is in reduced form, <strong>and</strong> a is a value such that then the line is a<br />

vertical asymptote of the graph of f.<br />

(d) The line is a horizontal asymptote of the graph of f if or<br />

(e) Let fx where Nx <strong>and</strong> Dx have no common factors.<br />

1. If n < m, then the x-axis y 0 is a horizontal asymptote.<br />

Nx<br />

Dx anxn an1xn1 . . . a1x a0 bmxm bm1xm1 . . . f x NxDx, Dx 0, Nx Dx<br />

f x NxDx<br />

Da 0,<br />

x a<br />

fx→ or fx→ as x→a.<br />

y b<br />

fx → b as x → x → .<br />

b1x b0 2. If then y is a horizontal asymptote.<br />

an n m,<br />

b m<br />

3. If n > m, then there are no horizontal asymptotes.<br />

Vocabulary Check<br />

130. 12 5i 16i 12 11i<br />

132. 9 5i9 5i 81 25i 2 81 25 106<br />

133. gx fx 2 134. gx f x 2 135. gx 2fx<br />

136.<br />

4<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

y<br />

(0, 0)<br />

(2, 2)<br />

(4, 2)<br />

(6, 4)<br />

2 3 4 5 6<br />

Horizontal shift two units<br />

to the right<br />

gx f x 137.<br />

(−4, 4)<br />

(−2, 2)<br />

−4 −3 −2 −1<br />

−1<br />

−2<br />

Reflection in the y-axis<br />

4<br />

3<br />

1<br />

y<br />

(0, 2)<br />

1<br />

x<br />

(2, 0)<br />

x<br />

2<br />

3<br />

2<br />

(0, 0)<br />

−2 −1 1 2 3 4<br />

−2<br />

(−2, −2)<br />

−3<br />

y<br />

Vertical shift two units downward<br />

1. rational functions 2. vertical asymptote 3. horizontal asymptote 4. slant asymptote<br />

(2, 0)<br />

(4, 2)<br />

gx f2x 138.<br />

(−1, 0)<br />

4<br />

3<br />

(0, 2)<br />

y<br />

Horizontal shrink each x-value is<br />

multiplied by 1<br />

2<br />

(1, 2)<br />

<br />

(2, 4)<br />

−2 −1<br />

1 2<br />

x<br />

x<br />

10<br />

8<br />

6<br />

(0, 4)<br />

(−2, 0)<br />

−2<br />

y<br />

(2, 4)<br />

(4, 8)<br />

2 4 6 8<br />

Vertical stretch (each y-value is<br />

multiplied by 2)<br />

gx f 1<br />

2 x<br />

10<br />

8<br />

6<br />

4<br />

(0, 2)<br />

(−4, 0)<br />

−2<br />

y<br />

(4, 2)<br />

(8, 4)<br />

2 4 6 8<br />

Horizontal stretch each<br />

x-value<br />

is multiplied by 2<br />

x<br />

x


206 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

1. fx <br />

(a)<br />

1<br />

x 1<br />

x<br />

0.5<br />

0.9<br />

0.99<br />

0.999<br />

3. fx <br />

(a)<br />

3x2<br />

x2 1<br />

x f x x<br />

0.5<br />

0.9<br />

0.99<br />

0.999<br />

1<br />

12.79<br />

147.8<br />

1498<br />

4. f x <br />

(a)<br />

4x<br />

x2 1<br />

x f x x<br />

0.5<br />

2.66<br />

0.9 18.95<br />

0.99 199<br />

0.999 1999<br />

1.5<br />

1.1<br />

1.01<br />

1.001<br />

1.5 4.8<br />

f x x<br />

5.4<br />

17.29<br />

152.3<br />

1502<br />

1.1 20.95<br />

1.01 201<br />

1.001 2001<br />

5. fx <br />

Domain: all real numbers except x 0<br />

1<br />

x2 Vertical asymptote:<br />

f x x<br />

2<br />

10<br />

100<br />

1000<br />

2. f x <br />

(a)<br />

5x<br />

x 1<br />

x f x x<br />

0.5 5<br />

0.9 45<br />

0.99 495<br />

0.999 4995<br />

x 0<br />

1.5<br />

1.1<br />

1.01<br />

1.001<br />

1.5 15<br />

1.1 55<br />

Horizontal asymptote: y 0<br />

Degree of Nx < degree of Dx<br />

2<br />

10<br />

100<br />

1000<br />

1.01 505<br />

1.001 5005<br />

f x x<br />

f x x<br />

f x x<br />

5<br />

5<br />

10<br />

100<br />

1000 0.001<br />

10<br />

5<br />

10<br />

100<br />

f x<br />

0.25<br />

0.1<br />

0.01<br />

5 6.25<br />

10<br />

100<br />

f x<br />

5.55<br />

5.05<br />

1000 5.005<br />

1000 3<br />

f x<br />

0.833<br />

0.40<br />

100 0.04<br />

1000 0.004<br />

f x<br />

3.125<br />

3.03<br />

3.0003<br />

(b) The zero of the denominator is x 1, so x 1 is a<br />

vertical asymptote. The degree of the numerator is less<br />

than the degree of the denominator so the x-axis, or<br />

y 0, is a horizontal asymptote.<br />

(c) The domain is all real numbers except x 1.<br />

(b) The zero of the denominator is so is a<br />

vertical asymptote. The degree of the numerator is equal<br />

to the degree of the denominator, so the line y <br />

is a horizontal asymptote.<br />

5<br />

x 1, x 1<br />

1 5<br />

(c) The domain is all real numbers except x 1.<br />

(b) The zeros of the denominator are so both<br />

are vertical asymptotes. Since<br />

the degree of the numerator equals the degree<br />

of the denominator, y is a horizontal<br />

asymptote.<br />

3<br />

x ±1<br />

x 1 <strong>and</strong> x 1<br />

1 3<br />

(c) The domain is all real numbers except x ±1.<br />

(b) The zeros of the denominator are x ±1 so both<br />

x 1 <strong>and</strong> x 1 are vertical asymptotes.<br />

Because the degree of the numerator is less than<br />

the degree of the denominator, the x-axis or y 0<br />

is a horizontal asymptote.<br />

(c) The domain is all real numbers except x ±1.<br />

4<br />

6. fx <br />

x 2<br />

Domain: all real numbers except x 2<br />

3<br />

Vertical asymptote:<br />

x 2<br />

Horizontal asymptote: y 0<br />

Degree of Nx < degree of Dx


2 x x 2<br />

7. fx <br />

2 x x 2<br />

Domain: all real numbers except x 2<br />

11.<br />

Vertical asymptote:<br />

Horizontal asymptote: y 1<br />

Degree of Nx degree of Dx<br />

fx <br />

Domain: All real numbers. The denominator has no real<br />

zeros. [Try the Quadratic Formula on the<br />

denominator.]<br />

3x2 1<br />

x2 x 9<br />

Vertical asymptote: None<br />

Horizontal asymptote: y 3<br />

Degree of Nx degree of Dx<br />

13. fx <br />

Vertical asymptote: y 3<br />

2<br />

x 3<br />

Horizontal asymptote: y 0<br />

Matches graph (d).<br />

x 2<br />

9. fx <br />

Domain: all real numbers except x ±1<br />

x3<br />

x2 1<br />

Vertical asymptotes:<br />

x ±1<br />

Horizontal asymptote: None<br />

Degree of Nx > degree of Dx<br />

16.<br />

x 2<br />

f x <br />

x 4<br />

Vertical asymptote: x 4<br />

Horizontal asymptote:<br />

Matches graph (b).<br />

y 1<br />

12.<br />

14. fx <br />

Vertical asymptote: x 5<br />

1<br />

x 5<br />

Horizontal asymptote:<br />

Matches graph (a).<br />

8.<br />

fx <br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 207<br />

Domain: all real numbers except<br />

Vertical asymptote:<br />

Horizontal asymptote: y <br />

Degree<br />

of Nx degree of Dx<br />

5<br />

x <br />

2<br />

1<br />

x <br />

2<br />

1<br />

2<br />

fx <br />

Domain: All real numbers. The denominator has<br />

no real zeros. [Try the Quadratic Formula<br />

on the denominator.]<br />

3x2 x 5<br />

x2 1<br />

Vertical asymptote: None<br />

Horizontal asymptote: y 3<br />

Degree of Nx degree of Dx<br />

y 0<br />

1 5x 5x 1<br />

<br />

1 2x 2x 1<br />

10. fx <br />

Domain: all real numbers except x 1<br />

2x2<br />

x 1<br />

Vertical asymptote:<br />

17. gx <br />

The only zero of gx is x 1.<br />

x 1 makes gx undefined.<br />

x2 1 x 1x 1<br />

<br />

x 1 x 1<br />

x 1<br />

Horizontal asymptote: None<br />

Degree of Nx > degree of Dx<br />

15.<br />

x 1<br />

fx <br />

x 4<br />

Vertical asymptote: x 4<br />

18.<br />

Horizontal asymptote:<br />

Matches graph (c).<br />

hx 2 5<br />

x 2 2<br />

2 5<br />

x 2 2<br />

2x 2 2 5<br />

x2 5<br />

2<br />

2<br />

y 1<br />

0 2 5<br />

x 2 2<br />

No real solution, hx has no real<br />

zeros.


208 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

19.<br />

23.<br />

25.<br />

f x 1 3<br />

x 3<br />

1 3<br />

0<br />

x 3<br />

x 3 3<br />

f x <br />

Domain: all real numbers x except x 1 <strong>and</strong> x 3<br />

x2 1<br />

x2 x 1x 1 x 1<br />

, x 1 24.<br />

2x 3 x 1x 3 x 3<br />

Horizontal asymptote:<br />

y 1<br />

Degree of Nx degree of Dx<br />

Vertical asymptote: x 3<br />

Since<br />

x 1 is a common factor of Nx <strong>and</strong> Dx, x 1<br />

is not a vertical asymptote of f x.<br />

f x x2 3x 4<br />

2x 2 x 1<br />

<br />

1 3<br />

x 3<br />

x 6 is a zero of f x.<br />

x 1x 4<br />

2x 1x 1<br />

x 4<br />

, x 1<br />

2x 1<br />

Domain: all real numbers except <strong>and</strong><br />

Horizontal asymptote:<br />

Vertical asymptote: x Since<br />

x 1 is a common<br />

factor of Nx <strong>and</strong> Dx, x 1 is not a vertical asymptote<br />

of f x.<br />

1<br />

y <br />

Degree of Nx degree of Dx<br />

2<br />

1<br />

x x 1<br />

2<br />

1<br />

x<br />

2<br />

20.<br />

26.<br />

gx x3 8<br />

x 2 1<br />

x3 8<br />

x2 0<br />

1<br />

x 3 8 0<br />

x 3 8<br />

x 2 is a real zero of gx.<br />

21.<br />

x 4<br />

f x <br />

x<br />

Domain: all real numbers x except x ±4<br />

Horizontal asymptote: y 0<br />

Degree of Nx < degree of Dx<br />

Vertical asymptote: x 4 Since<br />

x 4 is a common<br />

factor of Nx <strong>and</strong> Dx, x 4 is not a vertical asymptote<br />

of f x.<br />

2 1<br />

, x 4<br />

16 x 4<br />

22.<br />

x 3<br />

f x <br />

x<br />

Domain: all real numbers x except x ±3<br />

The degree of the numerator is less than the degree of the<br />

denominator, so the graph has the line y 0 as a<br />

horizontal asymptote.<br />

Vertical asymptote: x 3 Since<br />

x 3 is a common<br />

factor of Nx <strong>and</strong> Dx, x 3 is not a vertical asymptote<br />

of f x.<br />

2 9 <br />

x 3 1<br />

, x 3<br />

x 3x 3 x 3<br />

f x x2 4<br />

x 2 3x 2<br />

<br />

x 2x 2<br />

x 2x 1<br />

Domain: all real numbers x except x 1 <strong>and</strong> x 2<br />

Horizontal asymptote:<br />

x 2<br />

, x 2<br />

x 1<br />

y 1<br />

Degree of Nx degree of Dx<br />

Vertical asymptote: x 1 Since<br />

x 2 is a common<br />

factor of Nx <strong>and</strong> Dx, x 2 is not a vertical asymptote<br />

of f x.<br />

f x 6x2 11x 3<br />

6x 2 7x 3<br />

<br />

x 2<br />

2x 33x 1<br />

2x 33x 1<br />

Domain: all real numbers x except x or<br />

Horizontal asymptote: y 1<br />

3<br />

2<br />

Degree of Nx degree of Dx<br />

3x 1 3<br />

, x <br />

3x 1 2<br />

x 1<br />

3<br />

Vertical asymptote: Since is a common<br />

factor of <strong>and</strong> x is not a vertical asymptote<br />

of f x.<br />

3<br />

x 2x 3<br />

Nx Dx, 2<br />

1<br />

3


27. fx <br />

(a) Domain: all real numbers x except x 2<br />

1<br />

x 2<br />

(b) y-intercept:<br />

(c) Vertical asymptote: x 2<br />

Horizontal asymptote: y 0<br />

(d)<br />

29. hx <br />

(a) Domain: all real numbers x except x 2<br />

(b) y-intercept: 0, 1 2<br />

(c) Vertical asymptote: x 2<br />

Horizontal asymptote: y 0<br />

1<br />

x 2<br />

(d)<br />

x 0<br />

y 1 1<br />

4 3 1<br />

1<br />

1<br />

2<br />

1<br />

0, 2<br />

x 4 3 1 0 1<br />

y 1 1<br />

1<br />

2<br />

−3 −1<br />

−4 −3 −1<br />

(( 0, − 1<br />

2<br />

2<br />

1<br />

−1<br />

−2<br />

2<br />

1<br />

−1<br />

−2<br />

y<br />

y<br />

(( 0, 1<br />

Note: This is the graph of fx <br />

(Exercise 27) reflected about the x-axis.<br />

1<br />

x 2<br />

1<br />

2<br />

2<br />

x<br />

x<br />

2<br />

1<br />

3<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 209<br />

28. f x <br />

(a) Domain: all real numbers x except x 3<br />

(b)<br />

1<br />

y- intercept: 0, 3<br />

(c) Vertical asymptote: x 3<br />

Horizontal asymptote: y 0<br />

1<br />

x 3<br />

(d)<br />

30. gx <br />

(a) Domain: all real numbers x except x 3<br />

1 1<br />

<br />

3 x x 3<br />

(b) y-intercept:<br />

(c) Vertical asymptote: x 3<br />

Horizontal asymptote: y 0<br />

(d)<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

x 0 1 2 4 5 6<br />

y<br />

y<br />

(( 0,<br />

(( 0, 1<br />

1<br />

3<br />

y 1 1<br />

1<br />

−<br />

3<br />

3<br />

1<br />

0, 3<br />

x 0 1 2 4 5 6<br />

y 1 1 1<br />

1 1<br />

3<br />

2 4 5 6<br />

2<br />

1<br />

2<br />

1 2 4<br />

Note: This is the graph of fx <br />

(Exercise 28) reflected about the x-axis.<br />

1<br />

x 3<br />

x<br />

x<br />

1<br />

2<br />

1<br />

2<br />

1<br />

3<br />

3


210 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

31.<br />

5 2x 2x 5<br />

Cx <br />

1 x x 1<br />

(a) Domain: all real numbers x except x 1<br />

(b) x-intercept:<br />

33. fx <br />

(a) Domain: all real numbers x<br />

x2<br />

x2 9<br />

(b) Intercept:<br />

(c) Horizontal asymptote: y 1<br />

(d)<br />

y-intercept:<br />

(c) Vertical asymptote: x 1<br />

Horizontal asymptote: y 2<br />

(d)<br />

x<br />

y<br />

((<br />

5<br />

− , 0<br />

2<br />

−6 −4 2 4<br />

±1<br />

1<br />

10<br />

3<br />

2<br />

−2 −1 1 2<br />

−1<br />

0, 0<br />

y<br />

5, 0 2<br />

0, 5<br />

x 4 3 2 0 1 2<br />

Cx<br />

y<br />

±2<br />

6<br />

(0, 5)<br />

4<br />

13<br />

(0, 0)<br />

1<br />

2<br />

1 1 5 3<br />

±3<br />

1<br />

2<br />

x<br />

x<br />

7<br />

2<br />

1 3x 3x 1<br />

32. Px <br />

1 x x 1<br />

(a) Domain: all real numbers x except x 1<br />

34.<br />

(b) x-intercept:<br />

1 2t 2t 1<br />

ft <br />

t t<br />

(a) Domain: all real numbers t except t 0<br />

(b) t-intercept:<br />

(c) Vertical asymptote: t 0<br />

Horizontal asymptote: y 2<br />

(d)<br />

y-intercept:<br />

(c) Vertical asymptote: x 1<br />

Horizontal asymptote: y 3<br />

(d)<br />

6<br />

5<br />

4<br />

y<br />

(0, 1) 1<br />

, 0<br />

3<br />

−2 −1 2 3 4<br />

−2 −1 1 2<br />

−1<br />

−3<br />

y<br />

1<br />

, 0 2<br />

t 2 1 1 2<br />

y 3 0 1 3<br />

2<br />

5<br />

2<br />

1<br />

, 0 3<br />

0, 1<br />

x 1 0 2 3<br />

y 2 1 5 4<br />

( )<br />

1 ( , 0)<br />

2<br />

1<br />

x<br />

t<br />

2


35. gs <br />

(a) Domain: all real numbers s<br />

s<br />

s2 1<br />

37.<br />

(b) Intercept:<br />

(c) Horizontal asymptote:<br />

(d)<br />

hx x2 5x 4<br />

x 2 4<br />

(a) Domain: all real numbers x except x ±2<br />

(b) x- intercepts: 1, 0, 4, 0<br />

y-intercept:<br />

0, 1<br />

(c) Vertical asymptotes: x 2, x 2<br />

Horizontal asymptote: y 1<br />

(d)<br />

x<br />

y<br />

4<br />

10<br />

3<br />

2<br />

1<br />

(0, 0)<br />

−1<br />

−2<br />

0, 0<br />

6<br />

4<br />

2<br />

y<br />

−6 −4<br />

(4, 0) 6<br />

y<br />

3<br />

28<br />

5<br />

1 2<br />

x 1x 4<br />

<br />

x 2x 2<br />

(1, 0)<br />

1<br />

10<br />

3<br />

y 0<br />

s 2 1 0 1 2<br />

gs<br />

2<br />

5<br />

1<br />

2<br />

0<br />

1<br />

2<br />

s<br />

x<br />

2<br />

5<br />

0 1 3 4<br />

0 0<br />

2<br />

1<br />

5<br />

38.<br />

gx x2 2x 8<br />

x 2 9<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 211<br />

36. fx <br />

(a) Domain: all real numbers x except x 2<br />

(b)<br />

1<br />

y- intercept: 0, 4<br />

(c) Vertical asymptote: x 2<br />

Horizontal asymptote: y 0<br />

1<br />

x 22 (d)<br />

(a) Domain: all real numbers x except x ±3<br />

8<br />

(b) y- intercept: 0, 9<br />

x-intercepts:<br />

4, 0, 2, 0<br />

(c) Vertical asymptotes: x ±3<br />

Horizontal asymptote: y 1<br />

(d)<br />

x<br />

y<br />

−1<br />

−2<br />

−3<br />

−4<br />

x<br />

y<br />

0 1 3 4<br />

1<br />

4<br />

y<br />

(( 0, − 1<br />

4<br />

5<br />

27<br />

16<br />

1<br />

2<br />

4<br />

9<br />

1 3<br />

6<br />

4<br />

2<br />

4<br />

16<br />

7<br />

1<br />

y<br />

(0, 0.88)<br />

(4, 0)<br />

−6 −4<br />

(−2, 0) −2<br />

−4<br />

−6<br />

2 4 6<br />

3<br />

2<br />

x 4x 2<br />

<br />

x 3x 3<br />

2<br />

4<br />

x<br />

x<br />

0 2 4 5<br />

8<br />

9<br />

5<br />

2<br />

4<br />

8<br />

5<br />

0 0<br />

1<br />

7<br />

16<br />

4<br />

7<br />

2<br />

9<br />

1<br />

4


212 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

39.<br />

f x <br />

(a) Domain: all real numbers x except x 2, x ±1<br />

2x2 5x 3<br />

x3 2x2 x 2 <br />

2x 1x 3<br />

x 2x 1x 1<br />

(b) x-intercepts:<br />

y-intercept:<br />

(c) Vertical asymptotes: x 2,<br />

x 1 <strong>and</strong> x 1<br />

Horizontal asymptotes: y 0<br />

(d)<br />

1<br />

, 0<br />

2<br />

9<br />

6<br />

3<br />

(3, 0)<br />

−4 −3 3 4<br />

(( −<br />

((<br />

0, − 3<br />

2<br />

41. f x <br />

(a) Domain: all real numbers x except x 3 <strong>and</strong> x 2<br />

(b) Intercept: 0, 0<br />

(c) Vertical asymptote: x 2<br />

Horizontal asymptote: y 1<br />

(d)<br />

x2 3x<br />

x2 x 6 <br />

xx 3 x<br />

, x 3<br />

x 3x 2 x 2<br />

42.<br />

5x 4<br />

f x <br />

x<br />

(a) Domain: all real numbers x except x 4 or x 3<br />

(b) y- intercept: 0, 5 3<br />

x-intercept:<br />

none<br />

(c) Vertical asymptote: x 3<br />

Horizontal asymptote: y 0<br />

(d)<br />

2 x 12 <br />

5x 4 5<br />

, x 4<br />

x 4x 3 x 3<br />

x 1 0 1 3 4<br />

y<br />

1<br />

3 0 1 3 2<br />

x 2 0 2 5 7<br />

6<br />

4<br />

2<br />

−6 −4 −2<br />

4 6<br />

(0, 0)<br />

−4<br />

−6<br />

y<br />

y<br />

<br />

0, 3<br />

1,<br />

0 , 3, 0<br />

2<br />

2<br />

x 3 2 0 1.5 3 4<br />

f x<br />

3<br />

4<br />

5<br />

4<br />

3<br />

2<br />

x<br />

x<br />

48<br />

5<br />

0<br />

3<br />

10<br />

40.<br />

x<br />

f x <br />

(a) Domain: all real numbers x except x 1, x 2,<br />

or x 3<br />

(b) x-intercepts: 1, 0, 2, 0<br />

y-intercept: 0, 1 3<br />

(c) Vertical asymptotes: x 2, x 1, x 3<br />

Horizontal asymptote: y 0<br />

2 x 2<br />

x3 2x2 5x 6 <br />

x 1x 2<br />

x 1x 2x 3<br />

(d)<br />

x 4<br />

3 1 0 2 4<br />

y 0 0<br />

( −1,<br />

0)<br />

((<br />

1<br />

0, −<br />

3<br />

y<br />

6<br />

4<br />

2<br />

(0, −1.66)<br />

9<br />

35<br />

1<br />

−4<br />

−6<br />

y<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

5<br />

12<br />

(2, 0)<br />

5<br />

3<br />

2 4 5<br />

5<br />

2 4 6 8<br />

x<br />

x<br />

5<br />

2<br />

1<br />

3<br />

5<br />

4<br />

5<br />

9


43.<br />

45.<br />

f x 2x2 5x 2<br />

2x 2 x 6<br />

(a) Domain: all real numbers except <strong>and</strong><br />

x 3<br />

x x 2<br />

2<br />

(b) x- intercept:<br />

(d)<br />

f t t 2 1<br />

t 1<br />

(a) Domain: all real numbers t except t 1<br />

(b) t- intercept: 1, 0<br />

y-intercept:<br />

0, 1<br />

(c) Vertical asymptote: none<br />

Horizontal asymptote: none<br />

(d)<br />

<br />

y-intercept:<br />

(c) Vertical asymptote: x <br />

Horizontal asymptote: y 1<br />

3<br />

2<br />

x<br />

y<br />

2x 1x 2<br />

2x 3x 2<br />

−5 −4 −3 −2 1 2 3<br />

, 0<br />

1)0,<br />

2 )<br />

−<br />

3 )<br />

)<br />

3<br />

7<br />

3<br />

3<br />

2<br />

1<br />

t 1t 1<br />

t 1<br />

−3 −2 −1 1 2 3<br />

−1<br />

−2<br />

−3<br />

(0, −1)<br />

y<br />

1<br />

, 0 2<br />

0, 1 3<br />

4<br />

3<br />

2<br />

1<br />

2<br />

5<br />

y<br />

(1, 0)<br />

2x 1<br />

, x 2<br />

2x 3<br />

1<br />

3<br />

x<br />

t<br />

0 1<br />

1<br />

3<br />

1<br />

5<br />

t 1, t 1 46.<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 213<br />

f x <br />

(a) Domain: all real numbers x 4<br />

x2 16 x 4x 4<br />

x 4, x 4<br />

x 4 x 4<br />

(b) y- intercept: 0, 4<br />

x-intercept:<br />

4, 0<br />

(c) Vertical asymptote: none<br />

Horizontal asymptote: none<br />

t 3 2 0 1<br />

(d)<br />

x 6 4 0 5<br />

y 4 3 1 0<br />

y 2 0 4 9<br />

44.<br />

f x 3x2 8x 4<br />

2x 2 3x 2<br />

<br />

(a) Domain: all real numbers x except x 2 or<br />

(b) y- intercept: 0, 2<br />

x-intercept:<br />

(c) Vertical asymptote:<br />

Horizontal asymptote: y <br />

(d)<br />

3<br />

x <br />

2<br />

1<br />

2<br />

x<br />

3 1 0<br />

2<br />

3<br />

y<br />

−4 −3 −2 −1 2 3 4<br />

, 0<br />

3<br />

(−4, 0)<br />

x 23x 2<br />

x 22x 1<br />

11<br />

5<br />

1<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y<br />

(0, 4)<br />

−6 −2 2 4 6<br />

−2<br />

y<br />

2<br />

, 0 3<br />

((<br />

(0, −2)<br />

3x 2<br />

, x 2<br />

2x 1<br />

5 2 0 1<br />

x<br />

x<br />

3<br />

x 1<br />

2


214 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

47. fx <br />

(a) Domain of f : all real numbers x except x 1<br />

Domain of g: all real numbers x<br />

(b) Because x 1 is a factor of both the numerator<br />

<strong>and</strong> the denominator of f, x 1 is not a vertical<br />

asymptote. f has no vertical asymptotes.<br />

x2 1<br />

, gx x 1<br />

x 1<br />

(c)<br />

(d)<br />

49.<br />

x 2<br />

fx <br />

x<br />

(a) Domain of f : all real numbers x except x 0 <strong>and</strong><br />

x 2<br />

2 1<br />

, gx <br />

2x x<br />

Domain of g: all real numbers x except x 0<br />

(b) Because x 2 is a factor of both the numerator <strong>and</strong><br />

the denominator of f, x 2 is not a vertical asymptote.<br />

The only vertical asymptote of f is x 0.<br />

(c)<br />

(d)<br />

−4<br />

−3<br />

x 3 2 1.5 1 0.5 0 1<br />

f x<br />

gx<br />

x 0.5 0 0.5 1 1.5 2 3<br />

f x<br />

gx<br />

4<br />

4<br />

(e) Because there are only a finite number of pixels,<br />

the utility may not attempt to evaluate the function<br />

where it does not exist.<br />

2<br />

2<br />

2<br />

−2<br />

1<br />

−3<br />

3<br />

3<br />

2.5<br />

2.5<br />

2<br />

Undef. 2 1 Undef.<br />

Undef. 2 1<br />

3<br />

Undef. 1.5 1 0<br />

2<br />

(e) Because there are only a finite number of pixels,<br />

the utility may not attempt to evaluate the function<br />

where it does not exist.<br />

2<br />

3<br />

2<br />

3<br />

1.5<br />

1<br />

2<br />

1<br />

1<br />

3<br />

1<br />

3<br />

0<br />

48. fx <br />

(a) Domain of f : all real numbers x except 0 <strong>and</strong> 2<br />

x2x 2<br />

x2 , gx x<br />

2x<br />

2x 6<br />

50. fx <br />

x<br />

(a) Domain of f : all real numbers x except 3 <strong>and</strong> 4<br />

2 2<br />

, gx <br />

7x 12 x 4<br />

Domain of g: all real numbers x except 4<br />

(b) Since x 3 is a factor of both the numerator <strong>and</strong> the<br />

denominator of f, x 3 is not a vertical asymptote<br />

of f. Thus, f has x 4 as its only vertical asymptote.<br />

(c)<br />

(d)<br />

Domain of g: all real numbers x<br />

(b) Since x is a factor of both the numerator<br />

<strong>and</strong> the denominator of f, neither x 0 nor x 2<br />

is a vertical asymptote of f. Thus, f has no<br />

vertical asymptotes.<br />

2 2x<br />

(c)<br />

(d)<br />

−2<br />

−1<br />

x 1 0 1 1.5 2 2.5 3<br />

f x<br />

(e) Because there are only a finite number of pixels,<br />

the utility may not attempt to evaluate the function<br />

where it does not exist.<br />

x 0 1 2 3 4 5 6<br />

f x<br />

3<br />

−3<br />

2<br />

−2<br />

1 Undef. 1 1.5 Undef. 2.5 3<br />

g(x) 1 0 1 1.5 2 2.5 3<br />

1<br />

2<br />

1<br />

2<br />

2<br />

3<br />

8<br />

1 Undef. Undef. 2 1<br />

g(x) 1 2 Undef. 2 1<br />

2<br />

3<br />

4<br />

(e) Because there are only a finite number of pixels, the<br />

utility may not attempt to evaluate the function where<br />

it does not exist.


51.<br />

53.<br />

55.<br />

hx <br />

(a) Domain: all real numbers x except x 0<br />

x2 4 4<br />

x <br />

x x<br />

(b) Intercepts:<br />

(c) Vertical asymptote: x 0<br />

Slant asymptote: y x<br />

(d)<br />

(−2, 0)<br />

fx <br />

(a) Domain: all real numbers x except x 0<br />

(b) No intercepts<br />

(c) Vertical asymptote: x 0<br />

Slant asymptote: y 2x<br />

(d)<br />

2x2 1<br />

2x <br />

x<br />

1<br />

x<br />

x 4 2 2 4 6<br />

f x<br />

2<br />

33<br />

4<br />

6<br />

4<br />

2<br />

y = 2x<br />

−6 −4 −2 2 4 6<br />

−6<br />

2, 0, 2, 0<br />

−6 −4<br />

(2, 0) 6<br />

−2<br />

−4<br />

−6<br />

y<br />

y<br />

y = x<br />

9<br />

2<br />

9<br />

2<br />

x<br />

x<br />

33<br />

4<br />

73<br />

6<br />

52.<br />

54.<br />

(b) No intercepts<br />

fx <br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 215<br />

(c) Vertical asymptote: x 0<br />

Slant asymptote: y x<br />

(d)<br />

x 3 1 1 3<br />

x 3 2 1 1 2 3<br />

y<br />

5<br />

3<br />

3<br />

3<br />

gx <br />

(a) Domain: all real numbers x except x 0<br />

x2 1 1<br />

x <br />

x x<br />

(b) No intercepts<br />

(c) Vertical asymptote: x 0<br />

Slant asymptote: y x<br />

5<br />

3<br />

(d)<br />

gx <br />

(a) Domain: all real numbers x except x 0<br />

x2 5 5<br />

x <br />

x x<br />

(a) Domain: all real numbers x except x 0<br />

(b) x-intercepts: 1, 0, 1, 0<br />

(c) Vertical asymptote: x 0<br />

Slant asymptote: y x<br />

(d)<br />

y<br />

−6 −4 −2 2 4 6<br />

−2<br />

−4<br />

x<br />

1 x2<br />

x<br />

f x<br />

14<br />

3<br />

6<br />

35<br />

6<br />

y = −x<br />

8<br />

6<br />

4<br />

2<br />

(−1, 0) (1, 0)<br />

−8 −6 −4 −2 4 6 8<br />

−4<br />

−6<br />

−8<br />

6<br />

4<br />

2<br />

x 1<br />

x<br />

y<br />

y<br />

9<br />

2<br />

4<br />

15<br />

4<br />

6<br />

y = x<br />

2<br />

3<br />

2<br />

x 4<br />

2 2 4 6<br />

gx<br />

17<br />

4<br />

5<br />

2<br />

5<br />

2<br />

17<br />

4<br />

37<br />

6<br />

x<br />

6<br />

x<br />

9<br />

2<br />

2 4 6<br />

3<br />

2<br />

14<br />

3<br />

6<br />

4<br />

2<br />

15<br />

4<br />

35<br />

6<br />

−6 −4 −2 2 4 6<br />

−6<br />

y<br />

y = x<br />

x


216 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

56. hx <br />

(a) Domain: all real numbers x except x 1<br />

x2<br />

1<br />

x 1 <br />

x 1 x 1<br />

58.<br />

(b) Intercept:<br />

(c) Vertical asymptote: x 1<br />

Slant asymptote: y x 1<br />

(d)<br />

x 4 2 2 4 6<br />

fx x2<br />

3x 1<br />

(a) Domain: all real numbers x except<br />

(b) Intercept:<br />

(c) Vertical asymptote:<br />

Slant asymptote: y 1<br />

x <br />

1<br />

x <br />

3 9<br />

1<br />

3<br />

(d)<br />

hx<br />

x<br />

y<br />

1 1<br />

y = x −<br />

3 9<br />

−1<br />

8<br />

6<br />

4<br />

2<br />

(0, 0)<br />

−4 2 4 6 8<br />

−2<br />

−4<br />

y<br />

3<br />

9<br />

8<br />

1<br />

2<br />

3<br />

1<br />

3<br />

0, 0<br />

16<br />

5<br />

1 1<br />

x <br />

3 9 <br />

0, 0<br />

y<br />

y = x + 1<br />

2<br />

4<br />

5<br />

(0, 0)<br />

1<br />

3<br />

4<br />

3<br />

2<br />

3<br />

1<br />

1<br />

1<br />

2<br />

4<br />

3<br />

4<br />

x<br />

1<br />

93x 1<br />

x<br />

16<br />

3<br />

1<br />

<br />

2<br />

1<br />

2<br />

36<br />

5<br />

x 1<br />

3<br />

0 2<br />

0<br />

4<br />

7<br />

57.<br />

ft <br />

(a) Domain: all real numbers t except t 5<br />

(b) Intercept: 0, 1 5<br />

(c) Vertical asymptote: t 5<br />

Slant asymptote: y t 5<br />

t 2 1<br />

26<br />

t 5 <br />

t 5 t 5<br />

(d)<br />

t<br />

y<br />

59. fx <br />

(a) Domain: all real numbers x except x ±1<br />

(b) Intercept: 0, 0<br />

(c) Vertical asymptotes: x ±1<br />

Slant asymptote: y x<br />

(d)<br />

x3<br />

x2 x<br />

x <br />

1 x2 1<br />

x 4 2 0 2 4<br />

f x<br />

0<br />

25 37 1<br />

7 6 4 3<br />

17 5<br />

y = 5 − t<br />

(0, −0.2)<br />

−20 −15 −10 −5<br />

10<br />

64<br />

15<br />

−6 −4 −2 2 4 6<br />

y<br />

2<br />

25<br />

20<br />

15<br />

5<br />

y<br />

8<br />

3<br />

(0, 0)<br />

0<br />

y = x<br />

t<br />

x<br />

8<br />

3<br />

64<br />

15<br />

5


60. gx <br />

(a) Domain: all real numbers x except x ±2<br />

x3<br />

2x2 1 4x<br />

x <br />

8 2 2x2 8<br />

62.<br />

(b) Intercept:<br />

(c) Vertical asymptotes:<br />

(d)<br />

fx <br />

(a) Domain: all real numbers x except x 2<br />

5<br />

(b) y-intercept: 0, 2<br />

(c) Vertical asymptote: x 2<br />

Slant asymptote: y 2x 1<br />

2x2 5x 5<br />

2x 1 <br />

x 2<br />

3<br />

x 2<br />

(d)<br />

Slant asymptote:<br />

x<br />

gx<br />

x<br />

y<br />

6<br />

107<br />

8<br />

15<br />

12<br />

9<br />

6<br />

3<br />

3<br />

38<br />

5<br />

−9 −6 −3 3 6 9 12 15<br />

(( 0, − 5<br />

(0, 0)<br />

2<br />

−9<br />

y<br />

8<br />

6<br />

4<br />

0, 0<br />

6<br />

27<br />

8<br />

−8 −6 −4 4 6 8<br />

y<br />

y = 2x − 1<br />

y 1<br />

2 x<br />

4<br />

8<br />

3<br />

y =<br />

1<br />

x<br />

2<br />

x ±2<br />

1<br />

1<br />

6<br />

x<br />

1 3 6 7<br />

2<br />

x<br />

8<br />

1 4 6<br />

1<br />

6<br />

47<br />

4<br />

8<br />

3<br />

68<br />

5<br />

27<br />

8<br />

61.<br />

63.<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 217<br />

fx <br />

(a) Domain: all real numbers x except x 1<br />

x2 x 1 1<br />

x <br />

x 1 x 1<br />

(b) y-intercept:<br />

(c) Vertical asymptote: x 1<br />

Slant asymptote: y x<br />

(d)<br />

f x 2x3 x 2 2x 1<br />

x 2 3x 2<br />

(a) Domain: all real numbers except <strong>and</strong><br />

(b) intercept:<br />

intercepts: <br />

(c) Vertical asymptote: x 2<br />

Slant asymptote: y 2x 7<br />

1<br />

, 0 , 1, 0<br />

2 x-<br />

2x 7 <br />

x x 1 x 2<br />

1<br />

y- 0, 2<br />

15<br />

, x 1<br />

x 2<br />

(d)<br />

<br />

<br />

2x 1x 1x 1<br />

x 1x 2<br />

2x 1x 1<br />

, x 1<br />

x 2<br />

2x2 3x 1<br />

x 2<br />

x<br />

y<br />

8<br />

6<br />

4<br />

2<br />

(0, −1)<br />

−4 −2 2 4 6 8<br />

−4<br />

y<br />

4<br />

45<br />

2<br />

0, 1<br />

x 4<br />

2 0 2 4<br />

f x<br />

21<br />

5<br />

18<br />

3<br />

28<br />

12 (0, 0.5)<br />

6 (1, 0)<br />

x<br />

−6 −5 −4 −3 −1<br />

3<br />

−12 (0.5, 0)<br />

−18<br />

−24<br />

−30<br />

−36<br />

y = 2x − 7<br />

y<br />

7<br />

3<br />

y = x<br />

1<br />

3<br />

2<br />

x<br />

3<br />

13<br />

3<br />

0 1<br />

1<br />

20 2 0


218 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

64.<br />

66.<br />

68.<br />

f x 2x3 x 2 8x 4<br />

x 2 3x 2<br />

(a) Domain: all real numbers except or<br />

(b) intercept:<br />

intercepts: 2, 0, <br />

(c) Vertical asymptote: x 1<br />

Slant asymptote: y 2x 7<br />

1<br />

x x 1 x 2<br />

y- 0, 2<br />

x-<br />

, 0 2<br />

(d)<br />

fx <br />

Domain: all real numbers x except x 1<br />

2x2 x<br />

1<br />

2x 1 <br />

x 1 x 1<br />

Vertical asymptote:<br />

x 1<br />

Slant asymptote: y 2x 1 −12<br />

Line: y 2x 1<br />

12 2x x2 1 2<br />

hx x 1 <br />

24 x 2 4 x<br />

Domain: all real numbers x except x 4<br />

Vertical asymptote:<br />

Slant asymptote:<br />

Line: y 1<br />

x 1<br />

2<br />

70. (a) x-intercept:<br />

(b)<br />

2x 7 9<br />

, x 2<br />

x 1<br />

x<br />

y<br />

0 2x<br />

x 3<br />

0 2x<br />

0 x<br />

3<br />

5<br />

4<br />

(−2, 0)<br />

30<br />

24<br />

18<br />

12<br />

−6 −2<br />

(0, −2)<br />

2 4 6<br />

y<br />

2<br />

((<br />

− , 0<br />

1<br />

2<br />

1<br />

1<br />

2<br />

y = 2x + 7<br />

x 4<br />

<br />

y 1<br />

2 x 1 −16<br />

x<br />

x 2x 22x 1<br />

x 2x 1<br />

1<br />

2<br />

0 3 4<br />

0 2 10 28 18<br />

6<br />

−10<br />

3<br />

2<br />

10<br />

−6<br />

35<br />

2<br />

12<br />

8<br />

67.<br />

gx <br />

Domain: all real numbers x except x 0<br />

1 3x2 x3 x2 1<br />

1<br />

3 x x 3 <br />

x2 x2 Vertical asymptote:<br />

Slant asymptote:<br />

Line: y x 3<br />

(b)<br />

0 <br />

0 x 1<br />

1 x<br />

x 1<br />

x 3<br />

x 0<br />

y x 3<br />

69.<br />

x 1<br />

y <br />

x 3<br />

(a) x-intercept: 1, 0<br />

0, 0 71. y <br />

(a) x-intercepts: ±1, 0 (b)<br />

1<br />

x<br />

x<br />

65.<br />

fx <br />

Domain: all real numbers x except x 3<br />

x2 5x 8<br />

x 2 <br />

x 3<br />

2<br />

x 3<br />

y-intercept:<br />

Vertical asymptote:<br />

Slant asymptote:<br />

Line:<br />

−14<br />

8<br />

0, 3<br />

y x 2<br />

8<br />

−8<br />

x 3<br />

y x 2<br />

10<br />

−12<br />

x 2 1<br />

x ±1<br />

12<br />

−4<br />

x 1<br />

0 <br />

x<br />

1<br />

x<br />

x<br />

12


72. (a) x-intercepts:<br />

(b) 0 x 3 2<br />

1, 0, 2, 0 73. C <br />

x<br />

(a) 2,000<br />

255p<br />

, 0 ≤ p < 100<br />

100 p<br />

74. C <br />

(a) 300,000<br />

25,000p<br />

, 0 ≤ p < 100<br />

100 p<br />

75.<br />

205 3t<br />

N , t ≥ 0<br />

1 0.04t<br />

(a) N5 333 deer<br />

(b)<br />

76. (a)<br />

0 x 2 3x 2<br />

0 x 1x 2<br />

x 1, x 2<br />

0<br />

0<br />

C <br />

The cost would be $4411.76.<br />

25,00015<br />

4411.76<br />

100 15<br />

C 25,00050<br />

100 50<br />

100<br />

25,000<br />

The cost would be $25,000.<br />

C <br />

The cost would be $225,000.<br />

(c) C → as x → 100. No. The model is undefined for<br />

p 100.<br />

25,00090<br />

225,000<br />

100 90<br />

0.2550 0.75x C50 x (c)<br />

C <br />

C <br />

(b) Domain:<br />

12.50 0.75x<br />

50 x<br />

4<br />

4<br />

50 3x 3x 50<br />

<br />

450 x 4x 50<br />

x ≥ 0 <strong>and</strong> x ≤ 1000 50<br />

Thus, 0 ≤ x ≤ 950. Using interval notation, the<br />

domain is 0, 950.<br />

(b)<br />

0<br />

0<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 219<br />

C10 25510<br />

28.33 million dollars<br />

100 10<br />

C40 25540<br />

170 million dollars<br />

100 40<br />

C75 25575<br />

765 million dollars<br />

100 75<br />

(c) C → as x → 100. No, it would not be possible<br />

to remove 100% of the pollutants.<br />

N10 500 deer<br />

N25 800 deer<br />

(b) The herd is limited by the horizontal asymptote:<br />

N 60<br />

1500 deer<br />

0.04<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

C<br />

100<br />

200 400 600 800 1000<br />

(d) As the tank is filled, the concentration increases<br />

more slowly. It approaches the horizontal asymptote<br />

of C 3<br />

4 0.75.<br />

x


220 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

77. (a) A xy <strong>and</strong><br />

(c)<br />

78. A xy <strong>and</strong><br />

x 3y 2 64<br />

Thus,<br />

x 4y 2 30<br />

200<br />

4<br />

0<br />

y 2 64<br />

x 3<br />

y 2 64 2x 58<br />

<br />

x 3 x 3<br />

2x 58<br />

A xy x x 3 <br />

2xx 29<br />

, x > 3.<br />

x 3<br />

By graphing the area function, we see that A is minimum when x 12.8 inches <strong>and</strong> y 8.5 inches.<br />

79. (a) Let time from Akron to Columbus <strong>and</strong><br />

from Columbus back to Akron.<br />

time<br />

xt1 100 ⇒ t1 100<br />

t1 t2 <br />

(b) Vertical asymptote: x 25<br />

Horizontal asymptote: y 25<br />

x<br />

(c) 200<br />

yt 2 100 ⇒ t 2 100<br />

y<br />

50t 1 t 2 200<br />

100<br />

x<br />

y 2 30<br />

x 4<br />

The area is minimum when x 11.75 inches <strong>and</strong> y 5.87 inches.<br />

The area is minimum when x is approximately 12.<br />

t 1 t 2 4<br />

100<br />

y<br />

4<br />

100y 100x 4xy<br />

25y 25x xy<br />

25x xy 25y<br />

25x yx 25<br />

Thus, y 25x<br />

x 25 .<br />

y 2 30 2x 22<br />

<br />

x 4 x 4<br />

2x 22 2xx 11<br />

Thus, A xy x x 4 .<br />

x 4<br />

(b) Domain: Since the margins on the left <strong>and</strong> right are each 2 inches, x > 4. In interval notation, the domain is 4, .<br />

40<br />

x<br />

5 6 7 8 9 10 11 12 13 14 15<br />

y1 (Area) 160 102 84 76 72 70 69.143 69 69.333 70 70.909<br />

200<br />

3<br />

0<br />

(d)<br />

39<br />

25 65<br />

0<br />

x 30 35 40 45 50 55 60<br />

y 150 87.5 66.67 56.25 50 45.83 42.86<br />

(e) Yes. You would expect the average speed for the round<br />

trip to be the average of the average speeds for the two<br />

parts of the trip.<br />

(f) No. At 20 miles per hour you would use more time in<br />

one direction than is required for the round trip at an<br />

average speed of 50 miles per hour.


80. (a)<br />

81. False. <strong>Polynomial</strong> functions do not have vertical<br />

asymptotes.<br />

83. Vertical asymptote: None ⇒ The denominator is not<br />

zero for any value of x (unless the numerator is also zero<br />

there).<br />

Horizontal asymptote: y 2 ⇒ The degree of the<br />

numerator equals the degree of the denominator.<br />

fx is one possible function. There are many<br />

correct answers.<br />

2x2<br />

x2 1<br />

Section 2.6 <strong>Rational</strong> <strong>Functions</strong> 221<br />

82. False. The graph of f x crosses y 0, which<br />

is a horizontal asymptote.<br />

x<br />

x2 1<br />

84. Vertical asymptotes:<br />

are factors of the denominator.<br />

Horizontal asymptotes: The degree of the<br />

numerator is greater than the degree of the denominator.<br />

x<br />

f x <br />

is one possible function. There are<br />

many correct answers.<br />

3<br />

x 2, x 1 ⇒ x 2x 1<br />

None ⇒<br />

x 2x 1<br />

85. x 2 15x 56 x 8x 7 86. 3x 2 23x 36 3x 4x 9<br />

87.<br />

(b) S <br />

The sales in 2008 is estimated to be $763,810,000.<br />

5.816182 130.68<br />

0.004182 763.81<br />

1.00<br />

(c) Probably not. The graph has a horizontal asymptote at<br />

Future sales may exceed this limiting value.<br />

x3 5x2 4x 20 x 5x2 4 88. x3 6x2 2x 12 x2x 6 2x 6<br />

x ≥ 10<br />

3<br />

x 5x 2ix 2i<br />

89. 10 3x ≤ 0 10<br />

3<br />

90. 5 2x > 5x 1<br />

3x ≥ 10<br />

x<br />

5 2x > 5x 5<br />

91.<br />

<br />

600<br />

8<br />

0<br />

12 < 4x < 28<br />

3 < x < 7<br />

13<br />

0<br />

1 2 3 4 5 6<br />

4x 2 < 20 92.<br />

−3<br />

20 < 4x 8 < 20 −4 −2 0 2<br />

93. Answers will vary.<br />

4 6<br />

7<br />

8<br />

x<br />

S 5.816<br />

1454 million dollars.<br />

0.004<br />

1<br />

2<br />

7x > 0<br />

x < 0<br />

2x 3 ≥ 5<br />

2x 3 ≥ 10<br />

2x 3 ≤ 10<br />

2x ≤ 13<br />

x ≤ 13<br />

2<br />

or<br />

x 6x 2 2<br />

x 6x 2x 2<br />

2x 3 ≥ 10<br />

−3 −2 −1 0 1 2 3<br />

2x ≥ 7<br />

x ≥ 7<br />

2<br />

−8<br />

13<br />

−<br />

2<br />

−6<br />

−4<br />

−2<br />

0<br />

2<br />

7<br />

2<br />

4<br />

x<br />

x


222 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

Section 2.7 Nonlinear Inequalities<br />

1. x2 3 < 0<br />

2.<br />

■ You should be able to solve inequalities.<br />

(a)<br />

(a)<br />

(a) Find the critical number.<br />

x 3<br />

3 2 3 < ? 0<br />

6 < 0<br />

No, x 3 is not a<br />

solution.<br />

x 2 x 12 ≥ 0<br />

x 5<br />

5 2 5 12 ≥ ? 0<br />

Yes, x 5 is a<br />

solution.<br />

3.<br />

x 2<br />

≥ 3<br />

x 4<br />

(a) x 5<br />

1. Values that make the expression zero<br />

2. Values that make the expression undefined<br />

(b) Test one value in each test interval on the real number line resulting from the critical numbers.<br />

(c) Determine the solution intervals.<br />

Vocabulary Check<br />

1. critical; test intervals 2. zeros; undefined values 3. P R C<br />

5 2<br />

5 4 ≥? 3<br />

7 ≥ 3<br />

Yes, x 5 is a<br />

solution.<br />

8 ≥ 0<br />

(b)<br />

(b)<br />

x 0 (c)<br />

0 2 3 < ? 0<br />

3 < 0<br />

Yes, x 0 is a solution.<br />

x 0 (c)<br />

0 2 0 12 ≥ ? 0<br />

12 ≥ 0<br />

No, x 0 is not a<br />

solution.<br />

(b)<br />

4 2<br />

4 4<br />

6<br />

is undefined.<br />

0<br />

No, x 4 is not a<br />

solution.<br />

≥? x 4<br />

3<br />

(c)<br />

x 3<br />

2<br />

3<br />

2 2 3 < ? 0<br />

3<br />

4 < 0<br />

Yes, x is a solution.<br />

3<br />

2<br />

4 2 4 12 ≥ ? 0<br />

16 4 12 ≥ ? 0<br />

8 ≥ 0<br />

Yes, x 4 is a solution.<br />

(d)<br />

x 4 (d)<br />

x 9<br />

2<br />

92<br />

2<br />

9<br />

2 4 ≥? 3<br />

5<br />

≥ 3<br />

17<br />

No, x is not a<br />

solution.<br />

9<br />

2<br />

(d)<br />

x 5<br />

5 2 3 < ? 0<br />

22 < 0<br />

No, x 5 is not a<br />

solution.<br />

x 3<br />

3 2 3 12 ≥ ? 0<br />

9 3 12 ≥ ? 0<br />

0 ≥ 0<br />

Yes, x 3 is a solution.<br />

x 9<br />

2<br />

9<br />

2<br />

2<br />

9<br />

2 4 ≥? 3<br />

13 ≥ 3<br />

Yes, x is a solution.<br />

9<br />

2


4.<br />

5.<br />

8.<br />

10.<br />

3x2 x2 < 1<br />

4<br />

(a)<br />

x 2<br />

322<br />

2 2 4


224 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

11.<br />

13.<br />

15.<br />

Critical numbers: x 7, x 3<br />

Test intervals: , 7, 7, 3, 3, <br />

Test: Is x 7x 3 < 0?<br />

Interval x-Value Value of<br />

x 7x 3<br />

Conclusion<br />

, 7<br />

7, 3<br />

3, <br />

x 2 4x 4 ≥ 9 14.<br />

x 2 4x 5 ≥ 0<br />

x 5x 1 ≥ 0<br />

Critical numbers: x 5, x 1<br />

Test intervals: , 5, 5, 1, 1, <br />

Test: Is x 5x 1 ≥ 0?<br />

Interval x-Value Value of<br />

x 5x 1<br />

Conclusion<br />

, 5 x 6 17 7 Positive<br />

5, 1 x 0 51 5 Negative<br />

1, x 2 71 7 Positive<br />

Solution set: , 5 1, <br />

−6 −5 −4 −3 −2 −1<br />

0<br />

1<br />

Critical numbers: x 3, x 2<br />

Test intervals: , 3, 3, 2, 2, <br />

Test: Is x 3x 2 < 0?<br />

2<br />

x<br />

Interval x-Value Value of<br />

x 3x 2<br />

Conclusion<br />

, 3<br />

3, 2<br />

2, <br />

x 2 2 < 25<br />

x 2 4x 4 < 25<br />

x 2 4x 21 < 0<br />

x 7x 3 < 0<br />

Solution set:<br />

Solution set:<br />

x 10<br />

x 0<br />

x 5<br />

7, 3<br />

x 2 x < 6 16.<br />

x 2 x 6 < 0<br />

x 3x 2 < 0<br />

x 4<br />

x 0<br />

x 3<br />

3, 2<br />

313 39<br />

73 21<br />

122 24<br />

−7<br />

−8 −6 −4<br />

−2<br />

16 6<br />

32 6<br />

61 6<br />

0 2<br />

−3 −2 −1 0 1 2<br />

3<br />

4<br />

Positive<br />

Negative<br />

Positive<br />

x<br />

Positive<br />

Negative<br />

Positive<br />

x<br />

12.<br />

x 2x 4 ≥ 0<br />

Critical numbers:<br />

Test intervals: , 2 ⇒ x 2x 4 > 0<br />

Solution intervals: , 2 4, <br />

x 1x 7 < 0<br />

Critical numbers:<br />

Test intervals: , 1 ⇒ x 1x 7 > 0<br />

Solution interval: 1, 7<br />

−2<br />

x 2 6x 8 ≥ 0<br />

x 2 6x 9 < 16<br />

x 2 6x 7 < 0<br />

−1<br />

x 3 2 ≥ 1<br />

1 2 3 4 5<br />

0 2 4 6<br />

x 3x 1 > 0<br />

Critical numbers:<br />

x 1, x 7<br />

1, 7 ⇒ x 1x 7 < 0<br />

7, ⇒ x 1x 7 > 0<br />

7<br />

x 2 2x > 3<br />

x 2 2x 3 > 0<br />

8<br />

x<br />

Test intervals: , 3 ⇒ x 3x 1 > 0<br />

Solution intervals: , 3 1, <br />

−4 −3 −2 −1 0 1 2<br />

x 2, x 4<br />

2, 4 ⇒ x 2x 4 < 0<br />

4, ⇒ x 2x 4 > 0<br />

x<br />

x 3, x 1<br />

3, 1 ⇒ x 3x 1 < 0<br />

1, ⇒ x 3x 1 > 0<br />

x


17.<br />

19.<br />

20.<br />

x 2 2x 3 < 0 18.<br />

x 3x 1 < 0<br />

Critical numbers: x 3, x 1<br />

Test intervals: , 3, 3, 1, 1, <br />

Test: Is x 3x 1 < 0?<br />

Interval x-Value Value of<br />

x 3x 1<br />

Conclusion<br />

, 3<br />

3, 1<br />

1, <br />

Solution set:<br />

x 4<br />

x 0<br />

x 2<br />

3, 1<br />

x 2 8x 5 ≥ 0<br />

x 2 8x 5 0<br />

x 2 8x 16 5 16<br />

x 4 2 21<br />

x 4 ±21<br />

15 5<br />

31 3<br />

51 5<br />

−3<br />

x 4 ± 21<br />

−2<br />

−1<br />

0<br />

1<br />

Positive<br />

Negative<br />

Positive<br />

Complete the square.<br />

x<br />

x <br />

Section 2.7 Nonlinear Inequalities 225<br />

x 2 4x 1 > 0<br />

4 ± 16 4<br />

2<br />

Critical numbers:<br />

Test intervals:<br />

Solution intervals:<br />

2 − 5 2 + 5<br />

−4 −2 0 2 4 6 8<br />

Critical numbers:<br />

Test intervals:<br />

Test: Is x2 x 4 ± 21<br />

, 4 21, 4 21, 4 21, 4 21, <br />

8x 5 ≥ 0?<br />

Interval x-Value Value of x Conclusion<br />

, 4 21 x 10 100 80 5 15 Positive<br />

4 21, 4 21 x 0 0 0 5 5 Negative<br />

4 21, <br />

x 2 4 16 5 15 Positive<br />

2 8x 5<br />

2 ± 5<br />

x 2 5, x 2 5<br />

, 2 5 ⇒ x 2 4x 1 > 0<br />

2 5, 2 5 ⇒ x 2 4x 1 < 0<br />

2 5, ⇒ x<br />

, 2 5 2 5, <br />

2 4x 1 > 0<br />

−4 − 21<br />

Solution set: < 4 21 4 21, −10 −8 −6 −4 −2 0 2<br />

2x 2 6x 15 ≤ 0<br />

2 x 2 6x 15 ≥ 0<br />

x 6 ± 62 4215<br />

22<br />

Critical numbers:<br />

Test intervals:<br />

3<br />

2<br />

Solution interval:<br />

x 3<br />

2<br />

3 39<br />

<br />

2 2 , ⇒ 2x2 6x 15 < 0<br />

3 39<br />

, <br />

2 2 <br />

<br />

6 ± 156<br />

4<br />

39 3 39<br />

, x <br />

2 2 2<br />

3 39<br />

, <br />

2 2 ⇒ 2x2 6x 15 < 0<br />

39 3 39<br />

, <br />

2 2 2 ⇒ 2x2 6x 15 > 0<br />

<br />

3 39<br />

<br />

2 2 , <br />

6 ± 239<br />

4<br />

3 39<br />

−<br />

2 2<br />

−2 −1<br />

3 39<br />

±<br />

2 2<br />

0<br />

1<br />

2<br />

3<br />

3 39<br />

+<br />

2 2<br />

4<br />

5<br />

x<br />

x<br />

−4 + 21<br />

x


226 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

21.<br />

23.<br />

24.<br />

Critical numbers: x ±1, x 3<br />

Test intervals: , 1, 1, 1, 1, 3, 3, <br />

Test: Is x 1x 1x 3 > 0?<br />

Interval x-Value Value of<br />

x 1x 1x 3<br />

Conclusion<br />

1, 1<br />

1, 3<br />

3, <br />

x 3 3x 2 x 3 > 0 22.<br />

x 2 x 3 1x 3 > 0<br />

, 1<br />

Solution set:<br />

x 3 2x 2 9x 2 ≥ 20<br />

x 3 2x 2 9x 18 ≥ 0<br />

x 2 x 2 9x 2 ≥ 0<br />

x 2x 2 9 ≥ 0<br />

x 2x 3x 3 ≥ 0<br />

Critical numbers: x 2, x ±3<br />

Test intervals: , 3, 3, 2, 2, 3, 3, <br />

Test: Is x 2x 3x 3 ≥ 0?<br />

Interval x-Value Value of x 2x 3x 3 Conclusion<br />

, 3 x 4 617 42 Negative<br />

3, 2 x 0 233 18<br />

Positive<br />

2, 3 x 2.5 0.55.50.5 1.375 Negative<br />

3, x 4 271 14<br />

Positive<br />

Solution set: 3, 2 3, <br />

2x 3 13x 2 8x 46 ≥ 6<br />

2x 3 13x 2 8x 52 ≥ 0<br />

x 2 2x 13 42x 13 ≥ 0<br />

Critical numbers:<br />

Test intervals:<br />

x 2 1x 3 > 0<br />

x 1x 1x 3 > 0<br />

x 2<br />

x 0<br />

x 2<br />

x 4<br />

1, 1 3, <br />

2x 13x 2 4 ≥ 0<br />

113 3<br />

311 3<br />

531 15<br />

x 13<br />

2 , x 2, x 2<br />

, 13<br />

2 ⇒ 2x 3 13x 2 8x 52 < 0<br />

13<br />

2 , 2 ⇒ 2x3 13x 2 8x 52 > 0<br />

2, 2 ⇒ 2x 3 13x 2 8x 52 < 0<br />

2, ⇒ 2x 3 13x 2 8x 52 > 0<br />

Solution interval: 13<br />

2 , 2, 2, <br />

135 15<br />

−1<br />

Negative<br />

Positive<br />

Negative<br />

Positive<br />

0 1 2 3 4<br />

x<br />

13<br />

−<br />

2<br />

x 3 2x 2 4x 8 ≤ 0<br />

x 2 x 2 4x 2 ≤ 0<br />

x 2x 2 4 ≤ 0<br />

Critical numbers:<br />

Test intervals: , 2 ⇒ x3 2x2 4x 8 < 0<br />

Solution interval: , 2<br />

0 1 2 3 4<br />

−4 −3 −2 −1 0 1 2 3 4 5<br />

−8 −6 −4 −2 0 2<br />

2, 2 ⇒ x 3 2x 2 4x 8 < 0<br />

2, ⇒ x 3 2x 2 4x 8 > 0<br />

4<br />

x 2, x 2<br />

x<br />

x<br />

x


25.<br />

27.<br />

29.<br />

31.<br />

4x 2 4x 1 ≤ 0 26.<br />

Critical number:<br />

Test intervals:<br />

Test: Is<br />

Interval x-Value Value of 2x 1 Conclusion<br />

2<br />

1<br />

2 , <br />

2x 1 2 ≤ 0<br />

1<br />

, 2<br />

Solution set:<br />

x 0<br />

x 1<br />

x 1<br />

2<br />

x 1<br />

2<br />

1<br />

, 2 , 1<br />

2 , <br />

2x 1 2 ≤ 0?<br />

−2<br />

1 2 1<br />

1 2 1<br />

−1<br />

0<br />

1<br />

2<br />

1<br />

2<br />

Positive<br />

Positive<br />

4x 3 6x 2 < 0 28.<br />

2x 2 2x 3 < 0<br />

Critical numbers:<br />

Test intervals:<br />

Test: Is<br />

2x2 , 0, 0,<br />

2x 3 < 0?<br />

3<br />

2, 3 2 , <br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: , 0 0, 3<br />

2<br />

Critical numbers:<br />

Test intervals:<br />

x 0, x 3<br />

2<br />

x 3 4x ≥ 0 30.<br />

xx 2x 2 ≥ 0<br />

x 0, x ±2<br />

, 2, 2, 0, 0, 2, 2, <br />

Test: Is xx 2x 2 ≥ 0?<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 2, 0 2, <br />

x 1 2 x 2 3 ≥ 0 32.<br />

Critical numbers:<br />

Test intervals: , 2, 2, 1, 1, )<br />

Test: Is<br />

x 1, x 2<br />

x 1 2 x 3 3 ≥ 0?<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 2, <br />

x<br />

Section 2.7 Nonlinear Inequalities 227<br />

x 2 3x 8 > 0<br />

The critical numbers are imaginary:<br />

3 i23<br />

±<br />

2 2<br />

So the set of real numbers is the solution set.<br />

−3 −2 −1<br />

4x 3 12x 2 > 0<br />

4x 2 x 3 > 0<br />

Critical numbers:<br />

0<br />

1 2 3<br />

Test intervals: , 0 ⇒ 4x2x 3 < 0<br />

Solution interval: 3, <br />

2x 3 x 4 ≤ 0<br />

x 3 2 x ≤ 0<br />

Critical numbers:<br />

x<br />

x 0, x 3<br />

0, 3 ⇒ 4x 2 x 3 < 0<br />

3, ⇒ 4x 2 x 3 > 0<br />

x 0, x 2<br />

Test intervals: , 0 ⇒ x32 x < 0<br />

0, 2 ⇒ x 3 2 x > 0<br />

2, ⇒ x 3 2 x < 0<br />

Solution intervals: , 0 2, <br />

x 4 x 3 ≤ 0<br />

Critical numbers:<br />

x 0, x 3<br />

Test intervals: , 0 ⇒ x4x 3 < 0<br />

0, 3 ⇒ x 4 x 3 < 0<br />

3, ⇒ x 4 x 3 > 0<br />

Solution intervals: , 0 0, 3 or , 3


228 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

33.<br />

34.<br />

35. y 1<br />

36.<br />

37.<br />

y x 2 2x 3 (a)<br />

6<br />

−5 7<br />

−2<br />

y 1<br />

2 x2 2x 1 (a)<br />

−10<br />

12<br />

−4<br />

8x3 1<br />

2<br />

8<br />

−12 12<br />

−8<br />

x (a)<br />

y x 3 x 2 16x 16 (a)<br />

48<br />

−12 12<br />

−24<br />

−2 −1 0 1 2<br />

14<br />

x<br />

y ≤ 0 when x ≤ 1 or x ≥ 3.<br />

(b) y ≥ 3 when 0 ≤ x ≤ 2.<br />

y ≤ 0 (b) y ≥ 7<br />

1<br />

2 x2 2x 1 ≤ 0<br />

x 2 4x 2 ≤ 0<br />

x 4 ± 42 412<br />

21<br />

<br />

4 ± 8<br />

2<br />

y ≥ 0 when 2 ≤ x ≤ 0, 2 ≤ x < .<br />

(b) y ≤ 6 when x ≤ 4.<br />

2 ± 2<br />

y ≤ 0 when 2 2 ≤ x ≤ 2 2.<br />

y ≤ 0 (b)<br />

x 3 x 2 16x 16 ≤ 0<br />

x 2 x 1 16x 1 ≤ 0<br />

x 1x 2 16 ≤ 0<br />

y ≤ 0 when < x ≤ 4, 1 ≤ x ≤ 4.<br />

Solution interval:<br />

−1<br />

0<br />

1<br />

4<br />

1<br />

4 , <br />

1<br />

1<br />

2 x2 2x 1 ≥ 7<br />

x 2 4x 12 ≥ 0<br />

x 6x 2 ≥ 0<br />

y ≥ 36<br />

Critical numbers:<br />

Test intervals:<br />

1 x<br />

Test: Is<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: , 1 0, 1<br />

2<br />

1 x<br />

x 0, x ±1<br />

, 1, 1, 0, 0, 1, 1, <br />

> 0?<br />

x<br />

2<br />

> 0<br />

x<br />

1<br />

x > 0<br />

x<br />

38.<br />

Critical numbers: x 0, x <br />

Test intervals: , 0 ⇒<br />

1<br />

0, 4 1<br />

1 4x<br />

< 0<br />

x<br />

4<br />

1<br />

4 < 0<br />

x<br />

y ≥ 7 when x ≤ 2, x ≥ 6.<br />

x 3 x 2 16x 16 ≥ 36<br />

x 3 x 2 16x 20 ≥ 0<br />

x 2x 5x 2 ≥ 0<br />

y ≥ 36 when x 2, 5 ≤ x < .<br />

⇒ 1 4x<br />

x<br />

⇒ 1 4x<br />

x<br />

, 0 1<br />

4 , <br />

x<br />

1 4x<br />

x<br />

> 0<br />

< 0<br />

< 0


39.<br />

−2 −1 0 1 2 3 4 5<br />

x<br />

Section 2.7 Nonlinear Inequalities 229<br />

x 6<br />

2 < 0<br />

x 1<br />

40.<br />

x 12<br />

3 ≥ 0<br />

x 2<br />

x 6 2x 1<br />

< 0<br />

x 1<br />

x 12 3x 2<br />

≥ 0<br />

x 2<br />

4 x<br />

< 0<br />

x 1<br />

6 2x<br />

≥ 0<br />

x 2<br />

Critical numbers: x 1, x 4<br />

Critical numbers: x 2, x 3<br />

Test intervals: , 1, 1, 4, 4, <br />

Test intervals: , 2 ⇒<br />

4 x<br />

Test: Is < 0?<br />

x 1<br />

6 2x<br />

2, 3 ⇒<br />

x 2<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: , 1 4, <br />

3, ⇒<br />

3 6 9<br />

12 15 18<br />

Solution interval: 2, 3<br />

−2 −1 0 1 2 3<br />

−2 −1<br />

−<br />

1<br />

2<br />

0 1 2<br />

x<br />

x<br />

6 2x<br />

x 2<br />

6 2x<br />

x 2<br />

41.<br />

3x 5<br />

> 4<br />

x 5<br />

42.<br />

3x 5<br />

4 > 0<br />

x 5<br />

3x 5 4x 5<br />

> 0<br />

x 5<br />

15 x<br />

> 0<br />

x 5<br />

Critical numbers:<br />

Critical numbers: x 5, x 15<br />

Test intervals: , 5, 5, 15, 15, <br />

Test intervals:<br />

15 x<br />

Test: Is > 0?<br />

x 5<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 5, 15<br />

5<br />

x<br />

Solution intervals: , 1<br />

2 1, <br />

1 1 x<br />

, 1 ⇒ > 0<br />

2 1 2x<br />

1 x<br />

1, ⇒ < 0<br />

1 2x<br />

<br />

, 1<br />

x <br />

1 x<br />

⇒ < 0<br />

2 1 2x 1<br />

5 7x<br />

< 4<br />

1 2x<br />

5 7x 41 2x<br />

< 0<br />

1 2x<br />

1 x<br />

< 0<br />

1 2x<br />

, x 1<br />

2<br />

> 0<br />

< 0<br />

< 0


230 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

43.<br />

45.<br />

Critical numbers:<br />

Test intervals:<br />

Test: Is<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 5, 3<br />

<br />

7x 1<br />

> 0?<br />

x 52x 3 3<br />

2 , 1 , 1, , 5, 5, 3 2<br />

<br />

,<br />

x 1, x 5, x 3<br />

2<br />

−5<br />

4x 3 9x 3<br />

x 34x 3<br />

Critical numbers:<br />

Test intervals:<br />

30 5x<br />

Test: Is<br />

≤ 0?<br />

x 34x 3<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is:<br />

−4<br />

1<br />

x 3 <br />

9<br />

≤ 0<br />

4x 3<br />

30 5x<br />

≤ 0<br />

x 34x 3<br />

−2<br />

−4<br />

− 3<br />

4<br />

0<br />

−3<br />

2<br />

−2<br />

3<br />

−<br />

3<br />

2<br />

4<br />

x 5 ><br />

4<br />

x 5 <br />

1<br />

> 0<br />

2x 3<br />

42x 3 x 5<br />

x 52x 3<br />

−1<br />

0<br />

1<br />

x 3 ≤<br />

, 3<br />

4 , 3<br />

4 , 3 , 3, 6, 6, <br />

4 6 8<br />

> 0<br />

7x 7<br />

> 0<br />

x 52x 3<br />

≤ 0<br />

9<br />

4x 3<br />

x 3, x 3<br />

, x 6<br />

4<br />

x<br />

1<br />

2x 3<br />

x<br />

2 1, <br />

3<br />

4 , 3 6, <br />

44.<br />

46.<br />

Critical numbers:<br />

Test intervals:<br />

Solution intervals: 14, 2 6, <br />

−14<br />

−2<br />

−15 −10 −5 0 5<br />

1<br />

x ≥<br />

1x 3 1x<br />

≥ 0<br />

xx 3<br />

3<br />

≥ 0<br />

xx 3<br />

Critical numbers:<br />

5<br />

x 6 ><br />

5x 2 3x 6<br />

> 0<br />

x 6x 2<br />

2x 28<br />

> 0<br />

x 6x 2<br />

2, 6 ⇒<br />

6, ⇒<br />

1<br />

x 3<br />

Test intervals: , 3 ⇒<br />

3, 0 ⇒<br />

0, ⇒<br />

Solution intervals: , 3 0, <br />

−4 −3 −2 −1 0 1<br />

6<br />

10<br />

3<br />

x 2<br />

x 14, x 2, x 6<br />

, 14 ⇒<br />

14, 2 ⇒<br />

x<br />

x 3, x 0<br />

x<br />

2x 28<br />

< 0<br />

x 6x 2<br />

2x 28<br />

> 0<br />

x 6x 2<br />

2x 28<br />

< 0<br />

x 6x 2<br />

2x 28<br />

> 0<br />

x 6x 2<br />

3<br />

> 0<br />

xx 3<br />

3<br />

< 0<br />

xx 3<br />

3<br />

> 0<br />

xx 3


Section 2.7 Nonlinear Inequalities 231<br />

47.<br />

xx 2<br />

≤ 0<br />

x 3x 3<br />

Critical numbers: x 0, x 2, x ±3<br />

Test intervals:<br />

, 3, 3, 2, 2, 0, 0, 3, 3, <br />

xx 2<br />

Test: Is<br />

≤ 0?<br />

x 3x 3<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 3, 2 0, 3<br />

x2 2x<br />

x2 ≤ 0<br />

9<br />

48.<br />

x 3x 2<br />

≥ 0<br />

x<br />

Critical numbers: x 3, x 0, x 2<br />

x 3x 2<br />

Test intervals: , 3 ⇒ < 0<br />

x<br />

x 3x 2<br />

3, 0 ⇒ > 0<br />

x<br />

x 3x 2<br />

0, 2 ⇒ < 0<br />

x<br />

x2 x 6<br />

≥ 0<br />

x<br />

49.<br />

51.<br />

−3 −2 −1 0 1 2 3<br />

5x 1 2xx 1 x 1x 1<br />

< 0<br />

x 1x 1<br />

Critical numbers:<br />

Test intervals:<br />

x<br />

Test: Is<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: , 1 2<br />

3 , 1 3, 3x 2x 3<br />

< 0?<br />

x 1x 1<br />

<br />

2<br />

−<br />

3<br />

−1<br />

0<br />

1<br />

y 3x<br />

x 2<br />

8<br />

5x 5 2x2 2x x 2 1<br />

x 1x 1<br />

−6 12<br />

−4<br />

2<br />

, 1, 1, 2 3 , 2 3 , 1 , 1, 3, 3, <br />

3<br />

x 2<br />

, x 3, x ±1<br />

3<br />

4<br />

5 2x<br />

< 1 50.<br />

x 1 x 1<br />

5 2x<br />

1 < 0<br />

x 1 x 1<br />

3x2 7x 6<br />

x 1x 1<br />

3x 2x 3<br />

< 0<br />

x 1x 1<br />

x<br />

< 0<br />

< 0<br />

(a) y ≤ 0 when 0 ≤ x < 2.<br />

(b) y ≥ 6 when 2 < x ≤ 4.<br />

2, ⇒<br />

Solution intervals: 3, 0 2, <br />

−3 −2 −1 0 1 2 3<br />

Critical numbers:<br />

Test intervals: , 4 ⇒<br />

x<br />

x 3x 2<br />

x<br />

> 0<br />

Solution intervals: , 4, 2, 1, 6, <br />

−4<br />

−2<br />

1<br />

4, 2 ⇒<br />

2, 1 ⇒<br />

1, 6 ⇒<br />

6, ⇒<br />

0 2 4 6<br />

x<br />

3x<br />

x 1 ≤<br />

3xx 4 xx 1 3x 4x 1<br />

≤ 0<br />

x 1x 4<br />

x2 4x 12<br />

x 1x 4<br />

x 6x 2<br />

≤ 0<br />

x 1x 4<br />

x 4, x 2, x 1, x 6<br />

x 6x 2<br />

x 1x 4<br />

x 6x 2<br />

x 1x 4<br />

x 6x 2<br />

x 1x 4<br />

x 6x 2<br />

x 1x 4<br />

≤ 0<br />

x 6x 2<br />

x 1x 4<br />

x<br />

3<br />

x 4<br />

> 0<br />

< 0<br />

< 0<br />

< 0<br />

> 0


232 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

52.<br />

53.<br />

55.<br />

57.<br />

y <br />

y 2x2<br />

x 2 4<br />

−6 6<br />

6<br />

−2<br />

(a) y ≥ 1 when x ≤ 2 or x ≥ 2.<br />

This can also be expressed as x ≥ 2.<br />

(b) y ≤ 2 for all real numbers x.<br />

This can also be expressed as < x < .<br />

Critical numbers:<br />

Test intervals:<br />

Test: Is<br />

2x 2<br />

x 1<br />

14<br />

−15 15<br />

−6<br />

4 x 2 ≥ 0 56.<br />

2 x2 x ≥ 0<br />

4 x 2 ≥ 0?<br />

x ±2<br />

, 2, 2, 2, 2, <br />

By testing an x-value in each test interval in the inequality,<br />

we see that the domain set is: 2, 2<br />

x 2 7x 12 ≥ 0 58.<br />

x 3x 4 ≥ 0<br />

Critical numbers:<br />

Test intervals:<br />

x 3, x 4<br />

Test: Is x 3x 4 ≥ 0?<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the domain set is: , 3 4, <br />

(a)<br />

, 3, 3, 4, 4, <br />

y ≤ 0 (b) y ≥ 8<br />

2x 2<br />

≤ 0<br />

x 1<br />

y ≤ 0 when 1 < x ≤ 2.<br />

54. y <br />

(a)<br />

5x<br />

x2 4<br />

(b)<br />

5x x2 4<br />

x 2 4<br />

x 4x 1<br />

x2 ≥ 0<br />

4<br />

y ≥ 1 when 1 ≤ x ≤ 4.<br />

y ≤ 0<br />

y ≥ 1<br />

5x<br />

x2 ≥ 1<br />

4<br />

≥ 0<br />

5x<br />

x 2 4 ≤ 0 −6 6<br />

y ≤ 0 when < x ≤ 0.<br />

x 2 4 ≥ 0<br />

x 2x 2 ≥ 0<br />

Critical numbers:<br />

x 2, x 2<br />

Test intervals: , 2 ⇒ x 2x 2 > 0<br />

2, 2 ⇒ x 2x 2 < 0<br />

Domain: , 2 2, <br />

144 9x 2 ≥ 0<br />

94 x4 x ≥ 0<br />

Critical numbers:<br />

4<br />

−4<br />

2, ⇒ x 2x 2 > 0<br />

Test intervals: , 4 ⇒ 94 x4 x < 0<br />

Domain: 4, 4<br />

2x 2<br />

≥ 8<br />

x 1<br />

2x 2 8x 1<br />

≥ 0<br />

x 1<br />

6x 12<br />

≥ 0<br />

x 1<br />

6x 2<br />

≥ 0<br />

x 1<br />

y ≥ 8 when 2 ≤ x < 1.<br />

x 4, x 4<br />

4, 4 ⇒ 94 x4 x > 0<br />

4, ⇒ 94 x4 x < 0


59.<br />

61.<br />

x<br />

x<br />

x<br />

≥ 0<br />

x 5x 7<br />

Critical numbers: x 0, x 5, x 7<br />

Test intervals: , 5, 5, 0, 0, 7, 7, <br />

x<br />

Test: Is<br />

≥ 0?<br />

x 5x 7<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the domain set is: 5, 0 7, <br />

2 ≥ 0<br />

60.<br />

2x 35<br />

0.4x 2 5.26 < 10.2 62.<br />

0.4x 2 4.94 < 0<br />

0.4x 2 12.35 < 0<br />

Critical numbers: x ±3.51<br />

Test intervals: , 3.51, 3.51, 3.51, 3.51, <br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 3.51, 3.51<br />

Section 2.7 Nonlinear Inequalities 233<br />

x<br />

x2 ≥ 0<br />

9<br />

x<br />

≥ 0<br />

x 3x 3<br />

Critical numbers:<br />

Test intervals: , 3 ⇒<br />

3, 0 ⇒<br />

0, 3 ⇒<br />

3, ⇒<br />

Domain: 3, 0 3, <br />

1.3x 2 3.78 > 2.12<br />

1.3x 2 1.66 > 0<br />

x 3, x 0, x 3<br />

x<br />

< 0<br />

x 3x 3<br />

x<br />

> 0<br />

x 3x 3<br />

x<br />

< 0<br />

x 3x 3<br />

x<br />

> 0<br />

x 3x 3<br />

Critical numbers: ±1.13<br />

Test intervals: , 1.13, 1.13, 1.13, 1.13, <br />

Solution set: 1.13, 1.13<br />

63.<br />

The zeros are x <br />

Critical numbers: x 0.13,<br />

x 25.13<br />

Test intervals: , 0.13, 0.13, 25.13, 25.13, <br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 0.13, 25.13<br />

12.5 ± 12.52 0.5x<br />

40.51.6<br />

.<br />

20.5<br />

2 12.5x 1.6 > 0 64.<br />

1.2x<br />

Critical numbers: 4.42, 0.42<br />

Test intervals: , 4.42, 4.42, 0.42, 0.42, <br />

Solution set: 4.42, 0.42<br />

2 1.2x<br />

4.8x 2.2 < 0<br />

2 4.8x 3.1 < 5.3<br />

65.<br />

1<br />

> 3.4 66.<br />

2.3x 5.2<br />

1<br />

3.4 > 0<br />

2.3x 5.2<br />

1 3.42.3x 5.2<br />

> 0<br />

2.3x 5.2<br />

7.82x 18.68<br />

> 0<br />

2.3x 5.2<br />

Critical numbers: x 2.39, x 2.26<br />

Test intervals: , 2.26, 2.26, 2.39, 2.39, <br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 2.26, 2.39<br />

Critical numbers:<br />

2<br />

> 5.8<br />

3.1x 3.7<br />

2 5.83.1x 3.7<br />

> 0<br />

3.1x 3.7<br />

23.46 17.98x<br />

> 0<br />

3.1x 3.7<br />

x 1.19, x 1.30<br />

Test intervals: , 1.19 ⇒<br />

1.19, 1.30 ⇒<br />

1.30, ⇒<br />

Solution interval: 1.19, 1.30<br />

23.46 17.98x<br />

3.1x 3.7<br />

23.46 17.98x<br />

3.1x 3.7<br />

23.46 17.98x<br />

3.1x 3.7<br />

> 0<br />

< 0<br />

< 0


234 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

67.<br />

69.<br />

s 16t 2 v 0 t s 0 16t 2 160t<br />

(a)<br />

(b)<br />

16t 2 160t 0<br />

16tt 10 0<br />

t 0, t 10<br />

It will be back on the ground in 10 seconds.<br />

16t 2 160t > 384<br />

16t 2 160t 384 > 0<br />

16t 2 10t 24 > 0<br />

t 2 10t 24 < 0<br />

t 4t 6 < 0<br />

L 2 50L 500 ≥ 0<br />

4 < t < 6 seconds<br />

By the Quadratic Formula we have:<br />

Critical numbers: L 25 ± 55<br />

Test: Is<br />

Solution set:<br />

2L 2W 100 ⇒ W 50 L 70.<br />

LW ≥ 500<br />

L50 L ≥ 500<br />

L 2 50L 500 ≥ 0?<br />

25 55 ≤ L ≤ 25 55<br />

13.8 meters ≤ L ≤ 36.2 meters<br />

68. s 16t2 v0t s0 16t 2 128t<br />

(a) 16t2 128t 0<br />

(b)<br />

16tt 8 0<br />

It will be back on the ground in 8 seconds.<br />

16t 2 128t 128 < 0<br />

Critical numbers: 4 22, 4 22<br />

Test intervals:<br />

, 4 22, 4 22, 4 22,<br />

4 22, <br />

Solution set:<br />

16t 0 ⇒ t 0<br />

t 8 0 ⇒ t 8<br />

16t 2 128t < 128<br />

L 2 220L 8000 ≥ 0<br />

0 seconds ≤ t < 4 22 seconds<br />

<strong>and</strong> 4 22 seconds < t ≤ 8 seconds<br />

2L 2W 440 ⇒ W 220 L<br />

By the Quadratic Formula we have:<br />

Critical numbers:<br />

Test:<br />

Is L 2 220L 8000 ≥ 0?<br />

Solution set:<br />

LW ≥ 8000<br />

L220 L ≥ 8000<br />

71. R x75 0.0005x <strong>and</strong> C 30x 250,000<br />

72. What is the price per unit?<br />

P R C<br />

When x 90,000:<br />

75x 0.0005x 2 30x 250,000<br />

0.0005x 2 45x 250,000<br />

0.0005x 2 45x 250,000 ≥ 750,000<br />

0.0005x 2 45x 1,000,000 ≥ 0<br />

Critical numbers: x 40,000, x 50,000 (These were<br />

obtained by using the Quadratic Formula.)<br />

Test intervals:<br />

By testing x-values<br />

in each test interval in the inequality, we<br />

see that the solution set is 40,000, 50,000 or<br />

40,000 ≤ x ≤ 50,000. The price per unit is<br />

p R<br />

75 0.0005x.<br />

x<br />

P ≥ 750,000<br />

0, 40,000, 40,000, 50,000, 50,000, <br />

For x 40,000, p $55. For x 50,000, p $50.<br />

Therefore, for 40,000 ≤ x ≤ 50,000, $50.00 ≤ p ≤ $55.00.<br />

When x 100,000:<br />

L 110 ± 1041<br />

110 1041 ≤ L ≤ 110 1041<br />

R $2,880,000 ⇒ 2,880,000<br />

90,000<br />

R $3,000,000 ⇒ 3,000,000<br />

100,000<br />

45.97 feet ≤ L ≤ 174.03 feet<br />

$32 per unit<br />

$30 per unit<br />

Solution interval: $30.00 ≤ p ≤ $32.00


73.<br />

C 0.0031t 3 0.216t 2 5.54t 19.1, 0 ≤ t ≤ 23<br />

(a)<br />

74. (a)<br />

80<br />

0 23<br />

0<br />

(b)<br />

t C<br />

C will be greater than 75% when<br />

t 31, which corresponds to 2011.<br />

24 70.5<br />

26 71.6<br />

28 72.9<br />

30 74.6<br />

32 76.8<br />

34 79.6<br />

(c) C 75 when t 30.41.<br />

(b)<br />

76. (a)<br />

(c)<br />

Maximum safe load<br />

d 4 6 8 10 12<br />

Load 2223.9 5593.9 10,312 16,378 23,792<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

L<br />

2000 ≤ 168.5d 2 472.1<br />

2472.1 ≤ 168.5d 2<br />

14.67 ≤ d 2<br />

3.83 ≤ d<br />

4 6 8 10 12<br />

Depth of the beam<br />

The minimum depth is 3.83 inches.<br />

d<br />

Section 2.7 Nonlinear Inequalities 235<br />

(d)<br />

t C<br />

C will be between 85% <strong>and</strong> 100%<br />

when t is between 37 <strong>and</strong> 42. These<br />

36 83.2 values correspond to the years 2017 to<br />

2022.<br />

37 85.4<br />

38 87.8<br />

39 90.5<br />

40 93.5<br />

41 96.8<br />

42 100.4<br />

43 104.4<br />

(e) 85 ≤ C ≤ 100 when 36.82 ≤ t ≤ 41.89 or 37 ≤ t ≤ 42.<br />

(f) The model is a third-degree polynomial <strong>and</strong> as<br />

t →, C →.<br />

75.<br />

2R 1<br />

R<br />

2 R1 N 0.03t 2 9.6t 172 (b) <strong>and</strong> (d)<br />

220 ⇒ t 5<br />

So the number of master’s degrees earned by women<br />

exceeded 220,000 in 1995.<br />

N 0.03t 2 9.6t 172<br />

320 ⇒ t 16.2<br />

So the number of master’s degrees earned by women<br />

will exceed 320,000 in 2006.<br />

1 1<br />

<br />

R R1 1<br />

2<br />

2R 1 2R RR 1<br />

2R 1 R2 R 1<br />

Since R ≥ 1, we have<br />

2R 1<br />

1 ≥ 0<br />

2 R1 R 1<br />

2R 1<br />

≥ 1<br />

2 R1 2<br />

≥ 0.<br />

2 R1 Since R1 > 0, the only critical number is R1 2. The<br />

inequality is satisfied when R 1 ≥ 2 ohms.<br />

Master's degrees earned<br />

(in thous<strong>and</strong>s)<br />

320<br />

280<br />

240<br />

200<br />

160<br />

N<br />

2 6 10 14 18<br />

Year (0 ↔ 1990)<br />

N = 320<br />

N = 220<br />

t


236 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

77. True<br />

79.<br />

x 3 2x 2 11x 12 x 3x 1x 4<br />

The test intervals are , 3, 3, 1, 1, 4, <strong>and</strong><br />

4, .<br />

x 2 bx 4 0 80.<br />

To have at least one real solution, b This<br />

occurs when b ≤ 4 or b ≥ 4. This can be written as<br />

, 4 4, .<br />

2 16 ≥ 0.<br />

78. True<br />

The y-values are greater than zero for all values of x.<br />

x 2 bx 4 0<br />

To have at least one real solution,<br />

b 2 414 ≥ 0<br />

b 2 16 ≥ 0.<br />

This inequality is true for all real values of b. Thus, the<br />

interval for b such that the equation has at least one real<br />

solution is , .<br />

81.<br />

To have at least one real solution, b2 3x<br />

4310 ≥ 0.<br />

2 bx 10 0 82. 2x<br />

To have at least one real solution,<br />

2 bx 5 0<br />

b 2 120 ≥ 0<br />

b 120b 120 ≥ 0<br />

Critical numbers: b ±120 ±230<br />

Test intervals:<br />

, 230, 230, 230, 230, <br />

Test: Is b<br />

Solution set: , 230 230, <br />

2 120 ≥ 0?<br />

83. (a) If a > 0 <strong>and</strong> c ≤ 0, then b can be any real number. If<br />

<strong>and</strong> then for b to be greater than or<br />

equal to zero, b is restricted to b < 2ac or<br />

b > 2ac.<br />

2 a > 0 c > 0, 4ac<br />

(b) The center of the interval for b in Exercises 79–82 is 0.<br />

85. 4x 2 20x 25 2x 5 2 86.<br />

87.<br />

x 2x 2x 3<br />

b 2 425 ≥ 0<br />

b 2 40 ≥ 0.<br />

This occurs when b ≤ 210 or b ≥ 210. Thus,<br />

the interval for b such that the equation has at least<br />

one real solution is , 210 210, .<br />

84. (a)<br />

(b)<br />

x a, x b<br />

− + +<br />

− − +<br />

+ − +<br />

a<br />

(c) The real zeros of the polynomial<br />

x 3 2 16 x 3 4x 3 4<br />

b<br />

x 7x 1<br />

x2x 3) 4x 3 x2 4x 3 88. 2x 4 54x 2xx3 27<br />

89. Area lengthwidth 90.<br />

2x 1x<br />

2x 2 x<br />

2xx 3x 2 3x 9<br />

Area 1<br />

2baseheight<br />

1<br />

2b3b 2<br />

3<br />

2 b2 b<br />

x


Review Exercises for Chapter 2<br />

1. (a) (b) y 2x2 y 2x2 (a)<br />

Review Exercises for Chapter 2 237<br />

Vertical stretch Vertical stretch <strong>and</strong> a reflection in the x-axis<br />

(c) (d) y x 22 y x2 2<br />

2. (a)<br />

(c)<br />

4<br />

3<br />

2<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

−2<br />

−3<br />

−4<br />

Vertical shift two units upward Horizontal shift two units to the left<br />

4<br />

3<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

y<br />

x<br />

x<br />

y x 2 4 (b)<br />

Vertical shift four units downward<br />

y<br />

3<br />

2<br />

−4 −3 −1<br />

−1<br />

−2<br />

−5<br />

y x 3 2<br />

1 3 4<br />

Horizontal shift three units to the right<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1<br />

−1<br />

−2<br />

−3<br />

y<br />

1 2 3 4 5<br />

x<br />

x<br />

4<br />

3<br />

2<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

(d)<br />

−3<br />

−4<br />

y<br />

4<br />

1<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

−2<br />

−3<br />

−4<br />

y 4 x 2<br />

y<br />

Reflection in the x-axis <strong>and</strong> a vertical shift<br />

four units upward<br />

5<br />

3<br />

2<br />

1<br />

−4 −3 −1<br />

−1<br />

−2<br />

−3<br />

y 1<br />

2 x 2 1<br />

y<br />

x<br />

1 3 4<br />

Vertical shrink (each y-value is multiplied by<br />

<strong>and</strong> a vertical shift one unit downward<br />

−4 −3 −2<br />

4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

−4<br />

y<br />

2 3 4<br />

x<br />

x<br />

x<br />

1<br />

2,


238 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

3. gx x2 2x<br />

5.<br />

7.<br />

Vertex:<br />

x 2 2x 1 1<br />

x 1 2 1<br />

1, 1<br />

Axis of symmetry:<br />

x 1<br />

0 x 2 2x xx 2<br />

x-intercepts: 0, 0, 2, 0<br />

Vertex:<br />

−3 −2<br />

x 2 8x 16 16 10<br />

x 4 2 6<br />

Axis of symmetry:<br />

x 4 2 6<br />

4, 6<br />

x 4 ±6<br />

x 4 ± 6<br />

x 4<br />

0 x 4 2 6<br />

x-intercepts: 4 ± 6, 0<br />

7<br />

6<br />

5<br />

4<br />

3<br />

−1<br />

−1<br />

−2<br />

y<br />

−8 −4<br />

1<br />

2 3 4 5 6<br />

2<br />

−2<br />

−4<br />

−6<br />

y<br />

2<br />

x<br />

x<br />

4. fx 6x x2 Vertex:<br />

x 2 6x 9 9<br />

x 3 2 9<br />

3, 9<br />

Axis of symmetry:<br />

x 3<br />

0 6x x 2 x6 x<br />

x-intercepts: 0, 0, 6, 0<br />

f x x2 8x 10 6. hx 3 4x x2 Vertex:<br />

Axis of symmetry:<br />

6<br />

t-intercepts: 1 ± , 0 2<br />

Vertex:<br />

Axis of symmetry:<br />

0 3 4x x 2<br />

0 x 2 4x 3<br />

<br />

x 2 4x 3<br />

x 2 2 7<br />

x 2 2 7<br />

2, 7<br />

4 ± 28<br />

2<br />

x 2<br />

2 ± 7<br />

x-intercepts: 2 ± 7, 0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−2<br />

−2<br />

x 2 4x 4 4 3<br />

x 4 ± 42 413<br />

21<br />

ft 2t2 4t 1 8. f x x2 8x 12<br />

2t 2 2t 1 1 1<br />

2t 1 2 1 1<br />

2t 1 2 3<br />

1, 3<br />

2t 1 2 3<br />

0 2t 1 2 3<br />

t 1 ± 3<br />

2<br />

t 1 ± 6<br />

2<br />

t 1<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1 1 2 3 4 5 6<br />

t<br />

x 2 8x 16 16 12<br />

x 4 2 4<br />

Vertex: 4, 4<br />

Axis of symmetry:<br />

0 x 2 8x 12<br />

0 x 2x 6<br />

x 4<br />

x-intercepts: 2, 0, 6, 0<br />

−2<br />

8<br />

6<br />

4<br />

2<br />

−2<br />

−2<br />

−4<br />

y<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y<br />

y<br />

2 4 8 10<br />

2 4 6 8 10<br />

4 8<br />

10<br />

x<br />

x<br />

x


9.<br />

11.<br />

13.<br />

hx 4x2 4x 13 10. f x x2 6x 1<br />

Vertex:<br />

4x 2 x 13<br />

4x2 x 1 1<br />

13<br />

4 4<br />

4x2 x 1<br />

1 13<br />

4<br />

1<br />

4x 2 2<br />

12<br />

1, 12 2<br />

Axis of symmetry:<br />

1<br />

x 2 2<br />

1<br />

0 4x 2<br />

3<br />

2<br />

12<br />

No real zeros<br />

x-intercepts: none<br />

hx x 2 5x 4<br />

x 2 5x 25<br />

4<br />

x 1<br />

2<br />

5<br />

x 2 2<br />

25 16<br />

<br />

4 4<br />

Vertex: 5 5<br />

x 2<br />

, 41<br />

2 2<br />

41<br />

4<br />

Axis of symmetry:<br />

0 x 2 5x 4<br />

4<br />

By the Quadratic Formula, x <br />

5 ± 41<br />

x-intercepts: , 0 2<br />

fx 1<br />

3 x2 5x 4<br />

Vertex:<br />

25<br />

4<br />

x 5<br />

2<br />

4<br />

20<br />

15<br />

10<br />

5<br />

−3 −2 −1 1 2 3<br />

−8<br />

1 5<br />

x 3 2 2<br />

41<br />

<br />

4 <br />

1<br />

3x2 5x 25 25<br />

4<br />

4 4<br />

1 5<br />

x 3 2 2<br />

41<br />

12<br />

5, 41<br />

2 12<br />

Axis of symmetry: x 5<br />

2<br />

−6<br />

−4<br />

y<br />

5 ± 41<br />

.<br />

2<br />

−2 2<br />

−2<br />

−4<br />

−10<br />

y<br />

0 x 2 5x 4<br />

x<br />

x<br />

12.<br />

−8<br />

Vertex: 3, 8<br />

Axis of symmetry:<br />

0 x 2 6x 1<br />

<br />

x 3 2 8<br />

6 ± 32<br />

2<br />

x-intercepts: 3 ± 22, 0<br />

Review Exercises for Chapter 2 239<br />

x 2 6x 9 9 1<br />

x 3<br />

x 6 ± 62 411<br />

21<br />

Vertex:<br />

1, 4 2<br />

x- intercepts: None<br />

3 ± 22<br />

fx 4x 2 4x 5<br />

1<br />

4x 2 2<br />

4<br />

2<br />

−2<br />

−2<br />

4x2 x 1 1 5<br />

<br />

4 4 4<br />

1<br />

4x 2 2<br />

1<br />

−4<br />

−6<br />

−8<br />

Axis of symmetry:<br />

0 4x<br />

4 ± 8i<br />

By the Quadratic Formula, x <br />

8<br />

The equation has no real zeros.<br />

2 4x 5<br />

x 1<br />

2<br />

−8 −6 −4<br />

−6<br />

−4<br />

By the Quadratic Formula, x <br />

5 ± 41<br />

x-intercepts: , 0 2<br />

4<br />

2<br />

−2 2<br />

−4<br />

−6<br />

y<br />

5 ± 41<br />

.<br />

2<br />

x<br />

y<br />

2<br />

4 8<br />

12<br />

10<br />

8<br />

2<br />

−2<br />

−2<br />

y<br />

10<br />

2 4 6<br />

1<br />

± i.<br />

2<br />

x<br />

x


240 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

14.<br />

f x 1<br />

2 6x2 24x 22<br />

3x 2 12x 11<br />

3x 2 4x 4 4 11<br />

3x 2 2 34 11<br />

3x 2 2 1<br />

Vertex: 2, 1<br />

Axis of symmetry: x 2<br />

0 3x 2 12x 11<br />

x 12 ± 122 4311<br />

23<br />

3<br />

x-intercepts: 2 ± , 0 3<br />

15. Vertex:<br />

Point:<br />

Thus, fx 1<br />

2x 4 2 1.<br />

17. Vertex:<br />

19. (a)<br />

20.<br />

Point:<br />

<br />

2, 1 ⇒ 1 a2 4 2 1<br />

2 4a<br />

1<br />

2 a<br />

12 ± 12<br />

6<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y<br />

–6 –4 –2 4 6 8 10<br />

2 ± 3<br />

3<br />

4, 1 ⇒ fx ax 4 2 1 16. Vertex:<br />

1, 4 ⇒ fx ax 1 2 4 18. Vertex:<br />

2, 3 ⇒ 3 a2 1 2 4<br />

1 a<br />

Thus, fx x 1 2 4.<br />

R 10p 2 800p<br />

(a)<br />

R20 $12,000<br />

R25 $13,750<br />

R30 $15,000<br />

x<br />

y<br />

(b)<br />

2x 2y 200<br />

x y 100<br />

Area xy<br />

y 100 x<br />

x100 x<br />

100x x 2<br />

x<br />

2, 2 ⇒ fx ax 2 2 2<br />

Point: 0, 3 ⇒ 3 a0 2 2 2<br />

1 4a<br />

1<br />

4 a<br />

fx 1<br />

4x 2 2 2<br />

fx 1<br />

3x 2 2 3<br />

3 4a 2<br />

2, 3 ⇒ fx ax 2 2 3<br />

Point: 1, 6 ⇒ 6 a1 2 2 3<br />

6 9a 3<br />

3 9a<br />

1<br />

3 a<br />

(c) Area 100x x2 x 2 100x 2500 2500<br />

x 50 2 2500<br />

x 50 2 2500<br />

The maximum area occurs at the vertex when x 50<br />

<strong>and</strong> y 100 50 50. The dimensions with the<br />

maximum area are x 50 meters <strong>and</strong> y 50 meters.<br />

(b) The maximum revenue occurs at the vertex of the parabola.<br />

b 800<br />

$40<br />

2a 210<br />

R40 $16,000<br />

The revenue is maximum when the price is $40 per unit.<br />

The maximum revenue is $16,000.


21. C 70,000 120x 0.055x<br />

The minimum cost occurs at the vertex of the parabola.<br />

2 22.<br />

0 0.107x2 26 0.107x<br />

5.68x 74.5<br />

2 5.68x 48.5<br />

23.<br />

26.<br />

29.<br />

31.<br />

Vertex: b 120<br />

1091 units<br />

2a 20.055<br />

Approximately 1091 units should be produced each day to<br />

yield a minimum cost.<br />

y x 3 , fx x 4 3 24.<br />

−2<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3<br />

−4<br />

y<br />

1 2 3 4 6 7<br />

Transformation: Reflection in<br />

the x-axis <strong>and</strong> a horizontal shift<br />

four units to the right<br />

f x 2x 24 y x4 ,<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3 4 5 6<br />

−2<br />

−3<br />

y<br />

is a shift to the right two<br />

units <strong>and</strong> a vertical stretch of the<br />

graph of y x4 f x<br />

.<br />

x<br />

x<br />

27.<br />

f x 4x3 y x3 ,<br />

3<br />

2<br />

1<br />

y<br />

−3 −2 −1<br />

−1<br />

−2<br />

−3<br />

1 2 3<br />

x 23.7, 29.4<br />

is a reflection in the x-axis<br />

<strong>and</strong> a vertical stretch of the graph<br />

of y x3 f x<br />

.<br />

y x 5 , fx x 3 5<br />

−2<br />

5<br />

4<br />

3<br />

2<br />

1<br />

−5<br />

1<br />

3 4 5 6 7<br />

Transformation: Horizontal shift<br />

three units to the right<br />

fx x 2 6x 9 30.<br />

The degree is even <strong>and</strong> the leading coefficient is negative.<br />

The graph falls to the left <strong>and</strong> falls to the right.<br />

gx 3<br />

4x 4 3x 2 2 32.<br />

The degree is even <strong>and</strong> the leading coefficient is positive.<br />

The graph rises to the left <strong>and</strong> rises to the right.<br />

y<br />

The age of the bride is<br />

approximately 24 years<br />

when the age of the groom<br />

is 26 years.<br />

Review Exercises for Chapter 2 241<br />

x 5.68 ± 5.682 40.10774.5<br />

20.107<br />

x<br />

x<br />

25.<br />

28.<br />

−3<br />

−2<br />

Age of groom<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

y x 4 , fx 2 x 4<br />

3<br />

1<br />

−1<br />

−2<br />

−3<br />

y<br />

y<br />

20 21 22 23 24 25<br />

Age of bride<br />

1 2 3<br />

Transformation: Reflection in<br />

the x-axis <strong>and</strong> a vertical shift<br />

two units upward<br />

y x 5 ,<br />

f x 1<br />

2 x5 3<br />

−6 −4 −2 2 4<br />

8<br />

6<br />

4<br />

y<br />

is a vertical shrink <strong>and</strong> a<br />

vertical shift three units upward<br />

of the graph of y x5 f x<br />

.<br />

fx <br />

The degree is odd <strong>and</strong> the leading coefficient is positive.<br />

The graph falls to the left <strong>and</strong> rises to the right.<br />

1<br />

2x3 2x<br />

hx x 5 7x 2 10x<br />

The degree is odd <strong>and</strong> the leading coefficient is negative.<br />

The graph rises to the left <strong>and</strong> falls to the right.<br />

6<br />

x<br />

x<br />

x


242 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

33.<br />

35.<br />

37.<br />

39.<br />

20<br />

f x 2x2 11x 21 34.<br />

0 2x 2 11x 21 −9<br />

2x 3x 7<br />

Zeros: x all of<br />

multiplicity 1 (odd multiplicity)<br />

Turning points: 1<br />

3<br />

2 , 7,<br />

f t t 3<br />

3 3t 36.<br />

0 t 3 3t<br />

0 tt 2 3<br />

Zeros: t 0, ±3 all of<br />

multiplicity 1 (odd multiplicity)<br />

Turning points: 2<br />

f x 12x 10<br />

3 20x2 38.<br />

0 12x 3 20x 2<br />

0 4x 2 3x 5<br />

Zeros: of multiplicity 2<br />

(even multiplicity)<br />

x of multiplicity 1<br />

(odd multiplicity)<br />

5<br />

x 0<br />

3<br />

Turning points: 2<br />

−5<br />

fx x<br />

(a) The degree is odd <strong>and</strong> the leading coefficient is<br />

negative. The graph rises to the left <strong>and</strong> falls to<br />

the right.<br />

3 x2 2 40.<br />

(b) Zero: x 1<br />

(c)<br />

(d)<br />

x 3 2 1 0 1 2<br />

fx<br />

(−1, 0)<br />

−4 −3 −2<br />

−5<br />

−5<br />

−40<br />

34 10 0 2 2 6<br />

4<br />

3<br />

2<br />

1<br />

−3<br />

−4<br />

y<br />

1 2 3 4<br />

x<br />

−3<br />

5<br />

9<br />

4<br />

fx xx 3 2<br />

0 xx 3 2<br />

Zeros: x 0 of multiplicity 1<br />

(odd multiplicity)<br />

x 3 of multiplicity 2<br />

(even multiplicity)<br />

Turning points: 2<br />

f x x 3 8x 2<br />

0 x 3 8x 2<br />

0 x 2 x 8<br />

Zeros: x 0 of multiplicity 2<br />

(even multiplicity)<br />

x 8 of multiplicity 1<br />

(odd multiplicity)<br />

Turning points: 2<br />

gx x 4 x 3 2x 2<br />

0 x 4 x 3 2x 2<br />

0 x 2 x 2 x 2<br />

x 2 x 1x 2<br />

Zeros: x 0 of multiplicity 2 (even multiplicity)<br />

x 1 of multiplicity 1 (odd multiplicity)<br />

x 2 of multiplicity 1 (odd multiplicity)<br />

Turning points: 3<br />

(a) The degree is odd <strong>and</strong> the leading coefficient, 2, is<br />

positive. The graph rises to the right <strong>and</strong> falls to the left.<br />

(b)<br />

0 x<br />

The zeros are 0 <strong>and</strong> 2.<br />

(c)<br />

2 0 2x<br />

x 2<br />

2 0 2x<br />

x 2<br />

3 4x2 gx 2x3 4x2 gx 2x3 4x2 x 3<br />

2 1 0 1<br />

(d)<br />

gx<br />

18<br />

(−2, 0) (0, 0)<br />

4<br />

3<br />

2<br />

−4 −3 −1<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

1 2 3 4<br />

x<br />

−10<br />

−6<br />

−4<br />

0 2 0 6<br />

3<br />

−5<br />

10<br />

−80<br />

3<br />

−3<br />

6<br />

10<br />

5


41.<br />

fx xx 3 x 2 5x 3<br />

(a) The degree is even <strong>and</strong> the leading coefficient is<br />

positive. The graph rises to the left <strong>and</strong> rises to<br />

the right.<br />

(b) Zeros:<br />

(c)<br />

(d)<br />

43. (a)<br />

45. (a)<br />

47.<br />

3<br />

(−3, 0)<br />

−4 −2 −1<br />

x 0, 1, 3<br />

x 4 3 2 1 0 1 2 3<br />

fx<br />

100 0 18 8 0 0 10 72<br />

−15<br />

−18<br />

−21<br />

y<br />

(1, 0)<br />

1 2 3 4<br />

(0, 0)<br />

fx 3x 3 x 2 3<br />

x 3 2 1 0 1 2 3<br />

fx<br />

87<br />

25<br />

(b) The zero is in the interval 1, 0.<br />

Zero: x 0.900<br />

fx x 4 5x 1<br />

x<br />

1<br />

3 5 23 75<br />

x 3 2 1 0 1 2 3<br />

fx<br />

95 25 5 1 5 5 65<br />

(b) There are two zeros, one in the interval 1, 0 <strong>and</strong><br />

one in the interval 1, 2<br />

Zeros: x 0.200, x 1.772<br />

24x 2 16x<br />

Thus, 24x2 x 8<br />

3x 2<br />

8x 5<br />

3x 2 ) 24x 2 x 8<br />

15x 8<br />

15x 10<br />

2<br />

8x 5 <br />

2<br />

3x 2 .<br />

42. hx 3x2 x4 48.<br />

4x 8<br />

3x 2 ) 4x 7<br />

4x 7 4<br />

<br />

3x 2 3 <br />

29<br />

33x 2<br />

Review Exercises for Chapter 2 243<br />

(a) The degree is even <strong>and</strong> the leading coefficient, 1,<br />

is<br />

negative. The graph falls to the left <strong>and</strong> falls to the right.<br />

(b)<br />

(c)<br />

(d)<br />

44. (a)<br />

46. (a)<br />

gx 3x 2 x 4<br />

0 3x 2 x 4<br />

0 x 2 3 x 2 <br />

The zeros are 0, 3, <strong>and</strong> 3.<br />

x 2 1 0 1 2<br />

hx<br />

4<br />

3<br />

2<br />

(( 3, 0 (( 3, 0<br />

−<br />

4<br />

−4 −3 −1<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

4<br />

3<br />

3<br />

29<br />

3<br />

(0, 0)<br />

2 0 2 4<br />

1 3 4<br />

f x 0.25x 3 3.65x 6.12<br />

x<br />

fx<br />

6<br />

25.98<br />

5<br />

(b) The only zero is in the interval 5, 4.<br />

It is x 4.479.<br />

f x 7x 4 3x 3 8x 2 2<br />

(b) There are zeros in the intervals 2, 1 <strong>and</strong> 1, 0.<br />

They are x 1.211 <strong>and</strong> x 0.509.<br />

x<br />

6.88<br />

4<br />

3<br />

2<br />

4.72 10.32 11.42<br />

x 1 0 1 2 3 4<br />

fx<br />

9.52 6.12 2.72 0.82 1.92 7.52<br />

x 3 2 1 0 1 2<br />

fx<br />

416 58 2 2 4 106


244 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

49.<br />

51.<br />

x 2 3x 1 ) 5x 3 13x 2 x 2<br />

5x 3 15x 2 5x<br />

Thus, 5x3 13x 2 x 2<br />

x 2 3x 1<br />

5 x 2 50.<br />

2 x 2 6x 2<br />

2x 2 6x 2<br />

0<br />

5x 2.<br />

x 2 0x 2 ) x 4 3x 3 4x 2 6x 3<br />

Thus, x4 3x 3 4x 2 6x 3<br />

x 2 2<br />

53. 2 6<br />

6<br />

Thus,<br />

x 4 0x 3 2x 2<br />

6x 4 4x 3 27x 2 18x<br />

x 2<br />

55. 4 2<br />

57.<br />

2<br />

4<br />

12<br />

8<br />

19<br />

8<br />

11<br />

3x 3 2x 2 6x<br />

3x 3 0x 2 6x<br />

27<br />

16<br />

11<br />

38<br />

44<br />

6<br />

18<br />

22<br />

x 2 3x 2 52.<br />

2 x 2 0x 3<br />

4<br />

2x 2 0x 4<br />

1<br />

x 2 3x 2 1<br />

x 2 2 .<br />

6x 3 8x 2 11x 4 8<br />

x 2 .<br />

24<br />

24<br />

Thus, 2x3 19x 2 38x 24<br />

x 4<br />

f x 20x 4 9x 3 14x 2 3x<br />

(a)<br />

(c)<br />

1 20<br />

Yes, x 1 is a zero of f.<br />

0 20<br />

20<br />

20<br />

9<br />

0<br />

9<br />

9<br />

20<br />

11<br />

14<br />

0<br />

14<br />

0<br />

14<br />

11<br />

3<br />

Yes, x 0 is a zero of f.<br />

3<br />

0<br />

3<br />

0<br />

8<br />

8<br />

2x 2 11x 6.<br />

3<br />

3<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

54.<br />

56.<br />

(b)<br />

(d)<br />

x 2 1 ) 3x 4 0x 3 0x 2 0x 0<br />

3x 4 3x 2<br />

3x4 x2 1 3x2 3 3<br />

x2 1<br />

3x 2 3<br />

3x 2 0<br />

3x 2 3<br />

2x2 0x 1 ) 6x4 10x3 13x2 3x<br />

5x 2<br />

2 5x 8<br />

6x 4 0x 3 3x 2<br />

6x 4 10x 3 13x 2 5x 2<br />

2x 2 1<br />

5 0.1<br />

0.1<br />

0.3<br />

0.5<br />

0.8<br />

0<br />

4<br />

4<br />

0.1x 3 0.3x 2 0.5<br />

x 5<br />

3 3<br />

3<br />

20<br />

9<br />

11<br />

29<br />

33<br />

4<br />

3x 3 20x 2 29x 12<br />

x 3<br />

3<br />

4<br />

20<br />

20<br />

Yes, x is a zero of f.<br />

3<br />

1 20<br />

20<br />

4<br />

9<br />

15<br />

24<br />

9<br />

20<br />

29<br />

14<br />

18<br />

14<br />

29<br />

15<br />

3<br />

10x 3 16x 2 5x<br />

10x 3 0x 2 5x<br />

0.5<br />

20<br />

19.5<br />

No, x 1 is not a zero of f.<br />

4<br />

16x 2 0x 2<br />

16x 2 0x 8<br />

10<br />

3x 2 5x 8 10<br />

2x 2 1<br />

0.1x 2 0.8x 4 19.5<br />

x 5<br />

12<br />

12<br />

0<br />

3x 2 11x 4<br />

3<br />

3<br />

0<br />

3<br />

15<br />

12<br />

0<br />

0<br />

0<br />

0<br />

12<br />

12


58. f x 3x<br />

(a) 4 3 8 20 16<br />

12 16 16<br />

3 4 4 0<br />

3 8x2 20x 16<br />

59.<br />

Yes, x 4 is a zero of f.<br />

(c)<br />

2<br />

3 3 8 20 16<br />

2 4 16<br />

3 6 24 0<br />

f x x 4 10x 3 24x 2 20x 44<br />

(a)<br />

Yes, x is a zero of f.<br />

2<br />

3<br />

3 1<br />

1<br />

10<br />

3<br />

7<br />

24<br />

21<br />

45<br />

Thus, f 3 421.<br />

Thus, g2 0.<br />

20<br />

135<br />

155<br />

60. gt 2t<br />

(a) 4 2 5 0 0<br />

8 52 208<br />

2 13 52 208<br />

Thus, g4 3276.<br />

(b) 2 2 5<br />

22<br />

2 5 22<br />

5 5t4 8t 20<br />

(e)<br />

80<br />

−8 5<br />

−60<br />

44<br />

465<br />

421<br />

8<br />

832<br />

824<br />

0<br />

52 4<br />

52 4<br />

20<br />

3296<br />

3276<br />

0<br />

10 42<br />

10 42<br />

(b)<br />

(b)<br />

4 3<br />

1 1<br />

1<br />

3<br />

f 1 9<br />

10<br />

1<br />

9<br />

Review Exercises for Chapter 2 245<br />

8<br />

12<br />

20<br />

No, x 4 is not a zero of f.<br />

(d) 1 3 8 20 16<br />

3 11 9<br />

3 11 9 25<br />

8<br />

102 8<br />

102<br />

No, x 1 is not a zero of f.<br />

20<br />

20<br />

0<br />

24<br />

9<br />

33<br />

20<br />

80<br />

60<br />

20<br />

33<br />

53<br />

16<br />

240<br />

224<br />

61. ; Factor:<br />

(a)<br />

Yes, is a factor of<br />

(b)<br />

The remaining factors of are <strong>and</strong><br />

(c) f x x<br />

x 7x 1x 4<br />

(d) Zeros: 7, 1, 4<br />

3 4x2 x<br />

f x 7 x 1.<br />

25x 28<br />

2 f x x x 4<br />

4 1 4 25 28<br />

4 32 28<br />

1 8 7 0<br />

x 4<br />

f x.<br />

8x 7 x 7x 1<br />

3 4x2 25x 28 62.<br />

(a)<br />

Yes, is a factor of<br />

(b)<br />

The remaining factors are <strong>and</strong><br />

(c)<br />

(d) Zeros: x <br />

(e)<br />

50<br />

5<br />

2x<br />

2x 5 x 3.<br />

f x 2x 5x 3x 6<br />

2 , 3, 6<br />

2 f x 2x<br />

6 2 11 21 90<br />

12 6 90<br />

2 1 15 0<br />

x 6<br />

f x.<br />

x 15 2x 5x 3<br />

3 11x2 21x 90<br />

−7 5<br />

−100<br />

44<br />

53<br />

9


246 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

63. f x x<br />

Factors: x 2, x 3<br />

(a) 2 1<br />

4 4x3 7x2 22x 24 64. f x x<br />

(a) 2 1 11 41 61 30<br />

1<br />

2<br />

9<br />

18<br />

23<br />

46<br />

15<br />

30<br />

0<br />

4 11x3 41x2 61x 30<br />

(b)<br />

(c)<br />

(d) Zeros:<br />

(e)<br />

Both are factors since the remainders are zero.<br />

x<br />

The remaining factors are x 1 <strong>and</strong> x 4.<br />

2 3 1 6 5 12<br />

3 9 12<br />

1 3 4 0<br />

3x 4 x 1x 4<br />

f x x 1x 4x 2x 3<br />

−3<br />

1<br />

2, 1, 3, 4<br />

40<br />

−10<br />

4<br />

2<br />

6<br />

7<br />

12<br />

5<br />

5<br />

22<br />

10<br />

12<br />

24<br />

24<br />

0<br />

(b)<br />

Yes, <strong>and</strong> are both factors of<br />

x<br />

The remaining factors are x 1 <strong>and</strong> x 3.<br />

2 5 1 9 23 15<br />

5 20 15<br />

1 4 3 0<br />

x 2 x 5<br />

f x.<br />

4x 3 x 1x 3<br />

(c)<br />

(d) Zeros:<br />

(e)<br />

f x x 1x 3x 2x 5<br />

x 1, 2, 3, 5<br />

4<br />

−6 12<br />

65. 6 4 6 2i 66. 3 25 3 5i 67. i 2 3i 1 3i<br />

68. 5i i 2 1 5i 69. 7 5i 4 2i 7 4 5i 2i 3 7i<br />

70. 2 2<br />

2 2 2 2 2 2 2 2 2<br />

i i i <br />

2 2 2 2 2 2 2 2 i<br />

−8<br />

i 2i<br />

71. 5i13 8i 65i 40i2 40 65i 72. 1 6i5 2i 5 2i 30i 12i2 73.<br />

75.<br />

4 46i<br />

5 28i 12<br />

17 28i<br />

10 8i2 3i 20 30i 16i 24i2 74. i6 i3 2i i18 12i 3i 2i2 6 i 6 i 4 i<br />

<br />

4 i 4 i 4 i<br />

<br />

<br />

24 10i i2<br />

16 1<br />

23 10i<br />

17<br />

23 10<br />

<br />

17 17 i<br />

76.<br />

<br />

<br />

17 7i<br />

26<br />

17 7i<br />

<br />

26 26<br />

i20 9i<br />

20i 9i 2<br />

9 20i<br />

3 2i 3 2i 5 i<br />

<br />

5 i 5 i 5 i<br />

15 3i 10i 2i2<br />

25 i 2


77.<br />

79.<br />

4 2 4 2 3i 2 1 i<br />

<br />

2 3i 1 i 2 3i 2 3i 1 i 1 i<br />

3x 2 1<br />

x 2 1<br />

3<br />

<br />

8 12i<br />

4 9<br />

8<br />

13<br />

x ± 1<br />

3<br />

12<br />

i 1 i<br />

13<br />

8<br />

13 1 12<br />

i i 13<br />

21 1<br />

<br />

13 13 i<br />

± 1<br />

i ±3<br />

3 3 i<br />

2 2i<br />

1 1<br />

3x 2 1 0 80.<br />

78.<br />

Review Exercises for Chapter 2 247<br />

1 5 1 4i 52 i<br />

<br />

2 i 1 4i 2 i1 4i<br />

2 8x 2 0<br />

8x 2 2<br />

x 2 1<br />

4<br />

x ± 1<br />

2 i<br />

81. x2 2x 10 0 82. 6x2 3x 27 0<br />

83.<br />

87.<br />

89.<br />

x 2 2x 1 10 1<br />

x 1 2 9<br />

x 1 ±9<br />

x 1 ± 3i<br />

f x 3xx 2 2 84.<br />

Zeros: x 0, x 2<br />

f x x 4x 6x 2ix 2i<br />

Zeros: x 4, x 6, x 2i, x 2i<br />

Possible rational zeros:<br />

f x x 4x 9 2 85.<br />

Zeros: x 9, 4<br />

± 1<br />

±1, ±3, ±5, ±15, ±<br />

3 5 15<br />

4 , ± 4 , ± 4 , ± 4<br />

1 3 5 15<br />

2 , ± 2 , ± 2 , ± 2 ,<br />

88.<br />

<br />

<br />

<br />

<br />

<br />

<br />

x b ± b2 4ac<br />

2a<br />

3 ± 639<br />

12<br />

3 ± 3i71<br />

12<br />

1 4i 10 5i<br />

2 8i i 4i 2<br />

9 i 2 9i<br />

<br />

2 9i 2 9i<br />

18 81i 2i 9i2<br />

4 81i 2<br />

9 83i<br />

85<br />

3 ± 32 4627<br />

26<br />

x 1x 8<br />

Zeros: x 1, x 8<br />

9 83i<br />

<br />

85 85<br />

1 71<br />

±<br />

4 4 i<br />

f x x 2 9x 8 86.<br />

Zeros: x 5, 8, 3 ± i<br />

f x x 3 6x<br />

xx 2 6<br />

Zeros: x 0, ±6i<br />

f x x 8x 5 2 x 3 ix 3 i<br />

fx 4x3 8x2 3x 15 90. fx 3x4 4x3 5x2 8<br />

Possible rational zeros: ± 1 2 4 8<br />

±1, ±2, ±4, ±8, 3 , ± 3 , ± 3 , ± 3


248 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

91.<br />

93.<br />

95.<br />

96.<br />

f x x 3 2x 2 21x 18 92.<br />

Possible rational zeros: ±1, ±2, ±3, ±6, ±9, ±18<br />

1 1<br />

1<br />

2<br />

1<br />

3<br />

21<br />

3<br />

18<br />

18<br />

18<br />

0<br />

x 3 2x 2 21x 18 x 1x 2 3x 18<br />

x 1x 6x 3<br />

The zeros of f x are x 1, x 6, <strong>and</strong> x 3.<br />

f x x 3 10x 2 17x 8 94.<br />

Possible rational zeros: ±1, ±2, ±4, ±8<br />

1 1<br />

1<br />

10<br />

1<br />

9<br />

17<br />

9<br />

8<br />

8<br />

8<br />

0<br />

x 3 10x 2 17x 8 x 1x 2 9x 8<br />

x 1x 1x 8<br />

x 1 2 x 8<br />

The zeros of f x are x 1 <strong>and</strong> x 8.<br />

f x x 4 x 3 11x 2 x 12<br />

Possible rational zeros: ±1, ±2, ±3, ±4, ±6, ±12<br />

3 1<br />

1<br />

4 1<br />

1<br />

1<br />

3<br />

4<br />

4<br />

4<br />

0<br />

11<br />

12<br />

1<br />

1<br />

0<br />

1<br />

4<br />

4<br />

0<br />

x 4 x 3 11x 2 x 12 x 3x 4x 2 1<br />

1<br />

3<br />

4<br />

12<br />

12<br />

0<br />

The real zeros of f x are x 3, <strong>and</strong> x 4.<br />

f x 25x 4 25x 3 154x 2 4x 24<br />

3 25<br />

25<br />

2 25<br />

25<br />

75<br />

50<br />

50<br />

50<br />

So, f x 25x 4 25x3 154x2 25 0 4 0<br />

4x 24<br />

x 3x 225x 2 4<br />

x 3x 25x 25x 2.<br />

Zeros: x 3, 2, ± 2<br />

5<br />

154<br />

150<br />

4<br />

4<br />

0<br />

8<br />

8<br />

4<br />

12<br />

8<br />

24<br />

24<br />

0<br />

f x 3x 3 20x 2 7x 30<br />

Possible rational zeros:<br />

1 3<br />

3<br />

20<br />

3<br />

23<br />

So, f x 3x 3 20x 2 7x 30<br />

x 13x 2 23x 30<br />

x 13x 5x 6<br />

0 x 13x 5x 6.<br />

Zeros: x 1, 5<br />

3 , 6<br />

7<br />

23<br />

30<br />

±1, ±2, ±3, ±5, ±6, ±10, ±15,<br />

±30, ± 1 2 5<br />

3 , ± 3 , ± 3 ,<br />

30<br />

30<br />

0<br />

f x x 3 9x 2 24x 20<br />

± 10<br />

3<br />

Possible rational zeros: ±1, ±2, ±4, ±5, ±10, ±20<br />

5 1<br />

9<br />

5<br />

So, f x x3 9x2 1 4 4 0<br />

24x 20<br />

x 5x 2 4x 4<br />

x 5x 2 2 .<br />

Zeros: x 5, 2<br />

Possible rational zeros:<br />

± 6<br />

25, ± 8<br />

25, ± 12<br />

25, ± 24<br />

± 25<br />

4<br />

± 25,<br />

1<br />

25, ± 2<br />

25, ± 3<br />

± 25,<br />

24<br />

±24, ±<br />

5 ,<br />

1<br />

5, ± 2<br />

5, ± 3<br />

5, ± 4<br />

5, ± 6<br />

5, ± 8<br />

5, ± 12<br />

±1, ±2, ±3, ±4, ±6, ±8, ±12,<br />

5 ,<br />

24<br />

20<br />

20<br />

20


97. Since is a zero, so is<br />

3x 2x 4x Multiply by 3 to clear the fraction.<br />

2 fx 3x 3i<br />

3i.<br />

3<br />

2<br />

3x 4x 3ix 3i<br />

3x 2 14x 8x 2 3<br />

3x 4 14x 3 17x 2 42x 24<br />

Review Exercises for Chapter 2 249<br />

Note: where a is any real nonzero number, has zeros 2<br />

, 4, <strong>and</strong> ±3i.<br />

f x a3x4 14x3 17x2 42x 24,<br />

98. Since is a zero <strong>and</strong> the coefficients are real,<br />

must also be a zero.<br />

x2 x 6x 12 1 2i 99. fx x Zero: i<br />

1 2i<br />

Since i is a zero, so is i.<br />

f x x 2x 3x 1 2ix 1 2i<br />

i 1 4 1 4<br />

4<br />

i 1 4i 4<br />

3 4x2 x 4,<br />

x 2 x 6x 2 2x 5<br />

x 4 x 3 3x 2 17x 30<br />

4i 1<br />

4i 1<br />

1<br />

2 4i<br />

4i<br />

1 2 0<br />

hx x 4ix 4ix 2<br />

Zeros: x ± 4i, 2<br />

2<br />

4i<br />

2 4i<br />

16<br />

16 8i<br />

8i<br />

8i<br />

8i<br />

32<br />

32<br />

0<br />

1<br />

i 1<br />

1<br />

4 i<br />

4 i<br />

i<br />

4<br />

4i<br />

4i<br />

4i<br />

fx x ix ix 4, Zeros: x ± i, 4<br />

100. hx x<br />

Since 4i is a zero, so is 4i.<br />

3 2x2 16x 32 101. gx 2x Zero: 2 i<br />

Since 2 i is a zero, so is 2 i<br />

4 3x3 13x2 37x 15,<br />

102.<br />

2 i 2<br />

2<br />

2 i 2<br />

3<br />

4 2i<br />

1 2i<br />

1 2i<br />

4 2i<br />

gx x 2 ix 2 i2x2 2 5 3 0<br />

5x 3<br />

Zeros: x 2 ± i, 1<br />

2 , 3<br />

fx 4x4 11x3 14x2 6x 103. fx x3 4x2 5x<br />

x4x 3 11x 2 14x 6<br />

One zero is x 0. Since 1 i is a zero, so is 1 i.<br />

1 i 4<br />

4<br />

1 i 4<br />

4<br />

11<br />

4 4i<br />

7 4i<br />

7 4i<br />

4 4i<br />

3<br />

f x xx 1 ix 1 i4x 3<br />

xx 1 ix 1 i4x 3<br />

Zeros: 0, 3<br />

4 , 1 i, 1 i<br />

14<br />

11 3i<br />

3 3i<br />

3 3i<br />

3 3i<br />

0<br />

6<br />

6<br />

0<br />

0<br />

x 2 ix 2 i2x 1x 3<br />

xx 2 4x 5<br />

xx 5x 1<br />

Zeros: x 0, 5, 1<br />

3<br />

13<br />

5i<br />

13 5i<br />

0<br />

13 5i<br />

10 5i<br />

37<br />

31 3i<br />

6 3i<br />

6 3i<br />

6 3i<br />

15<br />

15<br />

0


250 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

104.<br />

gx x 3 7x 2 36<br />

2 1<br />

1<br />

7<br />

2<br />

9<br />

0<br />

18<br />

18<br />

36<br />

36<br />

0<br />

The zeros of x are x 3, 6. The zeros of gx are 2, 3, 6.<br />

gx x 2x 3x 6<br />

2 9x 18 x 3x 6<br />

105. gx x Zero: x 4<br />

4 4x3 3x2 40x 208, 106.<br />

4 1<br />

1<br />

4 1<br />

1<br />

4<br />

4<br />

0<br />

0<br />

4<br />

4<br />

3<br />

0<br />

3<br />

3<br />

16<br />

13<br />

40<br />

12<br />

52<br />

52<br />

52<br />

gx x 4 2 x 2 4x 13<br />

By the Quadratic Formula the zeros of x are<br />

x 2 ± 3i. The zeros of gx are x 4 of multiplicity<br />

2, <strong>and</strong> x 2 ± 3i.<br />

2 4x 13<br />

gx x 4 2 x 2 3ix 2 3i<br />

x 4 2 x 2 3ix 2 3i<br />

0<br />

208<br />

208<br />

107. gx 5x<br />

gx has two variations in sign, so g has either two or no<br />

positive real zeros.<br />

3 3x2 6x 9<br />

gx 5x 3 3x 2 6x 9<br />

gx has one variation in sign, so g has one negative<br />

real zero.<br />

4<br />

3<br />

1<br />

4<br />

4<br />

1<br />

5<br />

3<br />

5<br />

4<br />

17<br />

4<br />

Since the last row entries alternate in sign,<br />

x is a lower bound.<br />

1<br />

4<br />

0<br />

fx x 4 8x 3 8x 2 72x 153<br />

3 1<br />

1<br />

3 1<br />

1<br />

8<br />

3<br />

11<br />

11<br />

3<br />

8<br />

8<br />

33<br />

41<br />

41<br />

24<br />

72<br />

123<br />

17<br />

51<br />

51<br />

51<br />

By the Quadratic Formula, the zeros of x are<br />

2 8x 17<br />

x 8 ± 82 4117<br />

21<br />

153<br />

153<br />

The zeros of fx are 3, 3, 4 i, 4 i.<br />

fx x 3x 3x 4 ix 4 i<br />

<br />

0<br />

8 ± 4<br />

2<br />

4 ± i.<br />

108. hx 2x<br />

hx has three variations in sign, so h has either three or<br />

one positive real zeros.<br />

5 4x3 2x2 5<br />

hx 2x 5 4x 3 2x 2 5<br />

2x 5 4x 3 2x 2 5<br />

hx has two variations in sign, so h has either two or<br />

no negative real zeros.<br />

109.<br />

(a)<br />

Since the last row has all positive entries,<br />

is an upper bound.<br />

(b) 1<br />

fx 4x<br />

1 4 3 4 3<br />

4 1 5<br />

4 1 5 2<br />

x 1<br />

4 4<br />

3 3x2 4x 3 110. gx 2x<br />

(a) 8 2 5 14 8<br />

16 88 592<br />

2 11 74 600<br />

Since the last row has all positive entries, x 8 is an<br />

upper bound.<br />

(b) 4 2 5<br />

8<br />

14<br />

52<br />

8<br />

152<br />

3 5x2 14x 8<br />

2 13 38 144<br />

Since the last row entries alternate in sign, x 4 is a<br />

lower bound.


111.<br />

114.<br />

117.<br />

f x <br />

Domain: all real numbers<br />

except x 12<br />

5x<br />

x 12<br />

f x x2 x 2<br />

x 2 4<br />

Domain: all real numbers<br />

hx <br />

<br />

2x 10<br />

x 2 2x 15<br />

2x 5<br />

x 3x 5<br />

2<br />

, x 5<br />

x 3<br />

Vertical asymptote:<br />

x 3<br />

Horizontal asymptote: y 0<br />

x<br />

112.<br />

119. fx <br />

(a) Domain: all real numbers x except x 0<br />

5<br />

x2 (b) No intercepts<br />

(c) Vertical asymptote: x 0<br />

Horizontal asymptote: y 0<br />

(d)<br />

x<br />

±3<br />

5<br />

9<br />

1<br />

−1 1 2<br />

−2<br />

−3<br />

y<br />

±2<br />

y 5<br />

5<br />

4<br />

±1<br />

x<br />

f x 3x2<br />

1 3x<br />

1 3x 0<br />

3x 1<br />

x 1<br />

3<br />

Domain: all real numbers<br />

except x 1<br />

3<br />

115. fx <br />

Vertical asymptote: x 3<br />

4<br />

x 3<br />

Horizontal asymptote: y 0<br />

x<br />

Review Exercises for Chapter 2 251<br />

113.<br />

f x <br />

<br />

8<br />

x 2 10x 24<br />

8<br />

x 4x 6<br />

Domain: all real numbers<br />

except x 4 <strong>and</strong> x 6<br />

116. fx <br />

Vertical asymptote: none<br />

2x2 5x 3<br />

x2 2<br />

Horizontal asymptote: y 2<br />

118. hx <br />

Vertical asymptotes: x 2, x 1<br />

x3 4x2 x2 3x 2 x2x 4<br />

x 2x 1<br />

Horizontal asymptotes: none<br />

120. fx <br />

(a) Domain: all real numbers x except x 0<br />

4<br />

x<br />

(b) No intercepts<br />

(c) Vertical asymptote: x 0<br />

Horizontal asymptote: y 0<br />

(d)<br />

x<br />

y<br />

3<br />

4<br />

3<br />

4<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3 4<br />

−2<br />

−3<br />

y<br />

2<br />

2<br />

1<br />

4<br />

x<br />

1 2 3<br />

4 2<br />

4<br />

3<br />

x


252 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

2 x 2<br />

121. gx x<br />

1 x x 1<br />

(a) Domain: all real numbers x except x 1<br />

(b) x-intercept:<br />

y-intercept:<br />

(c) Vertical asymptote: x 1<br />

Horizontal asymptote: y 1<br />

(d)<br />

6<br />

4<br />

(0, 2)<br />

(−2, 0)<br />

−2<br />

−4<br />

−6<br />

−8<br />

y<br />

2, 0<br />

0, 2<br />

x 0 2 3<br />

y 2 5<br />

1<br />

1<br />

4<br />

2<br />

123. px <br />

(a) Domain: all real numbers x<br />

x2<br />

x2 1<br />

(b) Intercept:<br />

(c) Horizontal asymptote:<br />

(d)<br />

4<br />

3<br />

2<br />

−3 −2 −1 (0, 0) 2 3<br />

−2<br />

y<br />

2<br />

0, 0<br />

x<br />

2<br />

y 1<br />

x ±3 ±2 ±1 0<br />

9<br />

10<br />

4<br />

5<br />

1<br />

2<br />

y 0<br />

125. fx <br />

(a) Domain: all real numbers x<br />

(d)<br />

x<br />

x2 1<br />

(b) Intercept:<br />

0, 0<br />

(c) Horizontal asymptote: y 0<br />

x<br />

122.<br />

x 3<br />

hx <br />

x 2<br />

(a) Domain: all real numbers x except x 2<br />

(b) x-intercept: 3, 0<br />

3<br />

y-intercept: 0, 2<br />

(c) Vertical asymptote: x 2<br />

Horizontal asymptote: y 1<br />

(d)<br />

x 1 0 1 3 4 5<br />

y 2 0<br />

(( 0, 3<br />

2<br />

5<br />

4<br />

3<br />

−2 −1<br />

−2<br />

1 4<br />

(3, 0)<br />

5 6<br />

−3<br />

4<br />

3<br />

y<br />

3<br />

2<br />

124. f x <br />

(a) Domain: all real numbers x<br />

2x<br />

x2 4<br />

(b) Intercept:<br />

(c) Horizontal asymptote:<br />

(d)<br />

x 2<br />

1 0 1 2<br />

2<br />

5<br />

1<br />

2<br />

y 0<br />

3<br />

2<br />

1<br />

(0, 0)<br />

−1<br />

−2<br />

−3<br />

0, 0<br />

y<br />

1 2 3<br />

x<br />

x<br />

1<br />

2<br />

y 0<br />

x 2 1 0 1 2<br />

y 0<br />

1<br />

2<br />

1<br />

2<br />

2<br />

5<br />

2<br />

5<br />

2<br />

1<br />

(0, 0)<br />

−1<br />

−2<br />

2<br />

5<br />

y<br />

1<br />

2<br />

2<br />

3<br />

1 2<br />

x


4<br />

126. hx <br />

x 1<br />

(a) Domain: all real numbers x except x 1<br />

2<br />

(b) y- intercept: 0, 4<br />

(c) Vertical asymptote: x 1<br />

Horizontal asymptote: y 0<br />

(d)<br />

x 2 1 0 2 3 4<br />

4<br />

9<br />

y 1 4 4 1<br />

7<br />

6<br />

5<br />

(0, 4)<br />

3<br />

1<br />

y<br />

−3 −2 −1 2 3 4 5<br />

128. y <br />

(a) Domain: all real numbers x except x ±2<br />

2x2<br />

x2 4<br />

(b) Intercept:<br />

(c) Vertical asymptotes: x 2, x 2<br />

Horizontal asymptote: y 2<br />

(d)<br />

(0, 0)<br />

6<br />

4<br />

0, 0<br />

x ±5 ±4 ±3 ±1 0<br />

50<br />

21<br />

y 0<br />

−6 −4 4 6<br />

y<br />

8<br />

3<br />

18<br />

5<br />

x<br />

x<br />

2<br />

3<br />

4<br />

9<br />

127. f x <br />

(a) Domain: all real numbers x<br />

6x2<br />

x2 1<br />

129.<br />

(b) Intercept:<br />

(c) Horizontal asymptote:<br />

(d)<br />

−6<br />

−4<br />

−2<br />

Review Exercises for Chapter 2 253<br />

4<br />

2<br />

−8<br />

0, 0<br />

y<br />

(0, 0)<br />

2 4<br />

6<br />

y 6<br />

x ±3 ±2 ±1 0<br />

27<br />

5<br />

y 3 0<br />

24<br />

5<br />

f x 6x2 11x 3<br />

3x 2 x<br />

(c) Vertical asymptote: x 0<br />

Horizontal asymptote: y 2<br />

(d)<br />

<br />

(a) Domain: all real numbers except <strong>and</strong><br />

(b) intercept: <br />

y-intercept:<br />

none<br />

3<br />

x <br />

x-<br />

, 0 2 1<br />

x x 0<br />

3<br />

x<br />

y<br />

3x 12x 3<br />

x3x 1<br />

2<br />

7<br />

2<br />

2<br />

−8 −6 −4 −2<br />

−2<br />

−4<br />

−6<br />

−8<br />

4<br />

3<br />

, 0<br />

2<br />

6 8<br />

y<br />

1<br />

((<br />

<br />

x<br />

2x 3<br />

, x <br />

x<br />

1<br />

3<br />

1 2 3 4<br />

5 1 1<br />

x<br />

1<br />

2<br />

5<br />

4


254 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

130.<br />

132.<br />

f x 6x2 7x 2<br />

4x 2 1<br />

<br />

2x 13x 2<br />

2x 12x 1<br />

(a) Domain: all real numbers x except<br />

(b) y- intercept: 0, 2<br />

x-intercept:<br />

(c) Vertical asymptote:<br />

Horizontal asymptote: y <br />

(d)<br />

3<br />

x <br />

2<br />

1<br />

2<br />

x 3 2 1 0<br />

2<br />

1 2<br />

y<br />

11<br />

5<br />

2<br />

−3 −2 −1<br />

2 3<br />

2<br />

, 0<br />

3<br />

f x x2 1<br />

x 1<br />

y<br />

2<br />

, 0 3<br />

8<br />

3<br />

((<br />

3x 2 1<br />

, x <br />

2x 1 2<br />

5 2 0<br />

x<br />

3<br />

x ± 1<br />

2<br />

(a) Domain: all real numbers x except x 1<br />

(b) y-intercept:<br />

(c) Vertical asymptote:<br />

(d)<br />

Using long division,<br />

Slant asymptote:<br />

−6 −4 −2 2 4 6<br />

y<br />

0, 1<br />

4<br />

(0, 1)<br />

x 1<br />

1<br />

3<br />

4<br />

5<br />

f x x2 1<br />

2<br />

x 1 <br />

x 1 x 1 .<br />

y x 1<br />

x 6<br />

2<br />

0 4<br />

y 5<br />

1<br />

37<br />

5<br />

3<br />

2<br />

13<br />

2<br />

x<br />

1<br />

2<br />

5<br />

2<br />

17<br />

5<br />

131. fx <br />

(a) Domain: all real numbers x<br />

2x3<br />

x2 2x<br />

2x <br />

1 x2 1<br />

(b) Intercept:<br />

(c) Slant asymptote:<br />

(d)<br />

−3<br />

−2<br />

3<br />

2<br />

1<br />

(0, 0)<br />

−1<br />

−2<br />

−3<br />

0, 0<br />

y<br />

1 2<br />

y 2x<br />

x 2 1 0 1 2<br />

y 1 0 1<br />

16<br />

5<br />

3<br />

x<br />

16<br />

5


133.<br />

135.<br />

fx 3x3 2x 2 3x 2<br />

3x 2 x 4<br />

<br />

<br />

x 1 23<br />

, x 1<br />

3 3x 4<br />

(a) Domain: all real numbers x except<br />

(b) x- intercepts: 1, 0 <strong>and</strong><br />

y-intercept:<br />

(c) Vertical asymptote:<br />

Slant asymptote: y x <br />

(d)<br />

1<br />

x <br />

3<br />

4<br />

3<br />

x 3 2 0 1 2 3<br />

y<br />

((<br />

C C<br />

x<br />

0, − 1<br />

2<br />

3x 2x 1x 1<br />

3x 4x 1<br />

3x 2x 1<br />

3x 4<br />

44<br />

13<br />

4<br />

3<br />

2<br />

1<br />

y<br />

2<br />

, 0<br />

3<br />

(1, 0)<br />

−2 −1<br />

2 3 4<br />

−2<br />

((<br />

0, 1 2<br />

12<br />

5<br />

1<br />

2<br />

2<br />

, 0 3<br />

x<br />

0 2<br />

x 1, x 4<br />

3<br />

14<br />

5<br />

134.<br />

0.5x 500<br />

, 0 < x 136.<br />

x<br />

Horizontal asymptote: C <br />

As x increases, the average cost per unit approaches the<br />

horizontal asymptote, C 0.5 $0.50.<br />

0.5<br />

0.5<br />

1<br />

Review Exercises for Chapter 2 255<br />

fx 3x3 4x 2 12x 16<br />

3x 2 5x 2<br />

(a) Domain: all real x except x 2 or<br />

(b) intercept:<br />

intercepts: 4<br />

, 0 , 2, 0<br />

3 x-<br />

y- 0, 8<br />

(c) Vertical asymptote:<br />

(d)<br />

(a)<br />

<br />

<br />

x 2x 23x 4<br />

x 23x 1<br />

x 23x 4<br />

, x 2<br />

3x 1<br />

Using long division,<br />

f x 3x2 10x 8<br />

3x 1<br />

Slant asymptote:<br />

x<br />

y<br />

4<br />

96<br />

13<br />

4<br />

2<br />

y<br />

((<br />

4<br />

, 0<br />

3<br />

−6 −4 −2<br />

4 6<br />

−2 (2, 0)<br />

−6<br />

(0, −8)<br />

1<br />

21<br />

4<br />

x 1<br />

3<br />

y x 3<br />

x 3 <br />

0 1 2 4<br />

8<br />

C 528p<br />

, 0 ≤ p < 100<br />

100 p<br />

4000<br />

0<br />

0<br />

x<br />

1<br />

2<br />

0<br />

x 1<br />

3<br />

5<br />

3x 1 .<br />

16<br />

11<br />

(b) When C million.<br />

52825<br />

p 25,<br />

$176<br />

100 25<br />

100<br />

When p 50, C million.<br />

52850<br />

$528<br />

100 50<br />

When p 75, C million.<br />

(c) As p → 100, C → . No, it is not possible.<br />

52875<br />

$1584<br />

100 75


256 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

137. (a)<br />

y<br />

2 in. 2 in.<br />

(b) The area of print is x 4y 4, which is<br />

30 square inches.<br />

0<br />

0<br />

x 4y 4 30<br />

x<br />

2 in.<br />

2 in.<br />

y 4 30<br />

x 4<br />

y 30<br />

4<br />

x 4<br />

y <br />

y <br />

y <br />

30 4x 4<br />

x 4<br />

4x 14<br />

x 4<br />

22x 7<br />

x 4<br />

22x 7 2x2x 7<br />

Total area xy x x 4 <br />

x 4<br />

100<br />

(c) Because the horizontal margins total 4 inches, x must be<br />

greater than 4 inches. The domain is x > 4.<br />

(d)<br />

200<br />

4 32<br />

0<br />

The minimum area occurs when x 9.477 inches, so<br />

y <br />

22 9.477 7<br />

9.477 4<br />

9.477 inches.<br />

The least amount of paper used is for a page size of about<br />

9.48 inches by 9.48 inches.<br />

138.<br />

The limiting amount of uptake is determined<br />

by the horizontal asymptote,<br />

y <br />

90<br />

18.47<br />

0.23 80.3 mgdm2 18.47x 2.96<br />

y , 0 < x<br />

0.23x 1<br />

139.<br />

CO2 hr.<br />

Critical numbers:<br />

Test intervals: , <br />

Test: Is 3x 42x 1 < 0?<br />

4<br />

x <br />

3 , , 43<br />

4<br />

6x<br />

3x 42x 1 < 0<br />

1<br />

3 , x 2<br />

2 6x<br />

5x 4 < 0<br />

2 5x < 4<br />

140.<br />

2 x 2 x ≥ 15 141.<br />

2 x 2 x 15 ≥ 0<br />

Critical numbers: x <br />

Test intervals: , 3 ⇒ 2x 5x 3 > 0<br />

5<br />

2x 5x 3 ≥ 0<br />

2 , x 3<br />

5 2 , 3,<br />

⇒ 2x 5x 3 > 0<br />

5<br />

2 ⇒ 2x 5x 3 < 0<br />

Solution interval: , 3 5<br />

2 , <br />

1<br />

, 2, 1 2 , <br />

By testing an x-value in each test interval in the<br />

inequality, we see that the solution set is: 4<br />

3<br />

x 3 16x ≥ 0<br />

xx 4x 4 ≥ 0<br />

Critical numbers:<br />

Test intervals:<br />

x 0, x ±4<br />

Test: Is xx 4x 4 ≥ 0?<br />

By testing an x- value in each test interval in the inequality,<br />

we see that the solution set is: 4, 0 4, .<br />

, 1<br />

2<br />

, 4, 4, 0, 0, 4, 4,


142.<br />

144.<br />

146.<br />

148.<br />

12x 3 20x 2 < 0 143.<br />

4x 2 3x 5 < 0<br />

Critical numbers:<br />

Test intervals:<br />

x 0, x 5<br />

3<br />

, 0 ⇒ 12x 3 20x 2 < 0<br />

Solution interval: , 0 0, 5<br />

<br />

3<br />

5<br />

3 , ⇒ 12x3 20x2 0,<br />

> 0<br />

5<br />

3 ⇒ 12x3 20x2 < 0<br />

x 5<br />

< 0 145.<br />

3 x<br />

Critical numbers:<br />

x 5, x 3<br />

Test intervals: , 3 ⇒<br />

3, 5 ⇒<br />

5, ⇒<br />

x 5<br />

< 0<br />

3 x<br />

x 5<br />

> 0<br />

3 x<br />

x 5<br />

< 0<br />

3 x<br />

Solution intervals: , 3 5, <br />

1 1<br />

><br />

x 2 x<br />

1 1<br />

> 0<br />

x 2 x<br />

Critical numbers:<br />

Test intervals:<br />

x 2, x 0<br />

, 0 ⇒ 1 1<br />

> 0<br />

x 2 x<br />

0, 2 ⇒ 1 1<br />

< 0<br />

x 2 x<br />

2, ⇒ 1 1<br />

> 0<br />

x 2 x<br />

Solution interval: , 0 2, <br />

P <br />

2000 ≤<br />

10001 3t<br />

5 t<br />

10001 3t<br />

5 t<br />

20005 t ≤ 10001 3t<br />

10,000 2000t ≤ 1000 3000t<br />

1000t ≤ 9000<br />

t ≥ 9 days<br />

147.<br />

Review Exercises for Chapter 2 257<br />

2x 1 3x 1<br />

≤ 0<br />

x 1x 1<br />

2x 2 3x 3<br />

≤ 0<br />

x 1x 1)<br />

x 5<br />

≤ 0<br />

x 1x 1<br />

Critical numbers: x 5, x ±1<br />

Test intervals: , 5, 5, 1, 1, 1, 1, <br />

x 5<br />

Test: Is<br />

≤ 0?<br />

x 1x 1<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 5, 1 1, <br />

2<br />

x 1 ≤<br />

3<br />

x 1<br />

x 4x 3<br />

≥ 0<br />

x<br />

Critical numbers: x 4, x 3, x 0<br />

Test intervals: , 4, 4, 3, 3, 0, 0, <br />

x 4x 3<br />

Test: Is<br />

≥ 0?<br />

x<br />

By testing an x-value in each test interval in the inequality,<br />

we see that the solution set is: 4, 3 0, <br />

x2 7x 12<br />

≥ 0<br />

x<br />

50001 r 2 > 5500<br />

149. False. A fourth-degree polynomial<br />

can have at most four zeros <strong>and</strong><br />

complex zeros occur in conjugate<br />

pairs.<br />

1 r 2 > 1.1<br />

1 r > 1.0488<br />

r > 0.0488<br />

r > 4.9%<br />

150. False. (See Exercise 123.)<br />

The domain of<br />

f x 1<br />

x 2 1<br />

is the set of all real numbers x.


258 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

151. The maximum (or minimum) value of a quadratic<br />

function is located at its graph’s vertex. To find the<br />

vertex, either write the equation in st<strong>and</strong>ard form or<br />

use the formula<br />

1.<br />

<br />

fx ax 3 bx 2 cx d<br />

x k) ax3 bx2 ax<br />

cx d<br />

2 ak bx ak2 bk c<br />

ax 3 akx 2<br />

ak bx 2 cx<br />

ak bx 2 ak 2 bkx<br />

ak 2 bk cx d<br />

ak 2 bk cx ak 3 bk 2 ck<br />

ak 3 bk 2 ck d<br />

Thus, <strong>and</strong><br />

Since the remainder r ak f k r.<br />

3 bk2 f k ak ck d,<br />

3 bk2 f x ax<br />

ck d.<br />

3 bx2 cx d x kax2 ak bx ak2 bx c ak3 bk2 ck d<br />

2. (a)<br />

b b<br />

, f <br />

2a 2a .<br />

If the leading coefficient is positive, the vertex is a<br />

minimum. If the leading coefficient is negative, the<br />

vertex is a maximum.<br />

Problem Solving for Chapter 2<br />

(b)<br />

(c)<br />

y<br />

y 3 y 2<br />

1 2<br />

2 12<br />

3 36<br />

4 80<br />

5 150<br />

6 252<br />

7 392<br />

8 576<br />

9 810<br />

10 1100<br />

x<br />

2 3<br />

x<br />

2 2<br />

36 ⇒ x<br />

1<br />

8<br />

3 ⇒ x 6<br />

2 x3 1<br />

8 2x2 1<br />

8 288<br />

x3 2x2 288; a 1, b 2 ⇒ a2<br />

x<br />

1<br />

<br />

b3 8<br />

3 x2 252 ⇒ x 6<br />

152. Answers will vary. Sample answer:<br />

<strong>Polynomial</strong>s of degree n > 0<br />

with real coefficients can<br />

be written as the product of linear <strong>and</strong> quadratic factors<br />

with real coefficients, where the quadratic factors have<br />

no real zeros.<br />

153. An asymptote of a graph is a line to which the graph becomes arbitrarily close as x increases or decreases without bound.<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

Setting the factors equal to zero <strong>and</strong> solving for the<br />

variable can find the zeros of a polynomial function.<br />

To solve an equation is to find all the values of the<br />

variable for which the equation is true.<br />

3x3 x2 90; a 3, b 1 ⇒ a2<br />

b3 9<br />

93x 3 9x 2 990<br />

3x 3 3x 2 810 ⇒ 3x 9 ⇒ x 3<br />

2x3 5x2 2500; a 2, b 5 ⇒ a2 4<br />

b3 <br />

125<br />

4<br />

125 2x3 4<br />

125 5x2 4<br />

125 2500<br />

2x<br />

5 3<br />

2x<br />

5 2<br />

80 ⇒ 2x<br />

4 ⇒ x 10<br />

5<br />

7x3 6x2 1728; a 7, b 6 ⇒ a2 49<br />

<br />

b3 216<br />

49<br />

216 7x3 49<br />

216 6x2 49<br />

216 1728<br />

7x<br />

6 3<br />

7x<br />

6 2<br />

392 ⇒ 7x<br />

7 ⇒ x 6<br />

6<br />

10x3 3x2 297; a 10, b 3 ⇒ a2 100<br />

<br />

b3 27<br />

100<br />

27 10x3 100<br />

27 3x2 100<br />

27 297<br />

10x<br />

3 3<br />

10x<br />

3 2<br />

1100 ⇒ 10x<br />

10 ⇒ x 3<br />

3


3.<br />

V l w h x 2 x 3<br />

x 2 x 3 20<br />

x 3 3x 2 20 0<br />

Possible rational zeros: ±1, ±2, ±4, ±5, ±10, ±20<br />

2 1<br />

x 2<br />

1<br />

3<br />

2<br />

5<br />

or x <br />

0<br />

10<br />

10<br />

x 2x 2 5x 10 0<br />

f x rx<br />

4. False. Since we have qx <br />

dx dx .<br />

f x dxqx rx,<br />

f x f 1<br />

The statement should be corrected to read since qx <br />

x 1 x 1 .<br />

f 1 2<br />

4 1 3a<br />

3 3a<br />

5 ± 15i<br />

2<br />

a 1<br />

b 1 41 5<br />

y x 2 5x 4<br />

20<br />

20<br />

0<br />

(b) Enter the data points<br />

<strong>and</strong> use the regression feature to obtain<br />

y x2 0, 4, 1, 0, 2, 2, 4, 0,<br />

6, 10<br />

5x 4.<br />

Problem Solving for Chapter 2 259<br />

5. (a)<br />

1, 0: 0 a1<br />

4 a b<br />

4 a 1 4a<br />

2 4, 0: 0 a4<br />

0 16a 4b 4 44a b 1<br />

0 4a b 1 or b 1 4a<br />

b1 4<br />

2 0, 4: 4 a0<br />

4 c<br />

b4 4<br />

2 y ax<br />

b0 c<br />

2 bx c 6. (a)<br />

9 4<br />

Slope 5<br />

3 2<br />

Slope of tangent line is less than 5.<br />

(b)<br />

4 1<br />

Slope 3<br />

2 1<br />

Slope of tangent line is greater than 3.<br />

4.41 4<br />

(c) Slope 4.1<br />

2.1 2<br />

Slope of tangent line is less than 4.1.<br />

f 2 h f 2<br />

(d) Slope <br />

2 h 2<br />

x<br />

x<br />

x + 3<br />

Choosing the real positive value for x we have: x 2<br />

<strong>and</strong> x 3 5.<br />

The dimensions of the mold are 2 inches 2 inches 5 inches.<br />

(e)<br />

2 h2 4<br />

h<br />

<br />

4h h2<br />

h<br />

4 h, h 0<br />

Slope 4 h, h 0<br />

4 1 3<br />

4 1 5<br />

4 0.1 4.1<br />

The results are the same as in (a)–(c).<br />

(f) Letting h get closer <strong>and</strong> closer to 0, the slope<br />

approaches 4. Hence, the slope at 2, 4 is 4.


260 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

7.<br />

9.<br />

10.<br />

f x x kqx r 8. (a)<br />

(a) Cubic, passes through 2, 5, rises to the right<br />

a bia bi a 2 abi abi b 2 i 2 a 2 b 2<br />

Since a <strong>and</strong> b are real numbers, a is also a real number.<br />

2 b2 fx <br />

Vertical asymptote:<br />

Horizontal asymptote:<br />

(i)<br />

(ii)<br />

(iii)<br />

(iv)<br />

One possibility:<br />

f x x 2x 2 5<br />

x 3 2x 2 5<br />

(b) Cubic, passes through 3, 1, falls to the right<br />

One possibility:<br />

f x x 3x 2 1<br />

x 3 3x 2 1<br />

ax b<br />

cx d<br />

x d<br />

c<br />

y a<br />

c<br />

a > 0, b < 0, c > 0, d < 0<br />

Both the vertical asymptote <strong>and</strong> the horizontal<br />

asymptote are positive. Matches graph (d).<br />

a > 0, b > 0, c < 0, d < 0<br />

Both the vertical asymptote <strong>and</strong> the horizontal<br />

asymptote are negative. Matches graph (b).<br />

a < 0, b > 0, c > 0, d < 0<br />

The vertical asymptote is positive <strong>and</strong> the horizontal<br />

asymptote is negative. Matches graph (a).<br />

a > 0, b < 0, c > 0, d > 0<br />

The vertical asymptote is negative <strong>and</strong> the horizontal<br />

asymptote is positive. Matches graph (c).<br />

(b)<br />

(c)<br />

z m 1<br />

z<br />

1 1 1 i<br />

<br />

1 i 1 i 1 i<br />

<br />

z m 1<br />

z<br />

<br />

z m 1<br />

z<br />

<br />

<br />

1 i<br />

2<br />

1 1 3 i<br />

<br />

3 i 3 i 3 i<br />

3 i<br />

10<br />

<br />

1<br />

2 8i<br />

1 2 8i<br />

<br />

2 8i 2 8i<br />

2 8i<br />

68<br />

1 1<br />

<br />

2 2 i<br />

3 1<br />

<br />

10 10 i<br />

1<br />

2<br />

<br />

34 17 i<br />

11.<br />

(a) is a vertical asymptote.<br />

a causes a vertical stretch if <strong>and</strong> a vertical<br />

shrink if For a > 1, the graph<br />

becomes wider as a increases. When a is negative<br />

the graph is reflected about the x-axis.<br />

0 < fx <br />

b 0 ⇒ x b<br />

a > 1<br />

a < 1.<br />

ax<br />

x b2 (b) a 0. Varying the value of b varies the vertical<br />

asymptote of the graph of f. For b > 0, the graph<br />

is translated to the right. For b < 0, the graph is<br />

reflected in the x-axis <strong>and</strong> is translated to the left.


Problem Solving for Chapter 2 261<br />

12. (a)<br />

(b)<br />

50<br />

1<br />

y <br />

0.007x 0.44<br />

0<br />

0<br />

70<br />

1<br />

y 0.0313x<br />

0.007x 0.44<br />

y 2 Age, x Near point, y<br />

50 (c)<br />

Age, x<br />

Near point, y Quadratic <strong>Rational</strong><br />

16 3.0<br />

Model Model<br />

32<br />

44<br />

4.7<br />

9.8<br />

0<br />

0<br />

70<br />

16<br />

32<br />

3.0<br />

4.7<br />

3.66<br />

2.32<br />

3.05<br />

4.63<br />

50 19.7<br />

44 9.8 11.83 7.58<br />

60 39.4<br />

50 19.7 19.97 11.11<br />

60 39.4 38.54 50.00<br />

1.586x 21.02<br />

The models are fairly good fits to the data. The quadratic<br />

model seems to be a better fit for older ages <strong>and</strong> the<br />

rational model a better fit for younger ages.<br />

(d) For x 25, the quadratic model yields y 0.9325 inches<br />

<strong>and</strong> the rational model yields y 3.774 inches.<br />

(e) The reciprocal model cannot be used to predict the near<br />

point for a person who is 70 years old because it results in<br />

a negative value y 20. The quadratic model yields<br />

y 63.37 inches.


262 Chapter 2 <strong>Polynomial</strong> <strong>and</strong> <strong>Rational</strong> <strong>Functions</strong><br />

Chapter 2 Practice Test<br />

1. Sketch the graph of f x x <strong>and</strong> identify the vertex <strong>and</strong> the intercepts.<br />

2 6x 5<br />

2. Find the number of units x that produce a minimum cost C if<br />

C 0.01x 2 90x 15,000.<br />

3. Find the quadratic function that has a maximum at 1, 7 <strong>and</strong> passes through the point 2, 5.<br />

4. Find two quadratic functions that have x-intercepts <strong>and</strong> 4<br />

2, 0 , 0.<br />

5. Use the leading coefficient test to determine the right <strong>and</strong> left end behavior of the graph<br />

of the polynomial function fx 3x 5 2x 3 17.<br />

6. Find all the real zeros of f x x 5 5x 3 4x.<br />

7. Find a polynomial function with 0, 3, <strong>and</strong> 2 as zeros.<br />

8. Sketch f x x 3 12x.<br />

9. Divide 3x using long division.<br />

4 7x 2 2x 10 by x 3<br />

10. Divide x 3 11 by x 2 2x 1.<br />

11. Use synthetic division to divide 3x 5 13x 4 12x 1 by x 5.<br />

12. Use synthetic division to find f6 given fx 7x 3 40x 2 12x 15.<br />

13. Find the real zeros of fx x 3 19x 30.<br />

14. Find the real zeros of fx x 4 x 3 8x 2 9x 9.<br />

15. List all possible rational zeros of the function fx 6x 3 5x 2 4x 15.<br />

16. Find the rational zeros of the polynomial fx x 3 20<br />

3 x2 9x 10<br />

3 .<br />

17. Write fx x as a product of linear factors.<br />

4 x3 5x 10<br />

18. Find a polynomial with real coefficients that has 2, 3 i,<br />

<strong>and</strong> 3 2i as zeros.<br />

3


19. Use synthetic division to show that 3i is a zero of fx x 3 4x 2 9x 36.<br />

x 1<br />

20. Sketch the graph of fx <strong>and</strong> label all intercepts <strong>and</strong> asymptotes.<br />

2x<br />

21. Find all the asymptotes of fx 8x2 9<br />

x 2 1 .<br />

22. Find all the asymptotes of fx 4x2 2x 7<br />

.<br />

x 1<br />

23. Given z1 4 3i <strong>and</strong> z 2 2 i, find the following:<br />

(a) z1 z2 (b)<br />

z 1 z 2<br />

(c) z 1z 2<br />

24. Solve the inequality: x 2 49 ≤ 0<br />

25. Solve the inequality:<br />

x 3<br />

≥ 0<br />

x 7<br />

Practice Test for Chapter 2 263

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!