03.07.2013 Views

RAREFIED GAS DYNAMICS AND ITS APPLICATIONS TO VACUUM ...

RAREFIED GAS DYNAMICS AND ITS APPLICATIONS TO VACUUM ...

RAREFIED GAS DYNAMICS AND ITS APPLICATIONS TO VACUUM ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0.5 setgray0 0.5 setgray1<br />

<strong>RAREFIED</strong> <strong>GAS</strong> <strong>DYNAMICS</strong><br />

<strong>AND</strong> <strong>ITS</strong> <strong>APPLICATIONS</strong><br />

<strong>TO</strong> <strong>VACUUM</strong> TECHNOLOGY<br />

Felix Sharipov<br />

Departamento de Física<br />

Universidade Federal do Paraná<br />

Curitiba, Brazil<br />

http://fisica.ufpr.br/sharipov<br />

Felix Sharipov – p. 1


Typical problems<br />

isothermal flows, Poiseuille flow<br />

P1<br />

✲ P2 P1 > P2<br />

Felix Sharipov – p. 2


Typical problems<br />

isothermal flows, Poiseuille flow<br />

P1<br />

✲ P2 P1 > P2<br />

˙M mass flow rate?<br />

Felix Sharipov – p. 2


Typical problems<br />

isothermal flows, Poiseuille flow<br />

P1<br />

✲ P2 P1 > P2<br />

˙M mass flow rate?<br />

Q heat flow rate?<br />

Felix Sharipov – p. 2


Typical problems<br />

isothermal flows, Poiseuille flow<br />

P1<br />

✲ P2 P1 > P2<br />

˙M mass flow rate?<br />

Q heat flow rate?<br />

density distribution?<br />

Felix Sharipov – p. 2


Typical problems<br />

isothermal flows, Poiseuille flow<br />

P1<br />

✲ P2 P1 > P2<br />

˙M mass flow rate?<br />

Q heat flow rate?<br />

density distribution?<br />

over the whole range of Kn<br />

Felix Sharipov – p. 2


Typical problems<br />

non-isothermal flows, thermal creep<br />

T1<br />

✲ T2 T1 < T2<br />

Felix Sharipov – p. 3


Typical problems<br />

non-isothermal flows, thermal creep<br />

T1<br />

✲ T2 T1 < T2<br />

˙M mass flow rate?<br />

Felix Sharipov – p. 3


Typical problems<br />

non-isothermal flows, thermal creep<br />

T1<br />

✲ T2 T1 < T2<br />

˙M mass flow rate?<br />

Q heat flow rate?<br />

Felix Sharipov – p. 3


Typical problems<br />

non-isothermal flows, thermal creep<br />

T1<br />

✲ T2 T1 < T2<br />

˙M mass flow rate?<br />

Q heat flow rate?<br />

density (or pressure) distribution?<br />

Felix Sharipov – p. 3


Typical problems<br />

non-isothermal flows, thermal creep<br />

T1<br />

✲ T2 T1 < T2<br />

˙M mass flow rate?<br />

Q heat flow rate?<br />

density (or pressure) distribution?<br />

over the whole range of Kn<br />

Felix Sharipov – p. 3


Typical problems<br />

Thermomolecular pressure difference<br />

P1, T1<br />

P2, T2<br />

Felix Sharipov – p. 4


Typical problems<br />

Thermomolecular pressure difference<br />

P1, T1<br />

P2, T2<br />

˙M = 0 no mass flow<br />

Felix Sharipov – p. 4


Typical problems<br />

Thermomolecular pressure difference<br />

P1, T1<br />

P2, T2<br />

˙M = 0 no mass flow<br />

What is the pressure ratio?<br />

Felix Sharipov – p. 4


Typical problems<br />

Thermomolecular pressure difference<br />

P1, T1<br />

P2, T2<br />

˙M = 0 no mass flow<br />

What is the pressure ratio?<br />

P2<br />

P1<br />

=<br />

T2<br />

T1<br />

γ<br />

Felix Sharipov – p. 4


Typical problems<br />

Thermomolecular pressure difference<br />

P1, T1<br />

P2, T2<br />

˙M = 0 no mass flow<br />

What is the pressure ratio?<br />

P2<br />

P1<br />

=<br />

T2<br />

T1<br />

γ<br />

0 ≤ γ ≤ 0.5<br />

Felix Sharipov – p. 4


Knudsen number<br />

Kn =<br />

molecular mean free path<br />

characteristic size<br />

Felix Sharipov – p. 5


Knudsen number<br />

Kn =<br />

molecular mean free path<br />

characteristic size<br />

Kn≫1 Free molecular regime.<br />

Every particle moves independently on each other<br />

Felix Sharipov – p. 5


Knudsen number<br />

Kn =<br />

molecular mean free path<br />

characteristic size<br />

Kn≫1 Free molecular regime.<br />

Every particle moves independently on each other<br />

Kn≪1 Hydrodynamic regime.<br />

Continuum mechanics equations are solved<br />

Felix Sharipov – p. 5


Knudsen number<br />

Kn =<br />

molecular mean free path<br />

characteristic size<br />

Kn≫1 Free molecular regime.<br />

Every particle moves independently on each other<br />

Kn≪1 Hydrodynamic regime.<br />

Continuum mechanics equations are solved<br />

Kn∼ 1 Transition regime.<br />

Kinetic Boltzmann equation is solved<br />

or DSMC method is applied<br />

Felix Sharipov – p. 5


Rarefaction parameter<br />

equivalent mean free path<br />

ℓ = µvm<br />

P<br />

Felix Sharipov – p. 6


Rarefaction parameter<br />

equivalent mean free path<br />

µ - viscosity<br />

ℓ = µvm<br />

P<br />

Felix Sharipov – p. 6


Rarefaction parameter<br />

equivalent mean free path<br />

µ - viscosity<br />

ℓ = µvm<br />

P<br />

vm = 2kT/m most probable molecular vel.<br />

Felix Sharipov – p. 6


Rarefaction parameter<br />

equivalent mean free path<br />

µ - viscosity<br />

ℓ = µvm<br />

P<br />

vm = 2kT/m most probable molecular vel.<br />

P - pressure<br />

Felix Sharipov – p. 6


Boltzmann equation<br />

f(t, r, v) - velocity distribution function<br />

Felix Sharipov – p. 7


Boltzmann equation<br />

f(t, r, v) - velocity distribution function<br />

n(t, r) = f(t, r, v)dv - density<br />

u(t, r) = 1<br />

n<br />

P (t, r) = m<br />

3<br />

T (t, r) = m<br />

3nk<br />

q(t, r) = m<br />

2<br />

vf(t, r, v)dv - bulk velocity<br />

V 2 f(t, r, v)dv - pressure<br />

V 2 f(t, r, v)dv - temperature<br />

V 2 Vf(t, r, v)dv - heat flux vector<br />

V = v − u<br />

Felix Sharipov – p. 7


Boltzmann equation<br />

∂f<br />

∂t<br />

+ v · ∂f<br />

∂r<br />

= Q(ff∗)<br />

Felix Sharipov – p. 8


Boltzmann equation<br />

Q(ff∗) =<br />

∂f<br />

∂t<br />

<br />

+ v · ∂f<br />

∂r<br />

= Q(ff∗)<br />

(f ′ f ′ ∗ − ff∗) |v − v∗|bdb dε dv∗<br />

v ′ and v∗ ′ - pre-collision molecular velocities<br />

v and v∗ - post-collision molecular velocities<br />

Felix Sharipov – p. 8


Boltzmann equation<br />

Discrete velocity method:<br />

v1, v2, ... , vN,<br />

Felix Sharipov – p. 9


Boltzmann equation<br />

Discrete velocity method:<br />

v1, v2, ... , vN,<br />

The BE is split into N differential eqs. coupled via<br />

the collisions integral<br />

Felix Sharipov – p. 9


Kinetic equations<br />

Till now, a numerical solution of the exact Boltz.Eq.<br />

requires great computational efforts<br />

Felix Sharipov – p. 10


Kinetic equations<br />

Till now, a numerical solution of the exact Boltz.Eq.<br />

requires great computational efforts<br />

BGK model<br />

Q(ff∗) = ν f M − f <br />

Felix Sharipov – p. 10


Kinetic equations<br />

Till now, a numerical solution of the exact Boltz.Eq.<br />

requires great computational efforts<br />

BGK model<br />

S model<br />

Q(ff∗) = ν<br />

<br />

f M<br />

Q(ff∗) = ν f M − f <br />

<br />

1 +<br />

2m(q · V)<br />

15n(kT ) 2<br />

mV 2<br />

2kT<br />

<br />

5<br />

−<br />

2<br />

<br />

− f<br />

Felix Sharipov – p. 10


Kinetic equations<br />

Till now, a numerical solution of the exact Boltz.Eq.<br />

requires great computational efforts<br />

BGK model<br />

S model<br />

Q(ff∗) = ν<br />

<br />

f M<br />

f M = n<br />

Q(ff∗) = ν f M − f <br />

<br />

1 +<br />

m<br />

2πkT<br />

2m(q · V)<br />

15n(kT ) 2<br />

3/2<br />

exp<br />

mV 2<br />

2kT<br />

<br />

5<br />

−<br />

2<br />

<br />

<br />

m(v − u)2<br />

−<br />

2kT<br />

ν = P/µ - frequency of intermolecular collisions<br />

<br />

− f<br />

Felix Sharipov – p. 10


Viscous slip coefficient<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✻<br />

y<br />

.<br />

..<br />

..... ........ ..... ......<br />

..<br />

. ..... . .<br />

✻<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

✻ ✻<br />

.<br />

✲<br />

uy<br />

x<br />

Felix Sharipov – p. 11


Viscous slip coefficient<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✻<br />

y<br />

.<br />

..<br />

..... ........ ..... ......<br />

..<br />

. ..... . .<br />

✻<br />

✻ ✻<br />

The most used formula<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

uy =<br />

✲<br />

α -accommodation coefficient<br />

λ - mean free path<br />

uy<br />

x<br />

2 − α<br />

α λduy<br />

dux<br />

Felix Sharipov – p. 11


Viscous slip coefficient<br />

All disagreements with experiments are<br />

eliminated by fitting α:<br />

while in reality<br />

0.1 ≤ α ≤ 2,<br />

0.9 ≤ α ≤ 1,<br />

Felix Sharipov – p. 12


Viscous slip coefficient<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✻<br />

y<br />

.<br />

..<br />

..... ........ ..... ......<br />

..<br />

. ..... . .<br />

✻<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

✻ ✻<br />

.<br />

✲<br />

uy<br />

x<br />

Felix Sharipov – p. 13


Viscous slip coefficient<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✻<br />

y<br />

.<br />

..<br />

..... ........ ..... ......<br />

..<br />

. ..... . .<br />

✻<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

✻ ✻<br />

.<br />

✲<br />

uy<br />

x<br />

uy = σPℓ duy<br />

dx<br />

σP - viscous slip coefficient<br />

ℓ equivalent mean free path<br />

at x = 0<br />

Felix Sharipov – p. 13


Viscous slip coefficient<br />

Diffuse scattering<br />

σP = √ π/2 = 0.886 estimation by Maxwell<br />

Felix Sharipov – p. 14


Viscous slip coefficient<br />

Diffuse scattering<br />

σP = √ π/2 = 0.886 estimation by Maxwell<br />

σP = 1.016 solution of BGK model<br />

σP = 1.018 solution of S model<br />

σP = 0.985 solution of Boltzmann Eq.<br />

Felix Sharipov – p. 14


Viscous slip coefficient<br />

Non-diffuse scattering<br />

Estimation by Maxwell<br />

σP = 0.886<br />

2 − α<br />

α<br />

Felix Sharipov – p. 15


Viscous slip coefficient<br />

Non-diffuse scattering<br />

Estimation by Maxwell<br />

σP = 0.886<br />

2 − α<br />

α<br />

S model with CL bound.cond., (Sharipov-2003)<br />

2 − αt<br />

σP = 1.018<br />

αt<br />

1 − αt<br />

− 0.264<br />

σP is sensitive to the gas-surface interaction<br />

αt<br />

Felix Sharipov – p. 15


Gas-surface interaction law<br />

Experiment by Porodnov et al. (1974)<br />

technical (contaminated) surface<br />

gas He Ne Ar Kr Xe H2 N2 CO2<br />

αt 0.88 0.85 0.92 1.0 1.0 0.95 0.91 0.99<br />

Felix Sharipov – p. 16


Gas-surface interaction law<br />

Experiment by Porodnov et al. (1974)<br />

technical (contaminated) surface<br />

gas He Ne Ar Kr Xe H2 N2 CO2<br />

αt 0.88 0.85 0.92 1.0 1.0 0.95 0.91 0.99<br />

For a technical surface αt is very close to unity for the most<br />

of gases<br />

Felix Sharipov – p. 16


Thermal slip coefficient<br />

Diffuse scattering<br />

uy = σT<br />

µ<br />

ϱ<br />

d ln T<br />

dy<br />

at x = 0<br />

σT = 0.75 estimation by Maxwell<br />

σT = 1.175 solution of S model<br />

σT = 1.01 solution of Boltzmann Eq.<br />

Felix Sharipov – p. 17


Temperature jump coefficient<br />

Diffuse scattering<br />

Tg = Tw + ζTℓ dT<br />

dx<br />

ζT = 1.662 estimation by Maxwell<br />

ζT = 1.954 solution of S model<br />

Felix Sharipov – p. 18


Flow through a tube<br />

˙M = πa2 P<br />

vm<br />

<br />

−GP<br />

a<br />

P<br />

dP<br />

dx<br />

+ GT<br />

a<br />

T<br />

GP = GP (δ) GT = GT (δ)<br />

δ = a<br />

ℓ<br />

dT<br />

dx<br />

<br />

Felix Sharipov – p. 19


Flow through a tube<br />

Free molecular regime δ = 0<br />

GP = 8<br />

3 √ π , GT = 1<br />

2 GP<br />

Hydrodynamic regime δ → ∞<br />

GP = δ<br />

4 + σP, GT = σT δ<br />

Felix Sharipov – p. 20


Flow through a tube<br />

Transitional regime GP<br />

GP<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

BGK<br />

1<br />

0.01 0.1 1 10<br />

δ<br />

Cercignani et al. (1966)<br />

Felix Sharipov – p. 21


Flow through a tube<br />

Transitional regime GP<br />

GP<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

BGK<br />

S<br />

1<br />

0.01 0.1 1 10<br />

δ<br />

Cercignani et al. (1966)<br />

Sharipov, 1996<br />

Felix Sharipov – p. 22


Flow through a tube<br />

Transitional regime GP<br />

GP<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

BGK<br />

S<br />

BE<br />

1<br />

0.01 0.1 1 10<br />

δ<br />

Cercignani et al. (1966)<br />

Sharipov, 1996<br />

Loyalka & Hamoodi (1991)<br />

Felix Sharipov – p. 23


Flow through a tube<br />

Transitional regime GP<br />

GP<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

BGK<br />

S<br />

BE<br />

1<br />

0.01 0.1 1 10<br />

δ<br />

Cercignani et al. (1966)<br />

Sharipov, 1996<br />

Loyalka & Hamoodi (1991)<br />

BGK and S model<br />

provide reliable<br />

results for isothermal<br />

flows<br />

Felix Sharipov – p. 23


Flow through a tube<br />

Transitional regime GT<br />

GT<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BGK<br />

0<br />

0.1 1 10<br />

δ<br />

Loyalka (1994)<br />

Felix Sharipov – p. 24


Flow through a tube<br />

Transitional regime GT<br />

GT<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BGK S<br />

0<br />

0.1 1 10<br />

δ<br />

Loyalka (1994)<br />

Sharipov, 1996<br />

Felix Sharipov – p. 25


Flow through a tube<br />

Transitional regime GT<br />

GT<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BGK<br />

S<br />

BE<br />

0<br />

0.1 1 10<br />

δ<br />

Loyalka (1994)<br />

Sharipov, 1999<br />

Loyalka & Hickey, 1991<br />

Felix Sharipov – p. 26


Flow through a tube<br />

Transitional regime GT<br />

GT<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BGK<br />

S<br />

BE<br />

0<br />

0.1 1 10<br />

δ<br />

Loyalka (1994)<br />

Sharipov, 1999<br />

Loyalka & Hickey, 1991<br />

BGK does not,<br />

while S provides<br />

reliable results for<br />

non-isothermal flows<br />

Felix Sharipov – p. 26


Flow through a tube<br />

Numerical data on GP and GT can be found in<br />

Sharipov & Seleznev, Data on Internal Rarefied<br />

gas Flows J. Phys. Chem. Ref. Data 27, 657-706<br />

(1998)<br />

Numerical calculations of ˙ M can be carried out<br />

on-line<br />

http://fisica.ufpr.br/sharipov<br />

Felix Sharipov – p. 27


Direct Simulation Monte Carlo<br />

M particles are considered simultaneously<br />

M ∼ 10 7 − 10 8<br />

Felix Sharipov – p. 28


Direct Simulation Monte Carlo<br />

M particles are considered simultaneously<br />

M ∼ 10 7 − 10 8<br />

• Free motion of particles<br />

• Interaction with solid surface, Elimination and<br />

Generation of particles<br />

• Simulation of collisions<br />

• Calculation of macroscopic quantities<br />

Felix Sharipov – p. 28


Orifice flow<br />

⑦<br />

W = ˙ M<br />

,<br />

˙M0<br />

P0<br />

˙ M0 =<br />

✲<br />

P1<br />

√ πa 2<br />

vm<br />

P0<br />

Felix Sharipov – p. 29


Orifice flow into vacuum P1 = 0<br />

W<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

DSMC<br />

0.9<br />

0.01 0.1 1 10 100 1000<br />

δ<br />

Felix Sharipov – p. 30


Orifice flow into vacuum P1 = 0<br />

W<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

DSMC<br />

Liepman, 1961<br />

0.9<br />

0.01 0.1 1 10 100 1000<br />

δ<br />

Felix Sharipov – p. 31


Orifice flow into vacuum P1 = 0<br />

W<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

DSMC<br />

Liepman, 1961<br />

Barashkin, 1977<br />

0.9<br />

0.01 0.1 1 10 100 1000<br />

δ<br />

Felix Sharipov – p. 32


Orifice flow into vacuum P1 = 0<br />

W<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

DSMC<br />

Liepman, 1961<br />

Barashkin, 1977<br />

Fujimoto & Usami, 1984<br />

0.9<br />

0.01 0.1 1 10 100 1000<br />

δ<br />

Felix Sharipov – p. 33


Orifice flow into vacuum P1 = 0<br />

W<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

DSMC<br />

Liepman, 1961<br />

Barashkin, 1977<br />

1<br />

Fujimoto & Usami, 1984<br />

Jitschin, 1999<br />

0.9<br />

0.01 0.1 1 10 100 1000<br />

δ<br />

Felix Sharipov – p. 34


Orifice flow at P1 > 0<br />

W<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

P1/P0=0<br />

P1/P0=0.1<br />

P1/P0=0.5<br />

P1/P0=0.9<br />

Sreekanth, 1965<br />

Porodnov et al., 1974<br />

0.1 1 10 100 1000<br />

δ<br />

Felix Sharipov – p. 35


Orifice flow at P1 > 0<br />

Flowfield at P0/P1 = 100 and δ = 1000<br />

8 1.0000<br />

4<br />

0<br />

0 4 8 12 16<br />

0.3162<br />

0.1000<br />

0.0316<br />

0.0100 ϱ/ϱ0<br />

8 1.0000<br />

4<br />

0<br />

0 4 8 12 16<br />

0.6687<br />

0.4472<br />

0.2991<br />

0.2000 T/T0<br />

8 8.0000<br />

4<br />

0<br />

0 4 8 12 16<br />

2.8284<br />

1.0000<br />

0.3536<br />

0.1250 Mach<br />

density<br />

temperature<br />

number<br />

Felix Sharipov – p. 36


Orifice flow at P1 > 0<br />

Flowfield at P0/P1 = 10 and δ = 1000<br />

8 1.0000<br />

4<br />

0<br />

0 4 8 12 16<br />

0.5623<br />

0.3162<br />

0.1778<br />

0.1000 ϱ/ϱ0<br />

8 1.0000<br />

4<br />

0<br />

0 4 8 12 16<br />

0.6687<br />

0.4472<br />

0.2991<br />

0.2000 T/T0<br />

8 5.0000<br />

4<br />

0<br />

0 4 8 12 16<br />

1.5811<br />

0.5000<br />

0.1581<br />

0.0500 Mach<br />

density<br />

temperature<br />

number<br />

Felix Sharipov – p. 37


Holweck pump<br />

✻<br />

gas flow<br />

η<br />

✻<br />

✲<br />

ξ<br />

U<br />

✲<br />

Fore vacuum<br />

✏<br />

✏✶ ❇<br />

A ❇<br />

✏✶<br />

A ❇<br />

. α ...<br />

... .<br />

✛<br />

✲<br />

✏<br />

✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏ ✏✏ W<br />

High vacuum<br />

✻<br />

H<br />

❄<br />

Scheme of pump<br />

Felix Sharipov – p. 38


Holweck pump<br />

✻<br />

gas flow<br />

η<br />

✻<br />

✲<br />

ξ<br />

U<br />

✲<br />

Fore vacuum<br />

✏<br />

✏✶ ❇<br />

A ❇<br />

✏✶<br />

A ❇<br />

. α ...<br />

... .<br />

✛<br />

✲<br />

✏<br />

✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏✏✏ ✏✏✏✏✏✏ ✏✏ d<br />

b<br />

y<br />

W<br />

High vacuum<br />

✻<br />

✲x<br />

z✠<br />

<br />

✛ ✲✛<br />

✲<br />

a<br />

✻<br />

H<br />

❄<br />

✻<br />

❄ ✻<br />

h<br />

❄<br />

Scheme of pump<br />

Scheme of groove<br />

Felix Sharipov – p. 38


Holweck pump. First stage<br />

Four problems are solved<br />

(P )<br />

• Poiseuille flow in x direction G x (δ)<br />

(P )<br />

• Poiseuille flow in z direction G z (δ)<br />

• Couette flow in x direction G (C)<br />

x (δ)<br />

• Couette flow in z direction G (C)<br />

z (δ)<br />

✛ ✲✛<br />

y<br />

✻<br />

✲x<br />

z✠<br />

<br />

✲<br />

d b<br />

✻a<br />

❄ ✻<br />

It takes long CPU time<br />

h<br />

❄<br />

Felix Sharipov – p. 39


Holweck pump. Second stage<br />

S - pumping speed<br />

ℓ dP<br />

dη<br />

= sin α<br />

U<br />

vm<br />

It takes short CPU time<br />

Gη = S<br />

vmℓ 2<br />

P cos α[G(C) z − ℓz<br />

ℓ G(C) x ] − GηPh<br />

(P )<br />

G z sin2 α + ℓz )<br />

ℓ<br />

G(P x cos2 α<br />

Felix Sharipov – p. 40


Holweck pump. Second stage<br />

It allows us easily to change many parameters<br />

such as:<br />

• groove inclination<br />

• fore vacuum and high vacuum pressures<br />

• angular velocity of rotating cylinder,<br />

• species of gas<br />

• temperature of the gas<br />

Felix Sharipov – p. 41


Holweck pump. Results<br />

Limit compression pressure ratio<br />

1000<br />

K0<br />

100<br />

10<br />

1<br />

Ar<br />

N2<br />

1 10 100<br />

δf<br />

Felix Sharipov – p. 42


Holweck pump. Results<br />

Dimensional pumping speed<br />

0.3<br />

Gη<br />

0.2<br />

0.1<br />

0<br />

N2<br />

Ar<br />

0.1 1 10 100<br />

δh<br />

Felix Sharipov – p. 43


Recent results<br />

Slip and jump boundary conditions<br />

• Velocity slip coefficients of single gas for<br />

different gas-surafce interaction laws<br />

Felix Sharipov – p. 44


Recent results<br />

Slip and jump boundary conditions<br />

• Velocity slip coefficients of single gas for<br />

different gas-surafce interaction laws<br />

• Velocity slip coefficients for gaseous mixtures<br />

Felix Sharipov – p. 44


Recent results<br />

Slip and jump boundary conditions<br />

• Velocity slip coefficients of single gas for<br />

different gas-surafce interaction laws<br />

• Velocity slip coefficients for gaseous mixtures<br />

• Temperature jump coefficient of single gas<br />

for different gas-surafce interaction laws<br />

Felix Sharipov – p. 44


Recent results<br />

Slip and jump boundary conditions<br />

• Velocity slip coefficients of single gas for<br />

different gas-surafce interaction laws<br />

• Velocity slip coefficients for gaseous mixtures<br />

• Temperature jump coefficient of single gas<br />

for different gas-surafce interaction laws<br />

• Temperature jump coefficient for gaseous<br />

mixtures<br />

Felix Sharipov – p. 44


Recent results<br />

over the whole range of the gas rarefaction<br />

• Single gas flows through long tubes and<br />

channels<br />

Felix Sharipov – p. 45


Recent results<br />

over the whole range of the gas rarefaction<br />

• Single gas flows through long tubes and<br />

channels<br />

• Mixture gas flows through long tubes and<br />

channels<br />

Felix Sharipov – p. 45


Recent results<br />

over the whole range of the gas rarefaction<br />

• Single gas flows through long tubes and<br />

channels<br />

• Mixture gas flows through long tubes and<br />

channels<br />

• Gas flow through orifices and slits<br />

Felix Sharipov – p. 45


Recent results<br />

over the whole range of the gas rarefaction<br />

• Single gas flows through long tubes and<br />

channels<br />

• Mixture gas flows through long tubes and<br />

channels<br />

• Gas flow through orifices and slits<br />

• Couette flow of a single gas<br />

Felix Sharipov – p. 45


Recent results<br />

over the whole range of the gas rarefaction<br />

• Single gas flows through long tubes and<br />

channels<br />

• Mixture gas flows through long tubes and<br />

channels<br />

• Gas flow through orifices and slits<br />

• Couette flow of a single gas<br />

• Couette flow of mixtures<br />

Felix Sharipov – p. 45


Recent results<br />

over the whole range of the gas rarefaction<br />

• Single gas flows through long tubes and<br />

channels<br />

• Mixture gas flows through long tubes and<br />

channels<br />

• Gas flow through orifices and slits<br />

• Couette flow of a single gas<br />

• Couette flow of mixtures<br />

• Modelling of vacuum pumps<br />

Felix Sharipov – p. 45


Numerical programs<br />

Some calculations of flow rate through tubes,<br />

channels and orifices can be carried out in<br />

dimensional quantities on line<br />

http://fisica.ufpr.br/sharipov/<br />

Felix Sharipov – p. 46


Numerical programs<br />

Some calculations of flow rate through tubes,<br />

channels and orifices can be carried out in<br />

dimensional quantities on line<br />

http://fisica.ufpr.br/sharipov/<br />

Thank you for your attention<br />

Felix Sharipov – p. 46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!