03.07.2013 Views

Proceedings of the Second International Workshop on EGS - KEK

Proceedings of the Second International Workshop on EGS - KEK

Proceedings of the Second International Workshop on EGS - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 2000-20<br />

December 2000<br />

A/H/M/R/D<br />

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g><br />

<strong>on</strong> <strong>EGS</strong><br />

August 8 - 12, 2000.<br />

<strong>KEK</strong>, Tsukuba, Japan<br />

Edited by<br />

H. Hirayama, Y.Namito and S. Ban<br />

High Energy Accelerator Reserach Organizati<strong>on</strong>


FOREWARD<br />

The First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4 was held at <strong>KEK</strong> during August 26-29, 1997 to<br />

exchange informati<strong>on</strong> about <strong>EGS</strong>4 itself as well as researches related to <strong>EGS</strong>4 internati<strong>on</strong>ally.<br />

It provided useful informati<strong>on</strong> am<strong>on</strong>g researchers who use <strong>EGS</strong>4 as <str<strong>on</strong>g>the</str<strong>on</strong>g> tool in various elds.<br />

As decided at this workshop, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d workshop was held again at <strong>KEK</strong> during August<br />

8-12, 2000.<br />

The workshop, sp<strong>on</strong>sored by High Energy Accelerator Reserach Organizati<strong>on</strong> in Japan<br />

(<strong>KEK</strong>), attracted over 100 <strong>EGS</strong>4 users from seven nati<strong>on</strong>s.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> workshop, 42 talks including poster sessi<strong>on</strong> were presented from <str<strong>on</strong>g>the</str<strong>on</strong>g> low-energy<br />

problems to <str<strong>on</strong>g>the</str<strong>on</strong>g> high-energy <strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g> various research elds like <str<strong>on</strong>g>the</str<strong>on</strong>g> medical physics, particle<br />

or nuclear physics etc. These proceedings include all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presentati<strong>on</strong>s at this workshop.<br />

Finally, we would like to express our great appreciati<strong>on</strong>s to all authors who prepared <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

manuscripts quickly in order to speed up <str<strong>on</strong>g>the</str<strong>on</strong>g> publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se proceedings.<br />

The organizing committee,<br />

S. Ban (<strong>KEK</strong>)<br />

A. F. Bielajew (U. Michigan)<br />

H. Hirayama (<strong>KEK</strong>)<br />

Y. Namito (<strong>KEK</strong>)<br />

W. R. Nels<strong>on</strong> (SLAC)


CONTENTS<br />

Innovative Electr<strong>on</strong> Transport Methods in <strong>EGS</strong>5 1<br />

A. F. Bielajew and S. J. Wilderman<br />

Improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Energy Phot<strong>on</strong> Transport for <strong>EGS</strong>5 11<br />

Y. Namito, H. Hirayama and S. Ban<br />

Status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Object-oriented <strong>EGS</strong> Interface Project 23<br />

A. M. Yacout, W. L. Dunn, W. R. Nels<strong>on</strong>, P. Lui, A.F. Bielajew<br />

H. Hirayama and Y. Namito<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 Code to Whole-body Counting 31<br />

S. Kinase, M. Yoshizawa, J. Kuwabara and H. Noguchi<br />

Fluence to E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for<br />

Electr<strong>on</strong>s from 1MeV to 100GeV 40<br />

S. Tsuda, A. Endo, Y. Yamaguchi and O. Sato<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Dose in Teeth for Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E ective Dose by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Electr<strong>on</strong> Spin Res<strong>on</strong>ance (ESR) Dosimetry Using Dental Enamels 48<br />

F. Takahashi, Y. Yamaguchi, K. Saito, M. Iwasaki,<br />

C. Miyazawa and T. Hamada<br />

An <strong>EGS</strong>4 User Code with Voxel Geometry and<br />

a Voxel Phantom Generating System 56<br />

J. Funabiki, M. Terabe, M. Zankl, S. Koga and K. Saito<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 <strong>on</strong> Leksell Gamma Unit 64<br />

Joel YC Cheung, KN Yu, Robert TK Ho and CP Yu<br />

Dosimetric Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Energy Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy Sources:<br />

An <strong>EGS</strong>4 M<strong>on</strong>te Carlo Study 74<br />

E. Mainegra and R. Capote<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PET Scanner Geometry 92<br />

Lars-Eric Adam and J. S. Karp<br />

Dose Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Stereotactic Irradiati<strong>on</strong> for Thorax 100<br />

R. Sakai, H. Saitoh, T. Fujisaki, S. Abe, K. Fukuda,<br />

M. Fukushi and E. Kunieda<br />

The Caluculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D Saptial Dose Distributi<strong>on</strong> Around<br />

a Shielded Vaginal Cylinder with Iridium-192 Source<br />

Calculated by using M<strong>on</strong>te Carlo Code <strong>EGS</strong>4 107<br />

I. J. Chen, R. D. Sheu, B. J. Chang Y. M. Liu, L. S. Chao, S. H. Yen<br />

i


Polarizati<strong>on</strong> Study for NLC Positr<strong>on</strong> Source Using <strong>EGS</strong>4 115<br />

J. C. Liu, T. Kotseroglou, W. R. Nels<strong>on</strong>, and D. Schultz<br />

<strong>EGS</strong>4 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Positr<strong>on</strong> C<strong>on</strong>verter at <str<strong>on</strong>g>the</str<strong>on</strong>g> BEPC Linac-Based<br />

Slow Positr<strong>on</strong> Beam 124<br />

R. S. Yu, C. X. Ma, G.X. Pei, L. Wei, B. Y. Wang, and T. B. Chang<br />

Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> Phot<strong>on</strong>eutr<strong>on</strong> Spectra from Thick Pb Target<br />

Bombarded by 1.2 and 2.0 GeV Electr<strong>on</strong>s 130<br />

S. Ban, Y. Namito, H. Hirayama, N. Terunuma, J. Urakawa, T. Sato,<br />

R. Yuasa, K. Shin, H. S. Lee, and J. S. Bak<br />

Resp<strong>on</strong>se Calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CdZnTe Detector Using <strong>EGS</strong>4 135<br />

J. C. Liu, W. R. Nels<strong>on</strong> and R. Seefred<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Gamma Ray M<strong>on</strong>itor Using CdZnTe Semic<strong>on</strong>ductor<br />

Detector 144<br />

A. H. D. Rasol<strong>on</strong>jatovo, T. Shiomi, T. Nakamura, H. Nishizawa,<br />

Y. Tsudaka, H. Fujiwara, H. Araki, and K. Matsuo<br />

A M<strong>on</strong>te Carlo Method for Determining Absolute Scintillati<strong>on</strong>-Phot<strong>on</strong><br />

Yields and Energy Resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scintillators for Gamma Rays 152<br />

H. Tawara, S. Sasaki, K. Saito and E. Shibamura<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Gamma-Ray Directi<strong>on</strong> Detector Based <strong>on</strong> MSGC 161<br />

T. Nagayoshi, H. Kubo, A. Ochi, S. Koishi, T. Tanimori, and Y. Nishi<br />

Resp<strong>on</strong>se Functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NE213 Liquid Saintillati<strong>on</strong> Detector<br />

Simulated by <strong>EGS</strong>4/PRESTA Code for a Collimated -Ray Beam 168<br />

N. Takeda, K. Kudo, S. Koshikawa, H. Ohgaki, H. Toyokawa, and T. Sugita<br />

The E ect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Build-up Wall at <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD Calibrati<strong>on</strong> Using Co-60 176<br />

N. Nariyama<br />

A C<strong>on</strong>voluti<strong>on</strong> Method for Determining Temperature Rise in Targets<br />

Struck by Beams <str<strong>on</strong>g>of</str<strong>on</strong>g> Various Size 182<br />

W. R. Nels<strong>on</strong>, S. Ecklund and S. Rokni<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 for <str<strong>on</strong>g>the</str<strong>on</strong>g> Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Damage<br />

Due to Gamma-ray Irradiati<strong>on</strong> 193<br />

O. Sato, T. Tobita and H. Suzuki<br />

Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-Ray Piping Diagnostic System using <strong>EGS</strong>4<br />

(Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Film and Ir<strong>on</strong> Rust) 199<br />

G. Kajiwara<br />

E ective Bending Point to Reduce Dose-Equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a Bending Duct Streaming System 209<br />

K. Ueki<br />

ii


<strong>EGS</strong>4 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> Scattering for N<strong>on</strong>destructive Testing 216<br />

N. Shengli, Z. Jun, and H. Liuxing<br />

Implementati<strong>on</strong> and Performance Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Iterative<br />

Rec<strong>on</strong>structi<strong>on</strong> Algorithms in SPECT: A Simulati<strong>on</strong> Study<br />

Using <strong>EGS</strong>4 224<br />

T. Yokoi, H. Shinohara, T. Hashimoto, T. Yamamoto, and Y. Niio<br />

Correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Measurement by HP-Ge Detector<br />

for Incident Diagnostic X-ray Phot<strong>on</strong>s 235<br />

K. Koshida, K. Shimizu and T. Kasuga<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> CdZnTe Detector in Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Diagnostic<br />

X-ray Spectra 242<br />

S. Miyajima, H. Sakuragi and M. Matsumoto<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rep<strong>on</strong>se Functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16"x16"x4" Large-sized NaI<br />

Scintillati<strong>on</strong> Detctor for Envir<strong>on</strong>mental Gamma-ray Survey 250<br />

H. Itadzu, T. Iguchi, A. Uritani and J. Kawarabayashi<br />

Beam Dump for High Current Electr<strong>on</strong> Beam at JNC 255<br />

H. Takei and Y. Takeda<br />

Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dose Distributi<strong>on</strong> by Detectors for Narrow Beam 264<br />

T. Fujisaki, H. Saitoh, T. Inada, S. Abe, M. Fukushi and K. Fukuda<br />

Returning Electr<strong>on</strong> Simulati<strong>on</strong> for a Klystr<strong>on</strong> Collector Using <strong>EGS</strong>4 272<br />

Z. Fang, S. Fukuda, S. Yamaguchi, and S. Anami<br />

Direct Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>-Tracks Using a Charge Coupled<br />

Device 280<br />

S. Kitamoto, M. Ohta, T. Okada, T. Kohmura, K. Mori,<br />

H. Awaki, and K. Tachibana<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Angular Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gas Bremsstrahlung<br />

Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Residual Gas Pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> Storage Ring 286<br />

Y. Asano<br />

Study <strong>on</strong> Spatial Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Electromagnetic Shower<br />

Around a Lead Block Irradiated by 700-MeV Bremsstrahlung 293<br />

S. Oki, Y. Takashima, M. Yamakage, H. Kobayakawa K. Yoshida,<br />

and K. Goto<br />

Support <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Energy X-ray Polarizati<strong>on</strong> with <strong>EGS</strong>4 299<br />

K. Asamura, S. Gunji, Y. Inoue, T. Suzuki, T. Maeda, and H. Sakurai<br />

iii


Unfolding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Measured Spectra and <str<strong>on</strong>g>the</str<strong>on</strong>g> Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Correcti<strong>on</strong> Factor <str<strong>on</strong>g>of</str<strong>on</strong>g> Free Air I<strong>on</strong> Chamber using <strong>EGS</strong>4 Simulati<strong>on</strong>s 308<br />

Y. Gwang-Ho<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I<strong>on</strong>izati<strong>on</strong> and Scintillati<strong>on</strong> Signals<br />

in a Liquid I<strong>on</strong>izati<strong>on</strong> Drift Chamber 316<br />

T. Shimoyama, E. Shibamura, M. Miyajima<br />

Observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Intense Radiati<strong>on</strong> During Thunderstorm and<br />

M<strong>on</strong>te Carlo Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bremsstrahlung Generati<strong>on</strong> 324<br />

T. Torii, M. Takeishi, T. Hos<strong>on</strong>o and T.Sugita<br />

Predicted Angular Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fast Charged Particles with<br />

I<strong>on</strong>izati<strong>on</strong> 330<br />

T. Nakatsuka<br />

Lists <str<strong>on</strong>g>of</str<strong>on</strong>g> Participants 341<br />

iv


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.1-10<br />

Innovative Electr<strong>on</strong> Transport Methods in <strong>EGS</strong>5<br />

A. F. Bielajew and S. J. Wilderman<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Engineering and Radiological Sciences<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

Cooley Building (North Campus)<br />

2355 B<strong>on</strong>isteel Boulevard<br />

Ann Arbor, Michigan 48109-4540, USA<br />

Abstract<br />

The initial formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a M<strong>on</strong>te Carlo scheme for <str<strong>on</strong>g>the</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> high-energy (> 100 keV)<br />

electr<strong>on</strong>s was established by Berger in 1963. Calling his method <str<strong>on</strong>g>the</str<strong>on</strong>g> \c<strong>on</strong>densed history <str<strong>on</strong>g>the</str<strong>on</strong>g>ory",<br />

Berger combined <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> research into developing approximate<br />

soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Boltzmann transport equati<strong>on</strong> with numerical algorithms for exploiting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> power <str<strong>on</strong>g>of</str<strong>on</strong>g> computers to permit iterative, piece-wise soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transport equati<strong>on</strong> in a computati<strong>on</strong>ally<br />

intensive but much less approximate fashi<strong>on</strong>. The methods devised by Berger, with<br />

comparatively little modi cati<strong>on</strong>, provide <str<strong>on</strong>g>the</str<strong>on</strong>g> foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all present dayM<strong>on</strong>te Carlo electr<strong>on</strong><br />

transport simulati<strong>on</strong> algorithms. Only in <str<strong>on</strong>g>the</str<strong>on</strong>g> last 15 years, beginning with <str<strong>on</strong>g>the</str<strong>on</strong>g> development and<br />

publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PRESTA algorithm, has <str<strong>on</strong>g>the</str<strong>on</strong>g>re been a signi cant revisitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simulating electr<strong>on</strong> transport within <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densed history framework. Research in this area<br />

is <strong>on</strong>going, highly active, and far from complete. It presents an enormous challenge, demanding<br />

derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new analytical transport soluti<strong>on</strong>s based <strong>on</strong> underlying fundamental interacti<strong>on</strong> mechanisms,<br />

intuitive insight in<str<strong>on</strong>g>the</str<strong>on</strong>g>development <str<strong>on</strong>g>of</str<strong>on</strong>g> computer algorithms, and state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> art computer<br />

science skills in order to permit deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se techniques in an e cient manner. The <strong>EGS</strong>5<br />

project, a modern ground-up rewrite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code, is now in <str<strong>on</strong>g>the</str<strong>on</strong>g> design phase. <strong>EGS</strong>5 will take<br />

modern phot<strong>on</strong> and electr<strong>on</strong> transport algorithms and deploy <str<strong>on</strong>g>the</str<strong>on</strong>g>m in an easy-to-maintain, modern<br />

computer language|ANSI-standard C++. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> well-known di culties <str<strong>on</strong>g>of</str<strong>on</strong>g> applying <strong>EGS</strong>4<br />

to practical geometries (geometry code development, tally routine design) should be made easier<br />

and more intuitive through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a visual user interface being designed by Quantum Research,<br />

Inc., work that is presented elsewhere in this c<strong>on</strong>ference. This report commences with a historical<br />

review <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> transport models culminating with <str<strong>on</strong>g>the</str<strong>on</strong>g> proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> a new, previously unpublished<br />

algorithm, for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5 project.<br />

1 Introducti<strong>on</strong><br />

Berger's founding paper[1], M<strong>on</strong>te Carlo Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> penetrati<strong>on</strong> and di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fast<br />

charged particles, ushered in <str<strong>on</strong>g>the</str<strong>on</strong>g> modern era <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> transport in M<strong>on</strong>te Carlo applicati<strong>on</strong>s. The<br />

principle di culty in applying <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo method to electr<strong>on</strong> transport lies in <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that<br />

electr<strong>on</strong>s interact frequently until <str<strong>on</strong>g>the</str<strong>on</strong>g>ir kinetic energy is exhausted. A relativistic electr<strong>on</strong> may have<br />

10 4 {10 5 elastic interacti<strong>on</strong>s and 10 5 {10 6 inelastic interacti<strong>on</strong>s before falling to an energy so low that it<br />

stops i<strong>on</strong>izing or exciting atoms individually or collectively in <str<strong>on</strong>g>the</str<strong>on</strong>g> material through which itisbeing<br />

transported. Clearly, it was not feasible to model all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se interacti<strong>on</strong>s in an analog M<strong>on</strong>te Carlo<br />

code in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1960's, <str<strong>on</strong>g>the</str<strong>on</strong>g> era when Berger issued his famous report 1 . To overcome this di culty,<br />

Berger devised <str<strong>on</strong>g>the</str<strong>on</strong>g> \c<strong>on</strong>densed history <str<strong>on</strong>g>the</str<strong>on</strong>g>ory" (CHT). The CHT ga<str<strong>on</strong>g>the</str<strong>on</strong>g>rs toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r many elastic and<br />

1 Analog calculati<strong>on</strong>s are feasible today <strong>on</strong>ly in 1D geometries and are used, primarily, to study <str<strong>on</strong>g>the</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple<br />

interacti<strong>on</strong>s. Analog calculati<strong>on</strong>s are not feasible for many applicati<strong>on</strong>s requiring 3D geometries or applicati<strong>on</strong>s that may<br />

require milli<strong>on</strong>s or billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> primary source particles.<br />

1


inelastic interacti<strong>on</strong>s into \virtual" interacti<strong>on</strong>s, permitting e ciency gains <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 3 or 4 orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude.<br />

The computati<strong>on</strong>al speed-up achieved with Berger's CHT is impressive, but comes at a cost. The<br />

electr<strong>on</strong> transport becomes approximate! C<strong>on</strong>sider, for example, an electr<strong>on</strong> initially positi<strong>on</strong>ed at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

origin, ~x = ~0, directed al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> ~z-axis with some initial energy E 0. This electr<strong>on</strong> is to be moved a<br />

total prescribed pathlength <str<strong>on</strong>g>of</str<strong>on</strong>g> some distance, say, t. For <str<strong>on</strong>g>the</str<strong>on</strong>g> moment, <str<strong>on</strong>g>the</str<strong>on</strong>g> method we adopt to choose<br />

t is not pertinent to <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> 2 . Let us now ask, after <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> is transported a distance t,<br />

where will its path terminate? The <strong>on</strong>ly thing we can say with absolute certainty is that its path will<br />

terminate at some positi<strong>on</strong> ~x, such that ~x t. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> will be ( )'s selected<br />

from an elastic multiple scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> will have a lower energy, E, determined<br />

from an inelastic multiple scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. The nal positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se electr<strong>on</strong>s should look something<br />

like <str<strong>on</strong>g>the</str<strong>on</strong>g> depicti<strong>on</strong> in gure 1. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> di erential scattering cross<br />

Figure 1: The terminati<strong>on</strong> points <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 electr<strong>on</strong>s starting at <str<strong>on</strong>g>the</str<strong>on</strong>g> origin, ~x = ~0, directed al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> ~z-axis, and<br />

transported a total pathlength t.<br />

secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> that <strong>on</strong>e observes depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>. At high energies<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic scattering is forward directed, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a str<strong>on</strong>g clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endpoints in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

forward directi<strong>on</strong> with a few electr<strong>on</strong>s scattered widely and even fewer that terminate in <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse<br />

hemisphere. At lower energies where <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering becomes more isotropic, <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere gets populated<br />

more uniformly.<br />

2 The distance t is usually chosen to satisfy a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>straints: 1) t is <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to a discrete event, like<br />

a M ller or bremsstrahlung interacti<strong>on</strong>, 2) t is small enough so that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> pathlength is<br />

approximately c<strong>on</strong>stant, 3) t is small enough so that <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering angle is accurate.<br />

2<br />

t


2 Transport Mechanics<br />

Given an elastic scattering cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary form and ignoring energy losses al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transport step, <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s after a pathlength t is known exactly from <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple<br />

scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Goudsmit and Saunders<strong>on</strong>[2, 3] or Lewis's adaptati<strong>on</strong>[4], assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong><br />

loses energy c<strong>on</strong>tinuously (an approximati<strong>on</strong> in itself that <strong>on</strong>ly applies at high energies). O<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

successful multiple scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ories make assumpti<strong>on</strong>s which are rigorously applicable <strong>on</strong>ly for small<br />

angles, for speci c forms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic cross secti<strong>on</strong>, or for a restricted range <str<strong>on</strong>g>of</str<strong>on</strong>g> t[5,6,7,8,9,10,11].<br />

While <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> is well characterized, <str<strong>on</strong>g>the</str<strong>on</strong>g> ending positi<strong>on</strong> is not. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is very little <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

development al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se lines and that which exists is not accurate enough for general-purpose<br />

M<strong>on</strong>te Carlo. Therefore, we must \invent" a scheme to give a recipe for where to place <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong><br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> step and how to deduct energy losses. These schemes have come to be known as<br />

\transport mechanics".<br />

Although transport <str<strong>on</strong>g>the</str<strong>on</strong>g>ory soluti<strong>on</strong>s derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> Boltzmann equati<strong>on</strong> directly have not been<br />

successful in predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> coupled space-angle-energy distributi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>y do provide expressi<strong>on</strong>s for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> moments <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> couplings <str<strong>on</strong>g>of</str<strong>on</strong>g> moments between space and angle which<br />

may be evaluated easily, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering cross secti<strong>on</strong>s employed. This<br />

development, attributed to Lewis[4], may be employed to evaluate a mechanics scheme <strong>on</strong>ce it is<br />

devised. In additi<strong>on</strong>, Larsen has developed an analysis[12] that predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

mechanics scheme compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> obtained by analog (event-by-event) simulati<strong>on</strong>. The<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo tallies <strong>on</strong> electr<strong>on</strong> step-size is known as \step-size dependence" and is<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tally, <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanics scheme employed and <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

transport in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g>interfaces where <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> cross secti<strong>on</strong>s or densities change[13, 14].<br />

It should be menti<strong>on</strong>ed that Larsen c<strong>on</strong>vergence requires that <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple elastic scattering scheme<br />

be robust (exhibit no numerical or physical artifacts) as <str<strong>on</strong>g>the</str<strong>on</strong>g> pathlength is reduced to zero. This limit<br />

is problematic for both <str<strong>on</strong>g>the</str<strong>on</strong>g> original implementati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Goudsmit-Saunders<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory[2, 3] and Moliere<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory[5, 6], although <str<strong>on</strong>g>the</str<strong>on</strong>g> di culties with both <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>the</str<strong>on</strong>g>ories have now been treated successfully[10,<br />

11].<br />

2.1 ETRAN, ITS, MCNP<br />

Berger[1] recommended <str<strong>on</strong>g>the</str<strong>on</strong>g> following scheme for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

transport step:<br />

x + iy = t<br />

2<br />

0<br />

@sin e i + k<br />

s<br />

hcos 2 i<br />

6<br />

z = t<br />

(1 + cos ) (1)<br />

2<br />

where


2.2 <strong>EGS</strong>4, PRESTA<br />

The <strong>EGS</strong>4 M<strong>on</strong>te Carlo code[25, 26, 27] employed a small variati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ETRAN <str<strong>on</strong>g>the</str<strong>on</strong>g>me. The<br />

<strong>EGS</strong>4 mechanics is expressed as ~x = f(t Z E)t^z where <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> f(t Z E) is called a pathlength<br />

or detour correcti<strong>on</strong>. The idea behind this scheme comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> recogniti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> forward<br />

penetrati<strong>on</strong> distance z must be shorter than t. An approximate <str<strong>on</strong>g>the</str<strong>on</strong>g>ory based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> developments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Yang's[28] adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermi-Eyges <str<strong>on</strong>g>the</str<strong>on</strong>g>ory[29] is employed. It has subsequently been shown that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> correcti<strong>on</strong> applied by this method over-predicts by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> about two[30], <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

motivating reas<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Parameter Reduced Electr<strong>on</strong>-Step Transport Algorithm<br />

(PRESTA)[30, 14].<br />

PRESTA's mechanics scheme can be summarized as:<br />

x + iy = t<br />

sin ei<br />

2<br />

z = tf 0 (t Z E) (2)<br />

whichintroduces a more robust detour correcti<strong>on</strong>, f 0 (t Z E), and a lateral transport that is correlated<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> angle, as suggested by Berger[1].<br />

2.3 PENELOPE<br />

Primarily intended to address <str<strong>on</strong>g>the</str<strong>on</strong>g> problems <str<strong>on</strong>g>of</str<strong>on</strong>g> low-energy electr<strong>on</strong> transport (1 keV


according to a recipe that can be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference[39]. PENELOPE's random hinge iterated<br />

twice appears to perform as well, although a moments analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a two-step random hinge has not<br />

been undertaken.<br />

The PRESTA-II mechanics adds an important new physical feature. The nal directi<strong>on</strong> implied by<br />

( ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> nal directi<strong>on</strong> with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> starting point ~x=j~xj are now decoupled, as physically<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y should be. (They are str<strong>on</strong>gly correlated but not rigidly coupled.)<br />

2.5 An extensi<strong>on</strong> to PENELOPE's mechanics<br />

The PRESTA-II mechanics removes <str<strong>on</strong>g>the</str<strong>on</strong>g> rigid coupling between <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> and positi<strong>on</strong> vector,<br />

but requires two samplings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering angle, whichistypically <str<strong>on</strong>g>the</str<strong>on</strong>g> most computati<strong>on</strong>ally<br />

costly part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transport algorithm. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> ve moments hzi, hx sin cos + y sin sin i,<br />

hz cos i, hx 2 + y 2 i, and hz 2 i can not all be perfectly preserved by <str<strong>on</strong>g>the</str<strong>on</strong>g> PRESTA-II/<strong>EGS</strong>nrc scheme.<br />

A new mechanics scheme has been found[40] which doeshave all <str<strong>on</strong>g>the</str<strong>on</strong>g>se features and requires <strong>on</strong>ly <strong>on</strong>e<br />

sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering angle. This scheme takes <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

x + iy = t[frsin e 1 + cos e 2 ]<br />

z = t[k(1 ; r)+c +(kr + d) cos ] (5)<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> ve c<strong>on</strong>stants f kcdcan be xed so as to reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> above ve moments exactly. This<br />

improvement in moment compliance is obtained with <strong>on</strong>ly a single sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple-scattering<br />

angle, although <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two azimuthal angle samplings (which are relatively inexpensive). However,<br />

in initial tests <str<strong>on</strong>g>of</str<strong>on</strong>g> this extensi<strong>on</strong> to PENELOPE's mechanics, <str<strong>on</strong>g>the</str<strong>on</strong>g>re appears to be no advantage to using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> over a double sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> PENELOPE's simpler scheme, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from <str<strong>on</strong>g>the</str<strong>on</strong>g> standpoint <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

computati<strong>on</strong>al e ciency or compliance with higher order moments.<br />

2.6 <strong>EGS</strong>5 mechanics<br />

Given that <str<strong>on</strong>g>the</str<strong>on</strong>g> simpler PENELOPE mechanics, when sampled twice appears to be more useful<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> PRESTA-II/<strong>EGS</strong>nrc or extended PENELOPE mechanics, we have decided to adopt <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PENELOPE mechanics with a new extensi<strong>on</strong> which accounts for energy changes to rst order in an<br />

elegant way. The algorithm is best expressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> followed pseudo-code:<br />

1) SAMPLE two uniformly distributed random numbers, r1 and r2.<br />

2) IF r1


2. De ect <str<strong>on</strong>g>the</str<strong>on</strong>g> particle by sampling from <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering angular distributi<strong>on</strong> assuming<br />

that it has g<strong>on</strong>e <str<strong>on</strong>g>the</str<strong>on</strong>g> full step t at <str<strong>on</strong>g>the</str<strong>on</strong>g> starting energy E = E0.<br />

3. Transport <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> forward directi<strong>on</strong> a distance (r1 ; r2)t assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy is c<strong>on</strong>stant at <str<strong>on</strong>g>the</str<strong>on</strong>g> starting energy.<br />

4. Deduct energy according to some energy loss model as if it had g<strong>on</strong>e <str<strong>on</strong>g>the</str<strong>on</strong>g> complete step.<br />

The electr<strong>on</strong> now has energy E = E0 ; (E0t).<br />

5. Transport <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> new directi<strong>on</strong> a distance (1 ; r1)t assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

is c<strong>on</strong>stant at <str<strong>on</strong>g>the</str<strong>on</strong>g> revised energy.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy-loss processes can occur <strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r side (in a time-wise fashi<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong><br />

change and that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy employed in <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> angle is, <strong>on</strong> average, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> step. This gives <str<strong>on</strong>g>the</str<strong>on</strong>g> correct rst-order correcti<strong>on</strong> for energy loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> de ecti<strong>on</strong> process.<br />

2.6.1 Accounting for discrete interacti<strong>on</strong>s<br />

C<strong>on</strong>venti<strong>on</strong>ally, as in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code, an initial distance to a discrete interacti<strong>on</strong> is determined<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>n broken up into multiple scattering sub-steps, using some mechanics scheme. A drawback<br />

to this approach is that <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong>s employed to sample <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to a discrete interacti<strong>on</strong><br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle, which changes during <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> transporting <str<strong>on</strong>g>the</str<strong>on</strong>g> particle<br />

according to a given mechanics scheme.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> revised <strong>EGS</strong>5 model, we permit discrete interacti<strong>on</strong>s to occur within <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering<br />

step. If we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> transport segments to occur without energy change (energy change is e ected<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> energy \hinge points" <strong>on</strong>ly) and resample <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to discrete interacti<strong>on</strong> after each change<br />

in energy, we can account for <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong>s with respect to energy al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

path. Note that when an interacti<strong>on</strong> occurs, energy is deducted, daughter particles are created and<br />

directi<strong>on</strong>s may change. These are allowed to occur in accordance with <str<strong>on</strong>g>the</str<strong>on</strong>g> laws <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. One simply<br />

has to resample <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to <str<strong>on</strong>g>the</str<strong>on</strong>g> next interacti<strong>on</strong> point andtransport <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining distance <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next real or virtual event.<br />

2.6.2 Transport across interfaces<br />

The most accurate way to cross interfaces is to choose a step-size that guarantees that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transport step does not cross <str<strong>on</strong>g>the</str<strong>on</strong>g> interface, reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> step-size to such a degree that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> multiple-interacti<strong>on</strong> c<strong>on</strong>densed history physics \evaporates" and <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> is permitted to cross<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> interface in analog mode without approximati<strong>on</strong>[41]. This technique, while perfectly accurate,<br />

is computati<strong>on</strong>ally very costly. Therefore, we seek a technique that is approximate, yet su ciently<br />

accurate for most applicati<strong>on</strong>s, and faster, with <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in speed coming about by allowing<br />

electr<strong>on</strong>s to drift across interfaces during <str<strong>on</strong>g>the</str<strong>on</strong>g> sub-step segments.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> step-size is no l<strong>on</strong>ger c<strong>on</strong>strained by geometry, we c<strong>on</strong>sider several c<strong>on</strong>straints <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong> step-size. The rst, measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst elastic scattering transport moment (which<br />

is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> average amount <str<strong>on</strong>g>of</str<strong>on</strong>g> de ecti<strong>on</strong>), c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> track. The sec<strong>on</strong>d, measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst inelastic scattering transport<br />

moment (which is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> average amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy loss), c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy-loss modeling al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> track. Superimposed up<strong>on</strong> this is <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete interacti<strong>on</strong><br />

physics.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic scattering c<strong>on</strong>straint is expressed as a distance T elastic such that a prescribed<br />

average amount <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering has occurred and that <str<strong>on</strong>g>the</str<strong>on</strong>g> inelastic scattering c<strong>on</strong>straint is de ned by a<br />

distance T inelastic such that a prescribed average amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy loss has occurred. The algorithm<br />

takes <str<strong>on</strong>g>the</str<strong>on</strong>g> following form:<br />

1. Determine <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to a cumulative elastic scattering event, t elastic = r1T elastic, where r1 is<br />

a uniformly sampled random number between 0 and 1. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm is su ciently<br />

general to allow for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r prescripti<strong>on</strong>s for choosing this distance.<br />

6


2. Determine <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to a cumulative inelastic scattering event, t inelastic = r2T inelastic, where<br />

r2 is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r uniformly sampled random number between 0 and 1.<br />

3. Determine <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to a discrete scattering event, t discrete = ; ;1 ln(r3), where r3 is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

uniformly sampled random number between 0 and 1 and is <str<strong>on</strong>g>the</str<strong>on</strong>g> macroscopic cross secti<strong>on</strong> in<br />

units <str<strong>on</strong>g>of</str<strong>on</strong>g> cm ;1 .<br />

4. Determine <str<strong>on</strong>g>the</str<strong>on</strong>g> distance, tgeom, <str<strong>on</strong>g>the</str<strong>on</strong>g> distance al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> particle's current directi<strong>on</strong> to an interface.<br />

5. Determine <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4 distances: tgeom, t elastic, t inelastic, and t discrete. Subtract this<br />

distance from all 4.<br />

6. Transport <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> this distance al<strong>on</strong>g its current directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

7. If tgeom =0:<br />

(a) Rescale <str<strong>on</strong>g>the</str<strong>on</strong>g> distances t elastic and t inelastic, and resample t discrete accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

interacti<strong>on</strong> physics, if <str<strong>on</strong>g>the</str<strong>on</strong>g> medium <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interface is di erent.<br />

8. Else if t elastic =0:<br />

(a) Sample <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current medium and de ect <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>.<br />

(b) Calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> new t elastic, t elastic =(T elastic;t elastic)+r4T elastic, where r4 is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r uniformly<br />

sampled random number between 0 and 1.<br />

9. Else if t inelastic =0:<br />

(a) Sample <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current medium and deduct energy from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>.<br />

(b) Calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> new t inelastic, t inelastic =(T inelastic ; t inelastic)+r4T inelastic, where r4 is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

uniformly sampled random number between 0 and 1.<br />

10. Else if t discrete =0:<br />

(a) Sample <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current medium. Create daughter<br />

particles, de ect <str<strong>on</strong>g>the</str<strong>on</strong>g> parent particle and deduct <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> daughter particles from<br />

it, as appropriate.<br />

(b) Calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> new t discrete, t discrete = ; ;1 ln(r4), where r4 is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r uniformly sampled<br />

random number between 0 and 1.<br />

11. Go to step 4 unless <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>'s energy has fallen below <str<strong>on</strong>g>the</str<strong>on</strong>g> transport threshold.<br />

Note that this scheme has characterized 4types <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>, interface intercept, discrete interacti<strong>on</strong>,<br />

energy loss due to cumulative events, and directi<strong>on</strong> change due to cumulative events. It places<br />

all <str<strong>on</strong>g>the</str<strong>on</strong>g>se \interacti<strong>on</strong>s" <strong>on</strong> a more-or-less equal footing and deals with each separately. Uniformly<br />

randomizing <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> at which energy loss due to cumulative events occurs e ectively samples <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

average energy for <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic and discrete events, <str<strong>on</strong>g>the</str<strong>on</strong>g> correct prescripti<strong>on</strong> to rst order. Note also that<br />

we interpret any event that can cause any change in <str<strong>on</strong>g>the</str<strong>on</strong>g> phase space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles in <str<strong>on</strong>g>the</str<strong>on</strong>g> problem to<br />

have equal status. This would allow ustointroduce many forms <str<strong>on</strong>g>of</str<strong>on</strong>g> variance reducti<strong>on</strong> as a new class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> event, and facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variance reducti<strong>on</strong> techniques.<br />

If we treat <str<strong>on</strong>g>the</str<strong>on</strong>g> above algorithm in an in nite medium, tgeom = 1 we note that it collapses to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

algorithm described previously. Similarly, itis easy to avoid any species <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> by setting its<br />

interacti<strong>on</strong> distance to in nity. Note that this algorithm can be used to model analog transport, which<br />

is accomplished by setting t inelastic = t elastic =0. Therefore, this algorithm can be applied to phot<strong>on</strong><br />

transport as well. Indeed, as far as <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm is c<strong>on</strong>cerned, an electr<strong>on</strong> is transported in a similar<br />

fashi<strong>on</strong> to a phot<strong>on</strong> except that an electr<strong>on</strong> has two extra interacti<strong>on</strong> channels.<br />

7


3 C<strong>on</strong>clusi<strong>on</strong>s<br />

Transport mechanics algorithms have been reviewed. Based up<strong>on</strong> recent developments in <strong>EGS</strong>4/<br />

PRESTA-II, <strong>EGS</strong>nrc and extensi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> PENELOPE code, an e cient algorithm which takes into<br />

account energy losses and provides realistic spatial-angular correlati<strong>on</strong>s has been described. Future<br />

work will dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> step-size stability <str<strong>on</strong>g>of</str<strong>on</strong>g> this algorithm under a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s.<br />

Acknowledgements<br />

We would like to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Ed Larsen <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan and Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Francesc Salvat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Barcel<strong>on</strong>a for lively discussi<strong>on</strong>s <strong>on</strong> transport mechanics. This project was supported<br />

by funds from Quantum Research Services, Inc. under an award from <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy.<br />

The ndings, opini<strong>on</strong>s and recommendati<strong>on</strong>s expressed <str<strong>on</strong>g>the</str<strong>on</strong>g>rein are those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> author and are not<br />

necessarily those <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Research Services, Inc. or <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy.<br />

References<br />

[1] M. J. Berger, \M<strong>on</strong>te Carlo calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> penetrati<strong>on</strong> and di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fast charged particles",<br />

Methods in Comput. Phys. 1(1963)135 - 215.<br />

[2] S. A. Goudsmit and J. L. Saunders<strong>on</strong>, \Multiple scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s", Phys. Rev. 57(1940)24<br />

-29.<br />

[3] S. A. Goudsmit and J. L. Saunders<strong>on</strong>, \Multiple scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s. II", Phys. Rev. 58(1940)36<br />

-42.<br />

[4] H. W. Lewis, \Multiple scattering in an in nite medium", Phys. Rev. 78(1950)526 - 529.<br />

[5] G. Z. Moliere, \Theorie der Streuung schneller geladener Teilchen. I. Einzelstreuung am<br />

abgeschirmten Coulomb-Field", Z. Naturforsch 2a(1947)133 - 145.<br />

[6] G. Z. Moliere, \Theorie der Streuung schneller geladener Teilchen. II. Mehrfach- und Vielfachstreuung",<br />

Z. Naturforsch 3a(1948)78 - 97.<br />

[7] S. Leisegang, \Zur Mehrfachstreuung v<strong>on</strong> Elektr<strong>on</strong>en in dunnen Schichten", Z. fur Physik<br />

132(1952)183 - 194.<br />

[8] H. A. Be<str<strong>on</strong>g>the</str<strong>on</strong>g>, \Moliere's <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple scattering", Phys. Rev. 89(1953)1256 - 1266.<br />

[9] E. Keil, E. Zeitler, and W. Zinn, \Zur Einfach- und Mehrfachstreuung geladener Teilchen", Z.<br />

Naturforsch 15a(1960)1031 - 1038.<br />

[10] A. F. Bielajew, \Plural and multiple small-angle scattering from a screened Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>rford cross<br />

secti<strong>on</strong>", Nucl. Inst. and Meth. B86(1994)257 - 269.<br />

[11] I. Kawrakow and A. F. Bielajew, \On <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> multiple elastic-scattering<br />

distributi<strong>on</strong>s for M<strong>on</strong>te Carlo calculati<strong>on</strong>s", Nucl. Inst. and Meth. B134(1998)325 - 336.<br />

[12] E. W. Larsen, \A <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densed history algorithm", Ann. Nucl. Energy<br />

19(1992)701 - 714.<br />

[13] A. F. Bielajew, D. W. O. Rogers, and A. E. Nahum, \M<strong>on</strong>te Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> chamber<br />

resp<strong>on</strong>se to 60 Co - Resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anomalies associated with interfaces", Phys. Med. Biol.<br />

30(1985)419 - 428.<br />

8


[14] A. F. Bielajew and D. W. O. Rogers, \Electr<strong>on</strong> Step-Size Artefacts and PRESTA", In T.M. Jenkins,<br />

W.R. Nels<strong>on</strong>, A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, M<strong>on</strong>te Carlo Transport<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and Phot<strong>on</strong>s, pages 115 - 137. Plenum Press, New York, 1989.<br />

[15] S. M. Seltzer, \An overview <str<strong>on</strong>g>of</str<strong>on</strong>g> ETRAN M<strong>on</strong>te Carlo methods", In T.M. Jenkins, W.R. Nels<strong>on</strong>,<br />

A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, M<strong>on</strong>te Carlo Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and<br />

Phot<strong>on</strong>s, pages 153 - 182. Plenum Press, New York, 1989.<br />

[16] S. M. Seltzer, \Electr<strong>on</strong>-phot<strong>on</strong> M<strong>on</strong>te Carlo calculati<strong>on</strong>s: <str<strong>on</strong>g>the</str<strong>on</strong>g> ETRAN code", . Int'l J <str<strong>on</strong>g>of</str<strong>on</strong>g> Appl.<br />

Radiati<strong>on</strong> and Isotopes 42(1991)917 - 941.<br />

[17] O. Blunck and S. Leisegang, \Zum Energieverlust schneller Elektr<strong>on</strong>en in dunnen Schichten", Z.<br />

fur Physik 128(1950)500 - 505.<br />

[18] L. Landau, \On <str<strong>on</strong>g>the</str<strong>on</strong>g> energy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fast particles by i<strong>on</strong>izati<strong>on</strong>", J. Phys. USSR 8(1944)201.<br />

[19] J. A. Halbleib and T. A. Mehlhorn, \ITS: The integrated TIGER series <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled electr<strong>on</strong>/phot<strong>on</strong><br />

M<strong>on</strong>te Carlo transport codes", Sandia Report SAND84-0573, 1984.<br />

[20] J. Halbleib, \Structure and Operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ITS code system", In T.M. Jenkins, W.R. Nels<strong>on</strong>,<br />

A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, M<strong>on</strong>te Carlo Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and<br />

Phot<strong>on</strong>s, pages 249 - 262. Plenum Press, New York, 1989.<br />

[21] J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, \ITS<br />

Versi<strong>on</strong> 3.0: The Integrated TIGER Series <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled electr<strong>on</strong>/phot<strong>on</strong> M<strong>on</strong>te Carlo transport<br />

codes", Sandia report SAND91-1634, 1992.<br />

[22] J. Briesmeister, \MCNP|A general purpose M<strong>on</strong>te Carlo code for neutr<strong>on</strong> and phot<strong>on</strong> transport,<br />

Versi<strong>on</strong> 3A", Los Alamos Nati<strong>on</strong>al Laboratory Report LA-7396-M (Los Alamos, NM), 1986.<br />

[23] J. F. Briesmeister, \MCNP|A general M<strong>on</strong>te Carlo N-particle transport code", Los Alamos<br />

Nati<strong>on</strong>al Laboratory Report LA-12625-M (Los Alamos, NM), 1993.<br />

[24] J. F. Briesmeister, \MCNP|A general M<strong>on</strong>te Carlo N-particle transport code", Los Alamos<br />

Nati<strong>on</strong>al Laboratory Report LA-12625-M, Versi<strong>on</strong> 4B (Los Alamos, NM), 1997.<br />

[25] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System", Report SLAC|<br />

265, Stanford Linear Accelerator Center, Stanford, Calif, 1985.<br />

[26] W. R. Nels<strong>on</strong> and D. W. O. Rogers, \Structure and Operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code system", In<br />

T.M. Jenkins, W.R. Nels<strong>on</strong>, A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, M<strong>on</strong>te Carlo<br />

Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and Phot<strong>on</strong>s, pages 287 - 306. Plenum Press, New York, 1989.<br />

[27] A. F. Bielajew, H. Hirayama, W. R. Nels<strong>on</strong>, and D. W. O. Rogers, \History, overview and recent<br />

improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4", Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada Report PIRS-0436, 1994.<br />

[28] C. N. Yang, \Actual path length <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s in foils", Phys. Rev 84(1951)599 - 600.<br />

[29] L. Eyges, \Multiple scattering with energy loss", Phys. Rev. 74(1948)1534.<br />

[30] A. F. Bielajew and D. W. O. Rogers, \PRESTA: The Parameter Reduced Electr<strong>on</strong>-Step Transport<br />

Algorithm for electr<strong>on</strong> M<strong>on</strong>te Carlo transport", Nuclear Instruments and Methods B18(1987)165<br />

-181.<br />

[31] J. Baro, J. Sempau, J. M. Fernandez-Varea, and F. Salvat, \PENELOPE: An algorithm for M<strong>on</strong>te<br />

Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> penetrati<strong>on</strong> and energy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s in matter", Nucl.<br />

Inst. and Meth. B100(1995)31 - 46.<br />

9


[32] F. Salvat, J. M. Fernandez-Varea, J. Baro, and J. Sempau, \PENELOPE, an algorithm and<br />

computer code for <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-phot<strong>on</strong> showers", Informes Tecnicos<br />

CIEMAT n. 799 (Centro de Investigaci<strong>on</strong>es Energeticas, Medioambientales y Tecnologicas,<br />

Madrid), 1996.<br />

[33] J. Sempau, E. Acosta, J. Baro, J. M. Fernandez-Varea, and F. Salvat, \An algorithm for M<strong>on</strong>te<br />

Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled electr<strong>on</strong>-phot<strong>on</strong> showers", Nucl. Inst. and Meth. B132(1997)377 -<br />

390.<br />

[34] I. Kawrakow and A. F. Bielajew, \On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densed history technique for electr<strong>on</strong> transport",<br />

Nucl. Inst. and Meth. B142(1998)253 - 280.<br />

[35] D. R. Tolar Jr., \Advanced Multiple Scattering Algorithms for Electr<strong>on</strong> Transport", PhD Thesis,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, 1999.<br />

[36] A. F. Bielajew and I. Kawrakow, \The <strong>EGS</strong>4/PRESTA-II electr<strong>on</strong> transport algorithm: Tests <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong> step-size stability", In \<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> XII'th C<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Computers<br />

in Radio<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy" (Medical Physics Publishing, Madis<strong>on</strong>, Wisc<strong>on</strong>sin), pages 153 - 154, 1997.<br />

[37] A. F. Bielajew and I. Kawrakow, \From \black art" to \black box": Towards a step-size independent<br />

electr<strong>on</strong> transport c<strong>on</strong>densed history algorithm using <str<strong>on</strong>g>the</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4/PRESTA-II", In<br />

\<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Joint <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> C<strong>on</strong>ference <strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Methods and Supercomputing<br />

for Nuclear Applicati<strong>on</strong>s" (American Nuclear Society Press, La Grange Park, Illinois, U.S.A.),<br />

pages 1289 - 1298, 1997.<br />

[38] A. F. Bielajew and I. Kawrakow, \PRESTA-I =) PRESTA-II: The new physics", In \<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4" (Technical Informati<strong>on</strong> and Library, laboratory<br />

for High Energy Physics, Japan), pages 51 - 65, 1997.<br />

[39] I. Kawrakow, \Accurate c<strong>on</strong>densed history M<strong>on</strong>te Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> transport, Part I:<br />

<strong>EGS</strong>nrc, <str<strong>on</strong>g>the</str<strong>on</strong>g> new <strong>EGS</strong>4 versi<strong>on</strong>", Med. Phys. 27(2000)485 - 498.<br />

[40] A. F. Bielajew and F. Salvat, \Improved electr<strong>on</strong> transport mechanics in <str<strong>on</strong>g>the</str<strong>on</strong>g> PENELOPE M<strong>on</strong>te<br />

Carlo model", in press Nucl. Inst. and Meth. B(2000).<br />

[41] A. F. Bielajew, \A hybrid multiple-scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for electr<strong>on</strong>-transport M<strong>on</strong>te Carlo calculati<strong>on</strong>s",<br />

Nucl. Inst. and Meth. B111(1996)195 - 208.<br />

10


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.11-22<br />

Improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Energy Phot<strong>on</strong> Transport for <strong>EGS</strong>5<br />

Y. Namito, H. Hirayama and S. Ban<br />

High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>)<br />

Oho, Tsukuba-shi, Ibaraki-ken, 305-0801, Japan<br />

Abstract<br />

We have implemented additi<strong>on</strong>al functi<strong>on</strong>s to <strong>EGS</strong>4 code [1]. We describe each modi cati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 after <str<strong>on</strong>g>the</str<strong>on</strong>g> 1st internati<strong>on</strong>al <strong>EGS</strong>4 workshop [2]. The items are i) L-X ray ii) Electr<strong>on</strong><br />

impact i<strong>on</strong>izati<strong>on</strong>, iii) Auger electr<strong>on</strong> and iv) X ray and Auger from compound and mixture. Then,<br />

we describe two systematic comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> improved <strong>EGS</strong>4 code and measurements, which were<br />

performed to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement. The comparis<strong>on</strong> are \20-40 keV synchrotr<strong>on</strong><br />

radiati<strong>on</strong> scattering experiment" and "Electr<strong>on</strong> beam induced K-X ray intensity". Agreement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

calculati<strong>on</strong> and experiment were satisfying level in both comparis<strong>on</strong>s.<br />

1 Introducti<strong>on</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> 1st internati<strong>on</strong>al <strong>EGS</strong>4 workshop in 1997, we presented improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> low energy phot<strong>on</strong><br />

transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 code. The items <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> improvements were,<br />

Linearly polarized phot<strong>on</strong> scattering [3],<br />

Doppler broadening in Compt<strong>on</strong> scattering [4],<br />

L-X ray [5],<br />

Electr<strong>on</strong> impact i<strong>on</strong>izati<strong>on</strong> [6].<br />

We c<strong>on</strong>tinue an improvement<str<strong>on</strong>g>of</str<strong>on</strong>g>low energy phot<strong>on</strong> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 code which will be integrated<br />

as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>5 code. The new improvements are,<br />

Revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-X ray,<br />

Revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> impact i<strong>on</strong>izati<strong>on</strong>,<br />

Auger electr<strong>on</strong>,<br />

Xray/Auger from compound/mixture.<br />

In Sec. 2, <str<strong>on</strong>g>the</str<strong>on</strong>g>se new improvements are described.<br />

Two systematic comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements and <strong>EGS</strong>4 code were performed to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> validity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement. These comparis<strong>on</strong>s were described in Sec 3. The rst comparis<strong>on</strong> is \20-40 keV<br />

synchrotr<strong>on</strong> radiati<strong>on</strong> scattering experiment". Targets are C, Cu, Ag, and Pb. Compt<strong>on</strong>, Rayleigh,<br />

K-X, L-X rays are observed using Ge detectors. L-X rays from Gd sample were also measured.<br />

The sec<strong>on</strong>d comparis<strong>on</strong> is \Electr<strong>on</strong> beam induced K-X ray". Electr<strong>on</strong> beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-3000 keV<br />

incident normally <strong>on</strong> targets (Al,Ti,Cu,Ag and Au) and K-X ray intensity was calculated at 120 and<br />

180 . Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> spectra from Cu and Sn target due to electr<strong>on</strong> beam incident were also<br />

performed.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> improvements until now areavailable as programs [7] and manuals [8, 9].<br />

1


2 Improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> Programs<br />

2.1 L-X ray<br />

2.1.1 Energy dependent L subshell cross secti<strong>on</strong>s<br />

In 1996 versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-X ray calculati<strong>on</strong> [5], <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> L subshell photoelectric e ect cross secti<strong>on</strong>s<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> L-edges was used and any energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio was ignored. This introduced<br />

an error greater than negligible level. We implemented energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> L subshell<br />

photoelectric e ect cross secti<strong>on</strong>s using Matese and Johns<strong>on</strong>'s calculated L subshell photoelectric e ect<br />

cross secti<strong>on</strong>s [10].<br />

2.1.2 Emissi<strong>on</strong> rates library based <strong>on</strong> experiment values<br />

In 1996 versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-X ray calculati<strong>on</strong> [5], we used Sco eld's calculated K and L emissi<strong>on</strong> rates<br />

[11]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> current versi<strong>on</strong>, we use Salem's experimental K and L emissi<strong>on</strong> rates [12]. <strong>EGS</strong>4 calculati<strong>on</strong><br />

using Salem's value gives better agreement with measurements comparing to calculati<strong>on</strong> using<br />

Sco eld's value.<br />

2.1.3 Local extrapolati<strong>on</strong> method (LEM)<br />

To avoid possible underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X rays near edge-energy two modi cati<strong>on</strong>s were applied.<br />

1. Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> piecewise linear tting named `Local extrapolati<strong>on</strong> method'(LEM) to treat mean<br />

free path and branching ratio near to edge. [13]<br />

2. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> energy intervals from 200 to 1000.<br />

2.2 EII<br />

In 1999, we implemented EII into <strong>EGS</strong>4 code. [6] We updated EII calculati<strong>on</strong> functi<strong>on</strong> so that it<br />

is ready to built up for <strong>EGS</strong>5. Here, following modi cati<strong>on</strong>s were applied to EII calculati<strong>on</strong>.<br />

1. Comm<strong>on</strong> subroutine with photoelectric e ect is used in K-X calculati<strong>on</strong>.<br />

2. EII<str<strong>on</strong>g>of</str<strong>on</strong>g>any element in compound and mixture is treated.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectric e ect related phenomena in <strong>EGS</strong>4 code was also<br />

changed. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> this, following points were also modi ed,<br />

1. Fluorescent yield was updated from [14, 15] to [16, 17]. The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> currently used and previously<br />

used uorescent yield is shown in Fig.1.<br />

2. Possible underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K is now avoided by means <str<strong>on</strong>g>of</str<strong>on</strong>g> LEM and increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong> energy intervals.<br />

3. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray is increased from 4 to 10.<br />

2.3 Auger electr<strong>on</strong><br />

Auger electr<strong>on</strong> calculati<strong>on</strong> was added to <strong>EGS</strong>4 code. Data and method <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> is described<br />

in [9].<br />

Guadala et al measured electr<strong>on</strong> spectra from Al and Ti target using m<strong>on</strong>ochr<strong>on</strong>ized synchrotr<strong>on</strong><br />

radiati<strong>on</strong> phot<strong>on</strong> at BNL. [18] Electr<strong>on</strong> emitted to forward directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 opening angle were measured<br />

with energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3%. We simulated Guadala's experiment using <str<strong>on</strong>g>the</str<strong>on</strong>g> improved <strong>EGS</strong>4<br />

code. As <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy was not measured, we adjusted incident phot<strong>on</strong> energy from Compt<strong>on</strong><br />

recoil energy. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement and calculati<strong>on</strong> is shown in Fig. 2. <strong>EGS</strong>4 underestimated<br />

Auger electr<strong>on</strong> from Al sample. <strong>EGS</strong>4 reproduced Auger electr<strong>on</strong> from Ti sample and Compt<strong>on</strong> recoil<br />

electr<strong>on</strong> from both <str<strong>on</strong>g>the</str<strong>on</strong>g> samples.<br />

2


Table 1: Incident phot<strong>on</strong> energy and linear polarizati<strong>on</strong><br />

Energy (keV) 40 30 20<br />

Linear Polarizati<strong>on</strong> (P ) 0.885 0.877 0.873<br />

Table 2: Samples and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir thickness<br />

Sample C Cu Ag Pb<br />

T (g/cm 2 ) 0.1325 1.79 0.525 0.568<br />

2.4 X ray/Auger from compound/mixture.<br />

We modi ed pegs4 program so that <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> photo electric e ect cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each element<br />

in compound and mixture is output as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> energy. We also modi ed <strong>EGS</strong>4 program<br />

to read in this ratio and to use it to select element in photoelectric e ect in compound and mixture.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> element is sampled in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r X ray or Auger electr<strong>on</strong> from that element is<br />

followed. The detail <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> method is described in [9].<br />

3 Systematic Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Measurement and Calculati<strong>on</strong><br />

3.1 Phot<strong>on</strong> Beam Incident<br />

We performed a m<strong>on</strong>o-energy phot<strong>on</strong>-scattering experiment at a BL-14C in a 2.5 GeV synchrotr<strong>on</strong><br />

light facility (PF). The experimental arrangement is shown in Fig.3. Phot<strong>on</strong>s from a vertical wiggler<br />

were used after being m<strong>on</strong>ochr<strong>on</strong>ized by a Si(1,1,1) double crystal m<strong>on</strong>ochrometer. A linearly polarized<br />

m<strong>on</strong>o-energy phot<strong>on</strong> beam was scattered by a sample located at point O with its normal vector<br />

<br />

1<br />

; ) <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered phot<strong>on</strong>s were detected by two high-purity Ge detectors located at =90 .<br />

(; 1 2<br />

p 2 1 2<br />

Incident phot<strong>on</strong> energies and linear polarizati<strong>on</strong> are shown in Table 1. Sample and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir thickness<br />

are shown in Table 2. One Ge detector (Ge2) was located in <str<strong>on</strong>g>the</str<strong>on</strong>g> plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident polarizati<strong>on</strong><br />

vector( = 0 ), and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Ge1) in <str<strong>on</strong>g>the</str<strong>on</strong>g> plane perpendicular to it ( = 90 ). Samples were<br />

c<strong>on</strong>tained in a vacuum chamber, and vacuum pipes were placed between <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum chamber and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ge detectors in order to reduce any scattering due to <str<strong>on</strong>g>the</str<strong>on</strong>g> air. Collimators <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.01 mm aperture<br />

were placed in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> Ge detectors (C1C2). The distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

collimator was 420 mm. The opening angle <str<strong>on</strong>g>of</str<strong>on</strong>g> this collimator was 0:33 and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a Compt<strong>on</strong>-scattered phot<strong>on</strong> due to this opening angle (without Doppler broadening) was negligibly<br />

small, 31eV for incident beam<str<strong>on</strong>g>of</str<strong>on</strong>g> 40 keV. The incident phot<strong>on</strong> intensity was m<strong>on</strong>itored in a free{air<br />

i<strong>on</strong>izati<strong>on</strong> chamber, which was calibrated using a calorimeter [19].<br />

Two stage <strong>EGS</strong>4 calculati<strong>on</strong> was performed. In <str<strong>on</strong>g>the</str<strong>on</strong>g> rst stage, phot<strong>on</strong> beam incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample and emergent phot<strong>on</strong>s (A) are scored. In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d stage, energy depositi<strong>on</strong> in Ge detector<br />

was calculated while using `A' as a phot<strong>on</strong> source.<br />

Measured and calculated phot<strong>on</strong> spectra are shown in Fig. 4. The spectrum by <strong>EGS</strong>4 calculati<strong>on</strong><br />

is smeared by Gaussian functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FWHM=0.3 keV to account for <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ge detector. The<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattering, Rayleigh scattering, K-X ray and L-X ray peaks are well reproduced by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 calculati<strong>on</strong>.<br />

The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> measured and calculated peaks are shown in Fig. 5. In <str<strong>on</strong>g>the</str<strong>on</strong>g> L-X ray comparis<strong>on</strong>,<br />

preliminary data <str<strong>on</strong>g>of</str<strong>on</strong>g> Gd sample are also shown. jC=M ; 1j 0.03 for Compt<strong>on</strong>, 0.6 for Rayleigh, 0.04<br />

for K-X and 0.15 for L-X.<br />

3


Table 3: Geometric average <str<strong>on</strong>g>of</str<strong>on</strong>g> C/M <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray yields. Gr and Ca means <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> result using Gryzinski's<br />

and Casnati's cross secti<strong>on</strong>, respectively.<br />

3.2 Electr<strong>on</strong> Beam Incident<br />

Target Al Ti Cu Ag Au Av<br />

<strong>EGS</strong>4 0.0027 0.023 0.053 0.31 0.85 0.061<br />

<strong>EGS</strong>4+EII(Gr) 0.96 1.12 0.86 0.91 1.07 0.98<br />

<strong>EGS</strong>4+EII(Ca) 1.16 1.40 1.18 1.11 1.16 1.21<br />

We simulated following three measurements.<br />

1. Dick et al performed a systematic measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray when electr<strong>on</strong> beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 20, 40,<br />

100, 200, 500, 1500 and 3000 keV hits target(Al, Ti, Cu, Ag and Au) normally. [20] K-X ray<br />

yield per incident electr<strong>on</strong> was measured at = 120 and 180 .<br />

2. Acosta et al measured phot<strong>on</strong> spectra emitted from Cu target at = 140 using Si detector<br />

when an electr<strong>on</strong> beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 keV incident normally <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> target [23].<br />

3. Placious measured bremsstrahlung phot<strong>on</strong>s and K-X rays from Sn targets iat =70 and 140<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> normal incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 keV electr<strong>on</strong>s [21, 22].<br />

<strong>EGS</strong>4 calculati<strong>on</strong> with and without <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement to treat EII were performed. As a K-shell<br />

EII cross secti<strong>on</strong>, Gryzinski's relativistic cross secti<strong>on</strong> [24] were used. All <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong>s were d<strong>on</strong>e<br />

in absolute, i.e. no normalizati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> were d<strong>on</strong>e.<br />

To simulate Acosta's experiment, two stage calculati<strong>on</strong> was d<strong>on</strong>e. In <str<strong>on</strong>g>the</str<strong>on</strong>g> rst stage, phot<strong>on</strong>s<br />

emerging from <str<strong>on</strong>g>the</str<strong>on</strong>g> target to =125-135 was scored (A). In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d stage, we calculated energy<br />

depositi<strong>on</strong> in Si detector using "A" as a source. All <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbing layers in Si detector were c<strong>on</strong>sidered.<br />

3.2.1 K-X ray yield<br />

The calculated and measured K-X ray yields are shown in Fig. 1. The statistical error in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> is within 3% for <strong>EGS</strong>4+EII, 10% and 5% for <strong>EGS</strong>4 <str<strong>on</strong>g>of</str<strong>on</strong>g> Al and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r targets, respectively.<br />

The geometric average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated K-X ray yield to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>e is shown<br />

for each target in Table 1. Here, a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4+EII calculati<strong>on</strong> using Casnati's EII cross secti<strong>on</strong><br />

[25, 26] is also shown, whose agreement with measurement isworse comparing to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> using<br />

Gryzinski's cross secti<strong>on</strong>.<br />

The <strong>EGS</strong>4 calculati<strong>on</strong> apparently becomes underestimated with decreasing Z <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target. C/M<br />

is <strong>on</strong>ly 0.0027 for Al, but C/M is 0.85 for Au. The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> underestimati<strong>on</strong> depends weakly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong> incident energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> scoring angle.<br />

For Al, Ti, Cu and Ag sample, dominant c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray isEII.For Au sample, dominant<br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray is photoelectric e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung phot<strong>on</strong>.<br />

3.2.2 Phot<strong>on</strong> spectra from a Cu target<br />

The calculated and measured phot<strong>on</strong> spectra from Cu target are shown in Fig. 2. C/M=0.92, 0.83<br />

and 0.85 for energy intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-7.6 (low energy bremsstrahlung), 7.6-9.2 (K-X) and 9.2-20 keV (high<br />

energy bremsstrahlung) when EII is c<strong>on</strong>sidered in a calculati<strong>on</strong>. When EII is ignored, C/M=0.07 in<br />

K-X regi<strong>on</strong>. Gauss smearing <str<strong>on</strong>g>of</str<strong>on</strong>g> FWHM=1.6 keV were applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 result to simulate energy<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Si detector.<br />

4


3.2.3 Phot<strong>on</strong> spectra from a Sn target<br />

The calculated and measured phot<strong>on</strong> spectra from Sn target are shown in Fig. 3. C/M=0.74<br />

and 0.88 at =70 and = 110 , respectively for energy intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.0-36.0 keV (K-X) when EII<br />

is c<strong>on</strong>sidered in a calculati<strong>on</strong>. When EII is ignored, C/M=0.52 and 0.67 at = 70 and = 110 ,<br />

respectively for energy regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.0-36.0 keV.<br />

As NaI detector was used in this measurement, energy resoluti<strong>on</strong> is not good comparing to Acosta's<br />

measurement. Then, large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung phot<strong>on</strong> c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> counts in <str<strong>on</strong>g>the</str<strong>on</strong>g> K-X<br />

ray energy regi<strong>on</strong>. Gauss smearing <str<strong>on</strong>g>of</str<strong>on</strong>g> FWHM=8 keV were applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 result to simulate<br />

energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI detector.<br />

4 Discussi<strong>on</strong><br />

4.1 Phot<strong>on</strong> beam incident<br />

4.1.1 Rayleigh scattering<br />

As shown in Fig.5(b), measured and calculated intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>Rayleigh scattered phot<strong>on</strong> di ers by<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 or more. This is due to interference between Rayleigh scattered phot<strong>on</strong>s.<br />

About C and Pb sample, jM=Cj ;1 < 0:15. This means <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> interference is small for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se samples, The di erence between that in horiz<strong>on</strong>tal and vertical directi<strong>on</strong>s are small. This means<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuth angle dependence is small. It may be possible to simulate interference <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh<br />

scattering from C and Pb sample by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> form factor <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh scattering in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way<br />

as that <str<strong>on</strong>g>of</str<strong>on</strong>g> water [27].<br />

4.1.2 L-X ray<br />

M/C 1.07 and 0.85 for Gd and Ag. There are possible sources <str<strong>on</strong>g>of</str<strong>on</strong>g> errors both in experimental<br />

side and calculati<strong>on</strong> side.<br />

Measuring Ag L-X ray is more di cult comparing to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r measurements because <str<strong>on</strong>g>of</str<strong>on</strong>g> its low energy<br />

(2.5-4 keV). The e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> Ge detectors change largely depending <strong>on</strong> energy and attenuati<strong>on</strong> due<br />

to air and Kapt<strong>on</strong> lm is also evident. The measurement <str<strong>on</strong>g>of</str<strong>on</strong>g>GdL-Xray is <strong>on</strong>ly preliminary and <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

data may bechanged in <str<strong>on</strong>g>the</str<strong>on</strong>g> future measurement.<br />

The error <str<strong>on</strong>g>of</str<strong>on</strong>g> L-shell uorescent yields ( L1, L2 and L3) are 30-20, 25-10 and 20-10% respectively<br />

for Ag, 15, 10-5 and 5% respectively for Gd. [16]<br />

4.2 EII<br />

Am<strong>on</strong>g 62 comparis<strong>on</strong> between Dick's K-X ray yield measurement and <strong>EGS</strong>4 calculati<strong>on</strong>, jC=M;1j<br />

was within 0.15 for 41 cases. We guess <str<strong>on</strong>g>the</str<strong>on</strong>g> largest source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> discrepancy between measurement<br />

and calculati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> error in EII cross secti<strong>on</strong>.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dick's measurement and <strong>EGS</strong>4 calculati<strong>on</strong>, C/M=0.79 when electr<strong>on</strong> energy=20<br />

keV, target=Cu and = 120 . In <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Acosta's measurement and <strong>EGS</strong>4<br />

calculati<strong>on</strong>, C/M=0.83. The close agreement <str<strong>on</strong>g>of</str<strong>on</strong>g>two C/M values suggest that both experiment values<br />

are c<strong>on</strong>sistent.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Acosta's measurement and <strong>EGS</strong>4 calculati<strong>on</strong>, high energy part <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung<br />

phot<strong>on</strong> was underestimated. Similar underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung at high phot<strong>on</strong><br />

energy side was also seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> spectra from a Sn target. We guess <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

underestimati<strong>on</strong> can be xed by using better bremsstrahlung phot<strong>on</strong> generati<strong>on</strong> cross secti<strong>on</strong>.<br />

5


5 C<strong>on</strong>clusi<strong>on</strong><br />

Two systematic comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements and <strong>EGS</strong>4 code were performed to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> validity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement. The rst comparis<strong>on</strong> is \20-40 keV synchrotr<strong>on</strong> radiati<strong>on</strong> scattering experiment".<br />

Targets are C, Cu, Ag, and Pb. Compt<strong>on</strong>, Rayleigh, K-X, L-X rays are observed using Ge detectors.<br />

L-X rays from Gd sample were also measured. The agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 and <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement was<br />

good both in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spectral shape and intensity: jC=M ;1j 0.03 for Compt<strong>on</strong>, 0.6 for Rayleigh,<br />

0.04 for K-X and 0.15 for L-X.<br />

Systematic comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measured and calculated K-X ray yield from various target for electr<strong>on</strong><br />

beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01 to 3 MeV was performed without any normalizati<strong>on</strong>. General agreement between<br />

measurement and calculati<strong>on</strong> show <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> improved <strong>EGS</strong>4 code. For Al, Ti, Cu and Ag sample,<br />

dominant c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray is EII. For Au sample, dominant c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-X ray is<br />

photoelectric e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung phot<strong>on</strong>.<br />

References<br />

[1] W. R. Nels<strong>on</strong>, H. Hirayama, D. W. O. Rogers, SLAC-265 (Stanford University, Stanford, 1985)<br />

[2] Y. Namito, H. Hirayama and S. Ban, \Improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> Low-Energy Phot<strong>on</strong> Transport in <strong>EGS</strong>4",<br />

In 1st <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4, Japan, Aug. 26-29 1997 ed. by. H. Hirayama, Y. Namito<br />

and S. Ban, <strong>KEK</strong> Proc. 99-16, (1997) pp.32-50<br />

[3] Y. Namito, S. Ban and H. Hirayama, Nucl. Instrum. and Meth. A 332(1993)277.<br />

[4] Y. Namito, S. Ban and H. Hirayama, Nucl. Instrum. and Meth. A 349(1994)489.<br />

[5] H. Hirayama, Y. Namito and S. Ban, \Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an L-Shell Photoelectr<strong>on</strong> and an L<br />

X-ray for Elements into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code", <strong>KEK</strong> Internal 96-10 (1996).<br />

[6] Y. Namito and H. Hirayama, Nucl. Instrum. and Meth. A423(1999)238.<br />

[7] ftp://ftp.kek.jp/kek/kek egs4/kek improve/kek improve.*<br />

[8] Y. Namito and H. Hirayama, \LSCAT: Low-energy Phot<strong>on</strong>-scattering Expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

Code (Inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> Impact I<strong>on</strong>izati<strong>on</strong>)", <strong>KEK</strong> Internal 2000-4 (2000).<br />

[9] H. Hirayama and Y. Namito, \General Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Photoelectric Related Phenomena for Compounds<br />

and Mixtures in <strong>EGS</strong>4", <strong>KEK</strong> Internal 2000-3 (2000).<br />

[10] J. J. Matese and W. R. Johns<strong>on</strong>, Phys. Rev. 140(1965)A1.<br />

[11] J. M. Sco eld, At. Data and Nucl. Data Tables 14(1974)121.<br />

[12] S. I. Salem and P. L. Lee, At. Data and Nucl. Data Tables 18(1976)233.<br />

[13] Y. Namito and H. Hirayama, \Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cross-secti<strong>on</strong> and Branching-ratio Evaluati<strong>on</strong><br />

in <strong>EGS</strong>4 in <str<strong>on</strong>g>the</str<strong>on</strong>g> Energy Interval Which Has an Absorpti<strong>on</strong>-edge", In 8th <strong>EGS</strong>4 Users' Meeting<br />

in Japan, Japan, Aug. 1-3 1999 ed. by. H. Hirayama, Y. Namito and S. Ban, <strong>KEK</strong> Proc. 99-15,<br />

(1999) pp.1-6.<br />

[14] Ed C. M. Lederer V. S. Shirley, Table <str<strong>on</strong>g>of</str<strong>on</strong>g> Isotopes 7th edn (Wiley-Interscience, New York, 1978).<br />

[15] W. Bambynek et al., Rev. Mod. Phys. 44(1972)716.<br />

[16] Ed V. S. Shirley, Table <str<strong>on</strong>g>of</str<strong>on</strong>g> Isotopes 8th edn. (Wiley-Interscience, New York, 1996).<br />

[17] W. Bambynek, post-deadline abstract published in <str<strong>on</strong>g>the</str<strong>on</strong>g> Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>ference <strong>on</strong> X-ray and<br />

inner-shell processes in atoms, molecules and solids, Leipzig, Aug 20-24 (1984).<br />

6


7<br />

Figure 1: Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> currently used uorescent yield and previously used <strong>on</strong>e.<br />

0.95<br />

0 20 40 60 80 100<br />

Z<br />

Ω k (84)/Ω k (72)<br />

1<br />

+3%@Ti<br />

+2%@Cu<br />

+0%@Ag,Sn,Au<br />

1.05<br />

+9%@Al<br />

1.1<br />

[27] L. R. M. Morin, J. Phys. Chem. Ref. Data 11 (1982)1091.<br />

[26] E. Casnati, A. Tartari, C. Baraldi, J. Phys. B 16 (1983)505.<br />

[25] E. Casnati, A. Tartari, C. Baraldi, J. Phys. B 15 (1982)155<br />

[24] M. Gryzinski, Phys. Rev. 138, A 305, A 322, A 336 (1965).<br />

[23] E. Acosta, X. Llovet, E. Cole<strong>on</strong>i, J. A. Riveros, F. Salvat, J. Apply. Phys. 83(1998)6038.<br />

[22] M. J. Berger, In M<strong>on</strong>te Carlo transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> and Phot<strong>on</strong>s, eds. T. M. Jenkins, W. R. Nels<strong>on</strong><br />

and A. Rindi (Plenum, New York, 1988) pp.216, Figure 8.27b.<br />

[21] R. Placious, J. Appl. Phys. 38(1967)2030.<br />

[20] C. E. Dick, A. C. Lucas, J. M. Motz, R. C. Placious, J. H. Sparrow, J. Appl. Phys. 44(1973)815.<br />

[19] H. Nakashima et al., Nucl. Instr. Meth. A 310(1991)696.<br />

[18] N. A. Guadala et al., Nucl. Instr. Meth. A 347(1994)504.


Number<str<strong>on</strong>g>of</str<strong>on</strong>g>Electr<strong>on</strong>(arb.)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(a)Al48.1nm,57.0keV<br />

Auger Compt<strong>on</strong>Recoil<br />

Exp<br />

<strong>EGS</strong>4<br />

0<br />

0 5 10 15<br />

Electr<strong>on</strong>KineticEnergy(keV)<br />

Number<str<strong>on</strong>g>of</str<strong>on</strong>g>Electr<strong>on</strong>(arb.)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Auger<br />

(b)Ti68nm,57.25keV<br />

Exp<br />

<strong>EGS</strong>4<br />

Compt<strong>on</strong>Recoil<br />

0<br />

0 5 10 15<br />

Electr<strong>on</strong>KineticEnergy(keV)<br />

Figure 2: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> spectra. Incident is m<strong>on</strong>ochr<strong>on</strong>ized synchrotr<strong>on</strong> radiati<strong>on</strong> phot<strong>on</strong>. Measurement<br />

by Guadala et al is shown by lled circles. <strong>EGS</strong>4 calculati<strong>on</strong>s are shown in solid line. Target materials,<br />

thickness and incident phot<strong>on</strong> energies are, (a) Al 48.1 nm, 57.0 keV (b) Ti 68 nm, 57.25 keV. Incident phot<strong>on</strong><br />

energy was adjusted from Compt<strong>on</strong> recoil electr<strong>on</strong> energy.<br />

Figure 3: Experiment arrangement. A m<strong>on</strong>o-energetic linearly polarized synchrotr<strong>on</strong> radiati<strong>on</strong> phot<strong>on</strong> beam<br />

was scattered by a sample (S) <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered phot<strong>on</strong>s were counted by two high-purity Gedetectors for lowenergy<br />

phot<strong>on</strong>s (Ge1, Ge2). The aperture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C0 collimator was 2 mm. A free air i<strong>on</strong> chamber (FAIC)<br />

was located in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to m<strong>on</strong>itor incident phot<strong>on</strong> intensity. The sample was placed at point O<br />

its normal vector is (; 1<br />

2 ; 1p <br />

2 1<br />

2 ). Collimators(C1C2) de ne <str<strong>on</strong>g>the</str<strong>on</strong>g> opening angle <str<strong>on</strong>g>of</str<strong>on</strong>g> Ge detectors. The distance<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g> exit <str<strong>on</strong>g>of</str<strong>on</strong>g> collimator (L1) was 420 mm and <str<strong>on</strong>g>the</str<strong>on</strong>g> aperture <str<strong>on</strong>g>of</str<strong>on</strong>g> Collimator(D1)<br />

was 5.01 mm.<br />

8


Counts(/keV/sr/source)<br />

Counts(/keV/sr/source)<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

(a)C40keV<br />

COUNTH<br />

COUNTV<br />

<strong>EGS</strong>4H<br />

<strong>EGS</strong>4V<br />

GeCompt<strong>on</strong><br />

Edge<br />

GeK-XEscape<br />

M.S.<br />

Compt<strong>on</strong><br />

Rayleigh<br />

0 5 10 15 20 25 30 35 40<br />

EnergyDepositi<strong>on</strong>(keV)<br />

COUNTH<br />

COUNTV<br />

<strong>EGS</strong>4H<br />

<strong>EGS</strong>4V<br />

L-X<br />

FeK-X<br />

(c)Ag20keV<br />

GeK-XEscape<br />

Res<strong>on</strong>antRaman<br />

Rayleigh<br />

Compt<strong>on</strong><br />

0 5 10 15 20<br />

EnergyDepositi<strong>on</strong>(keV)<br />

Counts(/keV/sr/source)<br />

Counts(/keV/sr/source)<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

K-X<br />

PileUp<br />

(b)Cu40keV<br />

COUNTH<br />

COUNTV<br />

<strong>EGS</strong>4H<br />

<strong>EGS</strong>4V<br />

GeK-X<br />

Escape<br />

Rayleigh<br />

Compt<strong>on</strong><br />

0 5 10 15 20 25 30 35 40<br />

EnergyDepositi<strong>on</strong>(keV)<br />

GeK-X<br />

Escape<br />

Ll<br />

Lα Lβ<br />

Lγ<br />

(d)Pb40keV<br />

PileUp<br />

COUNTH<br />

COUNTV<br />

<strong>EGS</strong>4H<br />

<strong>EGS</strong>4V<br />

GeK-X<br />

Escape<br />

Rayleigh<br />

Compt<strong>on</strong><br />

0 5 10 15 20 25 30 35 40<br />

EnergyDepositi<strong>on</strong>(keV)<br />

Figure 4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> spectra. Measurement is shown by lled (horiz<strong>on</strong>tal) and open circles<br />

(vertical). <strong>EGS</strong>4 calculati<strong>on</strong>s are shown in solid (horiz<strong>on</strong>tal) and dashed (vertical). Targets and incident<br />

phot<strong>on</strong> energy are, (a) C-40 keV (b) Cu-40 keV (c) Ag-20 keV (d) Pb-40 keV.<br />

9


M/C<br />

M/C<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

CH<br />

CuH<br />

AgH<br />

PbH<br />

CV<br />

CuV<br />

AgV<br />

PbV<br />

(a)Compt<strong>on</strong><br />

0.8<br />

15 20 25 30 35 40 45<br />

IncidentPhot<strong>on</strong>Energy(keV)<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

(c)K-X<br />

CuH<br />

AgH<br />

CuV<br />

AgV<br />

0.8<br />

15 20 25 30 35 40 45<br />

IncidentPhot<strong>on</strong>Energy(keV)<br />

M/C<br />

M/C<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

CuH<br />

PbV<br />

PbH<br />

CH<br />

CV<br />

(b)Rayleigh<br />

CuV<br />

0.7<br />

AgV<br />

AgH<br />

0.6<br />

5 10 15 20 25 30 35 40 45<br />

IncidentPhot<strong>on</strong>Energy(keV)<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

(d)L-X<br />

Gd<br />

Pb<br />

Ag<br />

0.8<br />

0 10 20 30 40 50<br />

IncidentPhot<strong>on</strong>Energy(keV)<br />

Figure 5: Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> measured and calculated intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> each peak. `H' and `V' means horiz<strong>on</strong>tal and vertical<br />

respectively. (a) Compt<strong>on</strong> scattering (b) Rayleigh scattering (c) K-X ray (d) L-X ray.<br />

10<br />

H<br />

V<br />

H<br />

V<br />

V<br />

H


K-Xrayyield(phot<strong>on</strong>s/sr/e-)<br />

K-Xrayyield(phot<strong>on</strong>s/sr/e-)<br />

K-Xrayyield(phot<strong>on</strong>s/sr/e-)<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -3<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -2<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -2<br />

(a)Al<br />

Exp(Dick)180 o<br />

Exp(Dick)120 o<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

(c)Cu<br />

(e)Au<br />

10 -2<br />

180 o<br />

120 o<br />

180 o<br />

120 o<br />

10 -1<br />

C/M=0.96<br />

C/M=0.0027<br />

10 0<br />

Incidentelectr<strong>on</strong>kineticenergy(MeV)<br />

10 -1<br />

C/M=0.86<br />

C/M=0.053<br />

Exp(Dicketal)180 o<br />

Exp(Dicketal)120 o<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

10 0<br />

Incidentelectr<strong>on</strong>kineticenergy(MeV)<br />

10 -1<br />

10 0<br />

C/M=1.07<br />

C/M=0.85<br />

180 o<br />

120 o<br />

180 o<br />

120 o<br />

Exp(Dick)<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

Incidentelectr<strong>on</strong>kineticenergy(MeV)<br />

180 o<br />

10 1<br />

10 1<br />

10 1<br />

K-Xrayyield(phot<strong>on</strong>s/sr/e-)<br />

K-Xrayyield(phot<strong>on</strong>s/sr/e-)<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -3<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -2<br />

(b)Ti<br />

(d)Ag<br />

10 -2<br />

10 -1<br />

180 o<br />

120 o<br />

180 o<br />

120 o<br />

Exp.(Dick)180 o<br />

Exp.(Dick)120 o<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

10 0<br />

C/M=1.12<br />

Incidentelectr<strong>on</strong>kineticenergy(MeV)<br />

10 -1<br />

C/M=0.91<br />

C/M=0.31<br />

Exp(Dick)180 o<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

10 0<br />

Incidentelectr<strong>on</strong>kineticenergy(MeV)<br />

C/M=0.023<br />

Figure 6: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> K-X ray yield. The measured values by Dicketal. are indicated by lled boxes<br />

( =180 ) and lled triangles ( = 120 ). <strong>EGS</strong>4: <strong>EGS</strong>4 calculati<strong>on</strong> without EII <strong>EGS</strong>4+EII: <strong>EGS</strong>4 calculati<strong>on</strong><br />

with EII using Gryzinski's cross secti<strong>on</strong>. (a) Al (b) Ti (c) Cu (d) Ag (e) Au.<br />

11<br />

180 o<br />

10 1<br />

10 1


Counts(/keV/sr./source)<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

Exp.(Acosta)<br />

<strong>EGS</strong>4+EII<br />

<strong>EGS</strong>4<br />

0 5 10<br />

Phot<strong>on</strong>Energy(keV)<br />

15 20<br />

Figure 7: Spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung and K-X rays from a Cu target toward =130 . A20keV electr<strong>on</strong><br />

beam is normally incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> target. The closed circle indicates a measurement using a Si detector by<br />

Acosta et al. The solid and dashed lines indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 calculati<strong>on</strong> with EII using Gryzinski's cross secti<strong>on</strong><br />

and without EII.<br />

Phot<strong>on</strong>s(/MeV/sr./electr<strong>on</strong>)<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

(a)θ=70 o<br />

Exp.(Placious)<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

Phot<strong>on</strong>energy(MeV)<br />

Phot<strong>on</strong>s(/MeV/sr./electr<strong>on</strong>)<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Exp.(Placious)<br />

<strong>EGS</strong>4+EII(GR)<br />

<strong>EGS</strong>4<br />

(b)θ=110 o<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

Phot<strong>on</strong>energy(MeV)<br />

Figure 8: Spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung and K-X rays from a Sn target toward (a) = 70 and (b) =<br />

120 , respectively. A 100 keV electr<strong>on</strong> beam is normally incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> target. The closed circle indicates a<br />

measurement using an NaI detector by Placious. The solid and dashed lines indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 calculati<strong>on</strong><br />

with EII using Gryzinski's cross secti<strong>on</strong> and without EII.<br />

12


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.23-30<br />

Status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Object-oriented <strong>EGS</strong> Interface Project<br />

A. M. Yacout, W. L. Dunn, W. R. Nels<strong>on</strong> 1 , P. Lui 1 ,<br />

A. F. Bielajew 2 , H. Hirayama 3 and Y. Namito 3<br />

Quantum Research Services, PO Box 52391, Durham, NC 27717, USA<br />

1 Stanford Linear Accelerator Center, PO Box 4349, Stanford, CA 94309, USA<br />

2 The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, 2355 B<strong>on</strong>isteel Boulevard, Ann Arbor, MI 48109, USA<br />

3 High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>), Oho, Tsukuba-shi,<br />

Ibaraki-ken 305-0801, Japan<br />

Abstract<br />

The object-oriented <strong>EGS</strong> interface project seeks to simplify { using modern object-oriented<br />

and visual user interface techniques { <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry and scoring aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> running<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong> code. The project will create an extremely user-friendly <strong>EGS</strong> package that retains and<br />

exploits <str<strong>on</strong>g>the</str<strong>on</strong>g> well documented physics advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong> but removes <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

user write HOWFAR and AUSGAB subroutines to de ne <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry and scoring aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

new problem. In additi<strong>on</strong>, several physics enhancements will be incorporated in <strong>EGS</strong>5. Although<br />

<strong>EGS</strong>5 will be able to be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al way { in a stand-al<strong>on</strong>e fashi<strong>on</strong> with users writing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir own geometry and scoring subroutines { it is designed to be used in a completely new way<br />

{ linked to a user interface through which users can manage all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> problem speci cati<strong>on</strong><br />

and code operati<strong>on</strong>. This paper c<strong>on</strong>centrates <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> object-oriented user interface, which will<br />

dramatically simplify de ning problem-speci c detail for <strong>EGS</strong>. The \<strong>EGS</strong>5+VUI1" package will<br />

allow users to solve independent problems by run-time linking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5 code with class libraries<br />

that encapsulate <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry and scoring aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> each problem. Some simple example problems<br />

are c<strong>on</strong>sidered in order to illustrate features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 package.<br />

1 Introducti<strong>on</strong><br />

The Electr<strong>on</strong> Gamma Shower (<strong>EGS</strong>) M<strong>on</strong>te Carlo coupled electr<strong>on</strong>-phot<strong>on</strong> transport code has<br />

enjoyed much success and broad acceptance over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> manyyears. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> currentversi<strong>on</strong>,<br />

<strong>EGS</strong>4[1], has now been released for over a decade without formal upgrading and re-release. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r,<br />

<strong>EGS</strong>4 requires that <str<strong>on</strong>g>the</str<strong>on</strong>g> user be pro cient enough to program <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry and scoring aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each problem in subroutines that must be compiled and linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> static part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code. Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Mortran pre-processor[2] and several \canned" geometry macros (e.g., $PLAN1,$PLAN2P,$CYLNDR,<br />

etc.[3]) can simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> process, but solving di erent problems never<str<strong>on</strong>g>the</str<strong>on</strong>g>less requires compilati<strong>on</strong> and<br />

linking <str<strong>on</strong>g>of</str<strong>on</strong>g> user code to <strong>EGS</strong> physics code. This places a substantial burden <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> user and, not<br />

insigni cantly, permits errors in logic or implementati<strong>on</strong>, especially am<strong>on</strong>g inexperienced users.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r general-purpose M<strong>on</strong>te Carlo radiati<strong>on</strong> transport codes, such as MCNP and GEANT, deal<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry/scoring problem by building extensive libraries and tools. This approach has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

disadvantages <str<strong>on</strong>g>of</str<strong>on</strong>g> creating a large code overhead and limiting <str<strong>on</strong>g>the</str<strong>on</strong>g> user to those geometry and scoring<br />

estimators that are built-in. <strong>EGS</strong>, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, has allowed user exibility by allowing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

user to write <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry/scoring aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> each problem. This leads to a leaner code but adds<br />

time and requires that <str<strong>on</strong>g>the</str<strong>on</strong>g> user be a competent programmer. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> object-oriented<br />

(OO) programming techniques allows <str<strong>on</strong>g>the</str<strong>on</strong>g> \best <str<strong>on</strong>g>of</str<strong>on</strong>g> both worlds." In our OO approach, we respresent<br />

geometrical shapes, sources, and scoring estimators as classes. Objects selected from <str<strong>on</strong>g>the</str<strong>on</strong>g>se classes are<br />

linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> physics code at run time, without <str<strong>on</strong>g>the</str<strong>on</strong>g> need to compile and link user code. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

scripted input provides a exible way to build objects at run time.<br />

1


In <str<strong>on</strong>g>the</str<strong>on</strong>g> following, we discuss our e orts to signi cantly upgrade <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code and to develop an<br />

object-oriented <strong>EGS</strong> interface that will obviate <str<strong>on</strong>g>the</str<strong>on</strong>g> need for <str<strong>on</strong>g>the</str<strong>on</strong>g> user to write problem-speci c code.<br />

2 The <strong>EGS</strong>5 and Object-oriented <strong>EGS</strong> Interface Projects<br />

The authors are involved in a multi-instituti<strong>on</strong>al e ort to signi cantly upgrade <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code.<br />

This e ort will result in an enhanced versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>, <strong>EGS</strong>5, and an OO user interface to <str<strong>on</strong>g>the</str<strong>on</strong>g> enhanced<br />

physics code. The user interface will c<strong>on</strong>tain a visual user interface (VUI) through which <str<strong>on</strong>g>the</str<strong>on</strong>g> user<br />

will communicate with <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code <str<strong>on</strong>g>the</str<strong>on</strong>g> combined package will be called <strong>EGS</strong>5+VUI1. It is<br />

anticipated that <strong>EGS</strong>5+VUI1 will be released before <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year 2001.<br />

To date, <strong>EGS</strong>4 has been modi ed to c<strong>on</strong>form to modern programming c<strong>on</strong>venti<strong>on</strong>s (such as IN-<br />

CLUDE statements for COMMON blocks, etc.) and to incorporate low-energy phot<strong>on</strong> enhancements<br />

developed at <strong>KEK</strong>. The resulting <strong>EGS</strong>4.2 versi<strong>on</strong> has been extensively benchmarked against <strong>EGS</strong>4.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r physics enhancements are being developed that will be incorporated into <strong>EGS</strong>. The nal <strong>EGS</strong>5<br />

physics code will include at least <str<strong>on</strong>g>the</str<strong>on</strong>g> following enhancements:<br />

Improved low-energy phot<strong>on</strong> transport, e.g.[4]<br />

Improved electr<strong>on</strong> transport modeling, e.g.[5]<br />

Low energy electr<strong>on</strong> cross secti<strong>on</strong> handling[6]<br />

Photoelectric angular distributi<strong>on</strong>s[7]<br />

Improved bremsstrahlung phot<strong>on</strong> angular distributi<strong>on</strong>s[8]<br />

K and L shell uorescence[9]<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se physics enhancements that will be incorporated in <strong>EGS</strong>5 are discussed in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r presentati<strong>on</strong>s[10,<br />

11] at this workshop. In additi<strong>on</strong>, <strong>EGS</strong>5 will incorporate cross secti<strong>on</strong> generati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

code, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than requiring that <str<strong>on</strong>g>the</str<strong>on</strong>g> user run a pre-processor, such as P<strong>EGS</strong>, to create <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary<br />

cross secti<strong>on</strong> les for di erent problems.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r signi cant e ort is to c<strong>on</strong>struct a powerful object-oriented user interface to <strong>EGS</strong> that<br />

will revoluti<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> way <strong>EGS</strong> is run in <str<strong>on</strong>g>the</str<strong>on</strong>g> future. The OO paradigm is well suited to support our<br />

primary goal <str<strong>on</strong>g>of</str<strong>on</strong>g> producing a reusable code { reusable in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense that modi cati<strong>on</strong>s to <strong>on</strong>e comp<strong>on</strong>ent<br />

do not require modi cati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code package. The main comp<strong>on</strong>ents in<br />

our case are <str<strong>on</strong>g>the</str<strong>on</strong>g> physics in <strong>EGS</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> VUI, and <str<strong>on</strong>g>the</str<strong>on</strong>g> user code (including <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry in HOWFAR<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> scoring estimators in AUSGAB). It is noted that "modifying" can be interpreted also in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sense <str<strong>on</strong>g>of</str<strong>on</strong>g> "adding", so that in <strong>EGS</strong>5+VUI1 geometry and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r classes can be added without having<br />

to rebuild <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> package.<br />

The encapsulati<strong>on</strong> property <str<strong>on</strong>g>of</str<strong>on</strong>g> OO programming, in which each object encapsulates (c<strong>on</strong>tains) its<br />

data and code (functi<strong>on</strong>s), provides <str<strong>on</strong>g>the</str<strong>on</strong>g> rst means <str<strong>on</strong>g>of</str<strong>on</strong>g> breaking <str<strong>on</strong>g>the</str<strong>on</strong>g> problem into meaningful comp<strong>on</strong>ents.<br />

Each object is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> manipulating its own data (properties) to independently provide <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

informati<strong>on</strong> required by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Thus, for instance, tracking a particle inside a<br />

particular geometrical shape is handled completely by <str<strong>on</strong>g>the</str<strong>on</strong>g> methods encapsulated in <str<strong>on</strong>g>the</str<strong>on</strong>g> object itself.<br />

The implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tracking code is thus completely hidden from <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system. The<br />

inheritance property <str<strong>on</strong>g>of</str<strong>on</strong>g> OO programming allows <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new object types (classes) based<br />

<strong>on</strong> existing types. New classes "inherit" some or all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base class.<br />

This property allows us to re-use existing code and, more importantly, provides a way to specify and<br />

establish a comm<strong>on</strong> interface for all object types (existing or to be added) by deriving <str<strong>on</strong>g>the</str<strong>on</strong>g>m from<br />

<strong>on</strong>e comm<strong>on</strong> base class. For example, geometrical objects are derived from <strong>on</strong>e comm<strong>on</strong> ancestor<br />

this base class de nes <str<strong>on</strong>g>the</str<strong>on</strong>g> required methods for particle tracking (methods to determine if a speci ed<br />

spatial point is inside an object, to determine if a track intersects an object surface, etc.). Classes<br />

2


inherited from this class modify <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods according to <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>the</str<strong>on</strong>g>y represent.<br />

Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> objects created from <str<strong>on</strong>g>the</str<strong>on</strong>g>se classes are polymorphic: <str<strong>on</strong>g>the</str<strong>on</strong>g> methods in <str<strong>on</strong>g>the</str<strong>on</strong>g> di erent class<br />

types have identical names, but at run time, <str<strong>on</strong>g>the</str<strong>on</strong>g> correct method is called according to <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

object being used. These properties <str<strong>on</strong>g>of</str<strong>on</strong>g> OO programming enable us to systematically implement <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tracking and scoring aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo in general, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> a speci c problem.<br />

3 Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> User Interface<br />

Aschematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 package is given in gure 1. The block marked \<strong>EGS</strong>5" c<strong>on</strong>tains<br />

<br />

Figure<br />

Script<br />

Parser read<br />

Script<br />

Generator<br />

write<br />

display<br />

interface<br />

Generic Code Interface<br />

(OO HOWFAR, AUSGAB)<br />

<strong>EGS</strong>5<br />

Classes<br />

VUI<br />

1: Aschematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 package.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> enhanced physics models. For <str<strong>on</strong>g>the</str<strong>on</strong>g> present, it will be programmed in Fortran77 and can be used<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al way (write problem-speci c routines, prepare an input le, compile and link <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

routines with <strong>EGS</strong>5, and execute <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting code for <str<strong>on</strong>g>the</str<strong>on</strong>g> given problem). However, <strong>EGS</strong>5 can also<br />

be used in a much simpler way, as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 package. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> user will set<br />

up <str<strong>on</strong>g>the</str<strong>on</strong>g> problem by interacting <strong>on</strong>ly through <str<strong>on</strong>g>the</str<strong>on</strong>g> VUI, which will be a full-functi<strong>on</strong> interface that uses<br />

ic<strong>on</strong>s, dialog boxes, menus, etc. to set up a speci c problem. Geometric objects, materials, sources,<br />

and estimators will be selected from pre-de ned libraries. Dimensi<strong>on</strong>s, positi<strong>on</strong>s, etc. will be entered<br />

into dialog boxes. Once an object has been registered, its methods will be used to draw it <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

screen. Geometrical objects can c<strong>on</strong>tain o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects, including o<str<strong>on</strong>g>the</str<strong>on</strong>g>r geometrical objects, allowing<br />

transport in complex geometrical systems. Sessi<strong>on</strong>s can be saved and retrieved and <str<strong>on</strong>g>the</str<strong>on</strong>g> user can<br />

initiate executi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong> merely by clicking <strong>on</strong> an appropriate ic<strong>on</strong>, after <str<strong>on</strong>g>the</str<strong>on</strong>g> problem has been fully<br />

set up. The VUI will allow <str<strong>on</strong>g>the</str<strong>on</strong>g> user to c<strong>on</strong>struct a new problem from <str<strong>on</strong>g>the</str<strong>on</strong>g> ground up or by modifying<br />

an old sessi<strong>on</strong>.<br />

The Script Generator will generate appropriate script from <str<strong>on</strong>g>the</str<strong>on</strong>g> speci c objects that <str<strong>on</strong>g>the</str<strong>on</strong>g> user selects<br />

for a given problem. The script incorporates <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all objects representing <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry,<br />

materials, sources, and estimators in <str<strong>on</strong>g>the</str<strong>on</strong>g> problem using a simple syntax. Thus, no separate input data<br />

3


le needs to be prepared. Also, no predetermined order <str<strong>on</strong>g>of</str<strong>on</strong>g> records is required, as in <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical<br />

input les used previously with <strong>EGS</strong>. Example scripts are given in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong> for three simple<br />

problems.<br />

<strong>EGS</strong>5+VUI1 will c<strong>on</strong>tain a Class Library, i.e. a library <str<strong>on</strong>g>of</str<strong>on</strong>g> geometry, source, material, and scoring<br />

classes. The classes will c<strong>on</strong>tain methods that perform operati<strong>on</strong>s appropriate for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir types. For<br />

example, each geometric class c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> following methods:<br />

1. Method to register its name, creator method, properties (names and read/write handlers), and<br />

display methods<br />

2. A creator method to instantiate a new object <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> class<br />

3. Property handlers (methods to read and write a value <str<strong>on</strong>g>of</str<strong>on</strong>g> a property)<br />

4. Display methods to display di erent views <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> object and an interface to query required<br />

properties<br />

5. A method to determine if a speci ed point is inside an object<br />

6. A method to determine if a track intersects an object<br />

7. A method to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> entry point to an object al<strong>on</strong>g a speci ed track<br />

8. A method to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> exit point from an object al<strong>on</strong>g a speci ed track<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signi cant features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 is that a procedure will exist for adding new classes.<br />

Thus, if a user desires to incorporate for a speci c problem a special or unusual geometrical object or<br />

scoring estimator that is not part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing Class Library, a procedure will exist for adding <strong>on</strong>e<br />

or more classes. The new classes are added to <str<strong>on</strong>g>the</str<strong>on</strong>g> run-time library without rebuilding <str<strong>on</strong>g>the</str<strong>on</strong>g> package<br />

and will be available for all future problems. In this way <str<strong>on</strong>g>the</str<strong>on</strong>g> library <str<strong>on</strong>g>of</str<strong>on</strong>g> classes in <strong>EGS</strong>5+VUI1 can<br />

grow as needed to handle essentially arbitrary problems. It is noted, however, that <str<strong>on</strong>g>the</str<strong>on</strong>g> initial Class<br />

Library will be su cient to treat a very broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> problems.<br />

The Parser creates objects from <str<strong>on</strong>g>the</str<strong>on</strong>g> script at run time, using simple lexical rules. Objects created<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> Parser are instances <str<strong>on</strong>g>of</str<strong>on</strong>g> classes stored in <str<strong>on</strong>g>the</str<strong>on</strong>g> Class Library and registered at start-up by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

VUI. The Parser will provide high-level functi<strong>on</strong>s for developers <str<strong>on</strong>g>of</str<strong>on</strong>g> new classes. The HOWFAR and<br />

AUSGAB routines are reduced to generic (universal) routines that implement systematic tracking and<br />

scoring algorithms and pass informati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5 code and <str<strong>on</strong>g>the</str<strong>on</strong>g> problem-speci c objects. The<br />

use<str<strong>on</strong>g>of</str<strong>on</strong>g>genericHOWFAR and AUSGAB routines is possible because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OO organizati<strong>on</strong>. A single<br />

query is issued to a c<strong>on</strong>tainer called <str<strong>on</strong>g>the</str<strong>on</strong>g> "Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r Volume." The Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r Volume queries all internal<br />

geometrical objects and volumes, which in turn query <str<strong>on</strong>g>the</str<strong>on</strong>g>ir internal gometric objects and volumes. In<br />

this way, particle locati<strong>on</strong> and transport can be tracked with a single call at each transport step.<br />

4 Dem<strong>on</strong>strati<strong>on</strong><br />

We c<strong>on</strong>sider three simple problems as a means to dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 approach. These<br />

problems were run in an early part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project using <strong>EGS</strong>4. Problem 1 is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <strong>EGS</strong><br />

dem<strong>on</strong>strati<strong>on</strong> problem, namely a m<strong>on</strong>o-directi<strong>on</strong>al source emitting 1-MeV phot<strong>on</strong>s into a polyethylene<br />

slab al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> +z directi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slab is bounded <strong>on</strong> <strong>on</strong>e side by a vacuum and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by air<br />

(see gure 2). We desire <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> polyethylene slab. The sec<strong>on</strong>d and third<br />

problems involve a sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> polyethylene surrounded by vacuum. A source similar to that in <str<strong>on</strong>g>the</str<strong>on</strong>g> rst<br />

sample problem is located at <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere (see gure 3). We sought <str<strong>on</strong>g>the</str<strong>on</strong>g> energy deposited<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere, for Problem 2, and <str<strong>on</strong>g>the</str<strong>on</strong>g> particle ux at <str<strong>on</strong>g>the</str<strong>on</strong>g> outside surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere, for Problem<br />

3. This suite <str<strong>on</strong>g>of</str<strong>on</strong>g> problems, though simple, allows us to dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> OO approach for di erent<br />

geometries (slab versus sphere) as well as di erent estimators (energy depositi<strong>on</strong> versus boundary<br />

crossing).<br />

4


Air<br />

Polyethylene<br />

Vacuum<br />

1 cm thickness<br />

M<strong>on</strong>o-directi<strong>on</strong>al, phot<strong>on</strong> source<br />

Figure 2: A m<strong>on</strong>o-directi<strong>on</strong>al source emits 1-MeV phot<strong>on</strong>s into a polyethylene slab <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness <strong>on</strong>e cm. We<br />

seek <str<strong>on</strong>g>the</str<strong>on</strong>g> energy deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> polyethylene slab.<br />

<br />

<br />

<br />

<br />

y<br />

r = 1 cm<br />

Polyethylene<br />

Point source x<br />

Figure 3: A m<strong>on</strong>o-directi<strong>on</strong>al source emits 1-MeV phot<strong>on</strong>s intoapolyethylene sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> radius <strong>on</strong>e cm. We seek<br />

in Problem 2 <str<strong>on</strong>g>the</str<strong>on</strong>g> energy deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere and in Problem 3 <str<strong>on</strong>g>the</str<strong>on</strong>g> ux <str<strong>on</strong>g>of</str<strong>on</strong>g> particles at <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere boundary.<br />

5


We solved all problems using <strong>EGS</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al manner. This required writing two HOWFAR<br />

routines (<strong>on</strong>e for <str<strong>on</strong>g>the</str<strong>on</strong>g> slabs and <strong>on</strong>e for <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere) and twoAUSGAB routines (<strong>on</strong>e for energy depositi<strong>on</strong><br />

and <strong>on</strong>e for ux). The HOWFAR and AUSGAB routines were compiled and linked in various ways<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 physics code to create three executable codes. We <str<strong>on</strong>g>the</str<strong>on</strong>g>n ran each code with 100,000<br />

histories to obtain results in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al way. We also solved <str<strong>on</strong>g>the</str<strong>on</strong>g> three problems using <str<strong>on</strong>g>the</str<strong>on</strong>g> OO<br />

approach. This involved writing a script for each problem (this task eventually will be performed by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Script Generator, which has not yet been completed) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n letting <str<strong>on</strong>g>the</str<strong>on</strong>g> parser take each script<br />

and create <str<strong>on</strong>g>the</str<strong>on</strong>g> objects from a library which was linked at run time with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 object module.<br />

The scripts for <str<strong>on</strong>g>the</str<strong>on</strong>g> three problems are given below.<br />

Slab Energy Depositi<strong>on</strong> Script (Problem 1)<br />

TMaterial:POLY{tag="POLY"id=1}<br />

TMaterial:AIR{tag="AIR"id=2}<br />

TSource:Source{energy=1.id=0locati<strong>on</strong>=(0.0,0.0,+0.0)<br />

number=100000seed=5555}<br />

TEstimator:Estimator{id=1}<br />

TVolume:Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>rVolume{<br />

TSlabZ:Vaccum{thickness=100.0TPoint=(0,0,-100.0)<br />

ecut=0.01pcut=0.01}<br />

TSlabZ:PolySlab{thickness=1.0TSource=Source<br />

TPoint=(0,0,0)TMaterial=POLYTEstimator=Estimator<br />

transport=1ecut=.01pcut=0.01}<br />

TSlabZ:AirSlab{thickness=100.0TPoint=(0,0,1.0)<br />

TMaterial=AIRtransport=0ecut=.01pcut=.01}<br />

}<br />

Sphere Energy Depositi<strong>on</strong> Script (Problem 2)<br />

TMaterial:POLY{tag="POLY"id=1}<br />

TMaterial:AIR{tag="AIR"id=2}<br />

TSource:Source{energy=1.id=0locati<strong>on</strong>=(0.0,0.0,+0.0)<br />

number=100000seed=5555}<br />

TEstimator:Estimator{id=1}<br />

TVolume:"Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>rVolume"{<br />

TSphere:PolySphere{radius=1.0TSource=Source<br />

center=(0,0,0)TMaterial=POLYTEstimator=Estimator<br />

transport=1ecut=.01pcut=0.01}<br />

TSlabZ:EMPTYSlab{thickness=100.0TPoint=(0,0,-50.0)<br />

transport=0ecut=.01pcut=.01}<br />

}<br />

Sphere Flux Script (Problem 3)<br />

TMaterial:POLY{tag="POLY"id=1}<br />

TMaterial:AIR{tag="AIR"id=2}<br />

TSource:Source{energy=1.id=0locati<strong>on</strong>=(0.0,0.0,+0.0)<br />

number=100000seed=5555}<br />

TFluxEstimator:Estimator{id=1}<br />

TVolume:"Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>rVolume"{<br />

TSphere:PolySphere{radius=1.0TSource=Source<br />

center=(0,0,0)TMaterial=POLYTEstimator=Estimator<br />

transport=1ecut=.01pcut=0.01}<br />

TSlabZ:EMPTYSlab{thickness=100.0TPoint=(0,0,-50.0)<br />

transport = 0ecut=.01pcut=.01}<br />

}<br />

6


Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scripts indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach. The user interactively selects<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> source, <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric objects, <str<strong>on</strong>g>the</str<strong>on</strong>g> materials, and <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate estimator and speci es<br />

desired values for <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary parameters. The script generator <str<strong>on</strong>g>the</str<strong>on</strong>g>n creates a script that embeds<br />

this informati<strong>on</strong>. For instance, in all three problems, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <strong>on</strong>ly <strong>on</strong>e source, which is located at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

origin and emits m<strong>on</strong>o-energetic phot<strong>on</strong>s at 1 MeV. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> hisotries for each source is also<br />

embedded in <str<strong>on</strong>g>the</str<strong>on</strong>g> script. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, in Problem 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r Volume c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> three slabs: avacuum<br />

slab that extends from z = -100 cm to z = 0, a polyethylene slab that extends from z =0toz = 1 cm,<br />

and an air slab that extends from z =1cmtoz = 101 cm all three slabs are centered at x = 0 and y =<br />

0. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> polyethylene slab c<strong>on</strong>tains a source and an estimator. The Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r Volumes in Problems<br />

2 and 3 each c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a vacuum slab (arbitrarily extending from z = -50 cm to z = 50 cm) and an<br />

embedded polyethylene sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> radius 1 cm. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> scripts <str<strong>on</strong>g>of</str<strong>on</strong>g> Problems 2 and 3 di er <strong>on</strong>ly in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e line that identi es which estimator to use (TEstimator in Problem 2 and TFluxEstimator in<br />

Problem 3). The classes for TEstimator and TFluxEstimator c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary methods to score<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate quantities.<br />

The results obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> two approaches are compared in <str<strong>on</strong>g>the</str<strong>on</strong>g> Table. It is clear that <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

are equivalent, but that in <str<strong>on</strong>g>the</str<strong>on</strong>g> OO case no subroutines had to be re-written and no recompilati<strong>on</strong> for<br />

each problem had to be performed. Of course users <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1 package will not have to write<br />

scripts like those shown above <str<strong>on</strong>g>the</str<strong>on</strong>g>se will be generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Script Generator part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OO user<br />

interface.<br />

5 C<strong>on</strong>clusi<strong>on</strong>s<br />

Table: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results for three sample problems.<br />

FORTRAN OO VUI<br />

Problem 1 0.0017520 0.0000158 0.0017528 0.0000158<br />

Problem 2 0.0017054 0.0000146 0.0017063 0.0000147<br />

Problem 3 0.230075 0.037540 0.230973 0.037547<br />

A new versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>, <strong>EGS</strong>5, is being developed that will incorporate numerous physics and<br />

programming enhancements. The owner, SLAC, intends to make <strong>EGS</strong>5 available to <str<strong>on</strong>g>the</str<strong>on</strong>g> user community<br />

as previous versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong> were. However, <strong>EGS</strong>5 will also be made commercially available as<br />

a package with an object-oriented user interface in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>5+VUI1. The package will allow<br />

<strong>EGS</strong>5 to be used without <str<strong>on</strong>g>the</str<strong>on</strong>g> need to write problem-speci c subroutines and compile and link <str<strong>on</strong>g>the</str<strong>on</strong>g>m<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5 physics code. Instead, <str<strong>on</strong>g>the</str<strong>on</strong>g> user will interact with <str<strong>on</strong>g>the</str<strong>on</strong>g> code through a visual user interface<br />

that will prepare a script that de nes <str<strong>on</strong>g>the</str<strong>on</strong>g> problem to be solved. This script will be interpreted by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

parser, which creates <str<strong>on</strong>g>the</str<strong>on</strong>g> problem objects for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>5 physics code at run time from classes stored in<br />

a dynamic link library. The OO user interface package will include numerous geometry, scoring, and<br />

source classes however, if <str<strong>on</strong>g>the</str<strong>on</strong>g> library <str<strong>on</strong>g>of</str<strong>on</strong>g> classes is insu cient for a given problem, a direct procedure<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> user to create new classes that can also be linked at run time is included. The new <strong>EGS</strong>5+VUI1<br />

will enable users to address challenging radiati<strong>on</strong> transport problems using <str<strong>on</strong>g>the</str<strong>on</strong>g> enhanced physics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>EGS</strong>5 without <str<strong>on</strong>g>the</str<strong>on</strong>g> need to write problem-speci c code.<br />

Acknowledgements<br />

This project was supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy through Grant DE-FG02-<br />

97ER82465.<br />

7


References<br />

[1] W.R. Nels<strong>on</strong>, H. Hirayama and D.W.O. Rogers, \The <strong>EGS</strong>4 Code System", SLAC-265, Stanford<br />

Linear Accelerator Center, Stanford University, Stanford, CA (1985).<br />

[2] A.J. Cook, \Mortran3 User's Guide", SLAC Computati<strong>on</strong>al Research Group Technical Memorandum<br />

Number CGTM 209, Stanford Linear Accelerator Center, Stanford University, Stanford, CA<br />

(1983).<br />

[3] H. Hirayama and Y. Namito, \Lecture Notes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 Course at <strong>KEK</strong>", <strong>KEK</strong> Internal 99-5, <strong>KEK</strong>,<br />

Tsukuba, Japan (1999).<br />

[4] Y. Namito, S. Ban, and H. Hirayama, \Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Linearly-polarized Phot<strong>on</strong> Scattering<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code", Nuc. Instr. Meth. A322(1993)277-283.<br />

[5] A.F. Bielajew and Rogers, \PRESTA: The Parameter Reduced Electr<strong>on</strong>-Step Transport Algorithm<br />

for Electr<strong>on</strong> M<strong>on</strong>te Carlo Transport", Nucl. Instr. Meth. Phys. Res B18(1987)165-181.<br />

[6] C.-M. Ma and A. E. Nahum, \A new algorithm for <strong>EGS</strong>4 low-energy electr<strong>on</strong> transport to account<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> change in discrete interacti<strong>on</strong> cross-secti<strong>on</strong> with energy", Nucl. Instru. Meth. B72(1992)319-<br />

330.<br />

[7] A.F. Bielajew and D. W. O. Rogers, \Photoelectr<strong>on</strong> Angular Distributi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code<br />

System", Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada Report PIRS-0058 (1986).<br />

[8] A.F. Bielajew, R. Mohan and C.-S. Chui, \Improved Bremsstrahlung Phot<strong>on</strong> Angular Sampling<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code system", Med. Phys. 17(1990)522.<br />

[9] M. C<strong>on</strong>ti, A. Del Guerra, D. Mazzei, P. Russo, W. Bencivelli, E. Bartolucci, A. Messineo, V. Rosso,<br />

A. Stefanini, U. Bottigli, P. Randaccio and W. R. Nels<strong>on</strong>, \Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo Code to<br />

Evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> HgI2 and CdTe Detectors for Phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Diagnostic Energy Range",<br />

Nucl. Inst. Meth. A322(1992)591-595.<br />

[10] Y. Namito and H. Hirayama, \Improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Energy Phot<strong>on</strong> Transport for <strong>EGS</strong>5", Proc.<br />

<str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, Aug. 8-10, 2000, <strong>KEK</strong>, Tsukuba, Japan (2000).<br />

[11] A.F. Bielajew and S.J. Wilderman, \Innovative Electr<strong>on</strong> Transport Methods in <strong>EGS</strong>5", Proc.<br />

<str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, Aug. 8-10, 2000, <strong>KEK</strong>, Tsukuba, Japan (2000).<br />

8


where Y is <str<strong>on</strong>g>the</str<strong>on</strong>g> counting e ciency ratio and X <str<strong>on</strong>g>the</str<strong>on</strong>g> surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom (m 2 ).<br />

The relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> 40 K c<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g> total body and <str<strong>on</strong>g>the</str<strong>on</strong>g> lean body mass (LBM) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

50 subjects is shown in Fig. 6 al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> regressi<strong>on</strong> lines and correlati<strong>on</strong> coe cients (r). In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gure, <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy solid line represents <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> LBM and <str<strong>on</strong>g>the</str<strong>on</strong>g> 40 Kc<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total body <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following assumpti<strong>on</strong>s: <str<strong>on</strong>g>the</str<strong>on</strong>g> adipose tissue has much less K c<strong>on</strong>tents than <str<strong>on</strong>g>the</str<strong>on</strong>g> LBM<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> LBM c<strong>on</strong>tains, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> average, 2.663 g K kg ;1 [16]. The corrected 40 Kc<strong>on</strong>tents for <str<strong>on</strong>g>the</str<strong>on</strong>g> LBM<br />

give higher correlati<strong>on</strong> coe cient than <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-corrected c<strong>on</strong>tents. The r values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrected and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-corrected 40 K c<strong>on</strong>tents for <str<strong>on</strong>g>the</str<strong>on</strong>g> LBM in regressi<strong>on</strong> are 0.90 and 0.69, respectively. It can be<br />

seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regressi<strong>on</strong> equati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrected 40 Kc<strong>on</strong>tents is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

heavy solid line.<br />

4 C<strong>on</strong>clusi<strong>on</strong>s<br />

The <strong>EGS</strong>4 code was applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JAERI whole-body counter. The following<br />

c<strong>on</strong>clusi<strong>on</strong>s were derived.<br />

1. The calibrati<strong>on</strong> method by <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> was validated by comparing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated and<br />

measured resp<strong>on</strong>se functi<strong>on</strong>s. The calculated counting e ciencies are useful for routine and<br />

unusual measurements. The counting e ciency curves for <str<strong>on</strong>g>the</str<strong>on</strong>g> child, adolescent and adult water<br />

phantoms are nearly straight in logarithmic scale in <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy range 300-1,461 keV<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> peak counts integrated between double <str<strong>on</strong>g>the</str<strong>on</strong>g> FWHM <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak. The scattering e ect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> counting e ciency regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> water phantoms accounts for 10 1 % <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> counting e ciency for 662 keV phot<strong>on</strong>s.<br />

2. The counting e ciencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole-body counter str<strong>on</strong>gly depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 137 Cs distributi<strong>on</strong><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> body. The 137 Cs body burdens would be underestimated by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 in <str<strong>on</strong>g>the</str<strong>on</strong>g> worst<br />

case.<br />

3. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated counting e ciencies, <str<strong>on</strong>g>the</str<strong>on</strong>g> correcti<strong>on</strong> factors <strong>on</strong> 40 K whole-body counting<br />

were determined. The correcti<strong>on</strong> factors for <str<strong>on</strong>g>the</str<strong>on</strong>g> 40 K whole-body counting shall be practical and<br />

useful for <str<strong>on</strong>g>the</str<strong>on</strong>g> JAERI whole-body counter.<br />

4


Table 1 The water phantoms for <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong><br />

Adult Adolescent Child<br />

Parts Height Width Length Height Width Length Height Width Length<br />

(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)<br />

Head 16.7 13.3 18.0 15.8 12.4 17.9 14.0 11.5 16.8<br />

Neck 8.7 7.8 8.5 7.2 6.7 7.6 5.2 4.9 5.7<br />

Chest 19.4 29.1 20.3 17.1 23.9 17.8 12.0 16.0 12.0<br />

Abdomen 16.1 25.0 20.3 14.2 21.3 17.8 12.7 16.0 12.0<br />

Arm 7.4 6.6 51.0 5.8 5.1 45.3 4.4 4.0 28.0<br />

Pelvis 18.8 28.2 23.6 15.0 23.8 20.6 13.9 16.0 14.0<br />

Thigh 12.7 11.4 33.0 10.5 9.4 27.5 6.8 6.1 14.0<br />

Lower leg 8.6 7.7 37.7 6.8 6.1 34.4 5.1 4.6 19.0<br />

Foot 16.8 8.4 6.6 12.9 6.9 5.8 9.5 5.0 4.5<br />

Height 168.0 cm 149.4 cm 98.0 cm<br />

Weight 60.2 kg 37.4 kg 14.9 kg<br />

6


Photo.1 A photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> a whole-body counter in JAERI.<br />

7


X<br />

Z<br />

Phantom<br />

0.5m<br />

Y<br />

Shieldingroom<br />

Bed<br />

NaI(Tl)detector<br />

Figure 1: Geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JAERI whole-bidy ciunter and adult water phantom.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Y<br />

<br />

<br />

<br />

<br />

Figure 2: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated and measured resp<strong>on</strong>se functi<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> adult water phantom.<br />

8


ε <br />

<br />

<br />

<br />

<br />

<br />

ε<br />

ε<br />

ε<br />

ε<br />

ε<br />

<br />

<br />

Figure 3: Counting e ciencies " and peak e ciencies "' <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JAERI whole body counter for <str<strong>on</strong>g>the</str<strong>on</strong>g> child,<br />

adolescent and adult water phantom.<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Stomach/Wholebody<br />

Figure 4: Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JAERI whole-body counter regarding various 137 Cs distributi<strong>on</strong>s.<br />

9


2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Calculati<strong>on</strong><br />

Experiment<br />

0.5 1.0 1.5 2.0<br />

Surfacearea<str<strong>on</strong>g>of</str<strong>on</strong>g>phantom(m 2 )<br />

Figure 5: Counting e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JAERI whole-body counter regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watewr<br />

phantom.<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

N<strong>on</strong>-corrected<br />

r=0.69<br />

Corrected<br />

r=0.90<br />

0 10 20 30 40 50 60 70<br />

Leanbodymass(kg)<br />

Figure 6: Relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> 40 K c<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g> total body and <str<strong>on</strong>g>the</str<strong>on</strong>g> lean body mass.<br />

10


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.40-47<br />

Fluence to E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients<br />

for Electr<strong>on</strong>s from 1MeV to 100GeV<br />

S. Tsuda, A. Endo, Y. Yamaguchi and O. Sato 1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Physics, Japan Atomic Energy Research Institute<br />

Tokai, Ibaraki 319-1195, Japan<br />

1 Mitsubishi Research Institute, INC.<br />

Otemachi, Chiyoda-ku, Tokyo 100-8141, Japan<br />

Abstract<br />

Fluence to e ective dose c<strong>on</strong>versi<strong>on</strong> coe cients have been calculated for electr<strong>on</strong>s from 1MeV<br />

to 100GeV using an anthropomorphic phantom and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code. The c<strong>on</strong>versi<strong>on</strong> coe cients<br />

were calculated for typical six di erent irradiati<strong>on</strong> geometries by taking electro-magnetic cascade<br />

shower and phot<strong>on</strong>uclear reacti<strong>on</strong> into account. The c<strong>on</strong>tributi<strong>on</strong> due to phot<strong>on</strong>uclear reacti<strong>on</strong> in<br />

energies up to 140MeV was evaluated to be less than 0.2% to absorbed dose.<br />

1 Introducti<strong>on</strong><br />

Dose limits are expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quantities, introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> Recommendati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <strong>on</strong> Radiological Protecti<strong>on</strong> (ICRP). The e ective dose, in ICRP publicati<strong>on</strong><br />

60 (ICRP60) [1], is de ned as <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> risk-weighted organ doses and used as a radiological protecti<strong>on</strong><br />

quantity related to total stochastic e ect <strong>on</strong> human body. Since this quantity is not measurable<br />

in practice, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> coe cient, calculated for standard c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure from physical<br />

quantities such as particle uence to e ective dose, has been used for <str<strong>on</strong>g>the</str<strong>on</strong>g> external radiati<strong>on</strong> protecti<strong>on</strong>.<br />

ICRP has compiled <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> coe cients against external radiati<strong>on</strong>s such as phot<strong>on</strong>s up to<br />

10MeV, neutr<strong>on</strong>s up to 180MeV and electr<strong>on</strong>s up to 10MeV in ICRP Publicati<strong>on</strong> 74 (ICRP74) [2].<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been growing need <str<strong>on</strong>g>of</str<strong>on</strong>g> dose c<strong>on</strong>versi<strong>on</strong> coe cients for higher energy or various kinds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ICRP74, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> coe cients have been calculated by several groups<br />

for phot<strong>on</strong>s [3, 4] up to 10GeV and for neutr<strong>on</strong>s [5, 6], prot<strong>on</strong>s [6, 7], mu<strong>on</strong>s [8] and pi<strong>on</strong>s [9] up to<br />

10TeV. As for uence to e ective dose c<strong>on</strong>versi<strong>on</strong> coe cients for electr<strong>on</strong>s up to GeV order, Ferrari<br />

et al. [10] calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> coe cients for electr<strong>on</strong>s up to 10GeV in four di erent types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

geometries using FLUKA [11], <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo high energy radiati<strong>on</strong> transport code. The c<strong>on</strong>versi<strong>on</strong><br />

coe cients for higher energy electr<strong>on</strong>s will be needed for <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> protecti<strong>on</strong> in synchrotr<strong>on</strong><br />

electr<strong>on</strong> facilities etc.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, uence to e ective dose c<strong>on</strong>versi<strong>on</strong> coe cients were calculated for electr<strong>on</strong>s<br />

in an energy range from 1MeV to 100GeV, using an anthropomorphic phantom and <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong><br />

electr<strong>on</strong> M<strong>on</strong>te Carlo simulati<strong>on</strong> code <strong>EGS</strong>4 [13]. The calculati<strong>on</strong>s have included <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

electro-magnetic process and phot<strong>on</strong>uclear reacti<strong>on</strong>, which are caused by high-energy bremsstrahlung<br />

produced in a human body. In <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> e ective dose due to phot<strong>on</strong>uclear reacti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reacti<strong>on</strong>s such as( , p), ( ,d),( ,t),( , 3 He), ( , ) and ( , n) were c<strong>on</strong>sidered. The c<strong>on</strong>tributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong> to absorbed dose was also evaluated.<br />

1


2 Method <str<strong>on</strong>g>of</str<strong>on</strong>g> Calculati<strong>on</strong><br />

2.1 E ective dose<br />

In ICRP60, e ective dose is de ned as<br />

E = X<br />

T<br />

w T H T (1)<br />

where w T is <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue weighting factor for tissue or organ, T, and H T is <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent dose in tissue<br />

or organ, T. The tissue weighting factors are given for 12 tissues or organs and remainder including<br />

10 tissues or organs. H T is given by<br />

HT = X<br />

wRDTR (2)<br />

R<br />

where wR is <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> weighting factor for radiati<strong>on</strong> R and DTR is <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose for tissue or<br />

organ, T, due to radiati<strong>on</strong> R. For phot<strong>on</strong>s and electr<strong>on</strong>s, wR is assigned to be unity. When it comes<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>, we treated <str<strong>on</strong>g>the</str<strong>on</strong>g> lower large intestine as col<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> upper large intestine<br />

as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder tissues, according to ICRP60.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electro-magnetic process, DTR was obtained by dividing deposited energy in<br />

each organ or tissue by its own mass.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong>, using <str<strong>on</strong>g>the</str<strong>on</strong>g> averaged phot<strong>on</strong> uence in each organ or tissue<br />

calculated by <strong>EGS</strong>4, absorbed dose for charged particles were calculated by<br />

D i = 1 X<br />

j<br />

Z<br />

E i<br />

E i<br />

Z<br />

E<br />

N j ij(E ) f j(E iE ) (E )dE dE i (3)<br />

where<br />

D i : absorbed dose for charged particle i, such as prot<strong>on</strong> (p), deuter<strong>on</strong> (d), trit<strong>on</strong> (t), 3 He, and<br />

-particle ( ),<br />

: density <str<strong>on</strong>g>of</str<strong>on</strong>g> organs or tissue,<br />

E i : energy <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particle i,<br />

E : phot<strong>on</strong> energy,<br />

N j : atom number density <str<strong>on</strong>g>of</str<strong>on</strong>g>j -nucleus such asC,N,O,<br />

ij(E ):cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> j -nucleus for i-particle producti<strong>on</strong> when phot<strong>on</strong> energy is E ,<br />

f j(E iE ): energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary particle i by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> between phot<strong>on</strong> and j -nucleus,<br />

(E ):averaged phot<strong>on</strong> uence in organs or tissue.<br />

In this calculati<strong>on</strong>, it is assumed that recoiled nuclei and sec<strong>on</strong>dary charged particles deposit<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir whole energies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spot <str<strong>on</strong>g>of</str<strong>on</strong>g> each organ or tissue where <str<strong>on</strong>g>the</str<strong>on</strong>g> particles are produced (kerma<br />

approximati<strong>on</strong>). However, we did not evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary neutr<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following reas<strong>on</strong>s. The rst is that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> to absorbed dose will be overestimated<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kerma approximati<strong>on</strong>. The sec<strong>on</strong>d is, that it is reported <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> produced to absorbed dose is c<strong>on</strong>siderably small [14] when a 30cm-thick semi-in nite slab<br />

phantom are irradiated by phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range up to 10GeV.<br />

, was calculated by energy c<strong>on</strong>servati<strong>on</strong> law and<br />

As for recoiled nuclei, <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy, E Recoil<br />

i<br />

dose equivalents were obtained by substituting E Recoil<br />

i for Ei in Eq.(3). Total absorbed dose was<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> those due to electro-magnetic cascade shower and phot<strong>on</strong>uclear reacti<strong>on</strong>. HT in each<br />

organ or tissue was c<strong>on</strong>verted from <str<strong>on</strong>g>the</str<strong>on</strong>g> total absorbed dose in Eq.(2). Finally, we obtained E by<br />

summating <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> HT for <str<strong>on</strong>g>the</str<strong>on</strong>g> organs or tissues and wT in Eq.(1).<br />

2.2 Phot<strong>on</strong>uclear cross secti<strong>on</strong><br />

Phot<strong>on</strong>uclear cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary particle producti<strong>on</strong> were taken from preliminary versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> JENDL Phot<strong>on</strong>uclear Data Files (JENDL-PDF) [18]. We treated <str<strong>on</strong>g>the</str<strong>on</strong>g> main elements in a human<br />

2


ody such as carb<strong>on</strong>, nitrogen and oxygen. The reacti<strong>on</strong> types included were ( , p), ( ,d),( , t), ( ,<br />

3 He), ( , ) and ( , n). The cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> six reacti<strong>on</strong>s including <str<strong>on</strong>g>the</str<strong>on</strong>g> giant dipole res<strong>on</strong>ance<br />

peaks were given for <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy up to 140MeV. The phot<strong>on</strong>uclear reacti<strong>on</strong> was evaluated for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> uence with energy below 140MeV.<br />

2.3 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical phantom and M<strong>on</strong>te Carlo code<br />

An anthropomorphic phantom and <strong>EGS</strong>4 were used to calculate energy depositi<strong>on</strong> and phot<strong>on</strong><br />

uence averaged over each tissue or organ. The ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical phantom used in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> was a<br />

modi ed MIRD-type phantom, in which oesophagus was added by Yamaguchi [15]. The phantom [15]<br />

is designed as hermaphroditic and composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 61 regi<strong>on</strong>s, or 37 organs and tissues with di erent<br />

densities and compositi<strong>on</strong>. Three tissues have been c<strong>on</strong>sidered: s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissues, lungs and skeletal tissue.<br />

The density assumed is 0.9869 g cm ;3 for s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissues, 0.2958 g cm ;3 for lungs and 1.4682 g cm ;3 for<br />

skeletal tissue. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three tissues were limited to <str<strong>on</strong>g>the</str<strong>on</strong>g> 17 elements,H,C,N,O,Na,<br />

Mg, P, S, Cl, K, Ca, Fe, Zn, Rb, Sr, Zr, Pb.<br />

To incorporate <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code system, UCGEN [16], <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized user code<br />

for <strong>EGS</strong>4, was used. The user code employs modi ed MARS geometry package [17] developed at<br />

ORNL, and <str<strong>on</strong>g>the</str<strong>on</strong>g> MIRD-type anthropomorphic phantom was described with this geometry package.<br />

The phantom was irradiated in a vacuum space by m<strong>on</strong>o-energetic parallel electr<strong>on</strong> beams. Selected<br />

irradiati<strong>on</strong> geometries were anterior-posterior (AP), posterior-anterior (PA), right lateral (RLAT), left<br />

lateral (LLAT), isotropic (ISO) and rotati<strong>on</strong>al (ROT).<br />

Cut o energies for phot<strong>on</strong>s and electr<strong>on</strong>s were set to be 10keV and 100keV respectively since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

range for electr<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> cut o energies is short as compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue or organ size in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phantom. Histories were selected to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical uncertainties below 10% for equivalent doses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organ or tissue that were given <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue weighting factors.<br />

3 Results and Discussi<strong>on</strong><br />

3.1 Dose c<strong>on</strong>tributi<strong>on</strong> due to phot<strong>on</strong>uclear reacti<strong>on</strong><br />

The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong> to absorbed dose is expressed by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbed<br />

doses due to phot<strong>on</strong>uclear reacti<strong>on</strong> against <str<strong>on</strong>g>the</str<strong>on</strong>g> total absorbed dose, as shown in Fig.1. In AP irradiati<strong>on</strong><br />

geometry, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> total absorbed dose<br />

is about 0.1%. The predominant reacti<strong>on</strong>s were ( , n) and ( , p) reacti<strong>on</strong>s, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> large cross<br />

secti<strong>on</strong>s compared with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r reacti<strong>on</strong>s. The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong> to doses gradually<br />

increases with incident electr<strong>on</strong> energy up to about 500MeV and <str<strong>on</strong>g>the</str<strong>on</strong>g>n changes little up to 100GeV.<br />

As for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r irradiati<strong>on</strong> geometries, <str<strong>on</strong>g>the</str<strong>on</strong>g> each energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio was similar to that in AP<br />

geometry and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum c<strong>on</strong>tributi<strong>on</strong>s to absorbed dose are within 0.2%.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present evaluati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> doses in <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy range above 140MeV were neglected<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> in JENDL-PDF. According to Sato et al. [14], <str<strong>on</strong>g>the</str<strong>on</strong>g> cross<br />

secti<strong>on</strong>s above 140MeV are comparable or greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> giant dipole<br />

res<strong>on</strong>ance peaks. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident electr<strong>on</strong> energy 100GeV in AP geometry, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong> uences above 140MeV up to 100GeV amounted to more than 50% and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong> uence above 140MeV was estimated to be over 50%. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear<br />

reacti<strong>on</strong>s to absorbed doses has been underestimated. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear<br />

reacti<strong>on</strong> to absorbed dose was estimated to be within 1% and c<strong>on</strong>siderably small against total absorbed<br />

doses, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed doses in energies over 140MeV were c<strong>on</strong>sidered.<br />

3.2 Dose c<strong>on</strong>versi<strong>on</strong> coe cients<br />

Fluence to e ective dose c<strong>on</strong>versi<strong>on</strong> coe cients are summarized and compared with Ferrari's<br />

data [10] in Table 1. Statistical uncertainties (fracti<strong>on</strong>al standard deviati<strong>on</strong>) are presented for each<br />

3


value. The same data are also plotted in Fig.2. In <str<strong>on</strong>g>the</str<strong>on</strong>g> coe cients, both electro-magnetic cascade<br />

process and phot<strong>on</strong>uclear reacti<strong>on</strong> were c<strong>on</strong>sidered.<br />

As shown in Fig.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> coe cients sharply increase with incident electr<strong>on</strong> energy up to 50MeV,<br />

while those for electr<strong>on</strong> energies over 50MeV increase gradually. The type <str<strong>on</strong>g>of</str<strong>on</strong>g> geometry with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum E is dependent <strong>on</strong> incident electr<strong>on</strong> energies. In <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range below 50MeV, <str<strong>on</strong>g>the</str<strong>on</strong>g> E<br />

values are higher for AP than for any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r geometries. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> is short<br />

and most <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> energies are deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> area near <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom, where organs<br />

or tissues with large w T such as testes and breast are located. At 50MeV, signi cant di erence in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> E values was not found am<strong>on</strong>g irradiati<strong>on</strong> geometries. The reas<strong>on</strong> is that <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

with 50MeV is estimated to be about 16 cm and nearly equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom. For<br />

electr<strong>on</strong> energy over 100MeV, <str<strong>on</strong>g>the</str<strong>on</strong>g> E values for RLAT or ISO become <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum. The range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong> becomes larger and energy depositi<strong>on</strong> increases in organs or tissues located inside and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rear <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom against its incident directi<strong>on</strong>. The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organ dose c<strong>on</strong>versi<strong>on</strong> coe cients<br />

decreases with incident electr<strong>on</strong> energy in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range over 50MeV.<br />

For LAT geometry, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are some di erence in E between for right lateral (RLAT) and for left<br />

lateral (LLAT). This result can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> speci c organs, such as stomach and<br />

col<strong>on</strong>, with high tissue weighting factor. E is about 10% higher for RLAT than for LLAT in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy range over 5GeV, mainly because stomach and col<strong>on</strong>, with relatively high w T ,were located at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> phantom. The E values for ROT resulted in nearly averaged values for AP, PA and<br />

LAT geometry.<br />

The data are in a good agreement with Ferrari's data in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range up to 10GeV. In AP, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results show agreement within 6% in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range over 20MeV. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r irradiati<strong>on</strong> geometries,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is no signi cant di erence as well. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> coe cients calculated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy range over 10MeV are valid data. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present results in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

range below 10MeV exceed by about 40% those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference data. These discrepancies might be<br />

attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence in phantom, compared <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated organ doses with Ferrari's data.<br />

The data calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study will c<strong>on</strong>tribute a determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose limit for<br />

electr<strong>on</strong>s.<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

E ective dose per unit uence for electr<strong>on</strong>s has been calculated from 1MeV to 100GeV using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>-electr<strong>on</strong> M<strong>on</strong>te Carlo simulati<strong>on</strong> code, <strong>EGS</strong>4, combined with an anthropomorphic phantom.<br />

Phot<strong>on</strong>uclear reacti<strong>on</strong> has been also c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> coe cient below phot<strong>on</strong> energy<br />

140MeV. The calculated c<strong>on</strong>versi<strong>on</strong> coe cients are generally in agreement with those up to 10GeV<br />

calculated by FLUKA. The dose c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong> to absorbed dose were estimated<br />

to be less than 0.2% in any irradiati<strong>on</strong> geometries and found to be not so signi cant even if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>uclear reacti<strong>on</strong> above 140MeV were c<strong>on</strong>sidered. We will provide a complete<br />

dataset <str<strong>on</strong>g>of</str<strong>on</strong>g> uence to e ective dose c<strong>on</strong>versi<strong>on</strong> coe cients for electr<strong>on</strong>s up to 100GeV.<br />

References<br />

[1] <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <strong>on</strong> Radiological Protecti<strong>on</strong>, \1990 Recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><br />

Commissi<strong>on</strong> <strong>on</strong> Radiological Protecti<strong>on</strong>", ICRP Publicati<strong>on</strong> 60. Ann. ICRP 21 (1-3) (1991).<br />

[2] <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <strong>on</strong> Radiological Protecti<strong>on</strong>, \C<strong>on</strong>versi<strong>on</strong> Coe cients for use in Radiological<br />

Protecti<strong>on</strong> against External Radiati<strong>on</strong>", ICRP Publicati<strong>on</strong> 74, Ann. ICRP26 (3/4) (1998).<br />

4


[3] Sato, O., Iwai, S., Tanaka, S., Uehara, T., Sakamoto, Y., Yoshizawa, N. and Furihata, S. ,<br />

\Clculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Equivalent Dose and E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for Phot<strong>on</strong>s from<br />

1MeV to 10GeV", Radiat. Prot. Dosim. 62(1995)119-130.<br />

[4] Ferrari, A., Pellicci<strong>on</strong>i, M. and Pill<strong>on</strong>, M., \Fluence to E ective Dose and E ective Dose Cnversi<strong>on</strong><br />

Coe cients for Phot<strong>on</strong>s from 50keV to 10GeV", Radiat. Prot. Dosim. 67(1996)245-251.<br />

[5] Ferrari, A., Pellicci<strong>on</strong>i, M. and Pill<strong>on</strong>, M., \Fluence to E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for<br />

Neutr<strong>on</strong>s up to 10TeV", Radiat. Prot. Dosim. 71(1997)165-173.<br />

[6] Yoshizawa, N., Sato, O., Takagi, S., Furihata, S., Iwai, S., Uehara, T., Tanaka, S. and Sakamoto,<br />

Y., \External Radiati<strong>on</strong> C<strong>on</strong>versi<strong>on</strong> Coe cients using Radiati<strong>on</strong> Weighting Factors and Quality<br />

Factors for Neutr<strong>on</strong> and Prot<strong>on</strong> from 20MeV to 10GeV", Nucl. Sci. Tech. 35(12)(1998)928-942.<br />

[7] Ferrari, A., Pellicci<strong>on</strong>i, M. and Pill<strong>on</strong>, M., \Fluence to E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for<br />

Prot<strong>on</strong>s from 5MeV to 10TeV", Radiat. Prot. Dosim. 71(2) (1997)85-91.<br />

[8] Ferrari, A., Pellicci<strong>on</strong>i, M. and Pill<strong>on</strong>, M., \Fluence-to-E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for<br />

Mu<strong>on</strong>s", Radiat. Prot. Dosim. 74(4)(1997)227-233.<br />

[9] Ferrari, A., Pellicci<strong>on</strong>i, M. and Pill<strong>on</strong>, M., \Fluence to E ective Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for<br />

Negatively and Positively Charged Pi<strong>on</strong>s", Radiat. Prot. Dosim. 80(4)(1998)361-370.<br />

[10] Ferrari, A., Pellicci<strong>on</strong>i, M. and Pill<strong>on</strong>, M., \Fluence to E ective Dose and E ective Dose<br />

Equivalent C<strong>on</strong>versi<strong>on</strong> Coe cients for Electr<strong>on</strong>s from 5MeV to 10GeV", Radiat. Prot. Dosim.<br />

69(2)(1997)97-104.<br />

[11] Aarnio, P. A., Fasso, A., Ferrari, A., Mohring, J. -H., Ranft, J., Sala, P. R., Stevens<strong>on</strong>, G. R. and<br />

Zazula, J. M., \FLUKA: Hadr<strong>on</strong>ic Benchmarks and Applicati<strong>on</strong>s", In: Proc. MC93 Int. C<strong>on</strong>f. <strong>on</strong><br />

M<strong>on</strong>te Carlo Simulati<strong>on</strong> in High Energy and Nuclear Physics, Tallahassee, 22-26 February 1993<br />

(Ed. World Scienti c) (1994).<br />

[12] Ranft, J. and Nels<strong>on</strong>, W. R., \Hadr<strong>on</strong> Cascades Induced by Electr<strong>on</strong> and Phot<strong>on</strong> Beams in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

GeV Energy Range", Nucl. Instrm. Methods. A257(1987)177-184.<br />

[13] Nels<strong>on</strong>, W. R., Hirayama, H. and Rogers, W. O., \The <strong>EGS</strong>-4 Code System", SLAC-265 (1985).<br />

[14] Sato, O., Yoshizawa, N., Iwai, S., Uehara, T., Sakamoto, Y.and Tanaka, S., J. Nucl. Sci. Tech.<br />

supplement 1(2000)861-864.<br />

[15] Yamaguchi, Y., \Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for External Phot<strong>on</strong>s Based <strong>on</strong> ICRP 1990 Recommendati<strong>on</strong>s",<br />

J. Nucl. Sci. Tech. 31(1994)716-725.<br />

[16] Momose, T., Nojiri, I., Narita, O., Iwai, S., Rintsu, Y., Sato, O. and Nakamura, M., \mprovement<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code system - General Purpose Electr<strong>on</strong>-Phot<strong>on</strong> M<strong>on</strong>te Carlo Transport Code<br />

System", In: Proc. The rst <strong>EGS</strong>4 User's Meeting in Japan, 48-73 (1990).<br />

[17] West, J. T. and Emmett, M. B., \MARS: A Multiple Array System Using Combinatorial Geometry",<br />

NUREG/CR-0200, vol.3, sect.M9 (1993).<br />

[18] Fukahori, T. private communicati<strong>on</strong>.<br />

5


Table 1. Fluence to E ective dose c<strong>on</strong>versi<strong>on</strong> coe cients.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

6


γ <br />

γ <br />

γ <br />

<br />

Figure 1. The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbed dose by phot<strong>on</strong>uclear reacti<strong>on</strong> to total dose equivalent inAP<br />

geometry. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs include sec<strong>on</strong>daries and recoiled charged particles produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>s such<br />

as ( ,d),( , t), ( , 3 He), ( , ) and ( , n).<br />

Effective dose per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> fluence [pSvcm 2 ]<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 0<br />

10 1<br />

10 2<br />

10 3<br />

Electr<strong>on</strong> energy [MeV]<br />

<br />

10 4<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 2. E ective dose per unit uence as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> incident electr<strong>on</strong> energy.<br />

7<br />

10 5


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.48-55<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Dose in Teeth for Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E ective Dose<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> Electr<strong>on</strong> Spin Res<strong>on</strong>ance (ESR) Dosimetry<br />

Using Dental Enamels<br />

F. Takahashi 1 , Y. Yamaguchi 1 , K. Saito 1 ,<br />

M. Iwasaki 2 , C. Miyazawa 2 and T. Hamada 3<br />

1 Japan Atomic Energy Research Institute,<br />

Tokai-mura, Naka-gun, Ibaraki, 319-1195,Japan<br />

2 School <str<strong>on</strong>g>of</str<strong>on</strong>g> Dentistry, Ohu University,<br />

Tomita-machi, Koriyama-shi, Fukushima, 963-8611, Japan<br />

3 Nuclear Safety Research Associati<strong>on</strong>,<br />

5-18-7, Shimbashi, Minato-ku, Tokyo, 105-0004, Japan<br />

Abstract<br />

Dose in teeth was studied to develop a method that can predict e ective dose from results by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Electr<strong>on</strong> Spin Res<strong>on</strong>ance (ESR) dosimetry using dental enamels for external phot<strong>on</strong> exposure.<br />

Absorbed dose in teeth and e ective dose were calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Electr<strong>on</strong> Gamma Shower Code<br />

Versi<strong>on</strong> 4 (<strong>EGS</strong>4). In <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculati<strong>on</strong>s, a regi<strong>on</strong> for teeth was newly added to a<br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical human model. Experiments were carried out with a head phantom, which is made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tissue equivalent materials. ESR dosimetry was made with dental enamels irradiated at teeth-part<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> head phantom. The absorbed dose in a mouth was also measured with TLDs exposed to<br />

gamma rays as <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth. The M<strong>on</strong>te Carlo calculati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment gave a quantitative<br />

relati<strong>on</strong>ship between absorbed dose in teeth and e ective dose. The obtained data are c<strong>on</strong>sidered to<br />

be useful for <str<strong>on</strong>g>the</str<strong>on</strong>g> retrospective individual dose assessment with ESR dosimetry using dental enamels.<br />

1 Introducti<strong>on</strong><br />

Retrospective assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> exposures to i<strong>on</strong>izing radiati<strong>on</strong> have been performed to evaluate past<br />

radiati<strong>on</strong> events, where no useful informati<strong>on</strong> can be taken from a dosimeter or a radiati<strong>on</strong> m<strong>on</strong>itor.<br />

The Electr<strong>on</strong> Spin Res<strong>on</strong>ance (ESR) dosimetry with teeth is based <strong>on</strong> measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>induced<br />

CO33- radicals in hydroxyapatite and <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> methods to assume past exposure[1, 2].<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> hydroxypatite crystal in <str<strong>on</strong>g>the</str<strong>on</strong>g> dental can easily trap free electr<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> signal in exposed<br />

dental enamel remains stable for a l<strong>on</strong>g time, this method has been applied to retrospective dose<br />

assessments in atomic-bomb survivors[3, 4], residents a ected by <str<strong>on</strong>g>the</str<strong>on</strong>g> Chernobyl accident[5, 6] and<br />

accumulated individual dose <str<strong>on</strong>g>of</str<strong>on</strong>g> workers in Russian nuclear facility \Mayak"[7, 8].<br />

The ESR signal has been related to <str<strong>on</strong>g>the</str<strong>on</strong>g> dose accumulated in teeth[9, 10, 11, 12, 13]. For an<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual dose, <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate quantities are organ or tissue dose and e ective dose,<br />

risk-weighted average <str<strong>on</strong>g>of</str<strong>on</strong>g> organ dose over a whole body. The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ESR signal resulted from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radicals, however, can directly indicate <strong>on</strong>ly absorbed dose in teeth. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> retrospective individual<br />

dose assessment requires <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> for c<strong>on</strong>versi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured quantities to organ dose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest. In this work, M<strong>on</strong>te Carlo calculati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> Electr<strong>on</strong> Gamma Shower Code Versi<strong>on</strong> 4<br />

(<strong>EGS</strong>4)[14] and experiments with a realistic head phantom were carried out to correlate quantitatively<br />

dose in teeth with e ective dose for external phot<strong>on</strong> exposure.<br />

1


2 Computati<strong>on</strong><br />

<strong>EGS</strong>4 Code in c<strong>on</strong>juncti<strong>on</strong> with user's code UCGEN[15, 16] was used to calculate absorbed dose<br />

to organ or tissues including teeth. A ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical human model used in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s was an<br />

adult MIRD-5 type phantom designed by Cristy[17] and teeth-part was newly added in <str<strong>on</strong>g>the</str<strong>on</strong>g> head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phantom, where facial skelet<strong>on</strong> had been already de ned. Figure 1 shows an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MIRD-5<br />

type phantom and a cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> head at <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> newly de ned teeth regi<strong>on</strong>. The teeth<br />

were grouped into ve parts to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbed dose to teeth (teeth-dose) in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mouth. A s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissue area was also attached <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chest surface to assess a dosimeter reading.<br />

Phot<strong>on</strong> parallel beams were assumed to be incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom. Calculati<strong>on</strong>s were performed<br />

for 12 incident angles with 30 degrees interval to study <str<strong>on</strong>g>the</str<strong>on</strong>g> angular characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose<br />

and e ective dose. The track length estimator was applied to calculate energy di erential uences in<br />

each organ or tissue and <str<strong>on</strong>g>the</str<strong>on</strong>g> kerma approximati<strong>on</strong> to c<strong>on</strong>vert <str<strong>on</strong>g>the</str<strong>on</strong>g>m into absorbed dose.<br />

3 Experiment<br />

Experiments were made with a realistic head phantom, which is made <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue-equivalent plastic<br />

and c<strong>on</strong>tains human skull. The head phantom was placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> trunk <str<strong>on</strong>g>of</str<strong>on</strong>g> an Alders<strong>on</strong> RANDO<br />

phantom. The phantom was set at 2.0 m distant from a 137 Cs or a 60 Co source. Teeth were inserted<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper and lower jaws <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom. After <str<strong>on</strong>g>the</str<strong>on</strong>g> irradiati<strong>on</strong>, dental enamels were separated<br />

mechanically from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth and subjected to ESR measurements[18]. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

teeth, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth was measured with <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-luminescence dosimeters (TLDs)<br />

located at <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-part in <str<strong>on</strong>g>the</str<strong>on</strong>g> head phantom. The TLD is made <str<strong>on</strong>g>of</str<strong>on</strong>g> a CaSO4 crystal and has a<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 4mm (UD-110s, Matsushita). The measured dose by <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD could be directly compared<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s, since <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong> coe cient for tooth enamel<br />

is closed to that for a CaSO4 crystal with <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s emitted from a 137 Cs or a 60 Co source.<br />

4 Results and Discussi<strong>on</strong><br />

Figure 2 shows calculated phot<strong>on</strong> energy dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> dose in fr<strong>on</strong>t-teeth, dose in back-teeth,<br />

e ective dose and dose <strong>on</strong> chest surface in anterior-posterior (AP) and posterior-anterior (PA) geometries.<br />

The values <str<strong>on</strong>g>of</str<strong>on</strong>g> dose are given in <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> mSv/R, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent dose or e ective<br />

dose to exposure in free air. The equivalent dose <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth was obtained with multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed<br />

dose in teeth by radiati<strong>on</strong> weighting factor (wR) for phot<strong>on</strong>s[19]. The teeth-dose indicates di erent<br />

behavior from <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose for low phot<strong>on</strong> energies, because tooth c<strong>on</strong>tains element with a higher<br />

atomic number such as Ca and P than those <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissue and can receive higher dose due to energy<br />

absorpti<strong>on</strong> through photoelectric e ect. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose is near to e ective dose in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy regi<strong>on</strong> above 300keV, where <str<strong>on</strong>g>the</str<strong>on</strong>g> Compt<strong>on</strong> scattering process is dominant interacti<strong>on</strong> with<br />

tissues.<br />

Figure 3 shows dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth-dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth <strong>on</strong> incident directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 keV and 1250<br />

keV phot<strong>on</strong>s. The teeth-doses are more str<strong>on</strong>gly dependent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong><br />

for 50 keV than for 1250 keV, because low-energy phot<strong>on</strong>s cannot penetrate materials with heavy<br />

elements as high-energy phot<strong>on</strong>s. The angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth-dose changes apparently according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> part <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth for 50 keV phot<strong>on</strong>s.<br />

Figure 4 depicts angular dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth-dose, e ective dose and dose <strong>on</strong> chest surface for<br />

incidences <str<strong>on</strong>g>of</str<strong>on</strong>g> 1250 keV phot<strong>on</strong>s. The results suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose can be thought as <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective<br />

dose for <str<strong>on</strong>g>the</str<strong>on</strong>g> incidences <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g>ahuman body within 60 degrees. The teeth-dose,<br />

however, can underestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose for <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> back <str<strong>on</strong>g>of</str<strong>on</strong>g>ahuman body, because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> can be absorbed in <str<strong>on</strong>g>the</str<strong>on</strong>g> red-b<strong>on</strong>e marrow in <str<strong>on</strong>g>the</str<strong>on</strong>g> spine. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose<br />

is more than <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose for <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral phot<strong>on</strong> irradiati<strong>on</strong>, because <str<strong>on</strong>g>the</str<strong>on</strong>g> organs in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> trunk principally c<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose are well shielded by <str<strong>on</strong>g>the</str<strong>on</strong>g> human body tissues.<br />

2


The obtained teeth-doses and e ective doses are summarized in Table 1 with some cases <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong><br />

irradiati<strong>on</strong>s. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>al (ROT) geometry are average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated doses<br />

over all horiz<strong>on</strong>tal incident angles for each phot<strong>on</strong> energy. It can be c<strong>on</strong>cluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> results that<br />

we can interpret <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose as e ective dose for more than 1 MeV phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> AP and <str<strong>on</strong>g>the</str<strong>on</strong>g> ROT<br />

geometries. These c<strong>on</strong>versi<strong>on</strong> coe cients from <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose to <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose are to be essential<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> retrospective individual dose assessment by ESR dosimetry with teeth. However, it should be<br />

menti<strong>on</strong>ed that <str<strong>on</strong>g>the</str<strong>on</strong>g>se data are obtained with a m<strong>on</strong>o-energetic eld. The teeth-dose can remarkably<br />

overestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose for low energy phot<strong>on</strong> as shown in 50 keV phot<strong>on</strong>s, so <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

dose with ESR dosimetry is to be larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 1250 keV in Table 1 for a retrospective<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure with phot<strong>on</strong>s from a 60 Co source.<br />

Table 2 summarizes distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth by <str<strong>on</strong>g>the</str<strong>on</strong>g> ESR dosimetry, <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements<br />

with TLDs and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s for a 60 Co source. Since relati<strong>on</strong>ship between intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ESR signal and tooth-dose has not been determined yet, <str<strong>on</strong>g>the</str<strong>on</strong>g> signal intensity or <str<strong>on</strong>g>the</str<strong>on</strong>g> dose in teeth<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> middle- and <str<strong>on</strong>g>the</str<strong>on</strong>g> back- part are given with relative values to those at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t part, which are<br />

normalized to 1.0. The values in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s are based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> 1250keV phot<strong>on</strong>s. The<br />

results by <str<strong>on</strong>g>the</str<strong>on</strong>g> ESR dosimetry agreed with <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements by TLDs and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s for both<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> AP and PA geometries.<br />

Table 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose by <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments with<br />

TLDs. The calculated teeth-doses are less than <str<strong>on</strong>g>the</str<strong>on</strong>g> measured doses for <str<strong>on</strong>g>the</str<strong>on</strong>g> PA geometry, whereas<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured teeth-doses are valid to <str<strong>on</strong>g>the</str<strong>on</strong>g> results by <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> AP geometry. The<br />

disagreements in <str<strong>on</strong>g>the</str<strong>on</strong>g> PA geometry are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> head part between <str<strong>on</strong>g>the</str<strong>on</strong>g> modi ed<br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical human models for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom used for <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments. .<br />

5 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Voxel type phantom (Veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments)<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated teeth-doses were less than <str<strong>on</strong>g>the</str<strong>on</strong>g> measured doses with TLDs (CaSO4) located<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> head phantom as shown in Table 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculati<strong>on</strong>s are to be performed for a<br />

veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments. The computati<strong>on</strong>al human model for <str<strong>on</strong>g>the</str<strong>on</strong>g> veri cati<strong>on</strong> is called as \voxel<br />

(Volume-pixel) type" phantom[20].<br />

A Voxel type phantom was developed based up<strong>on</strong> a computed topography (CT) image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

head phantom, which hadbeen taken with 1mm interval. The CT image having 512x512 pixels was<br />

segmented into s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissue, b<strong>on</strong>e, teeth and air according to CT values as shown in Figure 4 (a). Figure<br />

4shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-part de ned in <str<strong>on</strong>g>the</str<strong>on</strong>g> Voxel type phantom is quite similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-part added<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> MIRD type in <str<strong>on</strong>g>the</str<strong>on</strong>g> already performed calculati<strong>on</strong>s. Since CT images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RANDO phantom<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments were not taken, <str<strong>on</strong>g>the</str<strong>on</strong>g> trunk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom is to be replaced by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r human model.<br />

These images are now being piled up to c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s.<br />

6 C<strong>on</strong>clusi<strong>on</strong><br />

The M<strong>on</strong>te Carlo calculati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments have provided <str<strong>on</strong>g>the</str<strong>on</strong>g> quantitative relati<strong>on</strong>ship<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> teeth-dose and e ective dose for phot<strong>on</strong> external exposure with 9 energies between 20<br />

keV and 2500 keV. The obtained results are to be useful for <str<strong>on</strong>g>the</str<strong>on</strong>g> individual dose assessment by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ESR dosimetry with teeth. To get <str<strong>on</strong>g>the</str<strong>on</strong>g> nal goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this work, M<strong>on</strong>te Carlo calculati<strong>on</strong>s should be<br />

performed to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments with a Voxel type phantom based up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> head phantom used<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments.<br />

3


Acknowledgements<br />

The authors express cordial thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> Toshiba Medical Cooperati<strong>on</strong> for taking CT image<br />

photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> head phantom.<br />

References<br />

[1] P. Jacob, I. Baili , M. Bauchinger, E. Haskell and A. Wieser, \Retrospective Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Exposures to I<strong>on</strong>izing Radiati<strong>on</strong>", ICRU NEWS June 2000(2000)5-11.<br />

[2] A. A. Romanyukha, M. C. Desrosiers and F. Regulla, \Current issues <strong>on</strong> EPR dose rec<strong>on</strong>structi<strong>on</strong><br />

in tooth enamel", Appl. Radiat. Isot. 52 (2000)1265-1273.<br />

[3] M. Ikeya, T. Miki, A. Kai and M. Hoshi, \ESR Dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> A-Bomb Radiati<strong>on</strong> Using Tooth<br />

Enamel and Granite Rocks", Radiat. Dosim. Prot. 17 (1986)181-184.<br />

[4] M. Ikeya and H. Ishii, \Atomic Bomb and Accident Dosimetry with ESR: Natural Rocks and<br />

Human Tooth In-vivo Spectrometer", Appl. Radiat. Isot. 40(1989)1021-1027.<br />

[5] H. Ishii and M. Ikeya, \ESR Dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Teeth <str<strong>on</strong>g>of</str<strong>on</strong>g> Residents Close to Chernobyl Reactor Accident",<br />

J. Nucl. Sci. Tech. 27(1990)1153-1155.<br />

[6] V. A. Serezhenkov, E. V. Dormacheva, G. A. Klevezal, S. M. Kulikov, S. A. Kuznetsov, P. I. Mordvintcev,<br />

L. I. Sukhovskaya, N. E. Schklovsky-Kordi, A. F. Vanin, N. V. Voevodskaya and<br />

A. I. Vorobiev, \Radiati<strong>on</strong> Dosimetry for Residents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Chernobyl Regi<strong>on</strong>: A Comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cytogenetic and Electr<strong>on</strong> Spin Res<strong>on</strong>ance Methods", Radiat. Prot. Dosim. 42(1992)33-36.<br />

[7] A. A. Romanyukha, D. Regulla, E. Vasilenko and A. Wieser, \South Ural Nuclear Workers:<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Individual Dose from Retrospective EPR Dosimetry and Operati<strong>on</strong>al Pers<strong>on</strong>al<br />

M<strong>on</strong>itoring", Appl. Radiat. Isot. 45 (1994)1195-1199.<br />

[8] A. A. Romanyukha, E. A. Ignatiev, E. K. Vasilenko, E. G. Drozhko, A. Wieser, P. Jacob,<br />

I. B. Keirim-Markus, E. D. Kleschenko, N. Nakamura and C. Miyazawa, \EPR Dose Rec<strong>on</strong>structi<strong>on</strong><br />

for Russian Nuclear Workers", Health Phys. 78-1 (2000)15-20.<br />

[9] T. Shimano, M. Iwasaki, C. Miyazawa, T. Miki, A. Kai, and M. Ikeya, \Human Tooth Dosimetry<br />

for Gamma-Rays and Dental X-Rays Using ESR," Appl. Radiat. Isot. 40(1989)1035-1038.<br />

[10] M. Iwasaki, C. Miyazawa, A. Kubota, E. Suzuki, K. Sato, J. Naoi, A. Kato and K. Niwa, \Energy<br />

Dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 3;<br />

3 Signal Intensity in ESR Dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Human Tooth Enamel",<br />

Radioisotopes 40(1991)421-424.<br />

[11] M. Iwasaki, C. Miyazawa, T. Uesawa, E. Suzuki, M. Hoshi, and K. Niwa, \Exposure Rate Dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 3;<br />

3 Signal Intensity in ESR Dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Human Tooth Enamel", Radioisotopes<br />

41(1992)642-644.<br />

[12] M. Iwasaki, C. Miyazawa, T. Uesawa, I. Ito and K. Niwa \Di erences in Radiati<strong>on</strong> Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Human Tooth Enamel in an Individual and am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Individuals in Dental ESR Dosimetry",<br />

Radioisotopes 44(1995)785-788.<br />

[13] M. Iwasaki, C. Miyazawa and T. Uesawa, \E ect <str<strong>on</strong>g>of</str<strong>on</strong>g> Tooth Positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Oral Cavity for Various<br />

Irradiati<strong>on</strong> Geometries in Dental ESR Dosimetry", Radioisotopes 48(1999)530-534.<br />

[14] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System", SLAC-265 (1985).<br />

[15] I. Nojiri, S. Iwai, O. Sato, S. Takagi, S. Sawamura, and Y. Fukasaku, Power Reactor and Nuclear<br />

Fuel Development Corporati<strong>on</strong> Technical Report 102(1997) 59-66 (in Japanese).<br />

4


[16] S. Takagi, O. Sato, S. Iwai, T. Uehara and I. Nojiri, \Development and Benchmarking <str<strong>on</strong>g>of</str<strong>on</strong>g> General<br />

Purpose User Code <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4", Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1st <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4, 86-96, (1997).<br />

[17] M. Cristy, \Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Phantom Representing Children <str<strong>on</strong>g>of</str<strong>on</strong>g> Various Ages for Use in Estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Internal Doses", MUREG/CR-1159 (1980).<br />

[18] M. Iwasaki, C. Miyazawa, T. Uesawa, I. Ito and K. Niwa, \E ect <str<strong>on</strong>g>of</str<strong>on</strong>g> Sample Grain Size <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

CO 3;<br />

3 Signal Intensity in ESR Dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Human Tooth Enamel", Radioisotopes 42(1995)470-<br />

473.<br />

[19] ICRP, \1990 Recommendati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <strong>on</strong> Radiological Protecti<strong>on</strong>",<br />

ICRP Publicati<strong>on</strong> 60 (Oxford: Pergam<strong>on</strong> Press), 1991.<br />

[20] M. Zankl, N. Petoussi and A. Wittmann, \The GSF voxel phantoms and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir applicati<strong>on</strong> in radiology<br />

and radiati<strong>on</strong> potecti<strong>on</strong>", Voxel Phantom Development, Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g><br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Radiological Protecti<strong>on</strong> Board, p.98-104, (1995).<br />

5


Table 1 Teeth-dose and E ective dose for some cases <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> external phot<strong>on</strong> exposures.<br />

1. 1250keV (A) Teeth-dose (B) E ective dose (B)/(A)<br />

(mSv/R) (mSv/R)<br />

AP Geometry 9.2 8.8 0.96<br />

PA Geometry 5.4 7.9 1.46<br />

LLAT Geometry 8.2 6.4 0.78<br />

ROT Geometry 7.8 7.4 0.95<br />

2. 50keV (A) Teeth-dose (B) E ective dose (B)/(A)<br />

(mSv/R) (mSv/R)<br />

AP Geometry 53 9.2 0.17<br />

PA Geometry 6.5 5.3 0.82<br />

LLAT Geometry 32 3.5 0.11<br />

ROT Geometry 30 5.5 0.18<br />

Table 2 Teeth-dose distributi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth by <str<strong>on</strong>g>the</str<strong>on</strong>g> ESR dosimetry, <str<strong>on</strong>g>the</str<strong>on</strong>g> TLDs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s ( 60 Co source).<br />

1. AP geometry Relative value<br />

Fr<strong>on</strong>t Middle Back<br />

ESR dosimetry 1.0 1.0 0.9<br />

TLDs 1.0 1.0 1.0<br />

Calculati<strong>on</strong> 1.0 1.0 0.9<br />

2. PA geometry Relative value<br />

Fr<strong>on</strong>t Middle Back<br />

ESR dosimetry 1.0 1.1 1.1<br />

TLDs 1.0 1.1 1.2<br />

Calculati<strong>on</strong> 1.0 1.1 1.2<br />

The signal intensities or teeth-doses at middle- and pack-parts are<br />

relative values to those at fr<strong>on</strong>t-part, which are normalized to 1.0.<br />

Table 3 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Teeth-dose by <str<strong>on</strong>g>the</str<strong>on</strong>g> TLDs and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s ( 60 Co source).<br />

1. AP geometry Teeth-dose (mSv/R) E ective Dose<br />

Fr<strong>on</strong>t Middle Back (mSv/R)<br />

TLDs 9.4 9.7 9.1 |{<br />

Calculati<strong>on</strong> 9.4 9.4 8.8 8.8<br />

2. PA geometry Teeth-dose (mSv/R) E ective Dose<br />

Fr<strong>on</strong>t Middle Back (mSv/R)<br />

TLDs 6.2 6.5 7.1 |{<br />

Calculati<strong>on</strong> 4.8 5.2 5.9 7.5<br />

6


Figure1 Schematicview<str<strong>on</strong>g>of</str<strong>on</strong>g>aMIRD-typephantomand<str<strong>on</strong>g>the</str<strong>on</strong>g>crosssecti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>headat<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<br />

level<str<strong>on</strong>g>of</str<strong>on</strong>g>newlydefinedteeth-part.<br />

Doseperexposureinfreeair<br />

(mSv/R)<br />

Doseperexposureinfreeair<br />

(mSv/R)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

10 50 100 500 1000<br />

Phot<strong>on</strong>energy(keV)<br />

(a)APgeometry<br />

20<br />

15<br />

10<br />

5<br />

Fr<strong>on</strong>tteeth<br />

Backteeth<br />

Chestsurface<br />

Effectivedose<br />

Fr<strong>on</strong>tteeth<br />

Backteeth<br />

Chestsurface<br />

Effectivedose<br />

0<br />

10 50 100 500 1000<br />

Phot<strong>on</strong>energy(keV)<br />

(b)PAgeometry<br />

Figure2 Teeth-dose,dose<strong>on</strong>chestsurfaceandeffectivedoseperunitexposureinfreeair<br />

asafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>phot<strong>on</strong>energyforAP(a)andPA(b)geometries. <br />

7


Left<br />

Fr<strong>on</strong>t<br />

60<br />

40<br />

20<br />

0<br />

Back<br />

(a)50keV<br />

Right Left<br />

Fr<strong>on</strong>t<br />

10<br />

Fr<strong>on</strong>tteeth<br />

<br />

Left-middleteeth<br />

<br />

Back<br />

Right-backteeth<br />

<br />

Unit:mSv/R<br />

(b)1250keV<br />

5<br />

0<br />

Right<br />

Figure3 Angulardependence<str<strong>on</strong>g>of</str<strong>on</strong>g>teeth-dosesfor50keVand1250keVphot<strong>on</strong>s.<br />

<br />

Left<br />

Fr<strong>on</strong>t<br />

10<br />

5<br />

0<br />

Back<br />

Right<br />

Teeth-dose<br />

Chestsurfacedose<br />

Effectivedose<br />

Unit:mSv/R<br />

Figure4 Angulardependence<str<strong>on</strong>g>of</str<strong>on</strong>g>teeth-dose,dose<strong>on</strong>chestsurfaceandeffectivedose.<br />

(a)Voxel-typephantom <br />

(b)MIRD-typephantom<br />

Figure5 Teeth-partin<str<strong>on</strong>g>the</str<strong>on</strong>g>twoma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticalhumanmodels.<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.48-55<br />

An <strong>EGS</strong>4 User Code with Voxel Geometry and<br />

a Voxel Phantom Generati<strong>on</strong> System<br />

J. Funabiki 1 , M. Terabe 1 , M. Zankl 2 , S. Koga 3 , and K. Saito 4<br />

1<br />

Mitsubishi Research Institute, Inc.,<br />

3-6 Otemachi 2-Chome Chiyoda-Ku, Tokyo 100-8141, Japan<br />

2<br />

GSF, Neuherberg D-85758 Oberschleissheim, Germany<br />

3<br />

Fujita Health University,<br />

98 Dengakugakubo 1-Banchi Kutsukake-Cho Toyoake-Shi Aichi-Ken 470-1101, Japan<br />

4<br />

Japan Atomic Energy Research Institute,<br />

2-4 Shirakatashirane Tokai-mura, Ibaragi-ken 319-1195 Japan<br />

Abstract<br />

An <strong>EGS</strong>4 user code with voxel geometry (<str<strong>on</strong>g>the</str<strong>on</strong>g> UCPIXEL code) has been developed in order to<br />

make accurate dose evaluati<strong>on</strong> by using human voxel phantoms. The voxel data have a format<br />

devised by GSF. This format can compress so large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> high-resoluti<strong>on</strong> voxel data that<br />

required memory for computati<strong>on</strong> is greatly reduced. UCPIXEL can treat 8 basic irradiati<strong>on</strong><br />

geometries (AP, PA, RLAT, LLAT, ROT, ISO, AB, BA) and cylindrical pseudo-envir<strong>on</strong>mental<br />

radiati<strong>on</strong> source with arbitrary size, energy and directi<strong>on</strong>al distributi<strong>on</strong>. In additi<strong>on</strong>, UCPIXEL<br />

can model c<strong>on</strong>taminated soil with arbitrary area and depth under a phantom and radiati<strong>on</strong> from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> soil. By using a post-processor, e ective dose equivalent, e ective doseand organ doses can<br />

be evaluated from <str<strong>on</strong>g>the</str<strong>on</strong>g> output <str<strong>on</strong>g>of</str<strong>on</strong>g> UCPIXEL. Preliminary results <str<strong>on</strong>g>of</str<strong>on</strong>g> e ective dose calculated by<br />

using UCPIXEL for a Japanese voxel phantom are dem<strong>on</strong>strated and compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

results for MIRD-type phantoms. Wehave also developed an intelligent system which automatically<br />

c<strong>on</strong>structs a voxel phantom from CT data. We introduce this system and preliminary results are<br />

shown.<br />

1 Introducti<strong>on</strong><br />

Fluence to e ective dose equivalent or e ective dose c<strong>on</strong>versi<strong>on</strong> coe cients for phot<strong>on</strong>s or electr<strong>on</strong>s<br />

have beenevaluated by some researchers[1-5]. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies, dose calculati<strong>on</strong>s have generally been<br />

performed using MIRD-type anthropomorphic phantoms or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r simpli ed phantoms.<br />

While <str<strong>on</strong>g>the</str<strong>on</strong>g> MIRD-type phantoms have been widely used, voxel phantoms derived from image data<br />

have been developed and used for dose analysis[6-8]. Veit et al. developed 8 week old baby and 7 year<br />

old child voxel phantom[6], and organ doses and SAF were evaluated[7,8]. The voxel phantoms were<br />

based <strong>on</strong> CT scans <str<strong>on</strong>g>of</str<strong>on</strong>g> real pers<strong>on</strong>s, while MIRD-type phantoms describe <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> human body<br />

and its organs by simple ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical equati<strong>on</strong>s based <strong>on</strong> anatomical data <str<strong>on</strong>g>of</str<strong>on</strong>g> a reference man. By<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> voxel phantom c<strong>on</strong>structi<strong>on</strong> technique developed by Zankl et al., Saito et al. has recently<br />

developed a Japanese male voxel phantom [9]. Hunt et al. have also developed a voxel phantom called<br />

NORMAN from a whole-body magnetic res<strong>on</strong>ance image (MRI). [10]<br />

We have developed an <strong>EGS</strong>4 user code (<str<strong>on</strong>g>the</str<strong>on</strong>g> UCPIXEL code) which can treat voxel geometry in<br />

order to make precise dose analysis and evaluate dose di erence between races and individuals byusing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> voxel phantoms. Also, electr<strong>on</strong> dose c<strong>on</strong>versi<strong>on</strong> coe cients for <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese male voxel phantom<br />

have been calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> UCPIXEL code. In this paper, preliminary results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> are<br />

presented and compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous results for MIRD-type phantoms[3].<br />

1


Figure 6 to 8 show organ doses at <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV and 10 GeV respectively for<br />

AP, PA, ISO. The results are also compared with those given by Ferrari et al. [3]. At <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 GeV, <str<strong>on</strong>g>the</str<strong>on</strong>g> agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> both results are good since at such a high energy, electr<strong>on</strong>s are highly<br />

relativistic and energy is almost uniformly deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> phantoms. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV, some organ doses for <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese male phantom are signi cantly di erent from<br />

those for <str<strong>on</strong>g>the</str<strong>on</strong>g> MIRD-type phantom. This is mainly due to <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence in <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>s and structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> organs and tissues.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> results described above, we c<strong>on</strong> rmed that <str<strong>on</strong>g>the</str<strong>on</strong>g> UCPIXEL code works well and that voxel<br />

phantoms are indispensable in precise dose estimati<strong>on</strong> for irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s with relatively low<br />

energies like internal exposure analysis and dose evaluati<strong>on</strong> for envir<strong>on</strong>mental electr<strong>on</strong> radiati<strong>on</strong>.<br />

4 The Voxel Phantom Generati<strong>on</strong> System<br />

A prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> an intelligent system which automatically c<strong>on</strong>structs a voxel phantom from CT<br />

data has been developed. To formavoxel phantom from a given CT images, we readeach image in,<br />

colorize <str<strong>on</strong>g>the</str<strong>on</strong>g> grey CT value, identify and segment <str<strong>on</strong>g>the</str<strong>on</strong>g> organs/tissues, and enumerate <str<strong>on</strong>g>the</str<strong>on</strong>g> segments. It<br />

is very laborious work to this procedures manually. The voxel phantom generati<strong>on</strong> system reduces<br />

this labor and makes human body modeling e cient.<br />

4.1 Outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system<br />

The system reads normalized CT data and c<strong>on</strong>stucts a voxel phantom which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 regi<strong>on</strong>s:<br />

skin, lung, b<strong>on</strong>e, and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r regi<strong>on</strong> inside <str<strong>on</strong>g>the</str<strong>on</strong>g> body (we call this remainder regi<strong>on</strong> \s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissure" here).<br />

The input CT data must be normalized as 0 < CT value < 4095. The outline <str<strong>on</strong>g>of</str<strong>on</strong>g> this system is shown<br />

in Figure 9. This system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a master module and 4 submodules: skin, lung, b<strong>on</strong>e, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissue<br />

indenti ers. Each submodule is optimized to identify <strong>on</strong>e speci c part <str<strong>on</strong>g>of</str<strong>on</strong>g> a human body assigned<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> master (for instance, skin identi er identi es <strong>on</strong>ly skin ) and sends back <str<strong>on</strong>g>the</str<strong>on</strong>g> identi cati<strong>on</strong><br />

results to <str<strong>on</strong>g>the</str<strong>on</strong>g> master. The master combines <str<strong>on</strong>g>the</str<strong>on</strong>g> results to fom <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding voxel phantom.<br />

The optimizati<strong>on</strong> is d<strong>on</strong>e by giving <str<strong>on</strong>g>the</str<strong>on</strong>g> following knowledge and rules about human anatomy toeach<br />

indenti er.<br />

1. CT values:<br />

Skin, lung, and b<strong>on</strong>e have characteristic CT values.<br />

Skin has CT values greater than 500.<br />

Lungs have CTvalues between 80 and 839.<br />

B<strong>on</strong>e has CT values greater than 1139.<br />

2. Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>s:<br />

Small regi<strong>on</strong>s are removed as noise.<br />

3. Posti<strong>on</strong> in a image:<br />

4. Distributi<strong>on</strong>:<br />

5. Symmetry:<br />

The center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass, maximum and minimum coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> organ/tissue.<br />

Standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> organ/tissue distributi<strong>on</strong><br />

A Left and right lung<br />

3


4.2 Results and discussi<strong>on</strong><br />

The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> voxel phantom generati<strong>on</strong> system was examined using CT data from which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese male phantom was developed by Saito et al.[9]. Figure 10 shows some slices thorough<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese voxel phantom manually developed by Saito et al.[9] and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding phantom<br />

automatically c<strong>on</strong>structed by <str<strong>on</strong>g>the</str<strong>on</strong>g>voxel phantom generati<strong>on</strong> system. Automatically c<strong>on</strong>structed voxel<br />

phantom is quite simple compared with that developed by Saito et al because it c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 4<br />

regi<strong>on</strong>s, but <str<strong>on</strong>g>the</str<strong>on</strong>g> voxel phantom generati<strong>on</strong> system worked quite well and succeed to identify human<br />

body, lungs, b<strong>on</strong>es, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissues. We examined that this system works well in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> c<strong>on</strong>taining<br />

lungs.<br />

5 Summary and Future Work<br />

An <strong>EGS</strong>4 user code with voxel geometry (UCPIXEL code) has been developed. Using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

UCPIXEL code, e ective dose for electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese male voxel phantom was evaluated. Voxel<br />

phantom exhibited quite di erent organ dose characteristics for low-energy electr<strong>on</strong>s in comparis<strong>on</strong><br />

with MIRD-type phantoms. Detailed dose analysis using <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese male and female voxel phantom<br />

is still underway.<br />

A prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> an intelligent system which automatically c<strong>on</strong>structs a voxel phantom from CT<br />

images has also been developed. Given a set <str<strong>on</strong>g>of</str<strong>on</strong>g> CT data, <str<strong>on</strong>g>the</str<strong>on</strong>g> prototype system generates voxel<br />

phantoms de ned by skin, lungs, b<strong>on</strong>es, and s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissues. We have examined that <str<strong>on</strong>g>the</str<strong>on</strong>g> system works<br />

well in indentifying organs and tissues, although <str<strong>on</strong>g>the</str<strong>on</strong>g> generality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge and rules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

identi ers has to be examined thoroughly by using more data sets. In additi<strong>on</strong>, identi ers for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

organs may also be incorporated to <str<strong>on</strong>g>the</str<strong>on</strong>g> system<br />

References<br />

[1] O. Sato, S. Iwai, S. Tanaka, T. Uehara, Y. Sakamoto, N. Yoshizawa, and S. Furihata,, \Calculati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Equivalent Dose and E ecitive Dose C<strong>on</strong>versi<strong>on</strong> Coe cients for Phot<strong>on</strong>s from 1 MeV to<br />

10 GeV", Radiat. Prot. Dosim. 62(3)(1995)119-130.<br />

[2] A. Ferrari, M. Pellicci<strong>on</strong>i, and M. Pill<strong>on</strong>, \Fluence to E ective Dose and E ective Dose Equivalent<br />

C<strong>on</strong>versi<strong>on</strong> Coe cients for Phot<strong>on</strong>s from 50 keV to 10 GeV". Radiat. Prot. Dosim.<br />

67(4)(1996)245-251.<br />

[3] A. Ferrari, M. Pellicci<strong>on</strong>i, and M. Pill<strong>on</strong>, \Fluence to E ective Dose and E ective Dose Equivalent<br />

C<strong>on</strong>versi<strong>on</strong> Coe cients for Electr<strong>on</strong>s from 5 MeV to 10 GeV", Radiat. Prot. Dosim.<br />

69(2)(1996)97-104.<br />

[4] F. W. Schultz and J. Zoetelief, \Organ and E ecitive Doses in <str<strong>on</strong>g>the</str<strong>on</strong>g> Male Phantom Adam Exposed<br />

in AP directi<strong>on</strong> to Broad Unidirecti<strong>on</strong>al Beams <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>oenergetic Electr<strong>on</strong>s", Health Phys.<br />

70(1996)498-504.<br />

[5] M. Zankl, N. Petoussi, and G. Drexler, \E ective Dose and E ective Dose Equivalent ? The Impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> New ICRP De niti<strong>on</strong> for External Phot<strong>on</strong> Irradiati<strong>on</strong>", Health.Phys. 62(5)(1992)395-<br />

399.<br />

[6] R. Veit, M. Zankl, N. Petoussi, E. Mannweiler, G. Williams, and G. Drexler, \Tomographic<br />

Anthropomorphic Models: Part I: C<strong>on</strong>structi<strong>on</strong> Technique and Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Models <str<strong>on</strong>g>of</str<strong>on</strong>g> an 8<br />

Week Old Baby and a 7 Year Old Child. GSF-Bericht No.3/89 (1989).<br />

[7] M. Zankl, W. Panzer, and G. Drexler, \Tomographic Anthropomorphic Models: Part II: Organ<br />

Doses from Computed Tomographic Examinati<strong>on</strong> in paediatric Radiology. GSF-Bericht No.30/93<br />

(1993).<br />

4


[8] N. Petoussi-Hen , M. Zankl, and K. Henrichs, \Tomographic Anthropomorphic Models: Part<br />

II: Speci c Absorbed Fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy for a Baby and a Child from Internal Phot<strong>on</strong> Sources.<br />

GSF-Bericht No.7/97 (1997).<br />

[9] K. Saito, A. Wittmann, S. Koga, Y. Ida, T. Kamei, J. Funabiki, and M. Zankl, \The c<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a computed tomographic phantom for a Japanese male adult and <str<strong>on</strong>g>the</str<strong>on</strong>g> dose calculati<strong>on</strong> system",<br />

submitted to Raiat. Envir<strong>on</strong>. Biophys. (2000).<br />

[10] J. G. Hunt, I. Malatova, andS.Foltanova, \Calculati<strong>on</strong> and Mesurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Calibrati<strong>on</strong> Factors<br />

for B<strong>on</strong>e Surface Seeking Low Energy Gamma Emitters and Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 241Am Acitivity in<br />

a Real Case <str<strong>on</strong>g>of</str<strong>on</strong>g> Internal C<strong>on</strong>taminati<strong>on</strong>", Radiat. Protec. Dosim. 82(3)(1999)215.<br />

<br />

Figure 1: The Japanese male phantom developed by Saito et al.[9]<br />

Figure 2: Original CT images (<str<strong>on</strong>g>the</str<strong>on</strong>g> left) and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding Japanese male phantom (<str<strong>on</strong>g>the</str<strong>on</strong>g> right) in 4 slices.<br />

5


6


B<strong>on</strong>eSurface<br />

Skin<br />

Thyroid<br />

Oesoph.<br />

Liver<br />

Breast<br />

Bladder<br />

Stomach<br />

Lung<br />

Col<strong>on</strong><br />

B<strong>on</strong>eMarrow<br />

G<strong>on</strong>ads<br />

Thiswork<br />

Ferrarietal.<br />

electr<strong>on</strong>,10MeV,AP<br />

1 10 100 1000<br />

OrganDose[pGycm 2 ]<br />

B<strong>on</strong>eSurface<br />

Skin<br />

Thyroid<br />

Oesoph.<br />

Liver<br />

Breast<br />

Bladder<br />

Stomach<br />

Lung<br />

Col<strong>on</strong><br />

B<strong>on</strong>eMarrow<br />

G<strong>on</strong>ads<br />

Thiswork<br />

Ferrarietal.<br />

electr<strong>on</strong>,10GeV,AP<br />

1 10 100 1000<br />

OrganDose[pGycm 2 ]<br />

Figure 6: Organ dose for AP irradiati<strong>on</strong> geometry at <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left side and 10 GeV<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese mail phantom<br />

B<strong>on</strong>eSurface<br />

Skin<br />

Thyroid<br />

Oesoph.<br />

Liver<br />

Breast<br />

Bladder<br />

Stomach<br />

Lung<br />

Col<strong>on</strong><br />

B<strong>on</strong>eMarrow<br />

G<strong>on</strong>ads<br />

Thiswork<br />

Ferrarietal.<br />

electr<strong>on</strong>,10MeV,PA<br />

0 50 100 150 200<br />

OrganDose[pGycm 2 ]<br />

B<strong>on</strong>eSurface<br />

Skin<br />

Thyroid<br />

Oesoph.<br />

Liver<br />

Breast<br />

Bladder<br />

Stomach<br />

Lung<br />

Col<strong>on</strong><br />

B<strong>on</strong>eMarrow<br />

G<strong>on</strong>ads<br />

Thiswork<br />

Ferrarietal.<br />

electr<strong>on</strong>,10GeV,PA<br />

1 10 100 1000<br />

OrganDose[pGycm 2 ]<br />

Figure 7: Organ dose for PA irradiati<strong>on</strong> geometry at <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left side and 10 GeV<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese mail phantom<br />

B<strong>on</strong>eSurface<br />

Skin<br />

Thyroid<br />

Oesoph.<br />

Liver<br />

Breast<br />

Bladder<br />

Stomach<br />

Lung<br />

Col<strong>on</strong><br />

B<strong>on</strong>eMarrow<br />

G<strong>on</strong>ads<br />

Thiswork<br />

Ferrarietal.<br />

electr<strong>on</strong>,10MeV,ISO<br />

1 10 100 1000<br />

OrganDose[pGycm 2 ]<br />

B<strong>on</strong>eSurface<br />

Skin<br />

Thyroid<br />

Oesoph.<br />

Liver<br />

Breast<br />

Bladder<br />

Stomach<br />

Lung<br />

Col<strong>on</strong><br />

B<strong>on</strong>eMarrow<br />

G<strong>on</strong>ads<br />

Thiswork<br />

Ferrarietal.<br />

electr<strong>on</strong>,10GeV,ISO<br />

0 200 400 600 800 1000<br />

OrganDose[pGycm 2 ]<br />

Figure 8: Organ dose for ISO irradiati<strong>on</strong> geometry at <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left side and 10<br />

GeV <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese mail phantom<br />

7


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.64-73<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 <strong>on</strong> Leksell Gamma Unit<br />

Joel YC Cheung 12 , KN Yu 2 , Robert TK Ho 1 and CP Yu 1<br />

1 Gamma Knife Centre (HK), Canossa Hospital, No. 1 Old Peak Road, H<strong>on</strong>g K<strong>on</strong>g.<br />

2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Materials Science, City University <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>g K<strong>on</strong>g,<br />

Tat Chee Avenue, Kowlo<strong>on</strong>, H<strong>on</strong>g K<strong>on</strong>g.<br />

Abstract<br />

The M<strong>on</strong>te Carlo modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> particle transport problems in medical radiati<strong>on</strong> physics o ers signi<br />

cant advantages over o<str<strong>on</strong>g>the</str<strong>on</strong>g>r techniques. Experiments can be performed without actually setting<br />

up <str<strong>on</strong>g>the</str<strong>on</strong>g> physical situati<strong>on</strong>. Reliable results can be obtained without any unavoidable perturbati<strong>on</strong>s.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo code was applied to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> Leksell Gamma<br />

Knife - model B. The Leksell Gamma Knife is a surgical tool for brain lesi<strong>on</strong>s. It directs beams<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cobalt-60 radiati<strong>on</strong> to a speci c regi<strong>on</strong> to treat patients whose brain tumours or lesi<strong>on</strong>s are so<br />

deeply buried that c<strong>on</strong>venti<strong>on</strong>al surgery is not possible.<br />

The PRESTA (Parameter Reduced Electr<strong>on</strong>-Step Transport Algorithm) versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

(Electr<strong>on</strong> Gamma Shower) computer code was employed. The <strong>EGS</strong>4 M<strong>on</strong>te Carlo code allows a<br />

more exible geometrical simulati<strong>on</strong> than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r M<strong>on</strong>te Carlo code. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is to<br />

dem<strong>on</strong>strate how to apply <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo code in radiosurgical tool, <str<strong>on</strong>g>the</str<strong>on</strong>g> Leksell Gamma<br />

Knife, in order to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> output factors and <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong>s. The <strong>EGS</strong>4 user<br />

code allowed all <str<strong>on</strong>g>the</str<strong>on</strong>g> 201 Cobalt-60 sources to be simulated in a single sessi<strong>on</strong>.<br />

1 Methodology<br />

1.1 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Beam Channel<br />

The 201 radiati<strong>on</strong> beams <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gamma Knife unit were c<strong>on</strong> ned by <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator system.<br />

Therefore, simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator system de ned <str<strong>on</strong>g>the</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> beams. Primary<br />

phot<strong>on</strong>s exited from <str<strong>on</strong>g>the</str<strong>on</strong>g> Co-60 sources through <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator system and interacted with <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical<br />

water phantom.<br />

The source body c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g> lead collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g> exchangeable nal collimator<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical water phantom. There are two available strategies in simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> Co-60<br />

source. First, as in <str<strong>on</strong>g>the</str<strong>on</strong>g> gure we simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> whole single beam channel, including <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical<br />

double encapsulated stainless steel source, pre-collimator, lead collimator and <str<strong>on</strong>g>the</str<strong>on</strong>g> interchangeable nal<br />

collimator.<br />

<str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g>, each source was modelled by a cylinder without any source and capsule ltrati<strong>on</strong>. The<br />

beam was collimated by <str<strong>on</strong>g>the</str<strong>on</strong>g>internal diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interchangeable nal collimator ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically.<br />

Radiati<strong>on</strong> scattering due to <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator system was ignored. Single beam dose pro les were generated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g>se two strategies. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> larger source to target distance when compared with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

source dimensi<strong>on</strong>s, no observable di erence was obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> single-beam pro les. For simplicity,<br />

we employed <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d strategy in simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> 201 Co-60 sources.<br />

1.2 <strong>EGS</strong>4 M<strong>on</strong>te Carlo Code<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present work, PRESTA (Parameter Reduced Electr<strong>on</strong>-Step Transport Algorithm) [1, 2]<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 (Electr<strong>on</strong> Gamma Shower) M<strong>on</strong>te Carlo code was employed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> dose<br />

outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Leksell Gamma Knife - model B in a spherical water phantoms. The employment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1


PRESTA in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> made <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo code select a suitable step length dynamically,<br />

which enables fast simulati<strong>on</strong> while still providing accurate physics. Detailed descripti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code can be found from Jenkins et al 1988[3]. The <strong>EGS</strong>4 code allows users<br />

to de ne a more exible geometrical simulati<strong>on</strong> than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r M<strong>on</strong>te Carlo computer code. Leksell<br />

Gamma Knife involves a complicated geometrical layout and that is <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> why was <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

code employed.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> patient's head was modelled by a water phantom 160 mm in diameter.<br />

Each <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 201 sources located in <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> unit is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 Co-60 pellets 1 mm in<br />

diameter and 1 mm in length. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 201 gamma beams exiting from <str<strong>on</strong>g>the</str<strong>on</strong>g> 201 Cobalt-60 sources<br />

were simulated. Each source was <str<strong>on</strong>g>the</str<strong>on</strong>g>refore modelled by a cylinder 1 mm in diameter and 20 mm in<br />

length.<br />

The Co-60 sources are arranged in a sector <str<strong>on</strong>g>of</str<strong>on</strong>g> a hemispherical surface with a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 400 mm.<br />

They are distributed al<strong>on</strong>g ve parallel circles separated from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by an angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.5 [4].<br />

The 201 radiati<strong>on</strong> beams passed through <str<strong>on</strong>g>the</str<strong>on</strong>g> opening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimators to <str<strong>on</strong>g>the</str<strong>on</strong>g> target point. The<br />

diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> beams at <str<strong>on</strong>g>the</str<strong>on</strong>g> focus were c<strong>on</strong> ned by <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> collimators which are 4, 8,<br />

14 and 18 mm. The measured internal diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4 mm collimator were 2.14 mm and 2.66 mm.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> 8 mm collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were 3.92 mm and 5.00 mm. For <str<strong>on</strong>g>the</str<strong>on</strong>g> 14 mm collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were 6.52<br />

mm and 8.56 mm. For <str<strong>on</strong>g>the</str<strong>on</strong>g> 18 mm collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were 8.26 mm and 10.88 mm.<br />

1.3 Coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 201 Co-60 sources<br />

For simplicity in calculati<strong>on</strong>s, we needed to treat <str<strong>on</strong>g>the</str<strong>on</strong>g> unit centre point as (0,0,0) instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(100,100,100). In Fig. 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> angle was de ned <strong>on</strong> every rows <str<strong>on</strong>g>of</str<strong>on</strong>g> collimators inclined to <str<strong>on</strong>g>the</str<strong>on</strong>g> z-plane.<br />

The values are given in Table 1.<br />

By c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> spacing between collimators <strong>on</strong> each row in Figure 2, we can calculate an angle<br />

between collimators <strong>on</strong> each row. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> spacing S between collimators <strong>on</strong> each row were<br />

obtained based <strong>on</strong> physical measurement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator helmets. The values S are given in Table<br />

2.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> angle can be obtained using <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>.<br />

=<br />

S<br />

225 cos<br />

The coordinates in mm (x, y, z) <str<strong>on</strong>g>of</str<strong>on</strong>g> collimators <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> helmet are obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following equati<strong>on</strong>s. 8<br />

>< x = 225 cos sin<br />

y = 225 cos<br />

>:<br />

z = ;225 sin<br />

cos<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> source to focus distance to be 400 mm. The coordinates in mm (x, y, z) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 201<br />

Co-60 sources can be obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>s.<br />

8<br />

><<br />

1.3.1 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target points<br />

>:<br />

x = 400 cos sin<br />

y = 400 cos cos<br />

z = ;400 sin<br />

C<strong>on</strong>sider a point P(x1,y1,z1) at <str<strong>on</strong>g>the</str<strong>on</strong>g> central axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical Co-60 source. A phot<strong>on</strong> exits<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> source and targets to <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical water phantom. The directi<strong>on</strong> cosine <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> line joining<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> point P and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit centre point (0, 0, 0) is<br />

0<br />

1<br />

@<br />

x 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

<br />

y 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

2<br />

+ z2<br />

1<br />

<br />

z 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

A :


De ne an arbitrary point M(x,y,z) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plane perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> incident ray. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plane is<br />

0<br />

1<br />

Or,<br />

(x y z)<br />

@<br />

x 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

<br />

y 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

<br />

z 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

A =0:<br />

(xx 1 + yy 1 + zz 1)=0: (1)<br />

The equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target sphere with radius R is: x 2 + y 2 + z 2 = R 2 .<br />

The equati<strong>on</strong> becomes<br />

x 2 + y 2 + z 2 R 2 (2)<br />

if any point (x,y,z) is inside <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target sphere.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> [1], we write:<br />

and substitute z into <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> [2].<br />

Now, <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> [2] becomes:<br />

Then,<br />

x 2<br />

z = ; xx 1 + yy 1<br />

z 1<br />

x 2 + y 2 + xx 1 + yy 1<br />

z 1<br />

1+ x2<br />

1<br />

z 2<br />

!<br />

+ y<br />

1<br />

2<br />

1+ y2<br />

1<br />

z 2<br />

!<br />

1<br />

We choose random numbers x and y in mm, so that<br />

(<br />

;R x R<br />

and z can be determined by using <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> [3].<br />

;R y R<br />

2<br />

R 2 :<br />

+ 2xyx 1y 1<br />

z 2<br />

1<br />

1.4 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radius R <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target sphere<br />

The maximum radius R(mm) should include <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometrical penumbra. Therefore, by<br />

c<strong>on</strong>sidering a phot<strong>on</strong> exiting from <str<strong>on</strong>g>the</str<strong>on</strong>g> circumference and <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical source, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> R can be found (Figure 3).<br />

In trig<strong>on</strong>ometry, <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> tangent is:<br />

tan( ; )=<br />

In Figure 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> and are given below,<br />

Therefore,<br />

= tan ;1<br />

rout +0:5<br />

390 ; 165 = tan;1 0:5<br />

390<br />

R = p<br />

0:52 + 3902 2<br />

4<br />

tan ; tan<br />

1 + tan tan<br />

rout+0:5<br />

390;165<br />

1+ rout+0:5<br />

390;165<br />

R 2 :<br />

and tan ( ; )=<br />

; 0:5<br />

390<br />

0:5<br />

390<br />

where Rout is <str<strong>on</strong>g>the</str<strong>on</strong>g> internal radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator at <str<strong>on</strong>g>the</str<strong>on</strong>g> exiting end.<br />

3<br />

3<br />

5 <br />

R<br />

p<br />

0:52 :<br />

+3902 (3)


1.5 C<strong>on</strong> ning a phot<strong>on</strong> passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator<br />

In Figure 4, de ne a point A at <str<strong>on</strong>g>the</str<strong>on</strong>g> central axis and at <str<strong>on</strong>g>the</str<strong>on</strong>g> exiting end <str<strong>on</strong>g>of</str<strong>on</strong>g> collimator, ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r point<br />

B at <str<strong>on</strong>g>the</str<strong>on</strong>g> central axis and at <str<strong>on</strong>g>the</str<strong>on</strong>g> incident end <str<strong>on</strong>g>of</str<strong>on</strong>g> collimator. Then, any points exiting from within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cylindrical source try to point at <str<strong>on</strong>g>the</str<strong>on</strong>g> target (xtytzt) and pass through <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator. At <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

end and exiting end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator, we de ne a point C and a point D at <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces. Therefore,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> distance BC is less than <str<strong>on</strong>g>the</str<strong>on</strong>g> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator and <str<strong>on</strong>g>the</str<strong>on</strong>g> distance AD<br />

is less than <str<strong>on</strong>g>the</str<strong>on</strong>g> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exiting end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> emerging phot<strong>on</strong> is able to pass<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> whole collimator. The coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g> point C and point D can be found as follow.<br />

Directi<strong>on</strong> cosine <str<strong>on</strong>g>of</str<strong>on</strong>g> OP is:<br />

0<br />

1<br />

@<br />

x 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

<br />

y 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plane c<strong>on</strong>taining point B is:<br />

0<br />

and<br />

(x ; xBy; yBz ; zB)<br />

Then, we have<br />

@<br />

x 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

+ z2<br />

1<br />

<br />

<br />

z 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

y 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

+ z2<br />

1<br />

<br />

A :<br />

z 1<br />

q<br />

x 2<br />

1 + y2<br />

1<br />

+ z2<br />

1<br />

1<br />

A =0:<br />

(x ; xB) x 1 +(y ; yB) y 1 +(z ; ZB) z 1 =0: (4)<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> exiting from Q to <str<strong>on</strong>g>the</str<strong>on</strong>g> target (xtytzt):<br />

Therefore,<br />

x ; xin<br />

xin ; xt<br />

x =<br />

z =<br />

= y ; yin<br />

y ; yin<br />

ym ; yt<br />

y ; yin<br />

ym ; yt<br />

yin ; yt<br />

= z ; zin<br />

:<br />

zin ; zt<br />

(xin ; x)+xin (5)<br />

(zin ; z)+zin (6)<br />

Substitute <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s [5] and [6] into [4]. We get <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> y as follow.<br />

y = (zB ; zin)+(xB ; xin) x 1 + yBy 1 + yin<br />

x 1<br />

x in;xt<br />

y in;yt<br />

+ z 1<br />

x 1<br />

z in;zt<br />

y in;yt<br />

x in;xt<br />

y in;yt<br />

+ y 1<br />

+ z 1<br />

z in;zt<br />

y in;yt<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> point C can be found. The point D can also be found in a similar way.<br />

1.6 Obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point A and B<br />

In Figure 5, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> line OP:<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sphere A:<br />

Substitute <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s [7] into [8].<br />

We obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g> point A.<br />

x 1<br />

xA<br />

= y 1<br />

yA<br />

= z 1<br />

zA<br />

x 2 + y 2 + z 2 =165 2 (8)<br />

zA ; r<br />

x2 1<br />

z2 1<br />

4<br />

;165<br />

+ y2 1<br />

z 2 1<br />

+1<br />

(7)


and<br />

xA = zAx1<br />

yA = zAy1<br />

z1<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sphere B:x 2 + y 2 + z 2 = 225 2 . The coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g> point B can be found in a<br />

similar way.<br />

1.7 Select points within <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical source<br />

We needed to randomly select a point Q within <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical source (Figure 6). At rst, a<br />

randomly selected point Rwas found based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance ratio OR and OP.<br />

That is,<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> cosine <str<strong>on</strong>g>of</str<strong>on</strong>g> OR:<br />

0<br />

@<br />

R(x2y2z2) = jORj<br />

x2 q<br />

2<br />

x2 + y 2 2 + z2 <br />

2<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plane c<strong>on</strong>taining R becomes:<br />

Or,<br />

(x ; x2y; y2z ; z2)<br />

0<br />

@<br />

jOP j<br />

y2 q<br />

2<br />

x2 + y 2 2 + z2 <br />

2<br />

x2 q<br />

2<br />

x2 + y 2 2 + z2 <br />

2<br />

z1<br />

P (x1y1z1):<br />

z2 q<br />

2<br />

x2 + y 2 2 + z2 2<br />

y2 q<br />

2<br />

x2 + y 2 2 + z2 <br />

2<br />

1<br />

A <br />

z2 q<br />

2<br />

x2 + y 2 2 + z2 2<br />

1<br />

A =0<br />

(x ; x2) x2 +(y ; y2) y2 +(z ; z2) z2 =0: (9)<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid sphere with <str<strong>on</strong>g>the</str<strong>on</strong>g> point Rasacentre:<br />

(x ; x2) 2 +(y ; y2) 2 +(z ; z2) 2<br />

where 0.5 is <str<strong>on</strong>g>the</str<strong>on</strong>g> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical source.<br />

Solve <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s [9] and [10]. We have,<br />

z = (x2 ; x) x2 +(y2 ; y) y2<br />

z2<br />

0:5 2 (10)<br />

+ z2<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> values<str<strong>on</strong>g>of</str<strong>on</strong>g>xandywere selected from random numbers as follow.<br />

( ;0:5 y ; y2 0:5<br />

;0:5 x ; x2 0:5<br />

The coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g> point Q can be found. Therefore, any phot<strong>on</strong>s exiting within <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical<br />

source can nd a target coordinate <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plane perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> incident phot<strong>on</strong>.<br />

2 Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>s<br />

Experimental determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> output factors are di cult due to <str<strong>on</strong>g>the</str<strong>on</strong>g> extremely narrow beams<br />

for which <str<strong>on</strong>g>the</str<strong>on</strong>g> dose is determined. In <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, a spherical probe with a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mm was<br />

utilized at <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical water phantom, 160 mm in diameter. Our simulati<strong>on</strong> c<strong>on</strong> rmed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> new 4 mm output factor[5, 6] provided by ELEKTA (Manufacturer <str<strong>on</strong>g>of</str<strong>on</strong>g> Leksell Gamma Knife).<br />

<strong>EGS</strong>4 M<strong>on</strong>te Carlo technique was also employed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> x, y and<br />

z axes when a single shot with <str<strong>on</strong>g>the</str<strong>on</strong>g> opening <str<strong>on</strong>g>of</str<strong>on</strong>g> all 201 sources was delivered at <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulated<br />

water phantom. Di erent collimator helmets <str<strong>on</strong>g>of</str<strong>on</strong>g> 4, 8, 14 and 18 mm were studied. Good agreements<br />

were obtained between <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planning system and <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo. Small discrepancies<br />

5


were observed al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> z-axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8 mm collimator helmet[7]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> change in dose<br />

distributi<strong>on</strong>s can also be predicted after applying some plugged patterns at <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator helmets[8].<br />

Owning to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> radiographic lms, accurate measurement results may not be<br />

obtained easily[9]. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo technique is important and should<br />

be included as a part <str<strong>on</strong>g>of</str<strong>on</strong>g> quality assurance program for <str<strong>on</strong>g>the</str<strong>on</strong>g> Gamma Knife radiosurgery.<br />

Table 1 Row A to E inclined to <str<strong>on</strong>g>the</str<strong>on</strong>g> z-plane by anangle .<br />

Row<br />

A 6.0<br />

B 13.5<br />

C 21.0<br />

D 28.5<br />

E 36.0<br />

Table 2 The spacing S between collimators within <str<strong>on</strong>g>the</str<strong>on</strong>g> row from A to E.<br />

Row S(mm)<br />

A 30.00<br />

B 30.55<br />

C 33.00<br />

D 31.06<br />

E 31.77<br />

6


References<br />

[1] Bielajew A. F. and Rogers D. W. O., \Electr<strong>on</strong> Step-size Artefacts and PRESTA, In M<strong>on</strong>te Carlo<br />

Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and Phot<strong>on</strong>s", p115, edited by Jenkins T.M., Nels<strong>on</strong> W. R. and Rindi A.,<br />

Plenum Publishing Corporati<strong>on</strong>, 1988.<br />

[2] Bielajew A. F. and Rogers D. W. O., \PRESTA: The Parameter Reduced Electr<strong>on</strong>-Step Transport<br />

Algorithm for Electr<strong>on</strong> M<strong>on</strong>te Carlo Transport", NRC-CNRC, 1988.<br />

[3] Jenkins, T. M., Nels<strong>on</strong>, W. R., Rindi, \A. M<strong>on</strong>te Carlo Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and Phot<strong>on</strong>s".<br />

New York: Plenum Publishing Corporati<strong>on</strong>, 1988.<br />

[4] Elekta, \Leksell Gamma Unit: User's Manual 1", 1992.<br />

[5] Elekta, \New 4-mm Helmet Output Factor, Bulletin Leksell Gamma Knife Public", 02/17/98,<br />

1998.<br />

[6] Joel Y C Cheung, K N Yu, Robert T K Ho and C P Yu, \M<strong>on</strong>te Carlo calculated output factors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Leksell Gamma Knife unit", Physics in Medicine and Biology, Volume 44, Number 12<br />

(1999)N247-N249.<br />

[7] Joel Y. C. Cheung, K. N. Yu, C. P. Yu, and Robert T. K. Ho, \M<strong>on</strong>te Carlo calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> singlebeam<br />

dose pro les used in a gamma knife treatment planning system", Med. Phys., Volume 25,<br />

Issue 9 (1998)1673-1675.<br />

[8] Joel Y. C. Cheung, K. N. Yu, Robert T. K. Ho and C. P. Yu, \M<strong>on</strong>te Carlo calculati<strong>on</strong>s and<br />

GafChromic lm measurements for plugged collimator helmets <str<strong>on</strong>g>of</str<strong>on</strong>g> Leksell Gamma Knife unit",<br />

Med. Phys., Volume 26, Issue 7(1999)1252-1256.<br />

[9] Joel Y.C. Cheung, K.N. Yu, R.T.K. Ho and C.P. Yu, \Stereotactic dose planning system used<br />

in Leksell Gamma Knife model-B: <strong>EGS</strong>4 M<strong>on</strong>te Carlo versus GafChromic lms MD-55", Appl.<br />

Radiat. Isot., Vol 53, Issue 3(2000)427-430.<br />

7


Figure1Anangleθinclinedto<str<strong>on</strong>g>the</str<strong>on</strong>g>z-plane<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g><br />

collimatorhelmet.<br />

Figure2Anangleδinclinedtox-plane<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g><br />

collimatorhelmet<br />

8


390<br />

165 60<br />

Co-60Source<br />

R<br />

α<br />

R out<br />

0.5<br />

β<br />

(0,0,0)<br />

90 o<br />

20<br />

Collimator<br />

Figure3Thecalculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>amaximumradiusRat<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>targetplane.<br />

P(x 1,y 1,z 1)<br />

D<br />

target(x t ,y t ,z t )<br />

C<br />

B<br />

A<br />

Q(x in,y in,z in)<br />

O(0,0,0)<br />

Collimator<br />

Figure4Thecalculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>coordinates<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>points<br />

CandDinteracting<str<strong>on</strong>g>the</str<strong>on</strong>g>collimator.<br />

9


A<br />

O(0,0,0)<br />

B<br />

Source<br />

Collimator<br />

P(x 1 ,y 1 ,z 1 )<br />

Figure5Thecalculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>coordinates<str<strong>on</strong>g>of</str<strong>on</strong>g>pointsA<br />

andBat<str<strong>on</strong>g>the</str<strong>on</strong>g>centralaxis<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>collimator.<br />

R(x 2,y 2,z 2)<br />

O(0,0,0)<br />

P(x 1,y 1,z 1)<br />

Q(x,y,z)<br />

Figure6Thecalculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>randomselected<br />

pointswithin<str<strong>on</strong>g>the</str<strong>on</strong>g>volume<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>cylindrical<br />

10


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.74-91<br />

Dosimetric Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Low Energy Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy Sources:<br />

An <strong>EGS</strong>4 M<strong>on</strong>te Carlo Study<br />

E. Mainegra and R. Capote<br />

Departamento de Fisica,<br />

Centro de Estudios Aplicados al Desarrollo Nuclear,<br />

Calle 30 #502, e/ 5ta y 7ma, Miramar, La Habana, Cuba<br />

Abstract<br />

An exhaustive revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dosimetry data for low energy interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources has<br />

been performed by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Simulati<strong>on</strong> System. DLC-136/PHOTX cross secti<strong>on</strong> library,<br />

water molecular form factors, bound Compt<strong>on</strong> scattering and Doppler broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Compt<strong>on</strong>scattered<br />

phot<strong>on</strong> energy were c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s. Two-dimensi<strong>on</strong>al dose rate distributi<strong>on</strong>s<br />

in water and air-kerma strength around 103 Pd model 200 and 125 I models 6702 and 6711<br />

were calculated, allowing dose rate c<strong>on</strong>stants (DRC) , radial dose functi<strong>on</strong>s g(r) and anisotropy<br />

functi<strong>on</strong>s F (r ) to be estimated. In uence <str<strong>on</strong>g>of</str<strong>on</strong>g> calibrati<strong>on</strong> procedure <strong>on</strong> source strength for lowenergy<br />

brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds is discussed. A <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DRC for 103 Pd model 200<br />

seed equal to 0.669 0.002 cGyh ;1 U ;1 was obtained. Radial dose functi<strong>on</strong>s g(r) were extensively<br />

compared with experimental as well as with <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical results. Binding correcti<strong>on</strong>s for Compt<strong>on</strong><br />

scattering have a negligible e ect <strong>on</strong> radial dose functi<strong>on</strong> for 103 Pd seeds under 5.0 cm from source<br />

center and for 125 I seed model 6702 under 8.0 cm. Solid water results underestimate radial dose<br />

functi<strong>on</strong> for low-energy sources by asmuch as 6 % for 103 Pd and 2.5 % for 125 I already at 2 cm<br />

from source center. Anisotropy functi<strong>on</strong>s F (r )were compared against a limited set <str<strong>on</strong>g>of</str<strong>on</strong>g> measured<br />

data selected from <str<strong>on</strong>g>the</str<strong>on</strong>g> literature and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r M<strong>on</strong>te Carlo results. Binding correcti<strong>on</strong>s and phantom<br />

material selecti<strong>on</strong> have been found to have no in uence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong>. A right cylindrical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> titanium c<strong>on</strong>tainer seems to overestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy for angles below 20-30<br />

degrees.<br />

1 Introducti<strong>on</strong><br />

Accurate knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> two-dimensi<strong>on</strong>al dose distributi<strong>on</strong> around radioactive sources employed in<br />

interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy implants is necessary in order to provide a solider basis when developing a<br />

clinical strategy. In <str<strong>on</strong>g>the</str<strong>on</strong>g> past fteen years experimental and <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical studies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources have been undertaken intensively. Nath et al [1] reviewed studies for 125 I seed<br />

models 6711 and 6702, and 103 Pd seed model 200. A great amount <str<strong>on</strong>g>of</str<strong>on</strong>g> data both, experimental [2-12] ,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical [13-25] are available to be used directly in clinical treatment planning. However, some<br />

practical as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical problems remain still open.<br />

The numerical value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose rate c<strong>on</strong>stant depends str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> standardizati<strong>on</strong> measurements<br />

to which <str<strong>on</strong>g>the</str<strong>on</strong>g> air-kerma strength calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source is traceable. The recent history <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

125 I sources illustrates that not even existence <str<strong>on</strong>g>of</str<strong>on</strong>g> NIST air-kerma strength standard is a guarantee <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculated absolute dose rates. Only by careful simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

NIST free-air chamber measurements, so as to model <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> low-energy c<strong>on</strong>taminant x-rays <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> standard, can experimental and M<strong>on</strong>te Carlo dosimetry be rec<strong>on</strong>ciled [19, 20]. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> is usually performed in "water equivalent" solid plastic phantoms. Williams<strong>on</strong><br />

1


[20] showed that solid water does not reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering and absorpti<strong>on</strong> cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid<br />

water in <str<strong>on</strong>g>the</str<strong>on</strong>g> low energy range ( 125 I and 103 Pd sources), thus resulting in an underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radiati<strong>on</strong> penetrability inwater. Interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy treatment planning systems <str<strong>on</strong>g>of</str<strong>on</strong>g>ten use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e-dimensi<strong>on</strong>al point source approximati<strong>on</strong> for dose rate distributi<strong>on</strong> calculati<strong>on</strong>s. This is a fair assumpti<strong>on</strong><br />

in implants with large number <str<strong>on</strong>g>of</str<strong>on</strong>g> sources randomly distributed. However, anisotropy e ects<br />

cannot be neglected when small number <str<strong>on</strong>g>of</str<strong>on</strong>g> sources regularly arranged is used, i.e., in temporary brain<br />

implants and ophthalmic plaque applicati<strong>on</strong>s. Single seeds, especially those with average emissi<strong>on</strong><br />

energy below 80keV, present amarked anisotropy in dose distributi<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal source<br />

axis.<br />

In this study we review <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> art dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> iodine and palladium brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds.<br />

Comparis<strong>on</strong> with experimental and <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical results reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature will be presented<br />

to validate our calculati<strong>on</strong>s. In uence <str<strong>on</strong>g>of</str<strong>on</strong>g> calibrati<strong>on</strong> procedure <strong>on</strong> source strength for low-energy<br />

brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds is discussed. The in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> phantom material and Compt<strong>on</strong> binding correcti<strong>on</strong>s<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> radial dose and anisotropy functi<strong>on</strong> is studied. Limitati<strong>on</strong>s and advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> transport in predicting 2-D anisotropy functi<strong>on</strong>s is discussed.<br />

2 Materials and Methods<br />

2.1 Dose calculati<strong>on</strong> formalism<br />

We follow <str<strong>on</strong>g>the</str<strong>on</strong>g> dose calculati<strong>on</strong> formalism proposed originally by <str<strong>on</strong>g>the</str<strong>on</strong>g> Interstitial Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy<br />

Collaborative Working Group [10] to predict two-dimensi<strong>on</strong>al dose distributi<strong>on</strong>s around cylindrically<br />

symmetric sources and expanded to all brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources by <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM Radiati<strong>on</strong> Therapy<br />

Committee Task Group No.43 [1]. The dose rate at a point (r ) relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric source<br />

center is given by<br />

_D (r )=Sk G (r ) =G (r0 0) g (r) F (r ) (1)<br />

In this formalism, <str<strong>on</strong>g>the</str<strong>on</strong>g> air-kerma strength Sk, a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> source strength, is speci ed in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> air kerma rate at a point al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source in free space. It is de ned as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> air kerma rate at a calibrati<strong>on</strong> distance, d, in free space Kr(d), measured al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transverse bisector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source, and <str<strong>on</strong>g>the</str<strong>on</strong>g> square <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance, d. The dose rate c<strong>on</strong>stant, , is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dose rate per unit source strength at a reference point taken here to be 1 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> source center <strong>on</strong><br />

its transverse bisector. The geometry distributi<strong>on</strong> G(r ) accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative dose due<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactivity in <str<strong>on</strong>g>the</str<strong>on</strong>g> source. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> three-dimensi<strong>on</strong>al distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radioactivity within <str<strong>on</strong>g>the</str<strong>on</strong>g> source core is uncertain for many sources, and because <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> geometrical<br />

factor G(r ) in uences mainly <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> interpolati<strong>on</strong>, we have adopted <str<strong>on</strong>g>the</str<strong>on</strong>g> line source model<br />

(see Ref.[1]). The radial dose functi<strong>on</strong> g(r) accounts for radial dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> absorpti<strong>on</strong> and<br />

scatter in <str<strong>on</strong>g>the</str<strong>on</strong>g> medium al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis ( = =2). The anisotropy functi<strong>on</strong> F (r ) accounts<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> absorpti<strong>on</strong> and scatter in <str<strong>on</strong>g>the</str<strong>on</strong>g> encapsulati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> medium.<br />

For a de niti<strong>on</strong> or more detailed descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> formalism and <str<strong>on</strong>g>the</str<strong>on</strong>g> quantities used, <str<strong>on</strong>g>the</str<strong>on</strong>g> reader is<br />

referred to <str<strong>on</strong>g>the</str<strong>on</strong>g> Task Group 43 report [1] or <str<strong>on</strong>g>the</str<strong>on</strong>g> paper by Williams<strong>on</strong> and Nath [26].<br />

2.2 Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources and phantoms<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> sources studied <str<strong>on</strong>g>the</str<strong>on</strong>g> basic sizes and materials <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core and capsules (cladding) used in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s were taken as follows: 125 I seeds as described by Williams<strong>on</strong> [20] and 103 Pd seed model<br />

200 as described by Chiu-Tsao and Anders<strong>on</strong> [12]. Energy spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> source phot<strong>on</strong>s were taken from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NUDAT database [27]. In this study a cylindrical phantom was used. A brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy source<br />

was located in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom with its l<strong>on</strong>g axis coincident with<str<strong>on</strong>g>the</str<strong>on</strong>g>phantom central axis.<br />

Phantom materials included air, water and solid water. The compositi<strong>on</strong> by weight <str<strong>on</strong>g>of</str<strong>on</strong>g> solid water<br />

is stated to be hydrogen 8.0%, carb<strong>on</strong> 67.22%, nitrogen 2.4%, oxygen 19.84%, calcium 2.32%, and<br />

2


chlorine 0.13% [28]. Its density was taken as 1.015 g/cm 3 . An additi<strong>on</strong>al calculati<strong>on</strong> with liquid water<br />

thin ring detector embedded in solid water phantom was d<strong>on</strong>e to obtain solid water-to-water correcti<strong>on</strong><br />

factor. The dose calculati<strong>on</strong> grid was so dimensi<strong>on</strong>ed that <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse and l<strong>on</strong>gitudinal axes a<br />

width <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.02 cm under 0.1 cm, between 0.1 cm and 2.0 cm a width <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 cm and bey<strong>on</strong>d 2 cm a<br />

width <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 cm were used.<br />

2.3 M<strong>on</strong>te Carlo calculati<strong>on</strong>s<br />

M<strong>on</strong>te Carlo calculati<strong>on</strong>s were performed using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code system [29,30]. The most recent<br />

phot<strong>on</strong> cross secti<strong>on</strong> compilati<strong>on</strong>, DLC-136/PHOTX cross secti<strong>on</strong> library [31] c<strong>on</strong>tributed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards and Technology (NIST) and implemented for <strong>EGS</strong>4 use by Sakamoto<br />

[32] was employed in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s. This library uses <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical photo-e ect cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sco eld [33], but without renormalizati<strong>on</strong> for low atomic number elements. This di erence between<br />

DLC-136 and its predecessors (DLC-7F, DLC-99) is very important for low-energy sources, since<br />

mean emissi<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sources falls in <str<strong>on</strong>g>the</str<strong>on</strong>g> photoe ect dominated regi<strong>on</strong>. Bound Compt<strong>on</strong><br />

scattering and Doppler broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Compt<strong>on</strong>-scattered phot<strong>on</strong> energy were c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s by including <str<strong>on</strong>g>the</str<strong>on</strong>g> Low-Energy Phot<strong>on</strong>-Scattering (LSCAT) expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code<br />

[34]. Molecular form factors from Morin [35] for coherent scattering in water as implemented by<br />

Leliveld [36] were also included. Cylindrically symmetric brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources were modeled with<br />

a modi ed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 user code DOSRZ [37] that allows simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle transport<br />

through a mesh composed by cylindrical shells and scores deposited energy in any desired shell. In<br />

additi<strong>on</strong>, our M<strong>on</strong>te Carlo <strong>EGS</strong>4 user code was used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> air kerma strength per unit<br />

activity for each seed model allowing clinically relevant absolute absorbed dose rates in water to be<br />

estimated.<br />

An analog dose estimator was employed, since we adopted <str<strong>on</strong>g>the</str<strong>on</strong>g> original scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> scoring deposited<br />

energy in each shell and averaging it over <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical shell. Electr<strong>on</strong>s were not transported<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> cuto energy for phot<strong>on</strong> transport in all calculati<strong>on</strong>s was 1 keV (PCUT=0.001MeV).<br />

A variance reducti<strong>on</strong> technique was used in which phot<strong>on</strong>s were not allowed to undergo photoelectric<br />

absorpti<strong>on</strong>, but were forced to scatter at each interacti<strong>on</strong> site. The resulting bias in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dose estimator was removed by reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered phot<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> branching ratio<br />

( Compt<strong>on</strong> + pair)=( Compt<strong>on</strong> + pair + photo) (coherent scattering in <strong>EGS</strong>4 system is treated in an<br />

independent way as a correcti<strong>on</strong>) and scoring a deposited energy equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy times<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> initial phot<strong>on</strong> weight reduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio photo=( Compt<strong>on</strong> + pair + photo). For air kerma calculati<strong>on</strong>s<br />

in vacuum, particles heading to detector were split into 100 daughter particles with weight<br />

1/100 in any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r case, particles emerging from <str<strong>on</strong>g>the</str<strong>on</strong>g> source were discarded. The ring detector regi<strong>on</strong><br />

for vacuum simulati<strong>on</strong>s was located 100 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> source in <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis directi<strong>on</strong>.<br />

Inner and outer radiuses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring were 99.5 and 100.5 cm respectively and height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring was<br />

equal to 1 cm. The outer diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> geometry is 40 cm for liquid / solid water.<br />

Air kerma strength Sk for 125 I model 6711 and 6702 seeds was calculated by simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> free-air<br />

chamber calibrati<strong>on</strong> measurements performed at NIST [38]. The air-kerma strength Sk for 103 Pd was<br />

evaluated in a vacuum simulati<strong>on</strong> (excluding all source spectrum radiati<strong>on</strong> below 10keV and Ti x-ray<br />

uorescence emissi<strong>on</strong>). All quoted calculati<strong>on</strong> errors are <strong>on</strong>ly statistical within 1 standard deviati<strong>on</strong>.<br />

3 Results and discussi<strong>on</strong><br />

3.1 Dose rate c<strong>on</strong>stant<br />

3.1.1 125 I seeds<br />

Table 1 compares our <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically calculated DRC [24] with previously published results. Statistical<br />

uncertainty in all regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interest for DRC calculati<strong>on</strong>s was below 0.5% for water and solid water<br />

medium and below 1% for air medium. DRC values obtained by us using <str<strong>on</strong>g>the</str<strong>on</strong>g> original phot<strong>on</strong> cross<br />

3


secti<strong>on</strong> compilati<strong>on</strong> (DLC-15) supplied with <strong>EGS</strong>4 and those by Williams<strong>on</strong> [19] using phot<strong>on</strong> cross<br />

secti<strong>on</strong> compilati<strong>on</strong> (DLC-7F), are also reported. They show excellent agreement and reinforce <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

need to use up-to-date phot<strong>on</strong> cross secti<strong>on</strong> libraries, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y can a ect DRC values. As menti<strong>on</strong>ed<br />

before, air-kerma strength was calculated by simulating free-air chamber calibrati<strong>on</strong> measurements<br />

performed at NIST by L<str<strong>on</strong>g>of</str<strong>on</strong>g>tus [38]. From those computed values <str<strong>on</strong>g>of</str<strong>on</strong>g> Sk, correcti<strong>on</strong> factors for attenuati<strong>on</strong><br />

in air <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.001490 cm ;1 and 0.001486 cm ;1 were obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> seed models 6702 and 6711<br />

respectively in excellent agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.0015 cm ;1 value measured by L<str<strong>on</strong>g>of</str<strong>on</strong>g>tus [38] and <str<strong>on</strong>g>the</str<strong>on</strong>g> value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.0014 cm ;1 calculated by Williams<strong>on</strong> [20]. Applying air attenuati<strong>on</strong> correcti<strong>on</strong> factors and averaging<br />

over all distances we obtained DRC values showed in table 1. Calculated DRC values for solid<br />

water medium agree with <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ICWG measurements [10] within 1.5% and 1.4% and with<br />

Williams<strong>on</strong> [20] calculati<strong>on</strong>s within 1.2% and 0.01% for <str<strong>on</strong>g>the</str<strong>on</strong>g> model 6711 and 6702 seeds respectively.<br />

In additi<strong>on</strong>, our calculati<strong>on</strong>s are in agreement within 1.0% with Luxt<strong>on</strong> [22] corrected DRC value<br />

obtained from lucite-medium measurement for <str<strong>on</strong>g>the</str<strong>on</strong>g> 6711 seed .<br />

Using air-kerma strength calculated in vacuum we obtained a DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.83 cGyh ;1 U ;1 for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 125 I model 6702 seed. This value is in excellent agreement within 0.4% with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e obtained by<br />

Mas<strong>on</strong> et al [39] and should be c<strong>on</strong>sidered a <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical c<strong>on</strong>stant based <strong>on</strong> a fundamental geometry<br />

with vacuum between <str<strong>on</strong>g>the</str<strong>on</strong>g> source and detector, and fully c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM de niti<strong>on</strong> [26].<br />

This result suggests that NIST correcti<strong>on</strong> for air attenuati<strong>on</strong> does not properly yield <str<strong>on</strong>g>the</str<strong>on</strong>g> air-kerma rate<br />

in free space. It is worth noticing that Ti K-edge characteristic x-rays were included in our vacuum<br />

calculati<strong>on</strong>s as well as in Mas<strong>on</strong> et al work [39].<br />

On January 1, 1999 NIST implemented its revised air-kerma strength standard for low-energy<br />

interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds. This calibrati<strong>on</strong>s are based up<strong>on</strong> measurements using Loevingers<br />

wide-angle free-air chamber (WAFAC) with a thin absorber to eliminate <str<strong>on</strong>g>the</str<strong>on</strong>g> Ti x rays [40]. The<br />

revised DRC value for model 6702 is equal 1.040 cGyh ;1 U ;1 : In a previous work we reported airkerma<br />

strength calculati<strong>on</strong>s for this model in vacuum, neglecting characteristic x-ray producti<strong>on</strong> [24].<br />

The obtained DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.009 cGyh ;1 U ;1 is 3% lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1999 NIST standard .<br />

3.1.2 103 Pd seed model 200<br />

Chiu-Tsao and Anders<strong>on</strong> [12] published absolute dose rate distributi<strong>on</strong>s measured in solid water<br />

phantom for this seed. Their data are presented as <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> distance squared and dose rate<br />

per unit source strength in units <str<strong>on</strong>g>of</str<strong>on</strong>g> cm 2 cGy h ;1 mCi ;1 . This product has <str<strong>on</strong>g>the</str<strong>on</strong>g> value 0.680 cm 2 cGy<br />

h ;1 U ;1 at a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis. By de niti<strong>on</strong> this value is <str<strong>on</strong>g>the</str<strong>on</strong>g> measured DRC for<br />

103 Pd seed model 200 in solid water. Meigo<strong>on</strong>i et al [11] reported a value <str<strong>on</strong>g>of</str<strong>on</strong>g> DRC for 103 Pd equal to<br />

0.735 0.03 cGy h ;1 U ;1 . The AAPM in TG-43 report recommended to average <str<strong>on</strong>g>the</str<strong>on</strong>g>se measurements<br />

and applied a multiplicative correcti<strong>on</strong> factor (1.048) to c<strong>on</strong>vert from solid water measurement medium<br />

to a liquid water reference phantom obtaining a DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.74 cGy h ;1 U ;1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> model 200<br />

seed. Both TLD measurements were normalized by an air-kerma strength derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> vendor's<br />

c<strong>on</strong>tained activity speci cati<strong>on</strong> and deviate by 7.5%. The most likely explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this di erence is<br />

poor reproducibility and systematic error <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vendor's activity measurement procedures. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

possible explanati<strong>on</strong> for this discrepancy might be that Chiu-Tsao and Anders<strong>on</strong> [12] used homemade<br />

solid water, which may have had a slightly di erent compositi<strong>on</strong> than <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial material used<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Meigo<strong>on</strong>i et al [11].<br />

We computed absorbed dose in a liquid water detector embedded in a solid water phantom and<br />

calculated Sk in vacuum, c<strong>on</strong>sidering phot<strong>on</strong> emissi<strong>on</strong> above 10keV and without Ti x-ray uorescence<br />

emissi<strong>on</strong>. A DRC value in solid water <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.639 0.002 cGy h ;1 U ;1 was obtained, being 6% smaller<br />

than Chiu-Tsao's experimental value. Our above menti<strong>on</strong>ed solid water result assumes a detector<br />

calibrated for dose to water. A calculati<strong>on</strong> in a solid water phantom which does not c<strong>on</strong>sider such<br />

calibrati<strong>on</strong> yielded a DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.677 0.002 cGy h ;1 U ;1 , agreeing with Chiu-Tsao and Anders<strong>on</strong><br />

[12] experimental value within 0.4%. Calculati<strong>on</strong>s in liquid water medium produced a DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.669 0.002 cGy h ;1 U ;1 [24].<br />

An air kerma standard for 103 Pd model 200 seed was introduced by NIST <strong>on</strong>ly in January 1999<br />

4


and in 2000 new AAPM recommendati<strong>on</strong>s <strong>on</strong> 103 Pd dosimetry were published [41]. In this report<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> authors recommend to average a measured DRC value using TLD dosimeters in solid water by<br />

Nath et al. [42] <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.650 0.050 cGy h ;1 U ;1 with <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculated DRC value performed<br />

by Williams<strong>on</strong> [43] <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.680 0.020 cGy h ;1 U ;1 . Averaging <str<strong>on</strong>g>the</str<strong>on</strong>g>se two estimates a DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.665 0.030 cGy h ;1 U ;1 was recommended in <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM 69 report. This average value is in excellent<br />

agreement with our M<strong>on</strong>te Carlo predicted value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.669 0.002 cGy h ;1 U ;1 in a previous work [24].<br />

However, in our opini<strong>on</strong>, it is inc<strong>on</strong>sistent toaverage DRC values obtained in di erent media. To<br />

account for di erences between solid and liquid water results, c<strong>on</strong>versi<strong>on</strong> factors have been reported<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature [20], [22], [24]. A more realistic choice can be obtained applying a correcti<strong>on</strong> factor<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent measurements by Nath et al. [41] as d<strong>on</strong>e in TG43. In this way a DRC value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.681 0.050 cGy h ;1 U ;1 is obtained in excellent agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> latest M<strong>on</strong>te Carlo calculati<strong>on</strong><br />

by Williams<strong>on</strong> [43]. This value can be c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> best selecti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> DRC <str<strong>on</strong>g>of</str<strong>on</strong>g> 103 Pd seed model<br />

200.<br />

3.2 Radial dose functi<strong>on</strong>s<br />

3.2.1 125 I seeds<br />

Radial dose functi<strong>on</strong>s g(r) for 125 I seed models 6702 and 6711 have been calculated in liquid and<br />

solid water phantoms [25]. Statistical errors are smaller than 1% within <strong>on</strong>e standard deviati<strong>on</strong> for<br />

distances under 10 cm. From gure 1 can be seen that results are divided in two well de ned trends.<br />

Values <str<strong>on</strong>g>of</str<strong>on</strong>g> g(r) in solid water are c<strong>on</strong>sistently smaller than those in liquid water giving rise to di erences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4.19 % for model 6702 and 5.62 % for model 6711 already at 2.5 cm and 12.26 % for model 6702<br />

and 14.31 % for model 6711 at 5 cm from source center. We compared our liquid water calculati<strong>on</strong>s<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo data <str<strong>on</strong>g>of</str<strong>on</strong>g> Burns and Raeside [17] and those <str<strong>on</strong>g>of</str<strong>on</strong>g> Williams<strong>on</strong> [20] nding excellent<br />

agreement. Solid water results are in good agreement with experimental measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> Nath [7]<br />

with discrepancies smaller than 5 % (mean relative di erence is 2.73 %) for model 6702 and 3.5 %<br />

(mean relative di erence is 1.80 %) for model 6711 under 7 cm. We also included in <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fth order polynomial t proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> ICWG [10], nding an excellent agreement under 6 cm<br />

(1.11 % mean relative error) for model 6702. The di erence is progressively larger over this distance<br />

and a somewhat worse agreement is obtained for model 6711 with 6 % relative di erence at 5cm (4.5 %<br />

mean relative error under 5 cm). For tabulated values <str<strong>on</strong>g>of</str<strong>on</strong>g> radial dose functi<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> reader can c<strong>on</strong>sult<br />

[25].<br />

3.2.2 103 Pd seed model 200<br />

103 Pd sources are less studied than 125 I sources. Meigo<strong>on</strong>i et al [11] and, Chiu-Tsao and Anders<strong>on</strong><br />

[12] performed dose measurements using LiF TLD in a solid water phantom. Both results were in good<br />

agreement (within 5 %) for distances greater than 2 cm. Calculated radial dose functi<strong>on</strong>s [25] in liquid<br />

and solid water were compared with values obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental results reported in [12] and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compromise chosen by <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM Task Group No.43 [1] <str<strong>on</strong>g>of</str<strong>on</strong>g> averaging <str<strong>on</strong>g>the</str<strong>on</strong>g> above menti<strong>on</strong>ed data<br />

sets. We can see in Figure 1 (lower panel) that our results in liquid and solid water show discrepancies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 6% already at 2 cm from source center and <str<strong>on</strong>g>of</str<strong>on</strong>g> 10% at 3 cm. Interesting is <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Chiu-Tsao's<br />

results match much better our liquid water results than those in solid water. There is an excellent<br />

agreement between our results in solid water with <str<strong>on</strong>g>the</str<strong>on</strong>g> averaged results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two data sets. As<br />

reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> Task Group 43 report [1], a homemade solid water phantom was used in [12], which<br />

may have had a slightly di erent compositi<strong>on</strong> than <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial material used in [11]. For <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tabulated values <str<strong>on</strong>g>of</str<strong>on</strong>g> radial dose functi<strong>on</strong> for 103 Pd model 200 seed <str<strong>on</strong>g>the</str<strong>on</strong>g> reader can c<strong>on</strong>sult [25].<br />

3.2.3 E ect <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> binding correcti<strong>on</strong>s <strong>on</strong> radial dose functi<strong>on</strong>s<br />

The in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> binding correcti<strong>on</strong>s <strong>on</strong> radial dose functi<strong>on</strong> for all sources was investigated.<br />

As reported by Williams<strong>on</strong> [14], binding e ects become n<strong>on</strong>-negligible for a seed with average<br />

5


emissi<strong>on</strong> energy below 100 keV. We will refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> bound case when c<strong>on</strong>sidering binding correcti<strong>on</strong>s<br />

and to <str<strong>on</strong>g>the</str<strong>on</strong>g> free case when we do not c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> bound case with <str<strong>on</strong>g>the</str<strong>on</strong>g> free approach<br />

for 103 Pd sources (Figure 2, upper panel) we see that up to 2.5 cm di erences are under 1% between<br />

both cases, reaching 2% at 5 cm. Bey<strong>on</strong>d 5 cm an increasingly larger bound to free ratio is observed.<br />

A similar behavior is observed for 125 I seed model 6702 (Figure 2, lower panel). Under 4.5 cm <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bound to free ratio is almost 1 with di erences under 1% beginning a slowly increase bey<strong>on</strong>d 4.5 cm.<br />

Bey<strong>on</strong>d 8 cm di erences become larger than 2%. Wang and Slovoda [23] explored <str<strong>on</strong>g>the</str<strong>on</strong>g> in uence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

binding e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattering <strong>on</strong> deposited dose al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis for 125 I seed model<br />

6711. They reported bound and free results to be nearly identical (less than or equal to 1%) under<br />

7 cm from source center and an increasingly larger bound to free ratio bey<strong>on</strong>d this distance. Since<br />

we calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between radial dose functi<strong>on</strong>s (see de niti<strong>on</strong>) our results will di er by a factor<br />

given by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between dose rate at 1cm in <str<strong>on</strong>g>the</str<strong>on</strong>g> free case to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bound case. From our MC<br />

calculati<strong>on</strong>s we computed this factor to be 1.0102. Dividing by this factor our results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bound to<br />

free ratio is lowered by about 1% achieving excellent agreement with [23].<br />

3.3 Anisotropy functi<strong>on</strong>s<br />

M<strong>on</strong>te Carlo calculati<strong>on</strong>s were performed in liquid and solid water phantoms to obtain anisotropy<br />

functi<strong>on</strong> for all three low-energy brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources [44]. No in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> phantom material selecti<strong>on</strong><br />

nor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> binding correcti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> was observed.<br />

3.3.1 103 Pd model 200 seed<br />

Liquid and solid water medium : With its lower average phot<strong>on</strong> energy, 103 Pd seed exhibits<br />

str<strong>on</strong>ger anisotropy e ects and a faster dose fallo with distance than 125 I sources. Therefore, it is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> at very close distances from <str<strong>on</strong>g>the</str<strong>on</strong>g> source. Anisotropy<br />

functi<strong>on</strong> values calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s in liquid and solid water phantoms are<br />

shown in gure 3 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance. As can be observed from <str<strong>on</strong>g>the</str<strong>on</strong>g> similar results in both<br />

media, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is practically no in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> phantom material <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> for 103 Pd<br />

phot<strong>on</strong> energies. Although not graphically shown, calculati<strong>on</strong>s with and without binding correcti<strong>on</strong>s<br />

have been also performed nding not signi cant in uence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong>. An analysis at<br />

50 o and 80 o , where statistical uncertainties are under 0.5%, showed mean relative di erences between<br />

results with and without binding correcti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.18% and 0.11% respectively.<br />

A str<strong>on</strong>g anisotropy and a marked dependence with distance <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis can be<br />

observed. This dependence with distance decreases c<strong>on</strong>siderably already at 10 o . It can be observed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis for r = 0.3 cm is equal 1.0793, i.e., 7.93 % higher<br />

than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis at <str<strong>on</strong>g>the</str<strong>on</strong>g> same distance, what may be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> greater proximity<br />

to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two active pellets in <str<strong>on</strong>g>the</str<strong>on</strong>g> seed [12]. Anisotropy functi<strong>on</strong> uncertainties due to statistical<br />

uctuati<strong>on</strong>s in computed dose distributi<strong>on</strong>s are under 1% elsewhere excluding <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis.<br />

Al<strong>on</strong>g this axis uncertainties are somewhat higher, being under 1% below 1cm,under 3% up to 3cm<br />

and around 5% over this distance.<br />

Signi cant di erences <str<strong>on</strong>g>of</str<strong>on</strong>g> our results with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental values [12,45] are observed below 2.5 cm<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> seed. However, we are able to reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> physical fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> dose <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal<br />

axis near <str<strong>on</strong>g>the</str<strong>on</strong>g> source is higher than that <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis, as was measured by Chiu- Tsao and<br />

Anders<strong>on</strong> [12]. The drastic increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> source <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal<br />

axis is not observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data reported by Nath [45], which are limited to 1 cm from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> source.<br />

Recently, Weaver [6] reported anisotropy functi<strong>on</strong>s for 103 Pd-source model 200 and for 125 I-source<br />

models 6702 and 6711. Data were generated through a two-step process, determining rst <str<strong>on</strong>g>the</str<strong>on</strong>g> source<br />

intrinsic radiati<strong>on</strong> emissi<strong>on</strong> pattern from in-air measurements at 100 cm from source center and <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g>se data as input to M<strong>on</strong>te Carlo calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uence distributi<strong>on</strong> in water. This<br />

approach was developed in an e ort to design a fast, e cient source model that would produce<br />

6


accurate results, without having to propagate phot<strong>on</strong>s through detailed source geometry [46]. Data<br />

from this work were also included in gure 3 for comparis<strong>on</strong>. The largest discrepancy with our values<br />

is found al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal source axis where Weaver's values are lower than ours and do not<br />

reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> physical fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> dose <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis near <str<strong>on</strong>g>the</str<strong>on</strong>g> source is higher than that<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse axis. At 10 o agreement is excellent between both data sets except near <str<strong>on</strong>g>the</str<strong>on</strong>g> source.<br />

At higher angles Weaver's values become systematically slightly higher than ours.<br />

Air medium : In order to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> discrepancies observed with <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Weaver [6] we<br />

modeled his experimental setup and simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> angular emissi<strong>on</strong><br />

distributi<strong>on</strong> in air. The idea was to compare directly with measured experimental data, avoiding<br />

e ects, which could be introduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> Weaver M<strong>on</strong>te Carlo simulati<strong>on</strong>. We found it necessary to<br />

model <str<strong>on</strong>g>the</str<strong>on</strong>g> 103 Pd electroplated <strong>on</strong> graphite cylinders as a 0.3 mm layer. The layer thickness was deduced<br />

by tting Weaver's experimental results. Calculati<strong>on</strong>s performed in air and in vacuum produced <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same result showing that c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> uence by scattered radiati<strong>on</strong> in air is negligible. Figure<br />

4 shows a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our M<strong>on</strong>te Carlo simulati<strong>on</strong> with values from <str<strong>on</strong>g>the</str<strong>on</strong>g> best representati<strong>on</strong> curve<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental uence. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum in both data sets is located almost at <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

positi<strong>on</strong>, our values are somewhat lower than Weaver's data. Experimental maximum is observed at<br />

80 o and in our calculati<strong>on</strong> at 87 o . Our right cylindrical model could produce <str<strong>on</strong>g>the</str<strong>on</strong>g> underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental data between 20 and 40 degrees. Irregularities in source design reported by Weaver [6]<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> an accurate source descripti<strong>on</strong> are likely to be <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s for remaining discrepancies<br />

and set <str<strong>on</strong>g>the</str<strong>on</strong>g> limits for <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> capability <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo generated data for Pd-103 seed model<br />

200.<br />

3.3.2 125 I model 6702 seed.<br />

In this model <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive material is adsorbed <strong>on</strong>to three resin spheres, which canmove freely<br />

inside <str<strong>on</strong>g>the</str<strong>on</strong>g> titanium capsule. This movement is resp<strong>on</strong>sible for variability in measured values even <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same source before and after movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source [6], making reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g>any measurement<br />

hard to achieve. We simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> three active resin spheres as small xed cylinders and assumed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m to be spaced, center-to-center, at intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.1 mm. However, phot<strong>on</strong> emissi<strong>on</strong> was modeled<br />

from a spherical surface located inside each resin cylinder. Statistical uncertainties are under 1% for<br />

any angle excluding <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis where uncertainties are under 2.5 % for distances up to 5<br />

cm getting up to 5 % bey<strong>on</strong>d this distance.<br />

In gure 5 we plotted anisotropy values as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance obtained in liquid water at four<br />

angles for distances between 0.5 cm and 9.0 cm. As for 103 Pd sources, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> phantom<br />

material nor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> binding correcti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong>. We compared our results with<br />

values measured by Nath [45] in a solid water phantom and recommended as reference data by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

AAPM Radiati<strong>on</strong> Therapy Committee Task Group 43 [1], those <str<strong>on</strong>g>of</str<strong>on</strong>g> Weaver [6] combining experimental<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> angular emissi<strong>on</strong> distributi<strong>on</strong> with M<strong>on</strong>te Carlo simulati<strong>on</strong> as menti<strong>on</strong>ed before and<br />

with M<strong>on</strong>te Carlo calculated values by Williams<strong>on</strong> (private communicati<strong>on</strong>, 1997) using MCPT code,<br />

who simulated a 6702 seed with elliptical end welds (0.5 mm thick) and three resin balls spaced<br />

center-to-center at intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.1 mm.<br />

Nath values appear scattered around <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data sets making it di cult to assess whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r our<br />

right cylinder model or <str<strong>on</strong>g>the</str<strong>on</strong>g> elliptical end welds model used by Williams<strong>on</strong> are a closer representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> real geometrical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seed. Our results are about 12 % more anisotropic than those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Williams<strong>on</strong> for angles close to <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis. These di erences progressively diminish with<br />

increasing angle. This behavior is in corresp<strong>on</strong>dence with <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical models assumed since a<br />

right cylinder would a ect <str<strong>on</strong>g>the</str<strong>on</strong>g> emitted radiati<strong>on</strong> in a str<strong>on</strong>ger way than a source with elliptical end<br />

welds in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis. Values reported by Weaver are more anisotropic than<br />

ours at 0 o within 7 %, but at larger angles di erences tend to vanish.<br />

7


3.3.3 125 I model 6711 seed.<br />

Liquid and solid water medium : Several structural details <str<strong>on</strong>g>of</str<strong>on</strong>g> this model, including geometrical<br />

c<strong>on</strong> gurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule end welds and <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> axial surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> silver rod, are not<br />

known precisely and <str<strong>on</strong>g>the</str<strong>on</strong>g> 2D dose distributi<strong>on</strong> is sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors [47]. We have used two<br />

geometrical source models with <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> feature that <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive silver core is a right cylinder<br />

centered inside <str<strong>on</strong>g>the</str<strong>on</strong>g> titanium encapsulati<strong>on</strong>, but phot<strong>on</strong>s can be emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical surface<br />

disregarding source ends (partial emissi<strong>on</strong>) or from its whole surface (total emissi<strong>on</strong>). In gure 6<br />

anisotropy functi<strong>on</strong> values as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> angle at three di erent distances are compared with values<br />

measured by Nath [45] in a solid water phantom using TLD dosimeters, with <str<strong>on</strong>g>the</str<strong>on</strong>g> data obtained by<br />

Weaver [6] as described earlier and with M<strong>on</strong>te Carlo calculated values tted to a truncated Fourier<br />

series by Williams<strong>on</strong> and Quintero [47]. The latter workers assumed <str<strong>on</strong>g>the</str<strong>on</strong>g> silver rod to be ellipsoidal in<br />

shape and coated with a 4mmthicklayer <str<strong>on</strong>g>of</str<strong>on</strong>g> AgH with 125 I uniformly distributed over an ellipsoidal<br />

surface embedded 1 mm below its surface. We have also included <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix t to diode and TLD<br />

measured data <str<strong>on</strong>g>of</str<strong>on</strong>g> Ling [2] and <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chiu-Tsao with <str<strong>on</strong>g>the</str<strong>on</strong>g> code MORSE [8].<br />

The later authors modeled <str<strong>on</strong>g>the</str<strong>on</strong>g> silver wire as a right circular cylinder emitting phot<strong>on</strong>s from a uniform<br />

layer 1 mm thick, with a 1 mm stando , over <str<strong>on</strong>g>the</str<strong>on</strong>g> entire surface including <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical porti<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two end points.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained using a partial emitting source no values over unity are observed. A<br />

good agreement with Williams<strong>on</strong> calculati<strong>on</strong>s [47] is found very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> source excluding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

regi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis, where our right cylinder model predicts more anisotropic values than<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical model used by this author <str<strong>on</strong>g>of</str<strong>on</strong>g> an el<strong>on</strong>gated ellipsoid. Weaver data [6] show a less<br />

anisotropic dose distributi<strong>on</strong> close to <str<strong>on</strong>g>the</str<strong>on</strong>g> source at angles near <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis and <str<strong>on</strong>g>the</str<strong>on</strong>g>y do not<br />

present values greater than unity. The data <str<strong>on</strong>g>of</str<strong>on</strong>g> Ling is limited up to 30 o and lie within <str<strong>on</strong>g>the</str<strong>on</strong>g> limits<br />

de ned by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical results[43]. In general, di erences between all data sets tend to disappear<br />

at large distances. This result str<strong>on</strong>gly favors <str<strong>on</strong>g>the</str<strong>on</strong>g> full emitting source model, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore we selected it<br />

to produce <str<strong>on</strong>g>the</str<strong>on</strong>g> nal results. <strong>EGS</strong>4 calculated values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> total emitting<br />

source model are presented in table 2 from 0 o to 80 o in 10 o steps and for distances between 0.5 cm<br />

and 9 cm. Statistical uncertainties are under 1% for any angle excluding <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis where<br />

uncertainties are under 3% for distances up to 5 cm reaching 5 % below 9 cm.<br />

Air medium : Experimental measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> angular emissi<strong>on</strong> distributi<strong>on</strong> performed by<br />

Weaver [6] were simulated and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting in-air relative uence is compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> curve best<br />

representing <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental values in gure 7. There is an excellent agreement between <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculated data. Only near <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis between 5 o and 10 o is<br />

our data slightly lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental values. This is probable a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumed<br />

geometrical model in our M<strong>on</strong>te Carlo calculati<strong>on</strong>s, although variati<strong>on</strong>s in source encapsulati<strong>on</strong> are<br />

also possible. Weaver reported less variability inmeasurements performed for this seed model than<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r low energy seeds suggesting less movement in <str<strong>on</strong>g>the</str<strong>on</strong>g> active material. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> excellent<br />

agreement for <str<strong>on</strong>g>the</str<strong>on</strong>g> in-air relative uence at 100 cm shown in Figure 7, we can c<strong>on</strong>clude that<br />

di erences observed in our calculated anisotropy functi<strong>on</strong> values in water with Weaver calculati<strong>on</strong>s<br />

near <str<strong>on</strong>g>the</str<strong>on</strong>g> source are mainly due to <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> an angular emissi<strong>on</strong> distributi<strong>on</strong> measured at 100 cm.<br />

This angular distributi<strong>on</strong> misses signi cant geometrical informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> source. This could be<br />

c<strong>on</strong>sidered a limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Weaver approach.<br />

4 C<strong>on</strong>clusi<strong>on</strong>s<br />

An exhaustive and c<strong>on</strong>sistent evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dosimetric characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> commercially available 125 I<br />

seed models 6711 and 6702 and 103 Pd seed model 200 has been performed [24,25,44]. The accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a M<strong>on</strong>te Carlo <strong>EGS</strong>4 simulati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range from 20 to 40 keV was validated by comparing<br />

its predicti<strong>on</strong>s with a large set <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data and <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> well characterized<br />

8


125 I seeds. The agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> our M<strong>on</strong>te Carlo calculati<strong>on</strong>s with experimental measurements, as well<br />

as with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r M<strong>on</strong>te Carlo simulati<strong>on</strong>s, within 1.5% for DRC <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 I seeds, enhances c<strong>on</strong> dence in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong> as a dose-computati<strong>on</strong> tool, allowing us to study o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, less<br />

measured, brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources. When a new NIST standard for 125 I seeds, correcting <str<strong>on</strong>g>the</str<strong>on</strong>g> in uence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> low-energy c<strong>on</strong>taminant radiati<strong>on</strong> is released, excellent agreement between experimental results in<br />

air, corrected for attenuati<strong>on</strong> in air, and in vacuum calculati<strong>on</strong>s should be expected.<br />

A DRC value for 103 Pd seed model 200 in liquid water medium <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.669 0.002 cGy h ;1 U ;1 was<br />

obtained in 1998 [24] in excellent agreement with 0.665 0.02 cGy h ;1 U ;1 value recently recommended<br />

in AAPM Report 69 [41].<br />

M<strong>on</strong>te Carlo calculated radial dose functi<strong>on</strong>s for 125 I seeds in liquid and solid water phantoms<br />

were validated against experiment and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r calculati<strong>on</strong>s nding excellent agreement. The fth order<br />

polynomial t obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> ICWG [10] and recommended by <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM Task Group No.43 [1]<br />

reproduces very good our solid water calculati<strong>on</strong>s for both 125 I seed models under 5 cm.<br />

We have studied <str<strong>on</strong>g>the</str<strong>on</strong>g> in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> binding correcti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> radial dose functi<strong>on</strong> for low-energy<br />

brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds. Neglecting binding e ects does introduce a maximal error in radial dose functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> about 2% under 5 cm for 103 Pd and under 8 cm for 125 I seeds.<br />

Anisotropy functi<strong>on</strong>s near low energy sources re ect <str<strong>on</strong>g>the</str<strong>on</strong>g>ir geometrical internal details. At large<br />

distances those geometrical details become less visible. Only through detailed knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> seed structure<br />

can M<strong>on</strong>te Carlo calculati<strong>on</strong>s accurately reproduce measured relative in-air uence. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

side, measurements performed <strong>on</strong> several seeds for <str<strong>on</strong>g>the</str<strong>on</strong>g> same model can produce di erent outputs,<br />

introducing certain ambiguity in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> angular dose distributi<strong>on</strong>s. Averaged<br />

values should be taken for clinical practice. No appreciable in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> binding e ects and<br />

phantom material selecti<strong>on</strong> (liquid water or water-equivalent material) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong> has<br />

been found.<br />

Anisotropy functi<strong>on</strong> values for <str<strong>on</strong>g>the</str<strong>on</strong>g> 103 Pd seed model 200 obtained from our calculati<strong>on</strong>s and experimental<br />

values reported by Chiu-Tsao reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> physical fact <str<strong>on</strong>g>of</str<strong>on</strong>g> an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy<br />

functi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal axis towards <str<strong>on</strong>g>the</str<strong>on</strong>g> source. AAPM TG 43 [1] recommended anisotropy<br />

values for this source are limited down to 1 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> source and do not reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> above menti<strong>on</strong>ed<br />

anisotropy increase. At larger angles <str<strong>on</strong>g>the</str<strong>on</strong>g> latter values appear more scattered making it di cult<br />

to extract any useful c<strong>on</strong>clusi<strong>on</strong>. Therefore, Chiu-Tsao two-dimensi<strong>on</strong>al data could be c<strong>on</strong>sidered a<br />

closer representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reality than <str<strong>on</strong>g>the</str<strong>on</strong>g> currently recommended data.<br />

It was found necessary to model <str<strong>on</strong>g>the</str<strong>on</strong>g> 103 Pd seed model 200 in greater detail, i.e. including a 0.3 mm<br />

103Pd layer around <str<strong>on</strong>g>the</str<strong>on</strong>g> graphite pellets in order to reproduce experimental measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> angular<br />

radiati<strong>on</strong> distributi<strong>on</strong> in air. Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a detailed source design informati<strong>on</strong> is probably <str<strong>on</strong>g>the</str<strong>on</strong>g> cause for<br />

remaining discrepancies. Although scattering in water tend to smooth out geometrical source features,<br />

such e ects are not completely removed and are actually observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy functi<strong>on</strong>.<br />

Experimental measurements and M<strong>on</strong>te Carlo calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dose rate distributi<strong>on</strong>s around 125 I<br />

seed model 6711 dem<strong>on</strong>strate that dose rate values at angles over 50 o are greater than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse<br />

axis for all distances. With increasing distance this e ect is shifted towards <str<strong>on</strong>g>the</str<strong>on</strong>g> transversal axis. When<br />

modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> source without phot<strong>on</strong> emissi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> source ends such e ect is not observed. A better<br />

agreement with experimental values is obtained when <str<strong>on</strong>g>the</str<strong>on</strong>g> source model <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> emissi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole silver rod surface is used. It is remarkable <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> agreement between M<strong>on</strong>te Carlo<br />

simulati<strong>on</strong> and experimental data achieved for 125 I seed model 6711. In this case simplicity and a<br />

better knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> internal geometrical details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seed allows for precise computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

two-dimensi<strong>on</strong>al dose distributi<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> source in air as well as in water medium, c<strong>on</strong> rming<br />

reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s.<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> algorithms for fast dose estimati<strong>on</strong> in clinical practice based <strong>on</strong> previously measured angular<br />

pro les in air should be carefully examined and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir validity tested. Sources are "seen" with di erent<br />

grades <str<strong>on</strong>g>of</str<strong>on</strong>g> detail at di erent distances. The angular distributi<strong>on</strong> at 100 cm c<strong>on</strong>tains less informati<strong>on</strong><br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source than at shorter distances. When using <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong><br />

at 100 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> source as starting angular distributi<strong>on</strong> from an emitting source <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong><br />

9


is incomplete and an underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropy near <str<strong>on</strong>g>the</str<strong>on</strong>g> source is observed. Anisotropy functi<strong>on</strong>s<br />

in water based <strong>on</strong> angular distributi<strong>on</strong>s measured in air at 100 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> source for 103 Pd<br />

seed model 200 and 125 I seed model 6711 fail to reproduce geometrical e ects observed in our M<strong>on</strong>te<br />

Carlo data and previous published experimental results.<br />

Insu cient knowledge about source structure is resp<strong>on</strong>sible for discrepancies observed in M<strong>on</strong>te<br />

Carlo generated data by di erent authors. A limited amount <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data can be used to<br />

validate or optimize <str<strong>on</strong>g>the</str<strong>on</strong>g> assumed models because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large experimental errors. Therefore more<br />

accurate measurements will be welcome. Accuracy in M<strong>on</strong>te Carlo calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dose rate distributi<strong>on</strong>s<br />

is limited <strong>on</strong>ly by <str<strong>on</strong>g>the</str<strong>on</strong>g> extent to which <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo program can model <str<strong>on</strong>g>the</str<strong>on</strong>g> physical structures,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> transport through <str<strong>on</strong>g>the</str<strong>on</strong>g>se materials, and <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

random process simulated. In order to have a realistic informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric structure,<br />

imaging techniques, such as pinhole autoradiography and c<strong>on</strong>tact transmissi<strong>on</strong> micro-radiography<br />

should be used. Statistical uctuati<strong>on</strong>s can be computati<strong>on</strong>ally drastically reduced, making a M<strong>on</strong>te<br />

Carlo method an e cient alternative to measured data, <strong>on</strong>ce complete and accurate geometrical<br />

informati<strong>on</strong> is available.<br />

Acknowledgments<br />

We are deeply indebted to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. J. F. Williams<strong>on</strong>, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. A. Piermattei, Dr. A. S.<br />

Meigo<strong>on</strong>i, Dr. A. Bielajew and Dr. R. Wang for useful comments and discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant problems.<br />

Special thanks to Dr. D.W.O. Rogers and Dr. M. C. Schell for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>siderable support in accessing<br />

key informati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> successful c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this work. We also express our gratitude to Dr. Y.<br />

Namito who kindly provided us with <str<strong>on</strong>g>the</str<strong>on</strong>g> LSCAT extensi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 system and to <str<strong>on</strong>g>the</str<strong>on</strong>g> whole<br />

Organizing Committee for providing nancial support, allowing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> us (EM) to present this work.<br />

References<br />

[1] R. Nath, L. L. Anders<strong>on</strong>, G. Luxt<strong>on</strong>, K. A. Weaver, J. F. Williams<strong>on</strong>, A. S. Meigo<strong>on</strong>i, \Dosimetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources", Recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM Radiati<strong>on</strong> Therapy<br />

Committee, Task Group 43, Med. Phys. 22(1995)209-234.<br />

[2] C. C. Ling, M. C. Schell and E. D. Yorke, \Two-dimensi<strong>on</strong>al dose distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 I seeds",<br />

Med. Phys. 12(1985)652-655.<br />

[3] M. C. Schell, C. C. Ling, Z. C. Gromadzki and K. R. Working, \Dose distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> model 6702<br />

I-125 seeds in water", Int. J. Radiati<strong>on</strong> Oncology. Biol. Phys. 13(1987)795-799.<br />

[4] A. Piermattei, G. Arcovito and B. F. Andreasi, \Experimental dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> I-125 new seeds<br />

(mod.6711) for brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy treatments", Phys. Med. 1(1988)59-70.<br />

[5] K. A. Weaver, V. Smith, D. Huang, C. Barnett, M. C. Schell and C. Ling, \Dose parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

I-125 and Ir-192 seed sources", Med. Phys. 16(1989)636-643.<br />

[6] K. A. Weaver, \Anisotropy functi<strong>on</strong>s for 125 I and 103 Pd sources", Med. Phys. 25(12)(1998) 2271-<br />

2278.<br />

[7] R. Nath, A. S. Meigo<strong>on</strong>i and J. A. Meli, \Dosimetry <strong>on</strong> transverse axes <str<strong>on</strong>g>of</str<strong>on</strong>g> I-125 and Ir-192<br />

interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources", Med. Phys. 17(1990)1032-1040.<br />

[8] S. T. Chiu-Tsao, L. L. Anders<strong>on</strong>, K. O'Brien and R. Sanna, \Dose rate determinati<strong>on</strong> for I-125<br />

seeds", Med. Phys. 17(1990)817-825.<br />

[9] G. Luxt<strong>on</strong>, M. A. Astrahan, D. O. Findley and Z. Petrovich, \Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> dose-rate from<br />

exposure calibrated I-125 seeds", Int. J. Radiat. Oncol. Phys. 18(1990)1199-1207.<br />

10


[10] Interstitial Collaborative Working Group (ICWG), \Interstitial Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy: Physical, Biological,<br />

and Clinical C<strong>on</strong>siderati<strong>on</strong>s", ed. L. L. Anders<strong>on</strong>, R. Nath and K. A. Weaver (Raven, New<br />

York), p.21-32, 1990.<br />

[11] A. S. Meigo<strong>on</strong>i, S. Sabnis and R. Nath, \Dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> palladium-103 brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources for<br />

permanent implants", Endocurie<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy Hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rm. Oncol. 6(1990)107-117.<br />

[12] S. T. Chiu-Tsao and L. L. Anders<strong>on</strong>, \Thermoluminiscent dosimetry for Pd-103 (mod.200) in<br />

solid water phantom", Med. Phys. 18 (1991)449-452.<br />

[13] R. G. Dale, \Some <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical derivati<strong>on</strong>s relating to <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy nuclides,<br />

with particular reference to 125 I", Med. Phys. 10(1983)176-183.<br />

[14] J. F. Williams<strong>on</strong>, F. C. Deibel and R. L. Morin, Phys. Med. Biol. 29(1984)1063.<br />

[15] R. G. Dale, \Revisi<strong>on</strong>s to radial dose functi<strong>on</strong>s data for 125 I and 137 Cs", letter to Med. Phys.<br />

13(1986)963-964.<br />

[16] G. Herbolt, G. Hartmann, H. Treuer and W. J. Lorenz, \M<strong>on</strong>te Carlo calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

buildup factors in <str<strong>on</strong>g>the</str<strong>on</strong>g> range from 15 to 100 keV with special references to <str<strong>on</strong>g>the</str<strong>on</strong>g> dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 I<br />

seeds", Phys. Med. Biol. 33(1988)1037-1053.<br />

[17] G. S. Burns and D. E. Raeside, \M<strong>on</strong>te Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> around 125 I<br />

seeds", Med. Phys. 14(1987)420-424.<br />

[18] G. S. Burns and D. E. Raeside, \Two-dimensi<strong>on</strong>al dose distributi<strong>on</strong> around a commercial 125 I<br />

seed", Med. Phys. 15(1988)56-60.<br />

[19] J. F. Williams<strong>on</strong>, \M<strong>on</strong>te Carlo evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> speci c dose c<strong>on</strong>stant in water for I-125 seeds",<br />

Med. Phys. 15(1988)686-694.<br />

[20] J. F. Williams<strong>on</strong>, \Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measured and calculated dose rates in water near I-125 and<br />

Ir-192 seeds", Med. Phys. 18(1991)776-786.<br />

[21] E. C. Scarbrough, G. E. Sanborn, J. A. Anders<strong>on</strong>, P. D. Nguyen, J. Y. Niederkorn and P. P. Antich,<br />

\Dose distributi<strong>on</strong> around a 3.0-mm type 6702 I-125 seed", Med. Phys. 17(1990)460-463.<br />

[22] G. Luxt<strong>on</strong>, \Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> dosimetry in water and in solid phantom materials for I-125<br />

and Pd-103 brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources: <strong>EGS</strong>4 M<strong>on</strong>te Carlo study", Med. Phys. 21(1994)631-641.<br />

[23] R. Wang and R. Slovoda, \<strong>EGS</strong>4 dosimetry calculati<strong>on</strong>s for cylindrically symmetric brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy<br />

sources", Med. Phys. 23(1996)1459-1465.<br />

[24] E. Mainegra, R. Capote, E. Lopez, \Dose rate c<strong>on</strong>stants for 125 I, 103 Pd, 192 Ir and 169 Yb<br />

brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources: An <strong>EGS</strong>4 M<strong>on</strong>te Carlo study", Phys. Med. Biol. 43(1998)1557-1566.<br />

[25] E. Mainegra, R. Capote, E. Lopez, \Radial Dose Functi<strong>on</strong>s for 103 Pd, 125 I, 169 Yb and 192 Ir<br />

Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy Sources: An <strong>EGS</strong>4 M<strong>on</strong>te Carlo study", Phys. Med. Biol. 45(2000)703-717.<br />

[26] J. F. Williams<strong>on</strong> and R. Nath, \Clinical implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AAPM task group 32 recommendati<strong>on</strong>s<br />

<strong>on</strong> brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy source strength speci cati<strong>on</strong>", Med. Phys. 18(1991)439-448.<br />

[27] Brookhaven Nati<strong>on</strong>al Laboratory, NUDAT database, last update 01/31/96, Nati<strong>on</strong>al Nuclear<br />

Data Center, Upt<strong>on</strong>, N.Y., USA, 1996.<br />

[28] A. S. Meigo<strong>on</strong>i, J. A. Meli, and R. Nath, \A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid phantoms with water for<br />

dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 Ibrachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources", Med. Phys. 15(1988)695-701.<br />

11


[29] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 code system, Versi<strong>on</strong> 4", Stanford<br />

Linear Accelerator Center Report SLAC-265, 1985.<br />

[30] W. R. Nels<strong>on</strong> and D. W. W. Rogers, \M<strong>on</strong>te Carlo transport <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and phot<strong>on</strong>s", ed.<br />

T. M. Jenkins, W. R. Nels<strong>on</strong> and A. Rindi (Plenum, New York) pp.287-306, 1988.<br />

[31] RSIC Data Package DLC-136/PHOTX by Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards and Technology, 1993.<br />

[32] Y. Sakamoto, Proc. Third <strong>EGS</strong>4 User's Meeting in Japan, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 93-15, 1993.<br />

[33] J. H. Sco eld, \Theoretical Photoi<strong>on</strong>izati<strong>on</strong> cross secti<strong>on</strong>s from 1 to 1500 KeV", Lawrence Livermore<br />

Laboratory, Livermore CA., UCRL-51326, 1973.<br />

[34] Y. Namito, S. Ban and H. Hirayama, Nucl. Instr. Meth. A349(1994)489-494 <strong>KEK</strong> Internal<br />

Report 95-10, 1995.<br />

[35] L. R. M. Morin, J. Phys. Chem. Ref. Data. 11(1982)1091-1098.<br />

[36] C. J. Leliveld, J. G. Maas, V. R. Bom and C. W. E. Van Eijk, presented at <str<strong>on</strong>g>the</str<strong>on</strong>g> IEEE Medical<br />

Imaging C<strong>on</strong>ference, October 26-28, San Francisco, 1995.<br />

[37] A. F. Bielajew and D. W. O. Rogers, \DOSRZ user code", <strong>EGS</strong>4 distributi<strong>on</strong> package, 1989.<br />

[38] T. P. L<str<strong>on</strong>g>of</str<strong>on</strong>g>tus, J. Res. Natl. Bur. Stand. 89(1984)295-303.<br />

[39] D. L. D. Mas<strong>on</strong>, J. J. Battista, R. B. Barnett and A. T. Porter, Med. Phys. 19(1992)695-703.<br />

[40] S. M. Seltzer, P. J. Lamperti, R. Loevinger, C. G. Soares, and J. T. Weaver, \New NIST airkerma<br />

strength standards for I-125 and Pd-103 brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds", Poster presentati<strong>on</strong>, AAPM<br />

Annual Meeting, August 1998, San Ant<strong>on</strong>io, TX (Abstract: Med Phys. 25(1998)A170.).<br />

[41] J. F. Williams<strong>on</strong>, B. M. Courtsey, L. A. DeWerd, W. F. Hans<strong>on</strong>, R. Nath, M. J. Rivard and<br />

G. Ibbot, Draft <str<strong>on</strong>g>of</str<strong>on</strong>g> AAPM Report 69, to be published in Medical Physics 2000.<br />

[42] R. Nath, N. Yue, K. Shahnazi and P. J. B<strong>on</strong>giorni, \Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> dose-rate c<strong>on</strong>stant for 103 Pd<br />

seeds with air-kerma strength calibrati<strong>on</strong> based up<strong>on</strong> a primary nati<strong>on</strong>al standard", Medical<br />

Physics submitted 9/99 (1999).<br />

[43] J. F. Williams<strong>on</strong>, \M<strong>on</strong>te Carlo modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse-axis dose distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

200 103 Pd interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy source", Medical Physics submitted 12/99 (1999).<br />

[44] R. Capote and E. Mainegra, \Anisotropy functi<strong>on</strong>s for low energy interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy<br />

sources: An <strong>EGS</strong>4 M<strong>on</strong>te Carlo study", Phys. Med. Biol. submitted 4/2000 (2000).<br />

[45] R. Nath, A. S. Meigo<strong>on</strong>i, P. Muench and A. Melillo, Med. Phys. 20(1993)1465-1473.<br />

[46] K. A. Weaver, C. H. Siantar, W. Chandler and R. M. White, Med. Phys. 23 (12)(1996)2079-2084.<br />

[47] J. F. Williams<strong>on</strong> and F. J. Quintero, Med. Phys. 15 (1983)891-897.<br />

[48] C. C. Ling, E. D. Yorke, I. J. Spiro, D. Kubiatowics and D. Bennett, Int. J. Radiati<strong>on</strong> Oncology.<br />

Biol. Phys. 9(1983)1747-1752.<br />

12


Table 1 Dose rate c<strong>on</strong>stants for 125 I seeds.<br />

Author<br />

(Cross secti<strong>on</strong> library)<br />

Air-kerma<br />

strength<br />

Phantom<br />

Material<br />

Λ [cGy h -1 U -1 ]<br />

model 6702<br />

Λ [cGy h -1 U -1 ]<br />

model 6711<br />

Williams<strong>on</strong> 1988, Ref.45 (DLC-7F) Sk in air Atomic water 0.962 0.909<br />

This study 1998, Ref.24 (DLC-15) Sk in air Atomic water 0.96 ± 0.04 0.89 ± 0.01<br />

Sk in vacuum Atomic water 0.83 ± 0.02 0.73 ± 0.01<br />

Mas<strong>on</strong> 1992, Ref.39, (DLC-99) Sk in vacuum Atomic water 0.82 ± 0.04 ---<br />

Sk in air Atomic water 0.93 ± 0.04 ---<br />

Wang et al 1996, Ref.23 (DLC-99) Sk in air atomic water --- 0.895 ± 0.004<br />

Williams<strong>on</strong> 1991, Ref.20 (DLC-99) Sk in air liquid water 0.932 0.877<br />

solid water 0.899 0.841<br />

This study, Ref.24 (DLC-136) Sk in air liquid water 0.933 ± 0.002 0.888 ± 0.002<br />

solid water 0.908 ± 0.004 0.858 ± 0.004<br />

Piermattei et al 1988, Ref.4 Measurements MS11(water) --- 0.890<br />

Luxt<strong>on</strong> et al 1990, Ref.9 Measurements PMMA --- 0.984<br />

Luxt<strong>on</strong> 1994 (correcti<strong>on</strong>), Ref.24 --- liquid water --- 0.879<br />

NCI c<strong>on</strong>tract group<br />

Nath et al 1990, Ref.7 Measurements solid water 0.903 0.855<br />

Weaver et al 1989, Ref.5 Measurements solid water 0.923 0.832<br />

Chiu-Tsao et al 1990, Ref.8 Measurements solid water 0.932 0.853<br />

ICWG average 1990, Ref.10 --- solid water 0.919 0.847<br />

Table 2. Anisotropy Functi<strong>on</strong> for a 125 I seed model 6711.<br />

R[cm]/θ[deg] 0 10 20 30 40 50 60 70 80<br />

0.50 0.2307 0.3770 0.6246 0.8239 0.9435 1.0009 1.0338 1.0460 0.9897<br />

1.0 0.3130 0.4820 0.7006 0.8396 0.9279 0.9893 1.0247 1.0394 1.0417<br />

1.5 0.3762 0.5359 0.7345 0.8495 0.9284 0.9832 1.0196 1.0334 1.0383<br />

2.0 0.4230 0.5741 0.7532 0.8573 0.9285 0.9808 1.0143 1.0307 1.0357<br />

2.5 0.4403 0.5967 0.7546 0.8412 0.9074 0.9549 0.9925 1.0175 1.0302<br />

3.0 0.4753 0.6204 0.7743 0.8614 0.9170 0.9652 0.9996 1.0173 1.0281<br />

3.5 0.4938 0.6389 0.7836 0.8668 0.9244 0.9663 1.0008 1.0166 1.0264<br />

4.0 0.5137 0.6531 0.7906 0.8693 0.9245 0.9681 0.9993 1.0168 1.0242<br />

4.5 0.5417 0.6649 0.7971 0.8736 0.9284 0.9690 0.9987 1.0166 1.0235<br />

5.0 0.5652 0.6753 0.8020 0.8740 0.9289 0.9688 0.9976 1.0140 1.0232<br />

5.5 0.5672 0.6859 0.8057 0.8776 0.9290 0.9686 0.9942 1.0133 1.0205<br />

6.0 0.5828 0.6945 0.8107 0.8807 0.9332 0.9698 0.9978 1.0145 1.0208<br />

6.5 0.5760 0.6996 0.8126 0.8830 0.9322 0.9688 0.9944 1.0104 1.0193<br />

7.0 0.5776 0.7066 0.8150 0.8832 0.9324 0.9690 0.9951 1.0103 1.0168<br />

7.5 0.6439 0.7147 0.8154 0.8846 0.9325 0.9677 0.9929 1.0079 1.0160<br />

8.0 0.6439 0.7150 0.8183 0.8837 0.9317 0.9672 0.9928 1.0052 1.0134<br />

8.5 0.6594 0.7238 0.8230 0.8876 0.9337 0.9703 0.9934 1.0089 1.0165<br />

9.0 0.6041 0.7312 0.8250 0.8895 0.9374 0.9714 0.9955 1.0102 1.0171<br />

13


adialdosefuncti<strong>on</strong>g(r)<br />

1<br />

0,1<br />

1<br />

0,1<br />

1<br />

0,1<br />

Polynomialfit,solidwater,ICWG1990,[10]<br />

TLDmeasurementsinsolidwater,Na<str<strong>on</strong>g>the</str<strong>on</strong>g>tal1993,[7]<br />

SolidwaterMCcalculati<strong>on</strong>s[25]<br />

LiquidwaterMCcalculati<strong>on</strong>s,BurnsandRaeside1992,[17]<br />

LiquidwaterMCcalculati<strong>on</strong>s,Williams<strong>on</strong>1991,[20]<br />

LiquidwaterMCcalculati<strong>on</strong>s[25]<br />

Polynomialfit,solidwater,ICWG1990[10]<br />

TLDmeasurementsinsolidwater,Na<str<strong>on</strong>g>the</str<strong>on</strong>g>tal1993[7]<br />

SolidwaterMCcalculati<strong>on</strong>s[25]<br />

LiquidwaterMCcalculati<strong>on</strong>s,BurnsandRaeside1988,[17]<br />

LiquidwaterMCcalculati<strong>on</strong>s,Williams<strong>on</strong>1991,[20]<br />

LiquidwaterMCcalculati<strong>on</strong>s[25]<br />

0 1 2 3 4 5 6 7 8 9 10<br />

<br />

compared with experimental measurements in solid water phantoms.<br />

125 Iseedmodel6711<br />

125 Iseedmodel6702<br />

103 Pdseedmodel200<br />

TLDmeasurementsinsolidwater,Chiu-Tsaoetal1991,[12]<br />

TLDmeasurementsinsolidwater,Na<str<strong>on</strong>g>the</str<strong>on</strong>g>tal1995,[1]<br />

SolidwaterMCcalculati<strong>on</strong>s[25]<br />

LiquidwaterMCcalculati<strong>on</strong>s[25]<br />

distancefromsourcer[cm]<br />

Figure 1: Calculated radial dose functi<strong>on</strong>s g(r) for low-energy brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds in liquid and solid water<br />

14


atiobounded/freeelectr<strong>on</strong>approach<br />

1,08<br />

1,06<br />

1,04<br />

1,02<br />

1,00<br />

0,98<br />

1,10<br />

1,08<br />

1,06<br />

1,04<br />

1,02<br />

1,00<br />

0,98<br />

0 1 2 3 4 5 6 7 8<br />

1,08<br />

103 Pdseedmodel200<br />

125 <br />

Iseedmodel6702<br />

0 2 4 6 8 10 12 14<br />

distancefromsourcecenterr[cm]<br />

<br />

Figure 2: In uence <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> binding correcti<strong>on</strong>s <strong>on</strong> radial dose functi<strong>on</strong> for low energy brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy seeds.<br />

The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> radial dose functi<strong>on</strong>s with and without <str<strong>on</strong>g>the</str<strong>on</strong>g> correcti<strong>on</strong>s is plotted as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance <strong>on</strong><br />

transverse axis.<br />

15<br />

<br />

1,06<br />

1,04<br />

1,02<br />

1,00<br />

0,98<br />

1,10<br />

1,08<br />

1,06<br />

1,04<br />

1,02<br />

1,00<br />

0,98


anisotropyfuncti<strong>on</strong>F(r,θθθθ)<br />

<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0 1 2 3 4 5<br />

<br />

θ = 0 o<br />

0 1 2 3 4 5<br />

<br />

θ = 50 o<br />

0 1 2 3 4 5<br />

<br />

103 Pdseedmodel200<br />

distancefromsourcecenterr[cm] <br />

<br />

TLDmeasureddatainsolidwater<br />

(Na<str<strong>on</strong>g>the</str<strong>on</strong>g>tal,1993)<br />

TLDmeasureddatainsolidwater<br />

(Chiu-Tsaoetal,1991)<br />

θ = 10 o<br />

Exp+<strong>EGS</strong>4calculateddatainliquidwater<br />

(Weaver,1998)<br />

<strong>EGS</strong>4calculateddatainsolidwater<br />

(this study,1999)<br />

<strong>EGS</strong>4calculateddatainliquidwater<br />

(this study,1999)<br />

0 1 2 3 4 5<br />

Figure 3: Anisotropy functi<strong>on</strong> for a 103 Pd seed model 200 as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance.<br />

relativeairfluence<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

103 Pdseedmodel200<br />

0,2<br />

0 10 20 30 40 50 60 70 80 90<br />

<br />

<strong>EGS</strong>4calculati<strong>on</strong>with0.3µm 103 Pdlayer[42]<br />

NaI(Tl)Measurement(Weaver1998,[6])<br />

angleθ[degrees]<br />

θ = 80 o<br />

Figure 4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative in air uence for 103 Pd seed model 200 obtained from our <strong>EGS</strong>4 calculati<strong>on</strong>s<br />

with measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> Weaver [6].<br />

16<br />

<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4


anisotropyfuncti<strong>on</strong>F(r,θ)<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0 10 20 30 40 50 60 70 80 90<br />

r=0.5cm<br />

r=1.0cm<br />

r=2.0cm<br />

<br />

<br />

0 10 20 30 40 50 60 70 80 90<br />

angleθ[degrees]<br />

125 Iseedmodel6702<br />

Capote2000,[42]<br />

Chiu-Tsaoetal.1990,[8]<br />

Williams<strong>on</strong>,1997,Priv.Comm.<br />

Weaver,1998,[6]<br />

Na<str<strong>on</strong>g>the</str<strong>on</strong>g>tal.,1993,[7]<br />

Schelletal.,1987,[3]<br />

Figure 5: Anisotropy Functi<strong>on</strong> for a 125 I seed model 6702 as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> angle. Diode measurements in liquid<br />

water are represented with a star, TLD measurements in solid water with an open square, <strong>EGS</strong>4 calculati<strong>on</strong>s<br />

based <strong>on</strong> experimental determined angular emissi<strong>on</strong> distributi<strong>on</strong>s with an open triangle, calculati<strong>on</strong>s using<br />

MORSE code with a solid triangle, MCPT calculati<strong>on</strong>s with dotted line and full <strong>EGS</strong>4 calculati<strong>on</strong>s with a solid<br />

line.<br />

anisotropyfuncti<strong>on</strong>F(r,θ)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0 10 20 30 40 50 60 70 80 90<br />

r=0.5cm<br />

r=1.0cm<br />

r=5.0cm<br />

Williams<strong>on</strong>etal.,1988 Chiu-Tsaoetal.,1990<br />

thisstudy,1999 thisstudy,2000<br />

Na<str<strong>on</strong>g>the</str<strong>on</strong>g>tal.,1993 Lingetal.,1985<br />

Weaver,1998<br />

0.2<br />

0 10 20 30 40 50 60 70 80 90<br />

<br />

polarangleθ [degrees]<br />

125 Iseedmodel6711<br />

Figure 6: Anisotropy Functi<strong>on</strong> for a 125 I seed model 6711 as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> angle. Diode measurements in liquid<br />

water are represented with a cross, TLD measurements in solid water with an open square, <strong>EGS</strong>4 calculati<strong>on</strong>s<br />

based <strong>on</strong> experimental determined angular emissi<strong>on</strong> distributi<strong>on</strong>s with an open circle, MCPT calculati<strong>on</strong>s with<br />

an open triangle and full <strong>EGS</strong>4 calculati<strong>on</strong>s for a partially and a whole emitting source with a dashed and a<br />

solid line respectively.<br />

17<br />

<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

1,0<br />

0,8<br />

0,6<br />

0,4


elativeairfluence<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0 20 40 60 80<br />

125 Iseedmodel6711<br />

0 20 40 60 80<br />

<br />

Fittoexperimentaldata<br />

(Weaveretal.,1998),[6]<br />

<strong>EGS</strong>4simulati<strong>on</strong>,Capoteetal2000,[42]<br />

angleθ[degrees]<br />

Figure 7: Relative air uence at 100 cm for a 125 I seed model 6711.<br />

18<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.92-99<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PET Scanner Geometry<br />

Lars-Eric Adam and J. S. Karp<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pennsylvania<br />

3400 Spruce Street, Philadelphia, PA 19104, U.S.A.<br />

Abstract<br />

Modern positr<strong>on</strong> emissi<strong>on</strong> tomographs (PET), when used for 3D imaging, have a wide open<br />

gantry without intra plane septa and <strong>on</strong>ly little shielding. In order to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter c<strong>on</strong>taminati<strong>on</strong><br />

from activity inside and outside <str<strong>on</strong>g>the</str<strong>on</strong>g> eld-<str<strong>on</strong>g>of</str<strong>on</strong>g>-view (FOV), and to block radiati<strong>on</strong> originating<br />

from activity outside-<str<strong>on</strong>g>the</str<strong>on</strong>g>-FOV, we have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> septa and additi<strong>on</strong>al<br />

patient shielding <strong>on</strong> our existing whole body PET scanner. A series <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s,<br />

based <strong>on</strong> <strong>EGS</strong>4, were performed to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> potential bene ts. Our simulati<strong>on</strong>s include point<br />

and line sources at various radial and axial positi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner, and di erent sized<br />

uniform cylinders (up to 100 cm l<strong>on</strong>g and 50 cm in diameter). The scanner itself is based <strong>on</strong> 6 c<strong>on</strong>tinuous<br />

NaI(Tl) crystals, an axial FOV <str<strong>on</strong>g>of</str<strong>on</strong>g> 25.6 cm, a ring diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 cm, and a transaxial FOV<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 56 cm. The results show that septa can reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> relative scatter fracti<strong>on</strong> and e ectively block<br />

radiati<strong>on</strong> from outside-<str<strong>on</strong>g>the</str<strong>on</strong>g>-FOV, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y also reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivity for true events, leading to a<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles ratio that is not desirable. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> septa is <strong>on</strong>ly advantageous<br />

for large objects, if <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> true events is compensated for by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> injected activity.<br />

Patient shields that are mounted outside-<str<strong>on</strong>g>the</str<strong>on</strong>g>-FOV reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> from scattered and<br />

single events without interfering with true events. They are more e ective for objects with a small<br />

diameter and less e ective for objects with a large diameter.<br />

1 Introducti<strong>on</strong><br />

The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> emissi<strong>on</strong> tomography (PET) is <str<strong>on</strong>g>the</str<strong>on</strong>g> ability toquantify <str<strong>on</strong>g>the</str<strong>on</strong>g> activity distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radi<strong>on</strong>uclides in <str<strong>on</strong>g>the</str<strong>on</strong>g> human body. During <str<strong>on</strong>g>the</str<strong>on</strong>g> data acquisiti<strong>on</strong>, a c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> phot<strong>on</strong>s are scattered and/or attenuated within <str<strong>on</strong>g>the</str<strong>on</strong>g> patient body, which leads to an error<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement that requires correcti<strong>on</strong> methods. With <str<strong>on</strong>g>the</str<strong>on</strong>g> new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D PET scanners,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> scatter problem becomes even more prominent, and also activity located outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV c<strong>on</strong>tributes<br />

signi cantly to <str<strong>on</strong>g>the</str<strong>on</strong>g> deadtime <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner. This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g>adequate shielding in<br />

3D whole-body imaging compared to 2D imaging. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> data is more<br />

complicated. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple 2D correcti<strong>on</strong> algorithms like <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> subtracti<strong>on</strong> algorithm<br />

do not work for 3D [1].<br />

In 2D PET, <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding between rings restricts <str<strong>on</strong>g>the</str<strong>on</strong>g> solid angle for scattered events and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore<br />

leads to a signi cant geometrical suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered events. However, 3D PET is generally septaless<br />

with a large axial FOV. The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> our study is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> bene ts <str<strong>on</strong>g>of</str<strong>on</strong>g> septa<br />

and additi<strong>on</strong>al patient shields outside <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner <strong>on</strong> our current 3D whole-body PET scanner.<br />

A powerful and widely accepted tool for such examinati<strong>on</strong>s are M<strong>on</strong>te-Carlo (MC) simulati<strong>on</strong>s<br />

that allow <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> real experiments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> computer. In c<strong>on</strong>trast to actual experiments,<br />

it is possible to distinguish between scattered and unscattered radiati<strong>on</strong> with MC simulati<strong>on</strong>s, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore between di erent count rate c<strong>on</strong>tributi<strong>on</strong>s. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, MC simulati<strong>on</strong>s are more exible<br />

than experiments, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y help to to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments, which can be restricted to<br />

those that are needed to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> code.<br />

Additi<strong>on</strong>al informati<strong>on</strong> <strong>on</strong> PET and scattered radiati<strong>on</strong> in PET can be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4 [2, 3].<br />

1


crystal (NaI)<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

water−filled<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

cylinder phantom<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

side<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

shielding (lead)<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000<br />

1111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

0000000000000000000000000000000000000<br />

1111111111111111111111111111111111111<br />

y−axis<br />

z−axis<br />

ring diameter: 900 mm<br />

160 mm<br />

side<br />

shielding<br />

(lead)<br />

patient shielding (lead)<br />

crystal (NaI)<br />

septa (tungsten)<br />

x−axis z−axis<br />

water−filled cylinder phantom<br />

Figure 1: PET scanner geometry. Left) Fr<strong>on</strong>tal view, right) axial cross secti<strong>on</strong>. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shields<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> septa are opti<strong>on</strong>al.<br />

2 Material and methods<br />

2.1 PET System<br />

The simulated PET scanner was a CPET from ADAC/UGM. It uses 6 curved NaI(Tl) detectors<br />

(45 30 cm 2 , 2.54 cm thick) with a ring diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 cm. The axial FOV is 25.6 cm and <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse<br />

FOV is 57.6 cm. The side shielding is 16 cm l<strong>on</strong>g and <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no septa. The default energy window<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner is currently set at 435 - 665 keV. A detailed descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner can be found<br />

in [4, 5].<br />

2.2 M<strong>on</strong>te-Carlo simulati<strong>on</strong>s<br />

Our MC simulati<strong>on</strong>s are based <strong>on</strong> <strong>EGS</strong>4 [6]. The basic geometric elements which are used to<br />

setup <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner geometry are planes and spheres. These elements are used to model <str<strong>on</strong>g>the</str<strong>on</strong>g> gantry, NaI<br />

detectors and tungsten septa. Figure 1 shows a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coded geometry.<br />

A complete physical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter process is very complex and would require too much<br />

CPU time to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> desired number <str<strong>on</strong>g>of</str<strong>on</strong>g> histories (typically 10 7 - 10 9 ). It is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore necessary<br />

to make some simplifying approximati<strong>on</strong>s, while still describing <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter process in a su ciently<br />

accurate way. The approximati<strong>on</strong>s give up some accuracy, but reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical error. The + -<br />

decay is simulated by two back-to-back phot<strong>on</strong>s, each with 511 keV, neglecting <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> range<br />

(1-2 mm) and <str<strong>on</strong>g>the</str<strong>on</strong>g> small n<strong>on</strong>-collinearity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> pairs ( 0:5 ). Moreover, we restricted <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simulati<strong>on</strong>s to Rayleigh and Compt<strong>on</strong> scattering, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter being <str<strong>on</strong>g>the</str<strong>on</strong>g> predominant interacti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phot<strong>on</strong>s undergo at <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered energy. To speed up <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s we did not simulate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detecti<strong>on</strong> process, instead we determined <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> undisturbed<br />

trajectory in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal and counted <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> with this detecti<strong>on</strong> probability. We applied several<br />

(lower) energy thresholds, from 200 keV to 510 keV in steps <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV. It should be noted that energy<br />

smearing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detected events is available in our code, but was not used for <str<strong>on</strong>g>the</str<strong>on</strong>g> present study.<br />

Events can be rebinned into <str<strong>on</strong>g>the</str<strong>on</strong>g> sinogram format which is used by our PET scanners. This allows<br />

us to process <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated data like measured data. An event is c<strong>on</strong>sidered as `true' or unscattered<br />

when nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two phot<strong>on</strong>s is de ected, and is c<strong>on</strong>sidered as `scatter' when <strong>on</strong>e or both phot<strong>on</strong>s<br />

are scattered.<br />

The cross secti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> di erent media were generated for an energy range from 50 - 550<br />

keV using P<strong>EGS</strong>4. Available media are water, lead, tungsten, aluminum, and di erent scintillator<br />

materials, including NaI. Interacti<strong>on</strong> in air was neglected and <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum cross secti<strong>on</strong> was taken<br />

2<br />

y<br />

x


instead. MC data were obtained by simulating water- lled cylindrical phantoms with diameters up<br />

to 50 cm and di erent lengths. The phantoms c<strong>on</strong>tained a point source or a homogeneous activity<br />

distributi<strong>on</strong>. The simulati<strong>on</strong>s were mainly performed <strong>on</strong> a SUN Ultra 60 and a SUN ULTRA 10. The<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 8 histories required approximately 4 hours CPU time, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> object and<br />

activity distributi<strong>on</strong>.<br />

2.3 Simulated Geometries<br />

2.3.1 Patient Shield: Point source in water- lled cylinders<br />

To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> bene ts <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al patient<br />

shielding, we simulated a point source in a waterlled<br />

cylinder (30 cm diameter and 100 cm l<strong>on</strong>g) as<br />

depicted in Fig. 2. A thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mm and a<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> 37.2 cm was chosen to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum<br />

bene ts from <str<strong>on</strong>g>the</str<strong>on</strong>g> shield (<str<strong>on</strong>g>the</str<strong>on</strong>g> shield completely<br />

covers <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV and 20 mm is<br />

thick enough to practically stop all phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shield). For each setup, 10 8 histories were simulated.<br />

2.3.2 Patient Shield: Uniform activity distributi<strong>on</strong>s<br />

In a very simple approximati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> activity distributi<strong>on</strong><br />

in a patient can be described as an extended<br />

uniform activity distributi<strong>on</strong>. This is justi<br />

ed as l<strong>on</strong>g as we c<strong>on</strong>sider <strong>on</strong>ly global c<strong>on</strong>tributi<strong>on</strong>s<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner countrates. We simulated a<br />

uniform activity distributi<strong>on</strong> in 100 cm l<strong>on</strong>g waterlled<br />

cylinders with diameters ranging from 10 to<br />

50 cm, such that <str<strong>on</strong>g>the</str<strong>on</strong>g> activity c<strong>on</strong>centrati<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same in all phantoms. The length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patient<br />

patient shield<br />

37.2 cm l<strong>on</strong>g<br />

detector crystal<br />

y−axis<br />

water−filled cylinder<br />

−50 −12.8 0 12.8<br />

50 z−axis<br />

detector crystal<br />

stepped point source<br />

(not drawn to scale)<br />

Figure 2: Stepped pointsourceinawater- lled cylinder.<br />

The full circles indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> di erent axial positi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point source. The distance between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield and <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder was 10 mm, independently<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder diameter. The simulati<strong>on</strong>s<br />

were performed without and with patient shield (20<br />

mm thick).<br />

shield was again 37.2 cm, which completely covers <str<strong>on</strong>g>the</str<strong>on</strong>g> part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinders that is outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV.<br />

In order to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated patient shield to <str<strong>on</strong>g>the</str<strong>on</strong>g> best possible shield, we also simulated cylinders<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> axial FOV (i.e.where <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no activity outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV).<br />

2.3.3 Length and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield<br />

In order to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum length and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield that are required for<br />

an e ective shield, we simulated water- lled phantoms ( = 20 cm) with di erent lengths (l =25:6,<br />

51.2, 76.8 cm) and shielding thicknesses (d =0:32, 0.64, 0.96, 1.32 mm). The 25.6 cm l<strong>on</strong>g phantom<br />

was centered in FOV, while for <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>ger phantoms, <strong>on</strong>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phantom was ush with <str<strong>on</strong>g>the</str<strong>on</strong>g> edge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV, and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r end extended through <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner and outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV. The length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

patient shield was 25.6 cm which corresp<strong>on</strong>ds with <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> axial FOV. The energy threshold<br />

was set to 250 keV.<br />

2.3.4 Septa: Point source in water- lled cylinders<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> current CPET c<strong>on</strong> gurati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong> mechanism for <str<strong>on</strong>g>the</str<strong>on</strong>g> 137 Cs transmissi<strong>on</strong> source<br />

uses <str<strong>on</strong>g>the</str<strong>on</strong>g> 9 cm directly in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector crystal. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> septa length is limited to 70 mm<br />

(see Fig. 1). In <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s presented below, we used 31 septa, each 60 mm l<strong>on</strong>g and 1 mm thick,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>y were equally spaced across <str<strong>on</strong>g>the</str<strong>on</strong>g> axial FOV. The phantom was again <str<strong>on</strong>g>the</str<strong>on</strong>g> stepped point source<br />

in a water- lled cylinder ( = 30 cm, length = 100 cm, see 2.3.1) and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy threshold was set to<br />

450 keV.<br />

3


singles [a.u.]<br />

scatter [a.u.]<br />

x 10<br />

1800<br />

1600<br />

A B<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

3<br />

250 keV<br />

without patient shield<br />

with patient shield<br />

50000<br />

45000<br />

40000<br />

end FOV<br />

35000<br />

without and with<br />

350 keV<br />

30000<br />

patient shield<br />

450 keV<br />

25000<br />

20000<br />

(all curves overlap)<br />

15000<br />

10000<br />

end FOV<br />

5000<br />

0 10 20 30 40<br />

0<br />

0 10 20 30 40<br />

axial source positi<strong>on</strong> [cm]<br />

axial source positi<strong>on</strong> [cm]<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

250 keV<br />

350 keV<br />

450 keV<br />

C<br />

end FOV<br />

without patient shield<br />

with patient shield<br />

0 10 20 30 40<br />

axial source positi<strong>on</strong> [cm]<br />

2.3.5 Uniform activity distributi<strong>on</strong>s<br />

trues [a.u.]<br />

250 keV 350 keV<br />

450 keV<br />

Figure 3: Stepped point source in a 100-cm l<strong>on</strong>g<br />

water- lled cylinder ( = 30 cm), without and<br />

with patient shield. A) Singles, B) trues, and C)<br />

scatter.<br />

To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> septa <strong>on</strong> a uniform activity distributi<strong>on</strong>, we simulated a water- lled<br />

cylinder (length = 76.8 cm) with di erent diameter d = 20, 30, 40, 50 cm and an energy threshold <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

450 keV. The same septa as in 2.3.4 were used. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s were repeated with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

patient shields described above.<br />

3 Results and discussi<strong>on</strong><br />

3.1 Patient Shield<br />

3.1.1 Point source in water- lled cylinders<br />

Independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy threshold, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a signi cant singles c<strong>on</strong>tributi<strong>on</strong> from activity<br />

outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV (see Fig. 3 A). For example, at a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.2 cm bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV<br />

(z=20 cm), a point source has a singles countrate <str<strong>on</strong>g>of</str<strong>on</strong>g> 60.6 % <str<strong>on</strong>g>of</str<strong>on</strong>g> a point source in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV<br />

(z=0 cm, LLD=450 keV). At 17.2 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV (z=30 cm), <str<strong>on</strong>g>the</str<strong>on</strong>g> singles countrate<br />

is 28.5 %. If a patient shield is used, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> decreases to 32.0 % and 0.8 %, respectively.<br />

This leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> that patient shields signi cantly reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> singles from activity outside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> FOV, reducing detector deadtime and randoms. The trues events are not a ected by <str<strong>on</strong>g>the</str<strong>on</strong>g> patient<br />

shield and are also independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy threshold, since no energy smearing was applied (see<br />

Fig. 3 B). Figure 3 C shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shields <strong>on</strong> scattered events is nearly negligible for an<br />

energy threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 keV, but increases with decreasing energy threshold. The data for a threshold<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 250 keV shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield is even e ective for source positi<strong>on</strong>s inside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV, blocking<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> trajectories for phot<strong>on</strong>s reentering <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV after being scattered outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV.<br />

The results show also that PET scanners like <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI based CPET with good energy resoluti<strong>on</strong><br />

(but limited countrate capability) and a high energy threshold, su er from outside-<str<strong>on</strong>g>the</str<strong>on</strong>g>-FOV activity<br />

mainly due to single events. PET scanners with poor energy resoluti<strong>on</strong> (typically BGO block detector<br />

based) and a low energy threshold, but high countrate capability, su er from outside-<str<strong>on</strong>g>the</str<strong>on</strong>g>-FOV activity<br />

also due to scattered events.<br />

4


singles [a.u.]<br />

trues-to-single ratio<br />

x 10 2<br />

A B<br />

100 cm, without patient shield<br />

100 cm, with patient shield<br />

2500<br />

25.6 cm, without shield<br />

2000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

10 20 30 40 50<br />

phantom diameter [cm]<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

C<br />

100 cm, without patient shield<br />

100 cm, with patient shield<br />

25.6 cm<br />

10 20 30 40 50<br />

phantom diameter [cm]<br />

3.1.2 Uniform activity distributi<strong>on</strong>s<br />

scatter [a.u.]<br />

1500<br />

(curves partially overlap)<br />

1000<br />

100 cm, without patient shield<br />

500<br />

100 cm, with patient shield<br />

25.6 cm<br />

0<br />

10 20 30 40 50<br />

phantom diameter [cm]<br />

Figure 4: A) Single and B) scattered events for a<br />

uniform cylinder phantoms with di erent diameters<br />

(r = 10, 20, 30, 40, and 50 cm) and an energy<br />

threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 keV. The true events depend <strong>on</strong>ly<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder diameter, but not <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> length<br />

(25.6 cm or 100 cm) or <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield. C)<br />

Trues-to-singles ratio.<br />

Figure 4 A shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> singles c<strong>on</strong>tributi<strong>on</strong> by approximately 45 %<br />

for a 10-cm diameter phantom and is nearly as good as <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum shield (25.6 cm l<strong>on</strong>g phantom),<br />

which has a singles rate approximately 50 % <str<strong>on</strong>g>of</str<strong>on</strong>g> that with <str<strong>on</strong>g>the</str<strong>on</strong>g> 100-cm l<strong>on</strong>g phantom. The result is<br />

an improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 80 % due to <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield (see Fig.<br />

4 C). The patient shield is most e ective for a small phantom diameter and its e ciency decreases<br />

with increasing diameter. For a 50 cm diameter phantom, <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g> singles rates is <strong>on</strong>ly<br />

10 %, while <str<strong>on</strong>g>the</str<strong>on</strong>g> singles rate for <str<strong>on</strong>g>the</str<strong>on</strong>g> 25.6 cm l<strong>on</strong>g phantom shows a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 %. We can also<br />

c<strong>on</strong>clude from <str<strong>on</strong>g>the</str<strong>on</strong>g>se data that for <str<strong>on</strong>g>the</str<strong>on</strong>g> 10-cm diameter phantom (length = 100 cm), 50 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singles<br />

rate comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> activity outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV, while for <str<strong>on</strong>g>the</str<strong>on</strong>g> 50-cm diameter phantom (length = 100<br />

cm) <strong>on</strong>ly 30 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singles rate comes from outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative c<strong>on</strong>tributi<strong>on</strong><br />

from activity outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV becomes less important with increasing object diameter. This is an<br />

e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> scan geometry and <str<strong>on</strong>g>the</str<strong>on</strong>g> self-attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> object.<br />

As we already learned from <str<strong>on</strong>g>the</str<strong>on</strong>g> point source simulati<strong>on</strong>s above, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no signi cant scatter<br />

c<strong>on</strong>tributi<strong>on</strong> from outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV for an energy threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 keV. The scatter c<strong>on</strong>tributi<strong>on</strong>s are<br />

very comparable for all three phantom c<strong>on</strong> gurati<strong>on</strong>s for a given phantom diameter (see Fig. 4 B).<br />

Note, this is not true if <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold is lowered, as it is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for most BGO based PET scanner.<br />

3.1.3 Length and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patient shield<br />

Figure 5 shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> singles c<strong>on</strong>tributi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting trues-to-singles ratio are nearly<br />

identical for <str<strong>on</strong>g>the</str<strong>on</strong>g> 51.2-cm and 76.8-cm l<strong>on</strong>g phantom, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding thickness. From<br />

this we c<strong>on</strong>clude that a shielding length <str<strong>on</strong>g>of</str<strong>on</strong>g> 25.6 cm is su cient. The number<str<strong>on</strong>g>of</str<strong>on</strong>g>singleevents decreases<br />

with increasing shielding thickness, and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles improves with increasing<br />

shielding thickness, showing an asymptotic behavior. The improvement from a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.96 mm<br />

to 1.32 mm is <strong>on</strong>ly marginal and de nes <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum shielding thickness. As was shown above in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point source, increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> energy threshold <strong>on</strong>ly improves <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results can be applied to any higher threshold than 250 keV, in particular 450 keV.<br />

5


singles [a.u.]<br />

x 10 2<br />

10000<br />

8000<br />

6000<br />

A B<br />

0.04<br />

4000<br />

76.8 cm l<strong>on</strong>g phantom<br />

51.2 cm l<strong>on</strong>g phantom<br />

2000<br />

25.6 cm l<strong>on</strong>g phantom<br />

(curves partially overlap)<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> patient shield [mm]<br />

trues-to-singles ratio [a.u.]<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

76.8 cm l<strong>on</strong>g phantom<br />

51.2 cm l<strong>on</strong>g phantom<br />

25.6 cm l<strong>on</strong>g phantom<br />

(curves partially overlap)<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> patient shield [mm]<br />

Figure 5: A) Singles c<strong>on</strong>tributi<strong>on</strong>s and B) trues-to-singles ratio for uniform activity distributi<strong>on</strong>s in a water- lled<br />

cylinder ( = 20 cm) as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding thickness.<br />

3.2 Septa<br />

3.2.1 Point source in water- lled cylinders<br />

Figure 6 shows that septa signi cantly reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> singles c<strong>on</strong>tributi<strong>on</strong>. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> center positi<strong>on</strong> is 66 %. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, septa also reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> trues c<strong>on</strong>tributi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resulting trues-to-singles ratio for septa is lower in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV than without septa, but is<br />

higher at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV. Overall, septa lead to an axially more uniform trues-to-singles ratio.<br />

The biggest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> septa is <strong>on</strong> scattered events for example, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are reduced by 86 % for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

central source positi<strong>on</strong>. The scatter fracti<strong>on</strong> (SF), which isde nedas<br />

SF =<br />

scattered events<br />

total events<br />

is signi cantly lower with septa than without septa across <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV. This leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> that<br />

septa are helpful to reject scattered events, but it is unclear from <str<strong>on</strong>g>the</str<strong>on</strong>g> point source simulati<strong>on</strong>, if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

e ect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles ratio is bene cial, neutral, or negative.<br />

3.2.2 Uniform activity distributi<strong>on</strong>s<br />

While it was unclear from <str<strong>on</strong>g>the</str<strong>on</strong>g> point source simulati<strong>on</strong>s if <str<strong>on</strong>g>the</str<strong>on</strong>g> septa are bene cial for <str<strong>on</strong>g>the</str<strong>on</strong>g> truesto-singles<br />

ratio or not, Fig. 7 A clearly shows that septa lower <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles ratio. This is true<br />

for all simulated phantom diameters. The best results for <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles ratio can be achieved,<br />

if patient shields without septa are used. As expected from <str<strong>on</strong>g>the</str<strong>on</strong>g> point source simulati<strong>on</strong>s, septa help<br />

to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter fracti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect increases with increasing diameter.<br />

4 C<strong>on</strong>clusi<strong>on</strong>s<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> external patient shields is advantageous, particularly for small objects. Patient shields<br />

have no impact <strong>on</strong> true events and help to reduce scatter c<strong>on</strong>taminati<strong>on</strong> from activity inside and<br />

outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOV. But this <strong>on</strong>ly relevant if a low energy threshold is used (e.g. 250 keV). For a high<br />

energy threshold (e.g. 450 keV), <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter c<strong>on</strong>taminati<strong>on</strong> is already<br />

suppressed even without <str<strong>on</strong>g>the</str<strong>on</strong>g> external patient shields. The singles c<strong>on</strong>tributi<strong>on</strong> can be reduced up to<br />

25 %, which corresp<strong>on</strong>ds to a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> random events <str<strong>on</strong>g>of</str<strong>on</strong>g> 44 % and a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scanner<br />

deadtime by 40 % for a typical clinical countrate.<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> septa can be advantageous for large objects, if <str<strong>on</strong>g>the</str<strong>on</strong>g> main objective is to reduce scatter<br />

and if <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> true events is compensated for by an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> injected activity. The investigated<br />

septa reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> true countrate by 75 %, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y also reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> trues-to-singles ratio, particularly<br />

for small objects. The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered events leads to a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter fracti<strong>on</strong> by 15%<br />

(for small objects) - 30 % (for large objects). It should be noted that septa cause axial inhomogeneities<br />

6<br />

(1)


singles [a.u.]<br />

scatter [a.u.]<br />

scatter fracti<strong>on</strong><br />

x 10<br />

9000<br />

8000<br />

7000<br />

6000<br />

A B<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

2<br />

end FOV<br />

without septa<br />

with septa<br />

with patient shield<br />

50000<br />

45000<br />

40000<br />

35000<br />

30000<br />

end FOV<br />

without septa<br />

with septa<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0 10 20 30 40<br />

0<br />

0 10 20 30 40<br />

axial source positi<strong>on</strong> [cm]<br />

axial source positi<strong>on</strong> [cm]<br />

22500<br />

20000<br />

17500<br />

15000<br />

12500<br />

10000<br />

7500<br />

5000<br />

2500<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

C D<br />

end FOV<br />

0.05<br />

end FOV<br />

without septa<br />

with septa<br />

with patient shield<br />

0 10 20 30 40<br />

axial source positi<strong>on</strong> [cm]<br />

E<br />

without septa<br />

with septa<br />

0.2<br />

0<br />

0 10<br />

end FOV<br />

20 30 40<br />

axial source positi<strong>on</strong> [cm]<br />

trues [a.u.]<br />

trues-to-singles ratio<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

without septa<br />

with septa<br />

0<br />

0 10 20 30 40<br />

axial source positi<strong>on</strong> [cm]<br />

Figure 6: Stepped point source in a water- lled<br />

cylinder ( = 30 cm, length = 100 cm) for an energy<br />

threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 keV. A) Singles, B) trues,<br />

C) scatter, D) trues-to-singles ratio, and E) scatter<br />

fracti<strong>on</strong>.<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivity that are a potential problem for data correcti<strong>on</strong>s. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r MC simulati<strong>on</strong>s are<br />

necessary to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> e ectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> septa <str<strong>on</strong>g>of</str<strong>on</strong>g> varying number, length and thickness.<br />

Acknowledgments<br />

The authors would like to thank Dr. Margaret E. Daube-Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rspo<strong>on</strong> for her help and suggesti<strong>on</strong>s.<br />

This work was supported by a grant from <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy (DE-FG02-88ER60642). Dr. L.<br />

E. Adam was supported in part by a Benedict Cassen Postdoctoral Fellowship from <str<strong>on</strong>g>the</str<strong>on</strong>g> Educati<strong>on</strong><br />

and Research Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Medicine.<br />

References<br />

[1] L.-E. Adam, J. S. Karp, and G. Brix, \Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered radiati<strong>on</strong> in 3D whole-body<br />

positr<strong>on</strong> tmissi<strong>on</strong> tomography using M<strong>on</strong>te Carlo simulati<strong>on</strong>s," Phys. Med. Biol. 44 (1999)2879{<br />

2895.<br />

[2] Y. Narita, M. Shidara, T. Nakumara, T. Fujiwara, and M. Itoh, \Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scatter<br />

in 3-dimensi<strong>on</strong>al pet," in <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4.<br />

7


trues-to-singles ratio<br />

0.05<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

A<br />

without septa,<br />

with patient shield<br />

without septa,<br />

without patient shield<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

B<br />

(curves partially overlap)<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

20<br />

with septa, with patient shield<br />

with septa, without patient shield<br />

30 40 50<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

20<br />

without septa, with patient shield<br />

without septa, without patient shield<br />

with septa, with patient shield<br />

with septa, without patient shield<br />

30 40 50<br />

phantom diameter [cm]<br />

phantom diameter [cm]<br />

Figure 7: A) Trues-to-singles ratio and B) scatter fracti<strong>on</strong> for uniform, cylindrical phantoms with di erent<br />

diameters (r = 20, 30, 40, and 50 cm) and an energy threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 keV.<br />

[3] M. Shidara, Y. Narita, T. Nakamura, M. Miyake, T. Fujiwara, and M. Itoh, \A preliminary study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattering correcti<strong>on</strong> in 3D-PET study based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolding method," in <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4.<br />

[4] L.-E. Adam, J. S. Karp, and R. J. Smith, \PET camera performance measurements: a comparis<strong>on</strong><br />

between three PET cameras," J. Nucl. Med. 40(1999)76.<br />

[5] L.-E. Adam, J. S. Karp, M. E. Daube-Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rspo<strong>on</strong>, and R. J. Smith, \Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a wholebody<br />

PET scanner using curve-plate NaI(Tl) detectors," (submitted).<br />

[6] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, The <strong>EGS</strong>4 code system. SLAC-Report-265,<br />

Stanford University, Stanford, 1985.<br />

8<br />

scatter fracti<strong>on</strong>


in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> lung cancer, a thorax is composed several tissues and it is di cult to determinate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absorbed dose distributi<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> lung, <str<strong>on</strong>g>the</str<strong>on</strong>g> recoil electr<strong>on</strong> travels l<strong>on</strong>ger distance and arrives <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eld. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> recoil electi<strong>on</strong> per unit volume is smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissue. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d electr<strong>on</strong>s equilibrium dose not exists and it makes determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose to be di cult. In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thorax was<br />

calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo simulati<strong>on</strong>. The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose distributi<strong>on</strong><br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eld size, incident x-ray energy and optimal incident energy were investigated.<br />

3 Methods and Materials<br />

3.1 The geometrical arrangement<br />

Figure 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

simulati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose calculati<strong>on</strong>. The<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thorax model was 40 cm and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness was 23 cm. This thorax model was composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3 layers. These are <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t chest wall, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lung layer and <str<strong>on</strong>g>the</str<strong>on</strong>g> back chest wall. The density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fr<strong>on</strong>tchestwall<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t chest wall and <str<strong>on</strong>g>the</str<strong>on</strong>g> back chest wall were 1.0<br />

g/cm<br />

Lunglayer<br />

Backchestwall<br />

Figure 1. Geometrical arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo<br />

simulati<strong>on</strong><br />

3 . The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t chest wall was 3.0<br />

cm and <str<strong>on</strong>g>the</str<strong>on</strong>g> back chest wall was 5.0 cm. The thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lung layer was 15 cm, and <str<strong>on</strong>g>the</str<strong>on</strong>g> density was<br />

0.3 g/cm3 . There was a tumor volume embedded in<br />

lung at a 10 cm depth. Its diameter and thickness<br />

were 2.0 cm. In this model, imaginary planes were<br />

arranged perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> beam axis at an interval<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 cm. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> model was divided<br />

into c<strong>on</strong>centric cylinders at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 cm.<br />

The absorbed dose <str<strong>on</strong>g>of</str<strong>on</strong>g> each volume was calculated. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous model, <str<strong>on</strong>g>the</str<strong>on</strong>g> lung layer<br />

was replaced with water equivalent material. And <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> lm method were compared. This<br />

experiment was performed for 6 MV and 10 MV X-ray with MEVATRON KD2/65 linear accelerator<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> Cancer Institute Hospital. The thorax phantom was similar with <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical arrangement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>. And <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thorax model and homogeneous model were<br />

compared.<br />

3.2 C<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong><br />

The absorbed dose distributi<strong>on</strong> was calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo simulati<strong>on</strong>. An <strong>EGS</strong>4<br />

user code, which recorded <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose at arbitrary depth for an arbitrary eld size, was coded<br />

for this study. The incident beams were parallel beam <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s. Field shape was circular eld.<br />

Those Spectra data was quoted from Mohan's data[4]. A set <str<strong>on</strong>g>of</str<strong>on</strong>g> 5,000,000 phot<strong>on</strong>s was generated per<br />

batch and ten batches were performed for eld diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.8, 3.0 and 3.2 cm respectively. The<br />

simulati<strong>on</strong> was performed for a 4, 6, 10 and 15 MV X-ray.<br />

2


4 Results and Discussi<strong>on</strong><br />

4.1 Variati<strong>on</strong> in OCR<br />

OCR<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

fieldsize<br />

tumorsize<br />

Thoraxmodel<br />

Homogeneousmodel<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

distance[cm]<br />

Figure2.Comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>OCRforthoraxmodelandhomogeneousmodel<str<strong>on</strong>g>of</str<strong>on</strong>g>4<br />

MVat9cmdepth.<br />

OCR<br />

1.2<br />

1.0<br />

0.8<br />

fieldsize<br />

tumorsize<br />

0.6<br />

4 MV<br />

0.4<br />

6 MV<br />

0.2<br />

0.0<br />

10MV<br />

15MV<br />

0.0 0.5 1.0 1.5 2.0<br />

Distance[cm]<br />

Figure3.Variati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>OCRasafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>X-rayenergy. <br />

The o -center ratio (OCR), which is <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose at a point o <str<strong>on</strong>g>the</str<strong>on</strong>g>central ray to <str<strong>on</strong>g>the</str<strong>on</strong>g> dose<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> same depth <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> central ray, represents <strong>on</strong>e-dimensi<strong>on</strong>al dose distributi<strong>on</strong> for perpendicular<br />

directi<strong>on</strong> to beam axis. Figure 2 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR in <str<strong>on</strong>g>the</str<strong>on</strong>g> thorax and homogeneous model at a 9 cm<br />

depth for a 3.0 cm eld <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 MV X-ray. The standard deviati<strong>on</strong> was about 3.5 % near <str<strong>on</strong>g>the</str<strong>on</strong>g> beam axis<br />

and less than 1.0% at 1.0 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> axis. In a regi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> center and 1.5 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> center,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> OCR curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thorax model declined more steeply than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous model.<br />

But outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eld, <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR in thorax model was greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous<br />

model. Figure 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray energy. The OCR curve became<br />

to be more steeply as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy increased. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 MV, <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

center and at 1.0 cm was 7.3 %. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 MV, <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR at <str<strong>on</strong>g>the</str<strong>on</strong>g> center and at 1.0<br />

cm was 15.0 %. The at range <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor decreased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy increased. And in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lung area, <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy increased.<br />

Offcenterratio<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

fieldsize<br />

tumorsize<br />

0 5 10 15 20<br />

Distancefromcenter(mm)<br />

Figure4.Thedifference<str<strong>on</strong>g>of</str<strong>on</strong>g>OCRbetween6MVand10MV<br />

withfilmmethod<br />

10 MV<br />

3<br />

OCRlung/OCRwater<br />

2.5<br />

2.0<br />

1.5<br />

fieldsize<br />

tumorsize<br />

1.0<br />

9-9.5<br />

9.5-10.0<br />

0.5<br />

0.0<br />

10.0-10.5<br />

10.5-11.0<br />

0.0 0.5 1.0 1.5 2.0<br />

distance[cm]<br />

Figure 5. The change <str<strong>on</strong>g>of</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR <str<strong>on</strong>g>of</str<strong>on</strong>g> thorax model for <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

homogeneousmodelfora3.0cmφfield<str<strong>on</strong>g>of</str<strong>on</strong>g>4MVX-ray.


The range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.2-0.8 and 0.8-0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR are 1.2<br />

summarized in Table1. The range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.2-0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

OCR is <str<strong>on</strong>g>the</str<strong>on</strong>g> distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> points at 20% and<br />

1.0<br />

80% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> central-axis dose value[5]. The 0.8-0.8 0.8 tumorsize<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> OCR is <str<strong>on</strong>g>the</str<strong>on</strong>g> width that receives at least 80% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dose <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> central axis. The range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.2-<br />

0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy increased.<br />

0.6<br />

0.4<br />

30cmf<br />

32cmf<br />

The 0.8-0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR decreased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy<br />

increased. Thus, with higher energy a greater mar-<br />

0.2<br />

28cmf<br />

gin must be maintained around a lung tumor. Fig- 0.0<br />

ure 4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR between 6 MV<br />

0.0 0.5 1.0 1.5 2.0<br />

and 10 MV with lm method. The at range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distance[cm]<br />

OCR in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor decreased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy<br />

increased. By comparing this result and <str<strong>on</strong>g>the</str<strong>on</strong>g> prior<br />

result, it was found that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir results behave similarly.<br />

Figure 5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR<br />

Figure6.Thechange<str<strong>on</strong>g>of</str<strong>on</strong>g>OCRasafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>fieldsizefor4MVX-ray.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thorax model to <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous model for a 3.0 cm eld <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 MV X-ray. The y-axis<br />

shows <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR in <str<strong>on</strong>g>the</str<strong>on</strong>g> thorax model to homogeneous model. In <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> between 1.0 cm<br />

and 1.5 cm distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> center, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio decreased. And in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> from 1.5cm to 2.0 cm<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> center, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio increased. At a 1.5 cm, <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR <str<strong>on</strong>g>of</str<strong>on</strong>g> lower energy almost corresp<strong>on</strong>ded with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> higher energy. But in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor, <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR ratio increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy decreased.<br />

Figure 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eld size. As <str<strong>on</strong>g>the</str<strong>on</strong>g> result, it was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> at<br />

range increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> eld size increased but <str<strong>on</strong>g>the</str<strong>on</strong>g> OCR increased outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor.<br />

4.2 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR<br />

Table 1 <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.2-0.8 and 0.8-0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR<br />

Energy 0.2-0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR [cm] 0.8-0.8 <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR [cm]<br />

4MV 0.5 2.4<br />

6MV 0.6 2.2<br />

10 MV 0.8 2.0<br />

15 MV 0.8 2.0<br />

It was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> at range decreased as X-ray energy increased. From <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR<br />

as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eld size, <str<strong>on</strong>g>the</str<strong>on</strong>g> at range increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> eld size was extended but a greater amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal tissue must be irradiated.<br />

4.3 Variati<strong>on</strong> in percentage depth dose<br />

The Percent Depth Dose (PDD) is <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose to <str<strong>on</strong>g>the</str<strong>on</strong>g> dose at standard depth. PDD<br />

represents <strong>on</strong>e-dimensi<strong>on</strong>al dose distributi<strong>on</strong> <strong>on</strong> beam axis. Figure 7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PDD<br />

between thorax and homogenous model at acenter for 3.0 cm eld <str<strong>on</strong>g>of</str<strong>on</strong>g> 4MVX-ray. The graph was<br />

normalized at a peak depth. At a 3.0 cm depth, <str<strong>on</strong>g>the</str<strong>on</strong>g> build-down exists re-buildup and build-down<br />

exist at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> lung and tumor. Figure 8 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> PDD as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray<br />

energy. The PDD curve became more steeply at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> lung and tumor as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy<br />

increased. And <str<strong>on</strong>g>the</str<strong>on</strong>g> at range in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor decreased. Figure 9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> PDD between<br />

<strong>EGS</strong>4 and RTAR at <str<strong>on</strong>g>the</str<strong>on</strong>g> center for a 3.0 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 MV X-ray. RTAR is <str<strong>on</strong>g>the</str<strong>on</strong>g> inhomogeneous correcti<strong>on</strong><br />

without scatter correcti<strong>on</strong>. It is used generally in clinical. The PDD <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 was less than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

RTAR. The di erence between <strong>EGS</strong>4 and RTAR was summarized Table 2. In <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor, <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence<br />

between <strong>EGS</strong>4 and RTAR for 4 MV and 6 MV was about 5 %. Figure 10 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PDD between 6 MV and 10 MV with lm method. X-axis shows depth from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface in mm. The<br />

4<br />

OCR


PDD<br />

PDD<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

chest<br />

wall<br />

lung tumor lung<br />

0 10 20<br />

Depth[cm]<br />

Thorax<br />

Homogeneous<br />

chest<br />

wall<br />

Figure7.Thecomparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>PDDbetweenthoraxandhomogenousmodelata<br />

120<br />

100<br />

80<br />

60<br />

40<br />

centerfor3.0cmφfield<str<strong>on</strong>g>of</str<strong>on</strong>g>4MVX-ray.<br />

Depth[cm]<br />

4MV(RTAR)<br />

4MV(<strong>EGS</strong>4)<br />

20<br />

0<br />

chest<br />

wall<br />

lung tumor lung<br />

chest<br />

wall<br />

0 5 10 15 20<br />

Figure9.Thedifference<str<strong>on</strong>g>of</str<strong>on</strong>g>PDDbetween<strong>EGS</strong>4andRTARat<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

centerfora3.0cmφ<str<strong>on</strong>g>of</str<strong>on</strong>g>4MVX-ray.<br />

PDD<br />

Depthdosenormalizedatpeakdepth<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

chest<br />

wall<br />

lung tumor lung<br />

0 5 10 15 20<br />

Depth[cm]<br />

4MV<br />

6MV<br />

10MV<br />

15MV<br />

chest<br />

wall<br />

Figure8.Thechange<str<strong>on</strong>g>of</str<strong>on</strong>g>PDDasafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>X-rayenergy<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

tumor<br />

0 50 100 150 200 250<br />

Depthinthoraxphantom(mm)<br />

Figure10.Thedifference<str<strong>on</strong>g>of</str<strong>on</strong>g>PDDbetween6MVand10<br />

MV with film method. In this case,<br />

absorbed dose distributi<strong>on</strong> was measured<br />

withsphericaltumorphantom.<br />

build-up and build-down exist at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between lung and tumor. And in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor, <str<strong>on</strong>g>the</str<strong>on</strong>g> at<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> PDD increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy decreased. By comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> lm method and<br />

simulati<strong>on</strong>, it was found that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir results behave similarly.<br />

Table 2. The di erence [%] between <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 and RTAR<br />

4MV 6MV 10 MV 15 MV<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor 5.4 5.3 7.0 9.8<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> lung 10.1 13.5 20.1 23.9<br />

The coe cient <str<strong>on</strong>g>of</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose in tumor as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray energy was<br />

examined. The change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coe cient <str<strong>on</strong>g>of</str<strong>on</strong>g> variance was show in Figure 11. In <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coe cient <str<strong>on</strong>g>of</str<strong>on</strong>g>variance increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy increased.<br />

5<br />

10 MV<br />

6 MV


Coefficient<str<strong>on</strong>g>of</str<strong>on</strong>g>Variance%<br />

4.4 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> PDD<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

4 6 8 10 12 14<br />

Energy[MV]<br />

Figure11.Coefficient<str<strong>on</strong>g>of</str<strong>on</strong>g>variancein<str<strong>on</strong>g>the</str<strong>on</strong>g>tumor<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> result, <str<strong>on</strong>g>the</str<strong>on</strong>g> build-up and <str<strong>on</strong>g>the</str<strong>on</strong>g> build-down caused by decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dly<br />

electr<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> lung existed at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t chest wall and lung, and <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> lung<br />

and tumor. The PDD curve became more steeply at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>of</str<strong>on</strong>g> lung and tumor as X-ray energy<br />

increased. And <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence between <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> RTAR is about 5 % for 4<br />

MV X-ray. But <str<strong>on</strong>g>the</str<strong>on</strong>g> di erences increase as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy increase.<br />

5 C<strong>on</strong>clusi<strong>on</strong><br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor in <str<strong>on</strong>g>the</str<strong>on</strong>g> lung could be calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>EGS</strong>4 M<strong>on</strong>te Carlo simulati<strong>on</strong>. As <str<strong>on</strong>g>the</str<strong>on</strong>g> result, it was found that a lower energy could irradiate with<br />

better <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose distributi<strong>on</strong> ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a higher energy, because <str<strong>on</strong>g>the</str<strong>on</strong>g> at range <str<strong>on</strong>g>of</str<strong>on</strong>g> OCR and<br />

PDD in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energy decreased. In stereotactic irradiati<strong>on</strong> for lung cancer,<br />

it is required that high equality <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbed dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> tumor and decreasing radically out side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tumor[6]. C<strong>on</strong>sequently, alower energy was recommended ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a higher energy.<br />

References<br />

[1] L. Wang, M. Lovelock, C-S. Chui, \Experimental veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a CT-based M<strong>on</strong>te Carlo dosecalculati<strong>on</strong><br />

method in heterogeneous phantoms", Med. Phys. 26 (1999)2626-2634.<br />

[2] M. Uematsu, A. Shioda, K. Tahara, et al., \Focal, high dose, and fracti<strong>on</strong>ated modi ed stereotactic<br />

radiati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>rapy for lung carcinoma patients", Cancer 82(1998)1062-1070.<br />

[3] H. Saitoh, T. Fujisaki, M. Fukushi, et al., \A study <strong>on</strong> eld size and depth dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

spectrum", J. Jpn. Soc. Ther. Radiol. Oncol. 11(1999)279-285.<br />

[4] M. Mohan, C. Chui, L. Lid<str<strong>on</strong>g>of</str<strong>on</strong>g>aky, \Energy and angular distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s from medical<br />

linear accelerators", Med. Phys. 12(1985)592-597.<br />

[5] K. E. Ekstrand, W. H. Barnes, \Pitfalls in <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> high-energy X rays to treat tumors in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lung", Int. J. Radiat. Oncol. Biol. Phys. 18(1990)249-252.<br />

6


[6] H. Kato, M. Nakamura and S. Tsuki, \Physical characteristics for high energy X-ray narrow<br />

beams", Jpn. J. Radiol. Technol. 48(1992)991-996 (in Japanese).<br />

7


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.107-115<br />

The Caluculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D Saptial Dose Distributi<strong>on</strong><br />

Around a Shielded Vaginal Cylinder with Iridium-192 Source<br />

Calculated by using M<strong>on</strong>te Carlo Code <strong>EGS</strong>4<br />

I. J. Chen 1 , R. D. Sheu 2 , B. J. Chang 1 ,<br />

Y. M. Liu 3 , L. S. Chao 3 , S. H. Yen 3<br />

1 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Energy Research, Lungtan, Taiwan<br />

2 Nati<strong>on</strong>al Tsing Hua University, Hsin Chu, Taiwan<br />

3 Cancer Therapy Center, Taipei Veterans General Hospital, Taipei Taiwan<br />

Abstract<br />

According to our previous study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> around a shielded vaginal cylinder<br />

with a high-intensity 192 Ir source by using <strong>EGS</strong>4 code, <str<strong>on</strong>g>the</str<strong>on</strong>g> more detailed 3D-simulati<strong>on</strong> model was<br />

established in this work. The results obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D-simulati<strong>on</strong> model were compared with<br />

those measured by i<strong>on</strong>chamber in previous work and evaluated by <str<strong>on</strong>g>the</str<strong>on</strong>g> existing treatment planning<br />

system. These results show good agreement. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong> around<br />

aunitintensity 192 Ir source was calculated at each probable positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> vaginal cylinder with<br />

90 ,180, 270 tungsten shield and no shield cases. Those results save as a database which could<br />

be accessed through <str<strong>on</strong>g>the</str<strong>on</strong>g> graphical user interface developed by IDL TM to display dose distributi<strong>on</strong>s<br />

in 1D, 2D, and 3D plot under any combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> source intensity ateach positi<strong>on</strong>, and shielding<br />

situati<strong>on</strong>. It dem<strong>on</strong>strates a prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy treatment planning system based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo <strong>EGS</strong>4 code.<br />

1 Introducti<strong>on</strong><br />

192 Ir is a widely used source in brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy to treat localized malignancies in nearly every body<br />

site and a variety <str<strong>on</strong>g>of</str<strong>on</strong>g>such source are commercially available. Both <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical and experimental methods<br />

have been widely used to characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong>s around an isolated source in water<br />

medium[1-7] and <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneity correcti<strong>on</strong> factors for such a source near localized heterogeneity[8].<br />

An intracavitary source c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> encapsulated high-intensity (1Ci) 192 Ir is available for using in<br />

high dose rate (HDR) single-stepping source remote afterloaders to treat vaginal and cervix malignancy.<br />

The vaginal cylinder is <strong>on</strong>e typical set <str<strong>on</strong>g>of</str<strong>on</strong>g> applicator applied in <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vaginal<br />

lesi<strong>on</strong>. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> radiosensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> adjacent organs, e.g. bladder and rectum, severe complicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rectal bleeding may develop for some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patients. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se patients, a shielded vaginal cylinder<br />

(Applicator 084.320 Nucletr<strong>on</strong> Corporati<strong>on</strong>, Columbia MD, USA) was developed to reduce excess<br />

dose to <str<strong>on</strong>g>the</str<strong>on</strong>g> rectum. The previously available commercial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy treatment planning programs<br />

did not take <str<strong>on</strong>g>the</str<strong>on</strong>g> perturbati<strong>on</strong> into c<strong>on</strong>siderati<strong>on</strong> when <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high-density material such as<br />

tungsten shield. Waterman had measured <str<strong>on</strong>g>the</str<strong>on</strong>g> planar dose distributi<strong>on</strong>s around a high-activity 192 Ir<br />

and proposed a way toevaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong>s under <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> tungsten shield[9]. In our<br />

previous study[10], <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> around a shielded vaginal cylinder with an 192 Ir source could<br />

also be calculated by applying <strong>EGS</strong>4 M<strong>on</strong>te Carlo code. The relative isodose distributi<strong>on</strong> calculated<br />

by <strong>EGS</strong>4 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse plane at source locati<strong>on</strong> shows good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements obtained<br />

by i<strong>on</strong> chamber and diode detector in water phantom. It dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> reliable and accurate<br />

modality toapply <strong>EGS</strong>4 code for <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> problem. One might take advantage<br />

1


<str<strong>on</strong>g>of</str<strong>on</strong>g> using <strong>EGS</strong>4 to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> in heterogeneous media owing to <str<strong>on</strong>g>the</str<strong>on</strong>g> capability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M<strong>on</strong>te Carlo method dealing with three-dimensi<strong>on</strong> problem and <str<strong>on</strong>g>the</str<strong>on</strong>g> exibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 code describing<br />

arbitrary 3D geometry models. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is to apply <strong>EGS</strong>4 code to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

3D spatial dose distributi<strong>on</strong> around a shielded vaginal cylinder and propose a way to use <str<strong>on</strong>g>the</str<strong>on</strong>g>se results<br />

in practical applicati<strong>on</strong>s. However, it is di cult to implement a real time M<strong>on</strong>te Carlo calculati<strong>on</strong><br />

for clinical applicati<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> its time c<strong>on</strong>suming. Therefore, it is more realistic to establish a<br />

database which includes <str<strong>on</strong>g>the</str<strong>on</strong>g> data pre-calculated by <strong>EGS</strong>4 for <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong> around<br />

an unit intensity 192 Ir source at several positi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> vaginal cylinder with 90 ,180 , 270 tungsten<br />

shield and without shield. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, a visualized user interface was developed by using Interactive<br />

Data Language (IDL TM ) for accessing this database. Through <str<strong>on</strong>g>the</str<strong>on</strong>g> interactive graphical user interface,<br />

it provides a c<strong>on</strong>venient way to display <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong> obtained by <strong>EGS</strong>4 calculati<strong>on</strong>s<br />

for any probable combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> source and shielded situati<strong>on</strong>s. This work indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> database<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong>s around a shielded vaginal cylinder pre-calculated by <strong>EGS</strong>4 could be<br />

applied to develop a practical treatment planning system. The treatment planning system based <strong>on</strong><br />

M<strong>on</strong>te Carlo method could provide some more detailed and accurate dose distributi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded<br />

case.<br />

2 Materials and Methods<br />

The <strong>EGS</strong>4 computer code was used to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D-dose distributi<strong>on</strong> around a shielded vaginal<br />

cylinder with an 192 Ir source. The simulati<strong>on</strong> could be divided into two main comp<strong>on</strong>ents: <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir<br />

source, and <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded vaginal cylinder. The details <str<strong>on</strong>g>of</str<strong>on</strong>g> each comp<strong>on</strong>ent, including <str<strong>on</strong>g>the</str<strong>on</strong>g> encapsulati<strong>on</strong><br />

material, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> applicator wall, and <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> and geometry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shielded vaginal cylinder are described as closely as possible.<br />

The source simulated in this work is <str<strong>on</strong>g>the</str<strong>on</strong>g> HDR 192 Ir source (designed by Nucletr<strong>on</strong>-Oldelft <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><br />

B. V. and manufactured by Mallinckrodt Diagnostica) is shown schematically in Fig. 1[11].<br />

The cylindrical active 192 Ir pellet has a length <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5 mm and 0.6 mm in diameter. It is encapsulated<br />

in AISI 316L stainless steel sheath with an outer length <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mm and 1.1 mm in diameter. One end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source has a round shape, and <str<strong>on</strong>g>the</str<strong>on</strong>g> distance form <str<strong>on</strong>g>the</str<strong>on</strong>g> distal face <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> active source core to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

physical source tip was 0.55 mm. The energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitted phot<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> unencapsulated 192 Ir<br />

source simulated in this work was listed in table 1[12].<br />

The internal c<strong>on</strong>structi<strong>on</strong> and dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded vaginal cylinder (Applicator 084.320,<br />

Nucletr<strong>on</strong> Corporati<strong>on</strong>, Columbia MD, USA) <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.0 cm in diameter up<strong>on</strong> our simulati<strong>on</strong> are based,<br />

are illustrated by Fig. 2. The applicator c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 15-cm l<strong>on</strong>g cylinder plastic shell with an outer<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.0 cm and 0.5 cm thick wall. It centered <strong>on</strong> a thin-wall stainless steel tube (0.4 cm o.d.)<br />

which serves as pathway for <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir source. There is an air gap between <str<strong>on</strong>g>the</str<strong>on</strong>g> steel tube and <str<strong>on</strong>g>the</str<strong>on</strong>g> inner<br />

wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder. This gap could be lled with 0.8 cm thick tungsten 90 , 180 ,or270 shield. All<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents are held in place al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> central tube by <str<strong>on</strong>g>the</str<strong>on</strong>g> plastic end cap.<br />

The geometry model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 simulati<strong>on</strong> was shown in Fig. 3. As it shown, <str<strong>on</strong>g>the</str<strong>on</strong>g> detailed geometry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents that were near <str<strong>on</strong>g>the</str<strong>on</strong>g> tip <str<strong>on</strong>g>of</str<strong>on</strong>g> cylinder was also taken into c<strong>on</strong>siderati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> scoring volume for recording spatial dose distributi<strong>on</strong> was divided into two regi<strong>on</strong>s,<br />

semi-spherical regi<strong>on</strong> (10 cm in radius) and <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical regi<strong>on</strong> (10 cm in radius and 10 cm height).<br />

The space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semi-spherical regi<strong>on</strong> was divided into 50 36 144 scoring volumes, respectively in<br />

radial directi<strong>on</strong>, polar angle, and azimuthal angle. The space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical regi<strong>on</strong> was divided into<br />

50 40 144 scoring volumes, respectively in radial directi<strong>on</strong>, axial directi<strong>on</strong>, and azimuthal angle.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles tracked in <strong>EGS</strong>4 simulati<strong>on</strong> was chosen to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> statistic deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> results under 5% level.<br />

2


3 Results and Discussi<strong>on</strong>s<br />

3.1 The veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D simulati<strong>on</strong> model<br />

In our previous study, <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> around a shielded vaginal cylinder was c<strong>on</strong>cerned<br />

<strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plane where <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir source was. The detail geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> two ends was simpli ed in our<br />

previous simulati<strong>on</strong> model. In order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D-simulati<strong>on</strong><br />

model was established in this work. Hence, this 3D model was veri ed with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous results at<br />

rst. Fig. 4 and Fig. 5 show <str<strong>on</strong>g>the</str<strong>on</strong>g> relative dose fall-o in <str<strong>on</strong>g>the</str<strong>on</strong>g> radial directi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> isodose curve<br />

<strong>on</strong> a transverse plane c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir source for <str<strong>on</strong>g>the</str<strong>on</strong>g> unshielded vaginal cylinder respectively. The<br />

relative dose was normalized to 0.3 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder wall. The results evaluated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

3D-simulati<strong>on</strong> model show good agreement with those measured by i<strong>on</strong> chamber in our previous work.<br />

3.2 The comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial treatment planning system<br />

The 3D-simulati<strong>on</strong> model was compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy treatment planning<br />

system that was adopted by <str<strong>on</strong>g>the</str<strong>on</strong>g> cancer center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Veterans General Hospital-Taipei[13]. Fig. 6<br />

shows <str<strong>on</strong>g>the</str<strong>on</strong>g> dwell time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir source at each positi<strong>on</strong> for a clinical case, in order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

prescribed dose, 500 cGy at 2 cm o set from <str<strong>on</strong>g>the</str<strong>on</strong>g> center point in radial directi<strong>on</strong> and 3 cm o set<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> center point in axial directi<strong>on</strong>. The isodose curve evaluated and plotted by <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment<br />

planning system is also shown in Fig. 6. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> dwell time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> source at each positi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spatial dose distributi<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> vaginal cylinder was also calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D-simulati<strong>on</strong> model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this work. The results evaluated by commercial treatment planning system and <strong>EGS</strong>4 were shown<br />

in Fig. 7. These results show good agreement in prescribed dose positi<strong>on</strong> in radial directi<strong>on</strong>, but some<br />

discrepancy close to <str<strong>on</strong>g>the</str<strong>on</strong>g> source axis. The discrepancy is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> existing treatment planning system<br />

neglected heterogeneity e ect, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> encapsulated material <str<strong>on</strong>g>of</str<strong>on</strong>g> source and <str<strong>on</strong>g>the</str<strong>on</strong>g> guide tube. The<br />

e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneity and oblique ltrati<strong>on</strong> could be taken into c<strong>on</strong>siderati<strong>on</strong> by <strong>EGS</strong>4 simulati<strong>on</strong><br />

without any extra e ort.<br />

3.3 The prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment planning system based <strong>on</strong> <strong>EGS</strong>4<br />

One important bene t <str<strong>on</strong>g>of</str<strong>on</strong>g> using <strong>EGS</strong>4 simulati<strong>on</strong> is its capability <str<strong>on</strong>g>of</str<strong>on</strong>g> dealing with three-dimensi<strong>on</strong><br />

problems, especially <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneity. However it is di cult to implement a real time<br />

M<strong>on</strong>te Carlo calculati<strong>on</strong> for clinical applicati<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> its time c<strong>on</strong>suming. It is more realistic to<br />

establish a database that includes <str<strong>on</strong>g>the</str<strong>on</strong>g> data pre-calculated by <strong>EGS</strong>4 for <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong><br />

around an 192 Ir source under all probable combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> source positi<strong>on</strong>, intensity and shielding<br />

situati<strong>on</strong>s. As it shown in Fig. 8, each source positi<strong>on</strong> and stepping size in <str<strong>on</strong>g>the</str<strong>on</strong>g> applicator is xed<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> HDR system. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial dose distributi<strong>on</strong>s around <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder with an unit intensity<br />

192 Ir source were calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D simulati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> this work at each probable positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vaginal cylinder with 90 , 180 , 270 tungsten shield and no shield cases. These results were save as<br />

a database and could be accessed by <str<strong>on</strong>g>the</str<strong>on</strong>g> graphical user interface developed by using Interactive Data<br />

Language (IDL TM )[14]. Through this interface, it provided an interactive graphical user interface to<br />

display 1D, 2D, and 3D spatial dose distributi<strong>on</strong> obtained by <strong>EGS</strong>4 calculati<strong>on</strong>s for any probable<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> source and shielded situati<strong>on</strong>s. Fig. 9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> interactive dialog for setting up <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

source positi<strong>on</strong>s, intensity and shielding situati<strong>on</strong>. The dwell time and positi<strong>on</strong>s menti<strong>on</strong>ed in above<br />

paragraph with 180 tungsten shield were input, <str<strong>on</strong>g>the</str<strong>on</strong>g> 1D radial dose distributi<strong>on</strong> and 2D isodose curve<br />

<strong>on</strong> transverse and vertical plane could be shown by this interface as it shown in Fig. 10. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

The 3D-isodose volume could be also displayed. Fig. 11 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> isodose volume (100 cGy) <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

single source in <str<strong>on</strong>g>the</str<strong>on</strong>g> vaginal cylinder with 90 shield. Through this interactive graphical user interface,<br />

users can generate and display <str<strong>on</strong>g>the</str<strong>on</strong>g> results pre-calculated by <strong>EGS</strong>4 in a few sec<strong>on</strong>ds. It seems to be a<br />

prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> our treatment planning system based <strong>on</strong> M<strong>on</strong>te Carlo code <strong>EGS</strong>4 for <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded vaginal<br />

cylinder.<br />

3


References<br />

[1] J. F. Williams<strong>on</strong> and Z. Li, \M<strong>on</strong>te Carlo aided dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microselectr<strong>on</strong> pulsed and high<br />

dose-rate Ir-192 source", Med. Phys. 22(6)(1995)809-819.<br />

[2] R. K. Valicenti, A. S. Kirov, A. S. Meigo<strong>on</strong>i, V. Mishra, R. K. Das and J. F. Walliams<strong>on</strong>,<br />

\Experimental validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo dose calculati<strong>on</strong>s about a high-intensity Ir-192 source<br />

for pulsed dose-rate brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy", Med. Phys. 22(6)(1995)821-829.<br />

[3] A. S. Kirov, J. F. Williams<strong>on</strong>, A. S. Meigo<strong>on</strong> and Y. Zhu , \TLD, diode and M<strong>on</strong>te Carlo dosimetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an Ir-192 soucre for high dose-rate brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy", Phys. Med. Biol. 40(1995)2015-2036.<br />

[4] R. Nath, L. L. Anders<strong>on</strong>, G. Luxt<strong>on</strong>, K. A. Weaver, J. F. Walliams<strong>on</strong>, A. S. Mego<strong>on</strong>i, \Dosimetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interstitial brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources: Recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> AAPM Radiati<strong>on</strong> Therapy<br />

Committe Task Group No. 43", Med. Phys. 22(2)(1995)209-233.<br />

[5] R. K. Das, Z. Li, H. Perera and J. F. Williams<strong>on</strong> , \Accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo phot<strong>on</strong> transport<br />

simulati<strong>on</strong> in characterizing brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy dosimeter energy-resp<strong>on</strong>se artefacts", Phys. Med. Biol.<br />

41(1996)955-1006.<br />

[6] K. R. Russell and A. Ahnesjo , \Dose calculati<strong>on</strong> in brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy for a Ir-192 source using a<br />

primary and scatter dose seperati<strong>on</strong> technique", Phys. Med. Biol. 41(1996)1007-1024.<br />

[7] P. Karaiskos, A. Angelopoulos, and L. Sakelliou, \M<strong>on</strong>te Carlo and TLD dosimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ir-192<br />

hight dose-rate brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy source", Med. Phys. 25(10)(1998).<br />

[8] J. F. Wallisams<strong>on</strong>, H. Perera, and Z. Li, \Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calculated and measured heterogeneity<br />

correcti<strong>on</strong> factors for I-125, Cs-137, and Ir-192 brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy sources near localized heterogeneities",<br />

Med. Phys. 20(1)(1993)1975-1984.<br />

[9] F. M. Waterman and D. E. Holcomb, \Dose diatributi<strong>on</strong>s produced by a shielded vaginal cylinder<br />

using a high-activity irdium-192 source", Med. Phys. 21(1)(1994).<br />

[10] C. C. Lee, Y. M. Liu, U. T. Lin, J. T. Chou, C. C. Tseng, L. S. Chao, S. H. Yen, K. Y. Chen,<br />

\M<strong>on</strong>te Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a shielded vaginal cylinder using a highactivity<br />

iridum-192 source", <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, <strong>KEK</strong><br />

Tsukuba Japan (1997).<br />

[11] L. Buermann, H. M. Kramer, H. J. Selbach, \Reference Air Kerma Rate Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

Iridium-192 Brachy<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy Source", Nucletr<strong>on</strong>-Oldelft Activity Report No.7-1, 43-47(1995).<br />

[12] R. B. Firest<strong>on</strong>e, \Table <str<strong>on</strong>g>of</str<strong>on</strong>g> Isotopes", eight editi<strong>on</strong>, vol. 2, A Wiley-Interscience Publicati<strong>on</strong>,<br />

JOHN WILEY & SONS, INC (1996).<br />

[13] THERAPLAN/TP-11 VO5B/V09B User's Manual: 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> 3, THERATRONICS Corporati<strong>on</strong><br />

(1992).<br />

[14] \Using IDL TM ", IDL TM versi<strong>on</strong> 5.0, Research System (1997).<br />

Table 1 The energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 192Ir assumed by our <strong>EGS</strong>4 simulati<strong>on</strong><br />

Energy (MeV) yield Energy (MeV) yield Energy (MeV) yield<br />

0.06683 0.10380 0.30850 0.29300 0.48906 0.00476<br />

0.07563 0.02869 0.31650 0.83000 0.58860 0.04470<br />

0.20138 0.00707 0.41647 0.01456 0.60440 0.08230<br />

0.20580 0.03180 0.46810 0.47700 0.61250 0.05340<br />

0.29600 0.28300 0.48460 0.03130 0.88454 0.00345<br />

4


1.10 mm<br />

0.60 mm<br />

5.00 mm<br />

0.55 mm 3.50 mm<br />

0.95 mm<br />

Active Ir-192 Core<br />

3 mm Steel<br />

Cable/Stem<br />

AISI 316L Steel Capsule Steel capsule<br />

Figure 1: Geometric models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MircoSelectr<strong>on</strong> HDR 192 Ir source.<br />

air gap<br />

plasic<br />

cylinder<br />

thin-wall stainless<br />

steel tube<br />

metal ring for xray<br />

visualizati<strong>on</strong><br />

metal end plate<br />

plastic end cap<br />

180 deg.<br />

tungsten shield<br />

Figure 2: Geometric models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded vaginal cylinder (Applicator 084.320 Nucletr<strong>on</strong> Corporati<strong>on</strong>s).<br />

33<br />

32<br />

31<br />

15<br />

16<br />

19<br />

20<br />

30<br />

7<br />

8<br />

22<br />

7<br />

6<br />

9<br />

10 12 11 12 10<br />

6<br />

8<br />

2<br />

1 4<br />

14<br />

17<br />

1<br />

24<br />

3 12 3 4 5 6<br />

10 12 13 12 10<br />

31<br />

18<br />

21<br />

2<br />

32<br />

26<br />

3<br />

33<br />

7 8<br />

12 3 4 5 6<br />

7 8 9<br />

Figure 3: The geometric model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D spatial dose distributi<strong>on</strong> assumed by our <strong>EGS</strong>4 simulati<strong>on</strong>.<br />

5<br />

30<br />

4<br />

23<br />

28<br />

5<br />

25<br />

27<br />

5<br />

4<br />

3<br />

11<br />

9<br />

2<br />

6<br />

1<br />

8<br />

7


RelativeDose(%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

For<str<strong>on</strong>g>the</str<strong>on</strong>g>unshieldedvaginalcylinder<br />

(sourcepositi<strong>on</strong>=-3.00cm)<br />

<strong>EGS</strong>4<br />

I<strong>on</strong>Chamber<br />

0<br />

1 2 3 4 5 6 7 8 9 10<br />

RadiusDistance(cm)<br />

Figure 4: Relative dose fall-o al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> radial directi<strong>on</strong> <strong>on</strong> a transverse plane c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir source for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> unshielded vaginal cylinder.<br />

Figure 5: Isodose curve <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse plane c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> 192 Ir source for <str<strong>on</strong>g>the</str<strong>on</strong>g> unshielded vaginal cylinder<br />

(solid lines are <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained by 3D model, dot lines are those measured by i<strong>on</strong> chamber).<br />

Figure 6: The dwell time and positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 192 Ir source in <str<strong>on</strong>g>the</str<strong>on</strong>g> vaginal cylinder meet <str<strong>on</strong>g>the</str<strong>on</strong>g> prescribed dose for a<br />

clinical case. The isodose curve was evaluated by existing treatment planning system.<br />

6


Figure 7: The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isodose curve obtained by 3D simulati<strong>on</strong> model and existing treatment planning<br />

system.<br />

1.50<br />

-0.40 1<br />

-0.65 2<br />

-0.90 3<br />

-1.15 4<br />

-1.40 5<br />

-1.65 6<br />

-1.90 7<br />

-2.15 8<br />

-2.40 9<br />

-2.65 10<br />

-2.90 11<br />

-3.15 12<br />

-3.40 13<br />

-3.65 14<br />

-3.90 15<br />

-4.15 16<br />

-4.40 17<br />

-4.65 18<br />

0.20<br />

1.00<br />

1.50<br />

1.10<br />

First Source<br />

Positi<strong>on</strong><br />

Figure 8: The probable source dwelling positi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded vaginal cylinder for <str<strong>on</strong>g>the</str<strong>on</strong>g> HDR system.<br />

Figure 9: The interactive dialog for setting up <str<strong>on</strong>g>the</str<strong>on</strong>g> source intensity at each positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded vaginal<br />

cylinder and shielding situati<strong>on</strong>.<br />

7


Figure 10: The 1D radial dose distributi<strong>on</strong> and 2D isodose curve <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse and vertical plane under a<br />

given source arrangement with 180 tungsten shield.<br />

Figure 11: The 3D-isodose volume under a given source arrangement with90 tungsten shield.<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.115-123<br />

Polarizati<strong>on</strong> Study for NLC Positr<strong>on</strong> Source Using <strong>EGS</strong>4 1<br />

J. C. Liu, T. Kotseroglou, W. R. Nels<strong>on</strong>, and D. Schultz<br />

Stanford Linear Accelerator Center,<br />

MS 48, P. O. Box 4349, Stanford, CA 94309, USA<br />

Abstract<br />

SLAC is exploring a polarized positr<strong>on</strong> source to study new physics for <str<strong>on</strong>g>the</str<strong>on</strong>g> NLC project. The<br />

positr<strong>on</strong> source envisi<strong>on</strong>ed in this paper c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a polarized electr<strong>on</strong> source, a 50-MeV electr<strong>on</strong><br />

accelerator, a thin target (= 0.2 radiati<strong>on</strong> length) for positr<strong>on</strong> producti<strong>on</strong>, and a capture system<br />

for high-energy, small angular divergence positr<strong>on</strong>s. The <strong>EGS</strong>4 code was used to study <str<strong>on</strong>g>the</str<strong>on</strong>g> yield,<br />

energy spectra, emissi<strong>on</strong>-angle distributi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong>s emanating<br />

from W-Re and Ti targets hit by l<strong>on</strong>gitudinally polarized electr<strong>on</strong> and phot<strong>on</strong> beams. To account<br />

for polarizati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code a method devised by Flotmann was used, which takes into<br />

account polarizati<strong>on</strong> transfer for pair producti<strong>on</strong>, bremsstrahlung, and Compt<strong>on</strong> interacti<strong>on</strong>s. A<br />

mean polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.85 for positr<strong>on</strong>s with energies greater than 25 MeV was obtained. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> high-energy positr<strong>on</strong>s were emitted within a forward angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 degrees. The yield <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s<br />

above 25 MeV per incident phot<strong>on</strong> was 0.034, which was about 70 times higher than that obtained<br />

with an electr<strong>on</strong> beam.<br />

1 Introducti<strong>on</strong><br />

SLAC is exploring a polarized positr<strong>on</strong> source to study new physics for <str<strong>on</strong>g>the</str<strong>on</strong>g> Next Linear Collider<br />

(NLC) project. The positr<strong>on</strong> source envisi<strong>on</strong>ed[1] c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a polarized electr<strong>on</strong> source, a 50-MeV<br />

electr<strong>on</strong> accelerator, a thin target for positr<strong>on</strong> producti<strong>on</strong>, and a capture system for high-energy, small<br />

angular divergence positr<strong>on</strong>s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study, <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> yield and its spectral and<br />

angular distributi<strong>on</strong>s for W-Re targets (0.5 to 5 mm thick) struck by 30-MeV electr<strong>on</strong>s were rst<br />

calculated with <strong>EGS</strong>4[2] and FLUKA99[3]. To check <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> our polarizati<strong>on</strong> calculati<strong>on</strong>s,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s from a tungsten target hit by backward-Compt<strong>on</strong> scattered phot<strong>on</strong>s<br />

calculated by Omori[4] were also compared with our calculated values. In <str<strong>on</strong>g>the</str<strong>on</strong>g> main work, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

code was used to study <str<strong>on</strong>g>the</str<strong>on</strong>g> yield, energy spectra, emissi<strong>on</strong>-angle distributi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong>s emanating from thin targets hit by l<strong>on</strong>gitudinally polarized, 50 MeV electr<strong>on</strong> and<br />

phot<strong>on</strong> beams.<br />

2 Methods<br />

A generalized cylinder-slab <strong>EGS</strong>4 user code, called ucRTZ.mortran, has been designed to run with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code System that was o cially released by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada in<br />

Canada in January 1997. This versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 c<strong>on</strong>tains all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latest features, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> PRESTA-<br />

I algorithm for low-energy electr<strong>on</strong> transport and proper sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> angles following bremsstrahlung<br />

and pair-producti<strong>on</strong> processes. With <str<strong>on</strong>g>the</str<strong>on</strong>g> ucRTZ.mortran user code, geometry implementati<strong>on</strong> was<br />

facilitated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> an input le (e.g., ucRTZ.data) that allows <str<strong>on</strong>g>the</str<strong>on</strong>g> user to specify, am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

things, cylindrical shells (c<strong>on</strong>centric with <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-axis), planes (normal to <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-axis), and azimuthal<br />

1 Work supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> US Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy under c<strong>on</strong>tract DE-AC-03-76SF00515<br />

1


planes (parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-axis, and rotated at an angle relative to X-axis). The azimuthal-plane feature<br />

was not required in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study.<br />

All materials were prepared with AE=0.521 MeV, UE=100.511 MeV, AP=0.001 MeV, and<br />

UP=100 MeV. The material <str<strong>on</strong>g>of</str<strong>on</strong>g> W-Re has 75% tungsten and 25% rhenium (by weight fracti<strong>on</strong>), a<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> 19.65 gcm ;3 . Unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise speci ed, <str<strong>on</strong>g>the</str<strong>on</strong>g> ECUT and PCUT for all regi<strong>on</strong>s were set at<br />

1.511 and 1 MeV, respectively.<br />

Flottmann[5] introduced mean polarizati<strong>on</strong> calculati<strong>on</strong>s into <str<strong>on</strong>g>the</str<strong>on</strong>g> AUSGAB subroutine <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

user code. His method, acceptable in high-energy regi<strong>on</strong>, c<strong>on</strong>sidered polarizati<strong>on</strong> transfer process <strong>on</strong>ly<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung, pair producti<strong>on</strong> and Compt<strong>on</strong> reacti<strong>on</strong>s. The depolarizati<strong>on</strong> processes in<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r reacti<strong>on</strong>s, e.g., Bhabha and Rayleigh scattering, were not c<strong>on</strong>sidered. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong><br />

calculated using this scheme should represent a higher estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual polarizati<strong>on</strong>. Since we<br />

are interested in <strong>on</strong>ly high-energy positr<strong>on</strong>s (> a few MeV), <str<strong>on</strong>g>the</str<strong>on</strong>g> Flottmann's approach is suitable. In<br />

this work Flottmann's routines were incorporated into our <strong>EGS</strong>4 user code.<br />

Only <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal polarizati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth Stokes parameter 3[5], has a l<strong>on</strong>g-term stabilityinan<br />

electromagnetic shower development. In <str<strong>on</strong>g>the</str<strong>on</strong>g> NLC source polarizati<strong>on</strong> study, l<strong>on</strong>gitudinal polarizati<strong>on</strong><br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter studied. Positr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re and titanium targets (0.2-radiati<strong>on</strong>-length thick)<br />

hit by an electr<strong>on</strong> beam (50-MeV kinetic energy and a l<strong>on</strong>gitudinal polarizati<strong>on</strong> 3=1) were scored as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> yield, energy-angle distributi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> a 50-MeV, polarized<br />

phot<strong>on</strong> beam incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re target was also studied for comparis<strong>on</strong>.<br />

3 Results<br />

3.1 Spectra and Yield Comparis<strong>on</strong><br />

Energy spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s, emanating from <str<strong>on</strong>g>the</str<strong>on</strong>g> downbeam side <str<strong>on</strong>g>of</str<strong>on</strong>g> W-Re targets having thicknesses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5, 1, 2 and 5 mm, are given in Figures 1a through 1d for an incident electr<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 MeV (ECUT=0.611 MeV and PCUT=0.1 MeV). The solid histograms are <strong>EGS</strong>4<br />

calculati<strong>on</strong>s (100,000 cases) and <str<strong>on</strong>g>the</str<strong>on</strong>g> points are <str<strong>on</strong>g>the</str<strong>on</strong>g> FLUKA99 results (500,000 cases). A special <strong>EGS</strong>4<br />

run (15,000,000 cases) was also made using cuto s <str<strong>on</strong>g>of</str<strong>on</strong>g> 19.9 MeV, and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are shown as dotted<br />

histograms. The agreement is quite good.<br />

In Figure 2 we presents <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> yield (within energy range <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 ;; 30 MeV) as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> polar angle emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> back plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re target at four thicknesses. In Table 1 we<br />

compared <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> yields (integrated over all angles) calculated by <strong>EGS</strong>4 and FLUKA99.<br />

3.2 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polarizati<strong>on</strong> Calculati<strong>on</strong>s<br />

Omori <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>KEK</strong> has proposed a polarized positr<strong>on</strong> source design[4] based <strong>on</strong> electr<strong>on</strong>-positr<strong>on</strong><br />

pair creati<strong>on</strong> from backward-Compt<strong>on</strong> scattered laser phot<strong>on</strong>s (maximum energy 60 MeV) hitting<br />

a 1.5-mm-thick tungsten target. Omori calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> producti<strong>on</strong> and polarizati<strong>on</strong> using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4/GRACE codes. To check <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> our approach, we performed a corresp<strong>on</strong>ding<br />

calculati<strong>on</strong>. Table 2 shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> yields between Omori's and our results are in good<br />

agreement, while <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> polarizati<strong>on</strong> values calculated in this work are higher than those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Omori.<br />

3.3 Polarizati<strong>on</strong> for NLC Positr<strong>on</strong> Source<br />

The NLC decided to explore in detail <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> yield and polarizati<strong>on</strong> from thin W-Re and<br />

titanium targets hit by m<strong>on</strong>oenergetic, l<strong>on</strong>gitudinally polarized electr<strong>on</strong> and phot<strong>on</strong> beam at 50 MeV.<br />

The target thickness was 0.2-radiati<strong>on</strong>-length, i.e., 0.06866 cm for W-Re and 0.7124 cm for Ti.<br />

The <strong>EGS</strong>4-calculated positr<strong>on</strong> spectra from <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> beam hitting <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re and Ti target are<br />

shown in Figure 3. The yield <str<strong>on</strong>g>of</str<strong>on</strong>g> high-energy positr<strong>on</strong>s (de ned here as above 25 MeV) per incident<br />

electr<strong>on</strong> is 0.00048 for <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re target and 0.00035 for <str<strong>on</strong>g>the</str<strong>on</strong>g> Ti target. The corresp<strong>on</strong>ding l<strong>on</strong>gitudinal<br />

2


polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> energy (relative to beam energy), shown in Figure<br />

4, indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> energy, <str<strong>on</strong>g>the</str<strong>on</strong>g> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong>. The mean polarizati<strong>on</strong><br />

for positr<strong>on</strong>s above 25 MeV is 0.84 for W-Re and 0.86 for Ti targets.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> same beam-target c<strong>on</strong>diti<strong>on</strong>, Potylitsin[6] calculated analytically a high-energy positr<strong>on</strong><br />

yield <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.002, about 5 times higher than our <strong>EGS</strong>4 value. Potylitsin also estimated a mean polarizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6, which is 30% smaller than ours this could be due to Potylitsin's assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linear relati<strong>on</strong>ship<br />

between phot<strong>on</strong> polarizati<strong>on</strong> and phot<strong>on</strong> energy in <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung process (see Figure 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> [6]).<br />

Table 3 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> above comparis<strong>on</strong> between our results and Potylitsin's.<br />

The positr<strong>on</strong> spectrum from a polarized 50-MeV phot<strong>on</strong> beam hitting <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re target is shown<br />

in Figure 5. The yield <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s above 25 MeV per incident phot<strong>on</strong> is 0.034, about 70 times higher<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> beam. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> polarizati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> W-Re target hit by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> and phot<strong>on</strong> beams is shown in Figure 6. The mean polarizati<strong>on</strong> for positr<strong>on</strong>s above 25<br />

MeV is 0.88 for <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> beam, slightly higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> beam. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

for low-energy positr<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean polarizati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> beam is lower than that from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong> beam, although <str<strong>on</strong>g>the</str<strong>on</strong>g> yield is 10 time higher. The comparis<strong>on</strong> between electr<strong>on</strong> and phot<strong>on</strong><br />

beamsisalsoshown in Table 3.<br />

The 3-D energy-angle distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.2-radiati<strong>on</strong>-length W-Re target hit by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 50-MeV electr<strong>on</strong> beam, shown in Figure 7, indicates that high-energy positr<strong>on</strong>s are more forward<br />

peaked. Figure 8 shows that almost all positr<strong>on</strong>s above 25 MeV are emitted within a small angle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 degrees. It was also found that <str<strong>on</strong>g>the</str<strong>on</strong>g> angular pro le <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitted positr<strong>on</strong>s is not a str<strong>on</strong>g functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> beam type or target material.<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

High mean l<strong>on</strong>gitudinal polarizati<strong>on</strong> (>0.8) <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s above 25 MeV was calculated using <strong>EGS</strong>4<br />

for a W-Re or Ti target (0.2-radiati<strong>on</strong>-length thick) struckby a electr<strong>on</strong> or phot<strong>on</strong> beam (l<strong>on</strong>gitudinally<br />

polarized, 50 MeV). Most high-energy positr<strong>on</strong>s were emitted within a forward angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 degrees.<br />

The yield <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s above 25 MeV per incident phot<strong>on</strong> is 0.034, 70 times higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong> beam.<br />

Acknowledgements<br />

We appreciate K. Flottmann for giving us his polarizati<strong>on</strong> routines and assistance in its implementi<strong>on</strong><br />

into our <strong>EGS</strong>4 user code.<br />

3


References<br />

[1] T. Ketseroglou et al., \Recent development in <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NLC positr<strong>on</strong> source", 1999<br />

Particle Accelerator C<strong>on</strong>ference, New York, March 29;; April 2, 1999.<br />

[2] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \<strong>EGS</strong>4 Code System", SLAC, Stanford, CA<br />

94309, SLAC Report 265, 1985.<br />

[3] A. Fasso, A. Ferrari, J. Ranft, P. R. Sala, \FLUKA: present status and future developments",<br />

Proc. IV Int. C<strong>on</strong>f. On Calorimetry in High Energy Physics, La Biodola, Italy, 21-26, Spetember<br />

1993, Ed. A. Menzi<strong>on</strong>e and A. Scribano, World Scienti c, p.493.<br />

[4] T. Omori, \A polarized positr<strong>on</strong> beam for linear colliders", <strong>KEK</strong> preprint 98-237, March 1999.<br />

[5] K. Flottmann, \Investigati<strong>on</strong> toward <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> polarized and unpolarized high intensity<br />

positr<strong>on</strong> sources for linear colliders", Ph.D. <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, DESY, Report DESY-93-161A, November<br />

1993.<br />

[6] A. P.Potylitsin, \Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polarized positr<strong>on</strong>s through interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitudinally polarized<br />

electr<strong>on</strong>s with thin targets", NIM A398, p.395-398, 1997.<br />

4


Table 1. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> yields from W-Re targets hit by 30-MeV electr<strong>on</strong> beam, calculated<br />

between <strong>EGS</strong>4 and FLUKA99.<br />

W-Re Target 0.1 MeV le E 30 MeV 20 MeV E 30 MeV<br />

Thickness (mm) <strong>EGS</strong>4 FLUKA99 <strong>EGS</strong>4 FLUKA99<br />

0.5 0.0035 0.0035 0.000056 (11%) 0.000088 (25%)<br />

1.0 0.0099 0.010 0.00013 (7%) 0.00013 (17%)<br />

2.0 0.023 0.024 0.00017 (6%) 0.00019 (3%)<br />

5.0 0.026 0.029 0.00013 (7%) 0.00014 (3%)<br />

Note: W-Re has 75% (by weight) tungsten and 25% rhenium and a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 19.65 g cm ;3 .<br />

Table 2. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> yield and mean l<strong>on</strong>gitudinal polarizati<strong>on</strong> from calculati<strong>on</strong>s between<br />

Omori and this work.<br />

Positr<strong>on</strong> Positr<strong>on</strong> Yield Mean Polarizati<strong>on</strong><br />

Energy Omori This Work Omori This Work<br />

E e + > 17 MeV 0.045 0.047 0.6 0.87<br />

E e + > 27 MeV 0.022 0.024 0.8 0.93<br />

Note: Positr<strong>on</strong>s from backward-Compt<strong>on</strong> scattered laser phot<strong>on</strong>s (maximum energy 60 MeV)<br />

hitting a 1.5-mm-thick tungsten target.<br />

Table 3. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong> yield and mean l<strong>on</strong>gitudinal polarizati<strong>on</strong> for positr<strong>on</strong>s > 25 MeV<br />

calculated between <strong>EGS</strong>4 and Potylitsin.<br />

Beam Target Positr<strong>on</strong> Yield Mean Polarizati<strong>on</strong><br />

<strong>EGS</strong>4 Potylitsin <strong>EGS</strong>4 Potylitsin<br />

Electr<strong>on</strong> W-Re 0.00048 0.002 0.84 0.6<br />

Ti 0.00035 0.86<br />

Phot<strong>on</strong> W-Re 0.034 NA 0.88 NA<br />

Note: 0.2-radiati<strong>on</strong>-length target hit by m<strong>on</strong>oenergetic 50-MeV, polarized beam.<br />

5


Figure1.Comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>energyspectra<str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>s,calculatedby<strong>EGS</strong>4andFLUKA99,emanating<br />

from<str<strong>on</strong>g>the</str<strong>on</strong>g>downbeamside<str<strong>on</strong>g>of</str<strong>on</strong>g>W-Retargetshavingthicknesses<str<strong>on</strong>g>of</str<strong>on</strong>g>0.5,1,2and5mmforanincident<br />

electr<strong>on</strong>with<str<strong>on</strong>g>the</str<strong>on</strong>g>kineticenergy<str<strong>on</strong>g>of</str<strong>on</strong>g>30MeV.<br />

Figure2.<strong>EGS</strong>4-calculatedpositr<strong>on</strong>yield(withinenergyrange<str<strong>on</strong>g>of</str<strong>on</strong>g>0.1–30MeV)asafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>polar<br />

angleemittedfrom<str<strong>on</strong>g>the</str<strong>on</strong>g>backplane<str<strong>on</strong>g>of</str<strong>on</strong>g>W-Retargetsatfourthicknesseshitby30-MeVelectr<strong>on</strong>beam.<br />

6


Figure3.Energyspectra<str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>semanatingfromaW-ReorTitarget(0.2radiati<strong>on</strong>lengththick)<br />

struckbyal<strong>on</strong>gitudinallypolarized,50MeVelectr<strong>on</strong>beam.Numbersinsideparen<str<strong>on</strong>g>the</str<strong>on</strong>g>sesare<str<strong>on</strong>g>the</str<strong>on</strong>g>yields<br />

forpositr<strong>on</strong>sabove25MeVperbeamparticle.<br />

<br />

<br />

<br />

Figure4.L<strong>on</strong>gitudinalpolarizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>asafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>energy,relativetobeam<br />

energy,from<str<strong>on</strong>g>the</str<strong>on</strong>g>W-ReandTitargetshitbyal<strong>on</strong>gitudinallypolarizedelectr<strong>on</strong>beam.Numbers<br />

insideparen<str<strong>on</strong>g>the</str<strong>on</strong>g>sesare<str<strong>on</strong>g>the</str<strong>on</strong>g>meanpolarizati<strong>on</strong>forpositr<strong>on</strong>sabove25MeV.<br />

<br />

7


Figure5.Positr<strong>on</strong>spectrumfrom<str<strong>on</strong>g>the</str<strong>on</strong>g>W-Retargethitbyal<strong>on</strong>gitudinallypolarized,50-MeVphot<strong>on</strong><br />

beam.Numberis<str<strong>on</strong>g>the</str<strong>on</strong>g>yieldforpositr<strong>on</strong>sabove25MeVperbeamparticle.<br />

Figure6.Acomparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>l<strong>on</strong>gitudinalpolarizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>sfrom<str<strong>on</strong>g>the</str<strong>on</strong>g>W-Retargethitbypolarized<br />

electr<strong>on</strong>andphot<strong>on</strong>beams.Numbersinsideparen<str<strong>on</strong>g>the</str<strong>on</strong>g>sesare<str<strong>on</strong>g>the</str<strong>on</strong>g>meanpolarizati<strong>on</strong>forpositr<strong>on</strong>sabove<br />

25MeV.<br />

<br />

8


Figure7.Energy-angledistributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>sfrom<str<strong>on</strong>g>the</str<strong>on</strong>g>0.2-radiati<strong>on</strong>-lengthW-Retargethitby<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

50-MeVelectr<strong>on</strong>beam.<br />

<br />

<br />

<br />

<br />

Figure8.Distributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>emissi<strong>on</strong>angle<str<strong>on</strong>g>of</str<strong>on</strong>g>positr<strong>on</strong>sfrom<str<strong>on</strong>g>the</str<strong>on</strong>g>W-Retargetstruckbyelectr<strong>on</strong>and<br />

phot<strong>on</strong>beams.<br />

<br />

9


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.124-129<br />

<strong>EGS</strong>4 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Positr<strong>on</strong> C<strong>on</strong>verter<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> BEPC Linac-Based Slow Positr<strong>on</strong> Beam<br />

R. S. Yu, C. X. Ma, G. X. Pei, L. Wei, B. Y. Wang, and T. B. Chang<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Energy Physics, Academia Sinica<br />

P.O. Box 918, Beijing, 100039, The Peoples Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> China<br />

Abstract<br />

The Beijing Intense Slow Positr<strong>on</strong> Beam is in <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>. This paper<br />

describes <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s by <strong>EGS</strong>4 code toward <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> c<strong>on</strong>verter and <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> shield<br />

problem. Results show that Beijing Electr<strong>on</strong>-Positr<strong>on</strong> Collider (BEPC) LINAC can produce slow<br />

positr<strong>on</strong>s in order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 6 ; 10 7 e + =s when running under parasitic mode and 10 8 ; 10 9 e + =s under<br />

dedicated mode.<br />

1 Introducti<strong>on</strong><br />

In recent years, <str<strong>on</strong>g>the</str<strong>on</strong>g> interest in <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> slow positr<strong>on</strong> beam as a probe for nuclear physics<br />

and solid-state physics has greatly increased. Usually <str<strong>on</strong>g>the</str<strong>on</strong>g> slow positr<strong>on</strong> beams are created by <str<strong>on</strong>g>the</str<strong>on</strong>g> reemissi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> slow positr<strong>on</strong>s from solid surfaces. Primary fast positr<strong>on</strong>s are usually from a radioactive<br />

source or from <str<strong>on</strong>g>the</str<strong>on</strong>g> target bombarded by a linear accelerator. The former type <str<strong>on</strong>g>of</str<strong>on</strong>g> facilities is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

used, but <str<strong>on</strong>g>the</str<strong>on</strong>g> slow positr<strong>on</strong> intensity is restricted to 10 7 e + =s by <str<strong>on</strong>g>the</str<strong>on</strong>g> activity <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>available radioactive<br />

source. The Linac-based positr<strong>on</strong> source can enable an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slow-positr<strong>on</strong> intensity by more<br />

than several orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude[1, 2, 3].<br />

Utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.55 GeV Linac <str<strong>on</strong>g>of</str<strong>on</strong>g> BEPC, we will start c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an intense positr<strong>on</strong> beam,<br />

aiming to produce about 10 6 ;10 7 e + =s slow positr<strong>on</strong>s when BEPC is running under c<strong>on</strong>venti<strong>on</strong>al mode<br />

(Mode I, 2.5 ns pulse width, 12.5 pulses/s repetiti<strong>on</strong> rate, 1000 mA peak current) and 10 8 ; 10 9 e + =s<br />

slow positr<strong>on</strong>s under dedicated operati<strong>on</strong> mode (Mode II-in c<strong>on</strong>structi<strong>on</strong>, 1.6 s pulse width, 50<br />

pulses/s repetiti<strong>on</strong> rate, 50 mA peak current). As <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important parts to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slow positr<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> c<strong>on</strong>verter should be carefully designed[4, 5]. Since no simple relati<strong>on</strong><br />

exists which correlates <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter thickness to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> impinging electr<strong>on</strong>s, we performed<br />

M<strong>on</strong>te-Carlo simulati<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter to<br />

obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter. The angular spread and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> outgoing positr<strong>on</strong>s were studied. Detailed calculati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power distributi<strong>on</strong> as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depth and radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter was also performed. Some simulati<strong>on</strong> results toward<br />

radiati<strong>on</strong> shield problem are also reviewed in this paper.<br />

2 Simulati<strong>on</strong> Results<br />

The <strong>EGS</strong>4 code[6] was used <strong>on</strong> a Windows PC to perform <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te-Carlo simulati<strong>on</strong>s. The<br />

geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter and <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> shield wall is presented in gure 1. We used tantalum<br />

or tungsten as <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter material, which was c<strong>on</strong>sidered being a cylindrical slab surrounded by<br />

vacuum and bombarded by <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> with energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.55 GeV. The electr<strong>on</strong>s were c<strong>on</strong>sidered at<br />

normal incidence and a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 10000 events were followed. The radiati<strong>on</strong> shield wall is made up<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a 0.2 m thick square Fe plate and a 1.8 m thick square c<strong>on</strong>crete wall, which isinstalled after <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1


target. The M<strong>on</strong>te-Carlo process was followed down to energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.02 MeV for electr<strong>on</strong>s, positr<strong>on</strong>s<br />

and phot<strong>on</strong>s, since <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be no pair producti<strong>on</strong> occurring below this energy.<br />

The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter was varied between 10 mm and 35 mm for nding <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal<br />

thickness which representing <str<strong>on</strong>g>the</str<strong>on</strong>g> largest fast positr<strong>on</strong> yield. The relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> fast positr<strong>on</strong><br />

yield and <str<strong>on</strong>g>the</str<strong>on</strong>g> target thickness is shown in gure 2. This gure shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal thickness is equal<br />

to 18 mm and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verting e ciency from <str<strong>on</strong>g>the</str<strong>on</strong>g> incident electr<strong>on</strong>s to fast positr<strong>on</strong>s equals to about<br />

9.5% for both tantalum and tungsten materials. If <str<strong>on</strong>g>the</str<strong>on</strong>g> moderati<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> moderator<br />

located behind <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter equals to 10 ;4 ,<str<strong>on</strong>g>the</str<strong>on</strong>g>slow positr<strong>on</strong> yield will equal to 10 6 ; 10 7 e + =s when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> BEPC LINAC is running under mode I and 10 8 ; 10 9 e + =s under mode II. Figure 3 gives <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outgoing fast positr<strong>on</strong>s. One can see that <str<strong>on</strong>g>the</str<strong>on</strong>g> fast positr<strong>on</strong>s are peaked in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> forward directi<strong>on</strong>. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> fast positr<strong>on</strong>s as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitting angle decreases very<br />

fast. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong> moderator has to be placed as close as possible to <str<strong>on</strong>g>the</str<strong>on</strong>g> positr<strong>on</strong><br />

c<strong>on</strong>verter in order to moderate as much as possible fast positr<strong>on</strong>s.<br />

Figure 4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fast positr<strong>on</strong>s out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 18 mm thick tantalum c<strong>on</strong>verter,<br />

it has a steep decrease towards lower energies and a l<strong>on</strong>g tail towards higher energies. The spectrum<br />

is peaked below 10 MeV and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a small shift for <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s between 5 MeV and 10<br />

MeV.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power distributi<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> depth and radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter<br />

are shown in gure 5 and gure 6, respectively. For <str<strong>on</strong>g>the</str<strong>on</strong>g> pencil beam <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective radius<br />

near showrr maximun is about 0.5 mm. The temperature rises <str<strong>on</strong>g>of</str<strong>on</strong>g> tungsten target during <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective<br />

radius accompanying <strong>on</strong>e beam pulse is approximately<br />

T =<br />

1<br />

C P<br />

a 2<br />

dQ 1<br />

dzdt v =290C Where<br />

( )= <str<strong>on</strong>g>the</str<strong>on</strong>g> density (( =19:25g=cm 3 ) for tungsten)<br />

(C P )=<str<strong>on</strong>g>the</str<strong>on</strong>g> speci c heat (0.138 J/g ( C) for tungsten)<br />

a=<str<strong>on</strong>g>the</str<strong>on</strong>g> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> energy depositi<strong>on</strong> (0.5 mm)<br />

dQ/(dzdt)=<str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat depositi<strong>on</strong><br />

( ) =<str<strong>on</strong>g>the</str<strong>on</strong>g> accelerator repetiti<strong>on</strong> rate (12.5 pulses/sec)<br />

So, a water-cooled c<strong>on</strong>verter, with a water ow <str<strong>on</strong>g>of</str<strong>on</strong>g> at least 4 (cm 3 =s), is crucially required for heat<br />

transferring.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s are accelerated to an extreme high energy by <str<strong>on</strong>g>the</str<strong>on</strong>g> LINAC, <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> shield<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> target is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r critical technical problem. Simulati<strong>on</strong> results by <strong>EGS</strong>4 showed that<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> square side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fe plate and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>crete wall both equal to 1 m, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> tantalum slab, Fe plate and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>crete wall shares 31.2%, 45.7% and 11.2%,<br />

respectively. The energy deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> outer regi<strong>on</strong> (regi<strong>on</strong> 3 in g.1) between <str<strong>on</strong>g>the</str<strong>on</strong>g> target and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shield wall shares about 11.9%. Total energy deposited outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>crete wall (regi<strong>on</strong> 6 in g.1)<br />

equals to (1:067 10 ;7 ) kW when <str<strong>on</strong>g>the</str<strong>on</strong>g> LINAC is running under Mode I, which has been supplying a<br />

safe operati<strong>on</strong> envir<strong>on</strong>ment.<br />

3 C<strong>on</strong>clusi<strong>on</strong><br />

Detailed simulati<strong>on</strong>s toward <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Beijing intense slow positr<strong>on</strong> beam were performed.<br />

It has been shown that a realistic number <str<strong>on</strong>g>of</str<strong>on</strong>g> (10 6 ; 10 7 e + =s) slow positr<strong>on</strong>s when BEPC<br />

LINAC is running under parasitic mode and (10 8 ; 10 9 e + =s) slow positr<strong>on</strong>s under dedicated mode<br />

can be produced. Meanwhile, experiment using a real target to c<strong>on</strong> rm <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility and test <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above simulati<strong>on</strong>s is <str<strong>on</strong>g>the</str<strong>on</strong>g> future work.<br />

2


Acknowledgements<br />

This work is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> China under grant<br />

No.19927001 and <str<strong>on</strong>g>the</str<strong>on</strong>g> Key-project <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences under grant No. KJ952-S1-416.<br />

We arevery appreciated to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Hirayama for his kindly help about <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong> code, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r useful<br />

informati<strong>on</strong>. R. S. Yu acknowledge <strong>KEK</strong> for nancial support. L.Wei would like tothank to Dr. T.<br />

Kurihara for useful discussi<strong>on</strong>s.<br />

References<br />

[1] R. Ley, Materials Science Forum.105-110,1927-1930(1992).<br />

[2] T. Akahae, T. Chiba, N. Shiotani et al., Appl.Phys. A 51(1990)146-150.<br />

[3] T. Kurihara, A. Shirakawa, A. Enomoto, et al., Applied Surface Science 85(1994)178-181.<br />

[4] S. Okada and H. Sunaga, Nucl. Instr. and Meth. B 56/57(1991)604-609.<br />

[5] S. Okada and H. Kaneko, Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4, <strong>KEK</strong>,<br />

Tsukuba, Japan, 302-309(1997).<br />

[6] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Roger, \The EG4 Code System", SLAC-265. Stanford<br />

Linear Accelerator Center(1985).<br />

3


1<br />

Vacuum<br />

Electr<strong>on</strong><br />

Beam<br />

2<br />

Target<br />

3<br />

Vacuum<br />

4<br />

Feplate<br />

5<br />

c<strong>on</strong>cretewall<br />

6<br />

Vacuum<br />

Figure 1: Simulati<strong>on</strong> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verter and <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> shield wall.<br />

Positr<strong>on</strong>Yield(CPS)<br />

210 10<br />

1.810 10<br />

1.610 10<br />

1.410 10<br />

1.210 10<br />

110 10<br />

810 9<br />

610 9<br />

TaC<strong>on</strong>verter<br />

Wc<strong>on</strong>verter<br />

10 15 20 25 30 35 40<br />

Angular(degree)<br />

Figure 2: Relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> fast positr<strong>on</strong> yield and <str<strong>on</strong>g>the</str<strong>on</strong>g> target thickness.<br />

4


Number<str<strong>on</strong>g>of</str<strong>on</strong>g>Positr<strong>on</strong>s<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120 140<br />

Angular(degree)<br />

Figure 3: Angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outgoing fast positr<strong>on</strong>s.<br />

Number<str<strong>on</strong>g>of</str<strong>on</strong>g>Positr<strong>on</strong>s<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Positr<strong>on</strong>Energy(MeV)<br />

Figure 4: Energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fast positr<strong>on</strong>s out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 18 mm thick c<strong>on</strong>verter.<br />

5


EnergyDepositi<strong>on</strong>(W)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

BulkC<strong>on</strong>verterLength(cm)<br />

Figure 5: Thermal power distributi<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> depth.<br />

EnergyDeposited(W)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 1 2 3 4 5 6<br />

RadialDistancefrom<str<strong>on</strong>g>the</str<strong>on</strong>g>center<str<strong>on</strong>g>of</str<strong>on</strong>g>tantalumtarget(mm)<br />

Figure 6: Thermal power distributi<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radial distance.<br />

6


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.130-134<br />

Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> Phot<strong>on</strong>eutr<strong>on</strong> Spectra<br />

from Thick Pb Target Bombarded by 1.2 and 2.0 GeV Electr<strong>on</strong>s<br />

S. Ban, Y. Namito, H. Hirayama, N. Terunuma, J. Urakawa<br />

T. Sato 1 , R. Yuasa 1 , K. Shin 1 , H. S. Lee 2 and J .S. Bak 2<br />

High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>),<br />

Oho, Tsukuba, Ibaraki, 305-0801, Japan<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Engineering, Kyoto University,<br />

Yoshida, Sakyo-ku, Kyoto 606-8501, Japan<br />

2 Pohang Accelerator Laboratory, POSTECH, Nam-gu, Pohang, 790-784, Korea<br />

Abstract<br />

Phot<strong>on</strong>eutr<strong>on</strong> spectra were measured using <str<strong>on</strong>g>the</str<strong>on</strong>g> TOF method when thick targets were bombarded<br />

by high-energy electr<strong>on</strong>s. At <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF Linac in <strong>KEK</strong>, 1.2 GeV electr<strong>on</strong>s bombarded a thick Pb<br />

target. At <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> Linac <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pohang Accelerator Laboratory, 2.04 GeV electr<strong>on</strong>s were used.<br />

The detector was 5.6 m distant from <str<strong>on</strong>g>the</str<strong>on</strong>g> target. Several detectors were tested. Neutr<strong>on</strong>s toward<br />

90 degrees from <str<strong>on</strong>g>the</str<strong>on</strong>g> target were measured up to 150 MeV at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF, and 200 MeV at PAL.<br />

Calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> energy spectra were also d<strong>on</strong>e using PICA3 and <strong>EGS</strong>4.<br />

1 Introducti<strong>on</strong><br />

There are <strong>on</strong>ly a few measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>eutr<strong>on</strong> energy spectra from thick targets <str<strong>on</strong>g>of</str<strong>on</strong>g> highenergy<br />

electr<strong>on</strong>s. The highest energy <str<strong>on</strong>g>of</str<strong>on</strong>g> those experiments was 0.27 GeV [1], and <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g ight<br />

path, 25-m, was needed in <str<strong>on</strong>g>the</str<strong>on</strong>g> TOF measurements because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g background <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and<br />

phot<strong>on</strong>s.<br />

We started <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements[2] in Jan. 1996 at <str<strong>on</strong>g>the</str<strong>on</strong>g> Accelerator Test Facility (ATF) in <strong>KEK</strong>.<br />

The 1 GeV electr<strong>on</strong>s hit 2cm-thick Pb targets. Several detectors were tested. The plastic scintillator<br />

with Pb collimator was calibrated using quasi-m<strong>on</strong>oenergetic neutr<strong>on</strong> sources between 5 and 132 MeV.<br />

Neutr<strong>on</strong>s toward 90 degrees were measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> TOF method at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding<br />

c<strong>on</strong>crete around <str<strong>on</strong>g>the</str<strong>on</strong>g> target was not thick enough, <str<strong>on</strong>g>the</str<strong>on</strong>g> background was large in <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements. At<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Linac <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pohang Accelerator Laboratory (PAL) in POSTECH, 2.04 GeV electr<strong>on</strong>s were used<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> target was placed in well shielded beam dump room. Neutr<strong>on</strong> spectra up to 200 MeV were<br />

measured at PAL[3,4].<br />

2 Experiments using 1.2 GeV electr<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF in <strong>KEK</strong><br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> Linac <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF in <strong>KEK</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> 1-m-thick overhead c<strong>on</strong>crete shields were drilled and a<br />

16cm-diameter collimator was placed. The liquid scintillator, 5"Diam.x5" BC501A, was placed at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator because <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong> detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> BC501A detector was well<br />

known. But <str<strong>on</strong>g>the</str<strong>on</strong>g> dead time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector was l<strong>on</strong>g after <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g pulsed X-rays. Next, 5"-diam.x1"<br />

NE102A plastic scintillator was used to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> dead time. The situati<strong>on</strong> became better. Because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> overhead c<strong>on</strong>crete shield <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF is <strong>on</strong>ly 1-m thick, additi<strong>on</strong>al Pb collimator was needed<br />

surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g> detector, and its shape was not suitable to place in <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator.<br />

1


Finally 51mm-diam.x49mm-l<strong>on</strong>g PILOT-U (BC418) scintillator was used. It was surrounded by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 40-cm l<strong>on</strong>g Pb collimator. The e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector without <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator was calculated by<br />

SCINFUL and Cecil's code. The collimator a ected <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong> detecti<strong>on</strong> e ciency. It was calibrated<br />

using quasi-m<strong>on</strong>oenergetic neutr<strong>on</strong> sources, 132, 86.5 and 66 MeV at RRC in RIKEN, 64.7MeV at<br />

TIARA in JAERI, 33.0 MeV at CYRIC in Tohoku Univ., and 14.9 MeV at OKTAVIAN in Osaka<br />

Univ., 5 MeV at <str<strong>on</strong>g>the</str<strong>on</strong>g> FNL in Tohoku Univ. It was found <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciency was not a ected by <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height discriminati<strong>on</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector was high. But <str<strong>on</strong>g>the</str<strong>on</strong>g> discriminati<strong>on</strong> level was<br />

low, 1.1 MeVee, at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF, and measured detecti<strong>on</strong> e ciency was used.<br />

The experimental setup at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF is shown in Fig.1. The detector in Pb collimator was placed <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tower 2.5 m high. The detector was 5.6 m distant from <str<strong>on</strong>g>the</str<strong>on</strong>g> target. To suppress X-rays,<br />

several thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb blocks were placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ight path between <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

and detector. Some neutr<strong>on</strong>s were scattered in <str<strong>on</strong>g>the</str<strong>on</strong>g>se Pb blocks, and <str<strong>on</strong>g>the</str<strong>on</strong>g>se e ects were evaluated using<br />

LAHET 2.7[6]. The beam frequency was 6 Hz and <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse width was 0.02 ns, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rf timing<br />

signal was used for <str<strong>on</strong>g>the</str<strong>on</strong>g> start signal. The TOF spectra were measured using 2 GHz multi-channel<br />

scaler. Preliminary results are shown in Fig.2 when 1.2 GeV electr<strong>on</strong>s hit 5x5cm-wide and 2cm-thick<br />

Pb target placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum chamber in <str<strong>on</strong>g>the</str<strong>on</strong>g> Linac tunnel. The 15-cm-thick Pb blocks were placed<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ight path. The bar in Fig.2 shows <strong>on</strong>ly counting statistical errors. The beam intensity was<br />

reduced to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> dead time and was approximately 50 pC/pulse. This was far from <str<strong>on</strong>g>the</str<strong>on</strong>g> normal<br />

operati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linac, and <str<strong>on</strong>g>the</str<strong>on</strong>g> beam status was not accurately known. Background was<br />

estimated from <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements using 35-cm-thick Fe and 20-cm-thick Pb. Neutr<strong>on</strong>s up to 150 MeV<br />

were measured at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF.<br />

Calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> energy spectra were also d<strong>on</strong>e. Phot<strong>on</strong> track length in <str<strong>on</strong>g>the</str<strong>on</strong>g> target was<br />

calculated using <strong>EGS</strong>4. Photo-nuclear cross secti<strong>on</strong>s were evaluated using PICA3 code[5]. Transport<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary neutr<strong>on</strong> and pi<strong>on</strong> etc. was calculated by LAHET 2.7[6]. The calculated results are shown<br />

in Fig.2. Though <str<strong>on</strong>g>the</str<strong>on</strong>g> measured results were not accurate due to large background and uncertainty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency and <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linac, calculated results were smaller than<br />

measured <strong>on</strong>es.<br />

3 Experiments using 2 GeV electr<strong>on</strong>s at PAL<br />

In 1998, <str<strong>on</strong>g>the</str<strong>on</strong>g> TOF beam line was newly c<strong>on</strong>structed at PAL. The ight path length was <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

as that in <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF, and was 5.6 m. But <str<strong>on</strong>g>the</str<strong>on</strong>g> overhead shielding c<strong>on</strong>crete was 2.2m thick. So <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

background was reduced. The experimental setup at PAL[3,4] is shown in Fig.3. The discriminati<strong>on</strong><br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector was 4.2 MeVee. The collimator did not a ect <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency and <str<strong>on</strong>g>the</str<strong>on</strong>g> dead<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> counter after <str<strong>on</strong>g>the</str<strong>on</strong>g> pulsed X-rays became smaller. The results are shown in Fig.4 when 2.04<br />

GeV electr<strong>on</strong>s hit 5x5cm-wide and 5.5cm-thick (10-radiati<strong>on</strong>-length) Pb targets. The beam frequency<br />

was 10 Hz and <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse width was about 1 ns. The start signal was given from a beam-current<br />

m<strong>on</strong>itor. The beam intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> each pulse was about 500pC, and higher than that at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF. So<br />

thicker Pb blocks, 15-30 cm, were placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ight path to suppress X-rays. These Pb<br />

blocks also reduced neutr<strong>on</strong>s toward <str<strong>on</strong>g>the</str<strong>on</strong>g> detector, and this e ect was evaluated using LAHET 2.7[6].<br />

Even in such a case, <str<strong>on</strong>g>the</str<strong>on</strong>g> background neutr<strong>on</strong>s and phot<strong>on</strong>s were small because <str<strong>on</strong>g>the</str<strong>on</strong>g> target was well<br />

shielded except <str<strong>on</strong>g>the</str<strong>on</strong>g> ight path.<br />

4 Summary<br />

We started <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> photo-neutr<strong>on</strong> spectra toward 90 degrees from thick targets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1.2 and 2 GeV electr<strong>on</strong>s. Neutr<strong>on</strong>s between 10 and 200 MeV were measured. The experimental setup<br />

was smaller compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <strong>on</strong>e at 0.3 GeV[1].<br />

The neutr<strong>on</strong> spectra were calculated using <strong>EGS</strong>4/PICA3[5]/LAHET2.7[6]. Calculated <strong>on</strong>es tend<br />

to underestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>es. More experimental data were needed for di erent angles and<br />

energy range.<br />

2


Acknowledgments<br />

The authors wish to thank to <str<strong>on</strong>g>the</str<strong>on</strong>g> operating crews <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF in <strong>KEK</strong>. We are also thankful to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stu <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linac in PAL. We wish to thank S. Tanaka(JAERI), Y. Uwamino(RIKEN), T. Nakamura,<br />

M. Baba(Tohoku Univ.), I. Murata(Osaka Univ.), H. Nakamura, N. Nakao, K. Omata(<strong>KEK</strong>) and<br />

S. Rokni(SLAC).<br />

References<br />

[1] H. J. v<strong>on</strong> Eyss, and G. Luhrs, Z. Phys. 262(1973)393.<br />

[2] K. Shin, T. Sato, S. Ban, H. Nakamura, Y. Namito, H. Hirayama and S. Rokni, \Measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> photo-neutr<strong>on</strong> yield from thick lead target bombarded by 1.2 GeV electr<strong>on</strong>s", Proc. 7th <strong>EGS</strong>4<br />

users meeting in Japan, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 98-7 (1998).<br />

[3] T. Sato, K. Shin, R. Yuasa, S. Ban, H. S. Lee, \Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Neutr<strong>on</strong> Spectrum by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2.04-GeV Electr<strong>on</strong> Beam into Thick Targets", to be published to Nucl. Instrum.<br />

Meth. A (<strong>KEK</strong> Preprint 2000-109).<br />

[4] H. S. Lee, S. Ban, T. Sato, K. Shin, J. S. Bak, C. Chung, and H. D. Choi, \Phot<strong>on</strong>eutr<strong>on</strong> Spectra<br />

from Thin Targets Bombarded with 2.0 GeV Electr<strong>on</strong>s", J. Nucl. Sci. Tech., Suppl. 1(2000)207-<br />

211.<br />

[5] R. E. Prael and H. Lichtenstein, \User's Guide to LCS: The LAHET Code System", LA-UR-89-<br />

3014 (1989).<br />

[6] T. Sato, K. Shin, S. Ban, T. A. Gabriel, C. Y. Fu and H. S. Lee, \PICA3, An Updated code<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Photo-Nuclear Cascade Evaporati<strong>on</strong> Code PICA95, and its Benchmark Experiments", Proc.<br />

Int. C<strong>on</strong>f. <strong>on</strong> Advanced M<strong>on</strong>te Carlo for Radiati<strong>on</strong> Physics, Particle Transport Simulati<strong>on</strong> and<br />

Applicati<strong>on</strong>s (MC2000), 23-26 Oct. 2000, Lisb<strong>on</strong>, Portugal.<br />

3


Figure 1: Experimental setup at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF when 1.2 GeV electr<strong>on</strong>s irradiated 2-cm-thick Pb target.<br />

Neutr<strong>on</strong>/MeV/Sr/e<br />

1.E-04<br />

1.E-05<br />

1.E-06<br />

1.E-07<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Neutr<strong>on</strong>Energy(MeV)<br />

Figure 2: Preliminary results <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> spectra toward 90 degrees from 2-cm-thick Pb target irradiated by 1.2<br />

GeV electr<strong>on</strong>s. Full circle: Measured at <str<strong>on</strong>g>the</str<strong>on</strong>g> ATF. Open circle : Calculated using <strong>EGS</strong>4/PICA3[5]/LAHET2.7[6].<br />

4


PbCollimator<br />

(10cmthickcylinder<br />

<strong>on</strong>5cmthickbase)<br />

C<strong>on</strong>crete<br />

ShadowBar<br />

PbAttenuator<br />

C<strong>on</strong>crete<br />

Collimator<br />

(D=15.8cm)<br />

PbCollimator<br />

(30x30x10(T)cm)<br />

e -<br />

BeamPr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

M<strong>on</strong>itor<br />

n<br />

560cm<br />

195cm<br />

60cm<br />

320cm<br />

220cm<br />

Figure 3: Experimental setup at PAL when 2.04 GeV electr<strong>on</strong>s irradiated Pb targets[3,4].<br />

Neutr<strong>on</strong>/Sr/MeV/Electr<strong>on</strong><br />

0.001<br />

0.0001<br />

10 -5<br />

10 -6<br />

10 -7<br />

50cm<br />

0 50 100 150 200<br />

Neutr<strong>on</strong>Energy(MeV)<br />

Figure 4: Measured neutr<strong>on</strong> spectra toward 90 degrees from 5.5-cm-thick Pbtargets irradiated by 2.04 GeV<br />

electr<strong>on</strong>s.<br />

5


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.135-143<br />

Resp<strong>on</strong>se Calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CdZnTe Detector Using <strong>EGS</strong>4 1<br />

J. C. Liu, W. R. Nels<strong>on</strong> and R. Seefred<br />

Stanford Linear Accelerator Center,<br />

MS 48, P. O. Box 4349, Stanford, CA 94309, USA<br />

Abstract<br />

The spectral resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a CdZnTe semic<strong>on</strong>ductor detector has been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

Code System. The latest low-energy phot<strong>on</strong> producti<strong>on</strong> and transport routines developed at <strong>KEK</strong>,<br />

which c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> KandL shell uorescent phot<strong>on</strong> producti<strong>on</strong> in compounds, bound Compt<strong>on</strong><br />

scattering, Doppler broadening, etc., were included in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code. The calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

CdZnTe detector also took into account <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> produced electr<strong>on</strong>-hole pairs<br />

(described by Hecht equati<strong>on</strong>) and <str<strong>on</strong>g>the</str<strong>on</strong>g> modi cati<strong>on</strong> <strong>on</strong> spectral peaks due to both <str<strong>on</strong>g>the</str<strong>on</strong>g> Fano factor<br />

and electr<strong>on</strong>ic-noise broadening. The calculated results are compared with measurements made<br />

with encapsulated 241 Am and 137 Cs disk sources. It was found that, by trying various mobilitylifetime<br />

values for holes, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated spectral resp<strong>on</strong>se still did not have perfect agreement with<br />

measurements.<br />

1 Introducti<strong>on</strong><br />

In a previous study[1], <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code System[2] was used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral resp<strong>on</strong>se<br />

for a CdZnTe detector (called CZT hereafter) that was used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong><br />

leakage spectra in a PEP-II accelerator radiati<strong>on</strong> envir<strong>on</strong>ment. In that paper, minor disagreements<br />

were found when <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4-calculated phot<strong>on</strong> spectra were compared with measurements made using<br />

encapsulated 241 Am, 133 Ba and 109 Cd disk sources.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous study, <str<strong>on</strong>g>the</str<strong>on</strong>g> following processes were standard with <strong>EGS</strong>4: photoelectric e ect<br />

(with angular sampling from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sauter formula), coherent (Rayleigh) and Compt<strong>on</strong> scattering (unbound),<br />

discrete Moller and Bhabha interacti<strong>on</strong>s, positr<strong>on</strong> annihilati<strong>on</strong> (in- ight and at-rest), c<strong>on</strong>tinuous<br />

energy loss, Moliere multiple scattering applied to charged-particle tracks, and pair producti<strong>on</strong>/bremsstrahlung<br />

(with angular sampling). In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g>se processes, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s also<br />

speci cally took into account:<br />

1. producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-shell uorescence from a CZT mixture, using an improvement to a method<br />

developed for <strong>EGS</strong>4 by Del Guerra et al[3],<br />

2. collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-hole pairs (<str<strong>on</strong>g>the</str<strong>on</strong>g> signal) using <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>[4],<br />

3. narrowing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signal by c<strong>on</strong>sidering Fano factor and broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signal due to electr<strong>on</strong>icnoise.<br />

Recently Hirayama and Namito at <strong>KEK</strong> have developed routines to treat low-energy phot<strong>on</strong> producti<strong>on</strong><br />

and transport in materials[5, 6]. The routines mainly c<strong>on</strong>sider bound Compt<strong>on</strong> scattering,<br />

Doppler broadening, and <str<strong>on</strong>g>the</str<strong>on</strong>g> K and L shell uorescent phot<strong>on</strong> producti<strong>on</strong> in elements, as well as in<br />

compounds. Therefore, in this study we incorporated <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>KEK</strong> routines into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code System<br />

in order to compare with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous study. In additi<strong>on</strong>, to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r resolve <str<strong>on</strong>g>the</str<strong>on</strong>g> above-menti<strong>on</strong>ed<br />

1 Work supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> US Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy under c<strong>on</strong>tract DE-AC-03-76SF00515<br />

1


discrepancy between <strong>EGS</strong>4 calculati<strong>on</strong>s and measurements, this time we have studied in depth <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> algorithm <str<strong>on</strong>g>of</str<strong>on</strong>g> spectral resp<strong>on</strong>se, particularly by using various mobility-lifetime values in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hecht equati<strong>on</strong>. Additi<strong>on</strong>al phot<strong>on</strong> spectra measurements using 241 Am and 137 Cs disk sources were<br />

also made to compare with <strong>EGS</strong>4 calculati<strong>on</strong>s.<br />

2 <strong>EGS</strong>4 Calculati<strong>on</strong>s<br />

2.1 Detector Material and Energy Cuto s<br />

The CZT detector was made by eV Products, Inc. (model eV-180-3-3-2-S 375 Sax<strong>on</strong> Blvd.,<br />

Sax<strong>on</strong>burg, PA 16056, USA). The CZT material data was created with <str<strong>on</strong>g>the</str<strong>on</strong>g> MIXT opti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>EGS</strong>4<br />

using a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.86 g/cm 3 and RHOZ values <str<strong>on</strong>g>of</str<strong>on</strong>g> 50.58, 3.27 and 63.80 for Cd, Zn and Te, respectively<br />

(corresp<strong>on</strong>ding to atomic percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> 45, 5 and 50%). The P<strong>EGS</strong>4 energy limits were chosen to be<br />

(AP=0.001, UP=10.0) and (AE=0.521, UE=10.511) MeV for phot<strong>on</strong>s and electr<strong>on</strong>s, respectively. In<br />

additi<strong>on</strong> to turning <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rayleigh scattering opti<strong>on</strong> (IRAYL=1) and <str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiative stopping<br />

powers compliant with ICRU-37 (IAPRIM=1), all <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>KEK</strong> low-energy phot<strong>on</strong> opti<strong>on</strong>s (IXRAY=1,<br />

IBOUND=1, INCOH=1, ICPROF=-3, IMPACT=1) were turned <strong>on</strong>.<br />

The phot<strong>on</strong> transport cuto PCUT was set at 0.001 MeV. The electr<strong>on</strong> cuto energy ECUT<br />

was set at 1.511 MeV, forcing <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s to be deposited at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir points <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

creati<strong>on</strong>, except for 137 Cs (ECUT was <str<strong>on</strong>g>the</str<strong>on</strong>g>n 0.561 MeV). The rati<strong>on</strong>alizati<strong>on</strong> for doing this is based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary electr<strong>on</strong>s from all radioisotopic source phot<strong>on</strong>s (except 137 Cs) in<br />

CZT are much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT crystal. In any case, acheck was made with<br />

ECUT=AE=0.521 MeV (i.e., 10 keV kinetic energy) and <str<strong>on</strong>g>the</str<strong>on</strong>g> results were essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same as with<br />

higher ECUT values. It was also found that <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> PRESTA[7] did not change <str<strong>on</strong>g>the</str<strong>on</strong>g> results.<br />

2.2 Measurements and <strong>EGS</strong>4 Geometry<br />

The measurement and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding <strong>EGS</strong>4 geometry in this study (see Figure 1) were similar<br />

to that in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous study. X-ray photographs showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT crystal (3x3 mm 2 and 2 mm<br />

thick), mounted inside a BNC-type c<strong>on</strong>nector, is 0.575 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.25-mm-thick beryllium window<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CZT detector. An aluminum cylinder <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.45 cm inner radius and 0.1 cm thickness surrounds <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crystal. Our <strong>EGS</strong>4 user code utilized a generalized cylinder/azimuthal plane/slab geometry package<br />

(ucRTZ.mortran and ucRTZ.data), with <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT crystal chosen to be 0.17 cm<br />

to provide an equivalent cross-secti<strong>on</strong>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 mm 2 . The 241 Am or 137 Cs disk source was positi<strong>on</strong>ed<br />

at 10 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> beryllium window. The radiati<strong>on</strong> sources were sealed in plastic discs, 25 mm<br />

in diameter and 5 mm thick (<str<strong>on</strong>g>the</str<strong>on</strong>g> source was actually about 1 mm deep).<br />

The input gamma and X-ray energies, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir corresp<strong>on</strong>ding intensities, were taken from ICRP<br />

Publicati<strong>on</strong> 38[8] for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three sources: 241 Am, 133 Ba and 109 Cd. A single energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 662 keV<br />

was used for 137 Cs source. Energy sampling was d<strong>on</strong>e by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple cumulative distributi<strong>on</strong><br />

table. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> large distance, a point source and a m<strong>on</strong>odirecti<strong>on</strong>al phot<strong>on</strong> beam toward <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t<br />

face <str<strong>on</strong>g>of</str<strong>on</strong>g> CZT detector were assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s.<br />

To reduce electr<strong>on</strong>ic noises, <str<strong>on</strong>g>the</str<strong>on</strong>g> BNC-CZT unit was attached directly to a matching c<strong>on</strong>nector<br />

<strong>on</strong> an inverting low-noise, charge-sensitive preampli er (eV Products, model eV-550). A bias voltage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> +200 V (+400 V for 137 Cs) was supplied to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector through <str<strong>on</strong>g>the</str<strong>on</strong>g> preampli er, with <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal negatively biased in order to maximize <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> holes. Output pulses<br />

were processed with a pulse-shaping ampli er having a 0.5 sec shaping time and sent to a PC-based<br />

multi-channel analyzer.<br />

2.3 Scoring <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>-Hole Pair Collecti<strong>on</strong><br />

Electr<strong>on</strong>-hole pairs are created whenever energy is deposited in a semic<strong>on</strong>ductor. The average<br />

energy required to create an electr<strong>on</strong>-hole pair is denoted as <str<strong>on</strong>g>the</str<strong>on</strong>g> W value (we used W = 4.6 eV for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

2


CdZnTe). The output pulse is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> charge that is collected which, in turn, is c<strong>on</strong>trolled<br />

primarily by <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility-lifetime products, e e and h h (units: cm 2 /V), for electr<strong>on</strong>s and holes,<br />

respectively. The mobility <str<strong>on</strong>g>of</str<strong>on</strong>g>charge carriers in CdZnTe ismuch smaller than in Si and Ge detectors<br />

and, thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> charge carriers are easily trapped in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal while <str<strong>on</strong>g>the</str<strong>on</strong>g>y drift to <str<strong>on</strong>g>the</str<strong>on</strong>g> electrodes.<br />

The charge-collecti<strong>on</strong> e ciency is de ned as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers collected<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> electrodes to <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> carriers generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> energy depositi<strong>on</strong>. If <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> detrapping is neglected, <str<strong>on</strong>g>the</str<strong>on</strong>g> charge-collecti<strong>on</strong> e ciency (z) for charge carriers at depth z in<br />

a semic<strong>on</strong>ductor crystal <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness d (cm) can be determined by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>[4]:<br />

(z) =( e=d)(1 ; e ;(d;z)= e) +( h=d)(1 ; e ;z= h ) (1)<br />

where e = e eE and h = h hE are <str<strong>on</strong>g>the</str<strong>on</strong>g> mean free paths (units: cm) for electr<strong>on</strong>s and holes,<br />

respectively, z is <str<strong>on</strong>g>the</str<strong>on</strong>g> depth into <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal from <str<strong>on</strong>g>the</str<strong>on</strong>g> negatively-biased (voltage V in volts) fr<strong>on</strong>t<br />

surface and E is <str<strong>on</strong>g>the</str<strong>on</strong>g> electric eld strength (E=V/d) in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector.<br />

Typical mobility-lifetime values we used in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong> were e e =7 10 ;3 cm 2 /V and<br />

h h =5 10 ;5 cm 2 /V. With a high voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 V and a detector thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> d = 0.2 cm, <str<strong>on</strong>g>the</str<strong>on</strong>g> e<br />

is 7 cm and h is 0.05 cm. Therefore, it is clear that holes can be easily trapped particularly when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are produced at depths far away from <str<strong>on</strong>g>the</str<strong>on</strong>g> negatively-biased electrode.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> low-energy phot<strong>on</strong>s from 241 Am deposit energy primarily near <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t face while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

662-keV phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Cs deposit energy uniformly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> depth, <str<strong>on</strong>g>the</str<strong>on</strong>g> charge collecti<strong>on</strong> e ect is<br />

more pr<strong>on</strong>ounced for 137 Cs phot<strong>on</strong>s, which also makes it a better source to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mobility-lifetime value.<br />

2.4 Fano Factor and Electr<strong>on</strong>ic Noise Broadening<br />

To compare <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4-calculated spectra with experimental results, <str<strong>on</strong>g>the</str<strong>on</strong>g> Fano factor and <str<strong>on</strong>g>the</str<strong>on</strong>g> peak<br />

broadening due to electr<strong>on</strong>ic noise, etc. were also c<strong>on</strong>sidered[9]. Namely, for each incident phot<strong>on</strong>,<br />

a running sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-hole pairs that are created at <str<strong>on</strong>g>the</str<strong>on</strong>g> EDEP sites in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detector is kept with each c<strong>on</strong>tributi<strong>on</strong> multiplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding charge-collecti<strong>on</strong> e ciency<br />

determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>. To be more speci c, we rst determine <str<strong>on</strong>g>the</str<strong>on</strong>g> charge collected<br />

(unstraggled) per phot<strong>on</strong> event N:<br />

N = (z)E dep(z)=W (2)<br />

where E dep(z) is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy deposited at depth z from <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal. The total<br />

standard deviati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>n determined from:<br />

2 2 = fN + (3)<br />

enc<br />

where f is <str<strong>on</strong>g>the</str<strong>on</strong>g> Fano factor for CZT and enc is a standard deviati<strong>on</strong> to account for <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent noise<br />

charge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>ics[9]. We used values for W, f and enc similar to those reported by Bencivelli<br />

et al.[10] for Cd-Te f=0.14 and enc=150 e-h pairs.<br />

Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> straggled (broadened) charge that is collected, N s, is statistically determined by sampling<br />

from a Gaussian peak, centered about N with . The corresp<strong>on</strong>ding energy, Es=WN s, is <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

histogrammed for each incident phot<strong>on</strong> event for comparis<strong>on</strong> with experiment.<br />

3 Results<br />

Figure 2 shows that 241 Am spectra calculated using <strong>EGS</strong>4 with <str<strong>on</strong>g>the</str<strong>on</strong>g> latest <strong>KEK</strong> low-energy phot<strong>on</strong><br />

producti<strong>on</strong> and transport routines and that with Nels<strong>on</strong>'s approach for compounds (<str<strong>on</strong>g>the</str<strong>on</strong>g> previous study)<br />

have perfect agreement for <str<strong>on</strong>g>the</str<strong>on</strong>g> major peaks above 10 keV. Similar comparis<strong>on</strong>s for 133 Ba and 109 Cd<br />

also gave good agreement. Hereafter throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> paper <str<strong>on</strong>g>the</str<strong>on</strong>g> results will be those calculated using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>KEK</strong> routines.<br />

Figure 3 indicates that, as expected, <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> di erent values for parameters W, Fano factor<br />

f, and density <str<strong>on</strong>g>of</str<strong>on</strong>g> CdZnTe did not a ect <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum much.<br />

3


The measured phot<strong>on</strong> spectrum is shown in Figure 4 for 241 Am (+200 V and 0.5 s) and Figure<br />

5for 137 Cs (+400 V and 0.5 s).<br />

To illustrate our resp<strong>on</strong>se calculati<strong>on</strong> algorithm, Figure 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> 241 Am phot<strong>on</strong> spectrum at<br />

di erent stages <str<strong>on</strong>g>of</str<strong>on</strong>g> CZT spectral resp<strong>on</strong>se calculati<strong>on</strong>s. The top gure is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> spectrum,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> middle <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g>charge collecti<strong>on</strong> and peak modi cati<strong>on</strong><br />

from Fano factor and electr<strong>on</strong>ic noise (but W value is not included yet), and <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nal phot<strong>on</strong> spectrum with <str<strong>on</strong>g>the</str<strong>on</strong>g> W value included.<br />

To examine <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong> and its parameters, we rst studied <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> hole's mobilitylifetime<br />

value. Figure 7 shows three 241 Am phot<strong>on</strong> spectra calculated using three values <str<strong>on</strong>g>of</str<strong>on</strong>g> h h while<br />

Figure 8 gives three corresp<strong>on</strong>ding 137 Cs phot<strong>on</strong> spectra. After comparing <str<strong>on</strong>g>the</str<strong>on</strong>g>se calculated spectra<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements in Figure 4 and 5, it is clear that a h h value <str<strong>on</strong>g>of</str<strong>on</strong>g> 5x10 ;5 cm 2 /V gave better<br />

(not perfect yet) agreements for both cases <str<strong>on</strong>g>of</str<strong>on</strong>g> 241 Am and 137 Cs. The results using <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r two<br />

extreme values (3x10 ;4 and 7x10 ;6 ) are not correct. This seems to be c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> h h values<br />

stated in [11,12].<br />

Setting <str<strong>on</strong>g>the</str<strong>on</strong>g> h h value at 5x10 ;5 cm 2 /V, Figure 9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> 241 Am phot<strong>on</strong> spectra calculated with<br />

two di erent values <str<strong>on</strong>g>of</str<strong>on</strong>g> e e (1x10 ;3 and 7x10 ;3 cm 2 /V) and enc (150 and 200 e-h). A e e value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7x10 ;3 seems to be correct and <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1x10 ;3 gave a wr<strong>on</strong>g peak positi<strong>on</strong> result. The choice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enc at 150 and 200 e-h does not a ect <str<strong>on</strong>g>the</str<strong>on</strong>g> results. Similar c<strong>on</strong>clusi<strong>on</strong>s were obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

137 Cs source.<br />

4 C<strong>on</strong>clusi<strong>on</strong>s<br />

In this study wehave used <strong>EGS</strong>4 to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a CZT crystal, mounted within a BNC<br />

c<strong>on</strong>nector, taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> incomplete collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charge by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>. We<br />

have found perfect agreement for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated spectra between <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 with <str<strong>on</strong>g>the</str<strong>on</strong>g> latest <strong>KEK</strong> lowenergy<br />

phot<strong>on</strong> routines and <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <strong>EGS</strong>4 with Nels<strong>on</strong>'s approach for compounds. This study has<br />

also shown that all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photo and escape peaks appear at <str<strong>on</strong>g>the</str<strong>on</strong>g> correct energies, but <str<strong>on</strong>g>the</str<strong>on</strong>g> peak widths<br />

are not in perfect agreement with experiment. The most important parameter, mobility-lifetime for<br />

hole h h, should be around 5x10 ;5 cm 2 /V, while <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility-lifetime for electr<strong>on</strong> e e, should be<br />

about 7x10 ;3 cm 2 /V. The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters do not a ect <str<strong>on</strong>g>the</str<strong>on</strong>g> spectra as much as <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility-lifetime<br />

value. The remaining discrepancy may be due to that <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht model itself is too simple.<br />

4


References<br />

[1] W. R. Nels<strong>on</strong>, T. Borak, R. Malchow, W. Toki and J. Kadyk, \<strong>EGS</strong>4 calculati<strong>on</strong>s for a CdZnTe<br />

detector to measure synchrotr<strong>on</strong> radiati<strong>on</strong> at PEP-II", <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4, <strong>KEK</strong>, Tsukuba, Japan, August 26-29, 1997.<br />

[2] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System", SLAC Report 265,<br />

1985.<br />

[3] A. Del Guerra, W. R. Nels<strong>on</strong> and P. Russo, \A simple method to introduce K-Edge sampling<br />

for compounds in <str<strong>on</strong>g>the</str<strong>on</strong>g> code <strong>EGS</strong>4 for x-ray element analysis", Nucl. Instr. Meth. A306(1991)378,<br />

[Erattum: Nucl. Instr. Meth. A359(1995)637].<br />

[4] G. Baldazzi, D. Bollini, F. Casali, P. Chirco, A. D<strong>on</strong>ati, W. Dusi, G. Landini, M. Rossi and<br />

J. B. Stephen, \Timing resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> CdTe detectors", Nucl. Instr. Meth. A326(1993)319.<br />

[5] H. Hirayama and Y. Namito, \Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a general treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectric-related<br />

phenomena for compounds or mixtures in <strong>EGS</strong>4", <strong>KEK</strong> Internal 2000-3, 2000.<br />

[6] Y. Namito and H. Hirayama, \LSCAT: low-energy phot<strong>on</strong>-scattering expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

code (inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> impact i<strong>on</strong>izati<strong>on</strong>)", <strong>KEK</strong> Internal 2000-4, 2000.<br />

[7] A. F. Bielajew and D. W. O. Rogers, \PRESTA: The Parameter Reduced Electr<strong>on</strong> Step Transport<br />

Algorithm for Electr<strong>on</strong> M<strong>on</strong>te Carlo Transport", Nucl. Instr. Meth. B18(1987)165 also NRC-<br />

PIRS-0042, 1986.<br />

[8] Radioactive Transformati<strong>on</strong>s, Publicati<strong>on</strong> 38, <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiological Protecti<strong>on</strong>,<br />

Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ICRP 11-13, 1983.<br />

[9] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g><br />

Editi<strong>on</strong>, 1994 see Chapter 10.<br />

[10] W. Bencivelli, E. Bertolucci, U. Bottigli, A. Del Guerra, A. Messineo, W. R. Nels<strong>on</strong>, P. Randaccio,<br />

V. Rosso, P. Russo and A. Stefanini, \Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elemental and compound semic<strong>on</strong>ductors for<br />

x-ray digital radiography", Nucl. Instr. Meth. A310(1991)210.<br />

[11] H. Nishizawa, et al., \Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CdTe semic<strong>on</strong>ductor detector resp<strong>on</strong>se", <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

First <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>4, <strong>KEK</strong>, Tsukuba, Japan, August 26-29, 1997.<br />

[12] G. A. Johansen and E. Abro, \A new CdZnTe detector system for low-energy gamma-ray measurement",<br />

Sensors and Actuators A54(1996)493-498.<br />

5


0.55<br />

Imax = 3<br />

0.45<br />

2<br />

I = 1<br />

7-2000<br />

8556A7<br />

0.17<br />

R<br />

Plastic<br />

0.1<br />

Air<br />

10.0<br />

Be<br />

Jmax = 1<br />

0.025 0.2<br />

Al<br />

CZT<br />

0.575 1.0<br />

γ<br />

0 0.1 10.0 10.025 10.6 10.8 11.8<br />

K = 1 2 3 4 5 6<br />

Kmax<br />

Z<br />

All Units in cm<br />

241 137<br />

Figure1.Irradiati<strong>on</strong>geometryfor<str<strong>on</strong>g>the</str<strong>on</strong>g>CdZnTedetectorusing Amand Csdisksources.<br />

Events<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

7-2000<br />

8556A1<br />

<strong>KEK</strong><br />

Nels<strong>on</strong><br />

0 20<br />

40<br />

Energy (keV)<br />

60 80<br />

241<br />

Figure 2. Comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Am spectra calculated with<strong>EGS</strong>4 using twodifferentschemes;<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

latest <strong>KEK</strong> low-energy phot<strong>on</strong> producti<strong>on</strong> and transport routines and Nels<strong>on</strong>’s approach for<br />

compounds.<br />

Events<br />

120<br />

7-2000<br />

8556A4<br />

80<br />

40<br />

0<br />

Curve W(eV) Fano ρ(gm/cm 3 )<br />

Dash 5.0 0.20 5.78<br />

Solid 4.6 0.14 5.86<br />

0 20 40<br />

Energy (keV)<br />

60<br />

80<br />

241<br />

Figure3.Comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Amspectracalculatedwith<strong>EGS</strong>4(with<str<strong>on</strong>g>the</str<strong>on</strong>g><strong>KEK</strong>low-energyphot<strong>on</strong><br />

routines)usingdifferentvaluesforparameters<str<strong>on</strong>g>of</str<strong>on</strong>g>W,Fan<str<strong>on</strong>g>of</str<strong>on</strong>g>actorf,anddensityρ<str<strong>on</strong>g>of</str<strong>on</strong>g>CdZnTe.<br />

6


Counts(Arb.)<br />

241<br />

Figure4. Amphot<strong>on</strong>spectrummeasuredusingCdZnTedetector(+200Vand0.5µs).<br />

Fracti<strong>on</strong>al Counts<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

10 –1<br />

10 –2<br />

10 –3<br />

10 –4<br />

7-2000<br />

8556A14<br />

0 200 400<br />

Phot<strong>on</strong> Energy (keV)<br />

137<br />

Figure5. Csphot<strong>on</strong>spectrummeasuredusingCdZnTedetector(+400Vand0.5µs).<br />

<br />

0 10 20 30 40 50 60 70<br />

Phot<strong>on</strong>Energy(keV)<br />

7<br />

600


Figure6.<br />

Events<br />

10 8<br />

10 6<br />

10 4<br />

10 2<br />

50M Cases<br />

100 0 20 40 60 80<br />

7-2000<br />

8556A10<br />

Energy (keV)<br />

Events<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

102 0 2 4 6 8 10 12 14<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> e–h Pairs (x103 7-2000<br />

8556A9 )<br />

<br />

Events<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

0 10 20 30 40 50 60 70 80<br />

7-2000<br />

8556A8 Energy (keV)<br />

<br />

241 Amphot<strong>on</strong>spectrumatthreestages<str<strong>on</strong>g>of</str<strong>on</strong>g>CdZnTeresp<strong>on</strong>secalculati<strong>on</strong>:energydepositi<strong>on</strong>spectrum(top),<br />

electr<strong>on</strong>-holepairspectrum(middle),andphot<strong>on</strong>spectrum(bottom).<br />

<br />

<br />

<br />

8


Events x 10 6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

7-2000<br />

8556A5<br />

7 x 10 –6<br />

5 x 10 –5<br />

3 x 10 –4<br />

0 20 40 60 80<br />

Energy (keV)<br />

241<br />

Figure7. Amphot<strong>on</strong>spectrumcalculatedwith<strong>EGS</strong>4usingthreevalues<str<strong>on</strong>g>of</str<strong>on</strong>g>µhτh(unitsincm 2 /V).<br />

Events<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

7-2000<br />

8556A15<br />

7x10 –6<br />

5x10 –5<br />

3x10 –4<br />

0 200<br />

400<br />

Energy (keV)<br />

600<br />

137<br />

Figure8. Csphot<strong>on</strong>spectrumcalculatedwith<strong>EGS</strong>4usingthreevalues<str<strong>on</strong>g>of</str<strong>on</strong>g>µhτh(unitsincm 2 /V).<br />

<br />

Figure9.<br />

Events (x10 4 )<br />

120<br />

80<br />

40<br />

7-2000<br />

8556A16<br />

µτe σenc<br />

Curve (cm2 /V) (e–h)<br />

Dash 1x10 –3<br />

Solid 7x10<br />

150<br />

–3<br />

200<br />

0<br />

0 20<br />

40<br />

Energy (keV)<br />

60 80<br />

241 Amphot<strong>on</strong>spectrumcalculatedwith<strong>EGS</strong>4usingdifferentvalues<str<strong>on</strong>g>of</str<strong>on</strong>g>µeτe andσenc.<br />

9


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.144-151<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Gamma Ray M<strong>on</strong>itor<br />

Using CdZnTe Semic<strong>on</strong>ductor Detector<br />

A. H. D. Rasol<strong>on</strong>jatovo, T. Shiomi, T. Nakamura, H. Nishizawa 1 ,<br />

Y. Tsudaka 1 , H. Fujiwara 1 , H. Araki 1 , and K. Matsuo 1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Science and Energy Engineering, Tohoku University<br />

Aza-aoba, Amaraki, Aoba-ku, Sendai, Miyagi 980-8578, JAPAN<br />

1 Mitsubishi Electric Corporati<strong>on</strong><br />

8-1-1, Tsukaguchi-H<strong>on</strong>machi, Amagasaki, Hyogo 661, JAPAN<br />

Abstract<br />

In this study, we aimed to develop a new X-ray and gamma ray m<strong>on</strong>itor using <str<strong>on</strong>g>the</str<strong>on</strong>g> CdZnTe<br />

semic<strong>on</strong>ductor detector, whichhave high sensitivity at room temperature. The pulse height spectra<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciencies <str<strong>on</strong>g>of</str<strong>on</strong>g> 10x10 mm 2 by 2 mm thick CdZnTe detector were measured in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV to 1.8 MeV by using m<strong>on</strong>oenergetic X-ray and gamma ray sources. The<br />

measured results showed very good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> results calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te<br />

Carlo code taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> charge collecti<strong>on</strong> e ciency in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. By using two CZT<br />

detectors <str<strong>on</strong>g>of</str<strong>on</strong>g> 10x10x2 mm 3 and 3x3x2 mm 3 coupled with a lter, <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a few energy<br />

channels with di erent cut-o energies was nally found out to realize a at energy resp<strong>on</strong>se to<br />

equivalent dose (counts per mSv) within 30% or 10% deviati<strong>on</strong>.<br />

1 Intoroducti<strong>on</strong><br />

In recent years <str<strong>on</strong>g>the</str<strong>on</strong>g> CdZnTe (CZT) semic<strong>on</strong>ductor detector is preferred for X-ray andlow energy<br />

gamma ray detecti<strong>on</strong> in many situati<strong>on</strong>s, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high e ciency, low bias voltage, good energy<br />

resoluti<strong>on</strong> and its capability <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> at room and higher temperatures[1, 2, 3]. The CZT detector<br />

has a great advantage to have <str<strong>on</strong>g>the</str<strong>on</strong>g> high density ( =5:86 g cm ;3 ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> high atomic number (Z=48<br />

for Cd, 30 for Zn and 52 for Te) compared with Si ( =2.4 g cm ;3 , Z=14) and Ge ( =5.36 g cm ;3 ,<br />

Z=32) semic<strong>on</strong>ductor detectors. Nowadays a larger crystal size <str<strong>on</strong>g>of</str<strong>on</strong>g> CZT becomes available and <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT<br />

detector can be used for higher energy gamma ray detecti<strong>on</strong>. In this study, we aimed to develop a new<br />

gamma ray m<strong>on</strong>itor using a Cd0:5Zn0:5Te semic<strong>on</strong>ductor detector. The present gamma ray m<strong>on</strong>itor,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore, possesses higher sensitivity than <str<strong>on</strong>g>the</str<strong>on</strong>g> commercially available Si semic<strong>on</strong>ductor gamma ray<br />

m<strong>on</strong>itor and at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time has a at energy resp<strong>on</strong>se to dose-equivalent in <str<strong>on</strong>g>the</str<strong>on</strong>g> wide phot<strong>on</strong> energy<br />

regi<strong>on</strong> from 10 keV to 7 MeV. This gamma ray m<strong>on</strong>itor could be used to operate at higher temperature<br />

such asin<str<strong>on</strong>g>the</str<strong>on</strong>g>power reactor core.<br />

2 Materials and Methods<br />

As a gamma ray sensor, a Cd0:5Zn0:5Te detector having 10 mm x 10 mm size by 2 mm thickness<br />

(fabricated by eV Product, USA) was used. Table 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT<br />

detector used in this study. The detector was directly coupled to <str<strong>on</strong>g>the</str<strong>on</strong>g> low noise preampli er (Model 850,<br />

fabricated by Clear-Pulse Co. Ltd, Japan). The bias voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> +24 V was supplied to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> regulated power supply (PR 36-1.2 A fabricated by Kenwood, Japan). The preampli er<br />

was c<strong>on</strong>nected to a linear ampli er ORTEC 571 with a 2 s shaping time. The detector and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preampli er were covered with an Al foil <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.015 mm thickness to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic noise.<br />

1


In order to get <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detector, <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements were d<strong>on</strong>e using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

m<strong>on</strong>o-energetic X-ray beam sources from 10 to 40 keV and <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive phot<strong>on</strong> sources <str<strong>on</strong>g>of</str<strong>on</strong>g> 241 Am,<br />

57 Co, 137 Cs, 60 Co and 88 Yhaving phot<strong>on</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> 59.54 keV to 1836 keV.<br />

The experiments using X-ray beam sources were performed at a beam line <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Phot<strong>on</strong> Factory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> High Energy Accelerator Research Organizati<strong>on</strong> (<strong>KEK</strong>), Tsukuba, Japan. Because a direct phot<strong>on</strong><br />

beam intensity from <str<strong>on</strong>g>the</str<strong>on</strong>g> beam line <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> is too high, a beam scattered at 90 was<br />

used. In order to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resp<strong>on</strong>se with <str<strong>on</strong>g>the</str<strong>on</strong>g> lters, we also measured<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detector covered with Al, Cu, Cd and Pb lters <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

thicknesses.<br />

The measurements using point sources were carried out at <str<strong>on</strong>g>the</str<strong>on</strong>g> Hot Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cyclotr<strong>on</strong> and<br />

Radioisotope Center (CYRIC), Tohoku University, Japan. The point sources <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2 mm diameter<br />

are encapsulated within thin vinyl cover. The source was placed at 10 cm from <str<strong>on</strong>g>the</str<strong>on</strong>g> detector surface.<br />

The fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> backscattered phot<strong>on</strong>s was about 2%. In order to get <str<strong>on</strong>g>the</str<strong>on</strong>g> angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detecti<strong>on</strong> e ciency, <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detector was rotated to <str<strong>on</strong>g>the</str<strong>on</strong>g> source-to-detector axis in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0<br />

to 90 . The 137 Cs source was covered with a 1.5 mm thick Al foil to absorb <str<strong>on</strong>g>the</str<strong>on</strong>g> 661.7 keV c<strong>on</strong>versi<strong>on</strong><br />

electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> capture reacti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> rays <str<strong>on</strong>g>of</str<strong>on</strong>g> 511 keV. The 60 Co was also covered<br />

with a 1 mm thick Al foil to absorb <str<strong>on</strong>g>the</str<strong>on</strong>g> rays <str<strong>on</strong>g>of</str<strong>on</strong>g> 318 keV.<br />

3 Calculati<strong>on</strong>s<br />

The pulse height spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector were also calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>-phot<strong>on</strong> cascade<br />

M<strong>on</strong>te Carlo code <strong>EGS</strong>4[4] taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier trapping e ect[5]. The charge collecti<strong>on</strong><br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> drift distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hole and <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>, which vary with <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT, <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility and lifetime , ( ), is very low, especially for holes<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>n most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> holes are trapped before reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> cathode. The mean free path is given by<br />

= F = V<br />

where F is <str<strong>on</strong>g>the</str<strong>on</strong>g> electric eld, d is <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector and V is <str<strong>on</strong>g>the</str<strong>on</strong>g> applied voltage.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present case, we calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> deposited energy E in <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detector for <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry<br />

that a plane parallel phot<strong>on</strong> beam is incident normal to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector surface using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4-PRESTA<br />

code[4], and taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier trapping e ect. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> work by Nishizawa et<br />

al.[5], three cases were c<strong>on</strong>sidered: energy absorpti<strong>on</strong> <strong>on</strong>ly, c<strong>on</strong>stant drifting distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier<br />

and exp<strong>on</strong>ential distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drifting distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> rst case where energy absorpti<strong>on</strong> <strong>on</strong>ly is c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced charges are independent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> depth, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

Q(x) =Q0 = E<br />

d<br />

(1)<br />

" e (2)<br />

" is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy needed to create an electr<strong>on</strong>-hole pair and is equal to 4.43 eV[6], E is <str<strong>on</strong>g>the</str<strong>on</strong>g> deposited<br />

energy and e is <str<strong>on</strong>g>the</str<strong>on</strong>g> charge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> (e =1:6 10 ;19 C).<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d case, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced charges can be written as <str<strong>on</strong>g>the</str<strong>on</strong>g> rst-order approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Fetch's equati<strong>on</strong>[7] as follows[5]<br />

If e >d; x and h >x ;! Q(x) = E<br />

" e<br />

If e >d; x and h


If e x ;! Q(x) = E<br />

" e<br />

d<br />

e<br />

+ x<br />

d<br />

(3)<br />

where x is <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> depth, e, h are <str<strong>on</strong>g>the</str<strong>on</strong>g> mean free paths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> and hole, respectively.<br />

Similarly for <str<strong>on</strong>g>the</str<strong>on</strong>g> third case, <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> induced charges is written as follows<br />

is a random number between 0 and 1.<br />

Q(x) =e<br />

E "X<br />

i=1<br />

P e + P h<br />

d<br />

(4)<br />

(5)<br />

= (; ln ) (6)<br />

If e >d; x and h >x ;! P e = d ; x P h = x<br />

If e >d; x and h


oader than that <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 keV. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g> charge collecti<strong>on</strong> e ciency in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector decreases<br />

for low applied voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly +24V and also <str<strong>on</strong>g>the</str<strong>on</strong>g> energy loss through <str<strong>on</strong>g>the</str<strong>on</strong>g> Compt<strong>on</strong> scattering increases<br />

with increase <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> energy.<br />

The energy resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> two phot<strong>on</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> 1836 keV and 898 keV for 88 Y, were calculated<br />

separately and added taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> branching ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> each energy. For higher energy<br />

phot<strong>on</strong>s from 137 Cs and 88 Y, <str<strong>on</strong>g>the</str<strong>on</strong>g> photopeak cannot clearly be seen because <str<strong>on</strong>g>of</str<strong>on</strong>g> energy loss dominated<br />

by Compt<strong>on</strong> scattering and a small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy depositi<strong>on</strong> in 2 mm thick CZT detector. Then,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectra have m<strong>on</strong>ot<strong>on</strong>ically decreasing shapes. The agreement between <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

and calculated pulse height spectra for <str<strong>on</strong>g>the</str<strong>on</strong>g>se three phot<strong>on</strong> sources is very good.<br />

In this study, we used low biasvoltage <str<strong>on</strong>g>of</str<strong>on</strong>g> +24V sacri cing better energy resoluti<strong>on</strong> obtained with<br />

higher bias voltage. Since our aim is to develop a gamma ray m<strong>on</strong>itor <str<strong>on</strong>g>of</str<strong>on</strong>g> high sensitivity in this work,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> low bias voltage is preferred for reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> portability. Generally speaking, <str<strong>on</strong>g>the</str<strong>on</strong>g> agreement between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated pulse height spectra is good in absolute values over <str<strong>on</strong>g>the</str<strong>on</strong>g> wide energy<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV (not shown here) up to 1836 keV.<br />

4.2 Energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency<br />

To get <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency, <str<strong>on</strong>g>the</str<strong>on</strong>g> measured and calculated pulse height spectra were rst summed<br />

up above <str<strong>on</strong>g>the</str<strong>on</strong>g> cut-o energy xed at 6 keV. But for 241 Am <str<strong>on</strong>g>the</str<strong>on</strong>g> subsidiary peaks from K X-rays and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

26.4 keV gamma ray were not c<strong>on</strong>sidered and <str<strong>on</strong>g>the</str<strong>on</strong>g> two peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 and 136 keV gamma rays <str<strong>on</strong>g>of</str<strong>on</strong>g> 57 Co<br />

were also excluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured results in <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciency estimati<strong>on</strong>. The counts thus-obtained<br />

were normalized to unit phot<strong>on</strong> uence incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector to get counts per cm 2 . This value was<br />

c<strong>on</strong>verted to countsperunitequivalent dose in mSv by using <str<strong>on</strong>g>the</str<strong>on</strong>g> uence-to-equivalent dose c<strong>on</strong>versi<strong>on</strong><br />

factor (mSv per cm ;2 ) for <str<strong>on</strong>g>the</str<strong>on</strong>g> A-P (anterior-posterior) geometry given by ICRP Publ.74[8]. We nally<br />

obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency in cps (count per sec<strong>on</strong>d) per mSv/h from 10 keV to 1836 keV as<br />

shown in Fig. 5.<br />

For 60 Co gamma rays <str<strong>on</strong>g>the</str<strong>on</strong>g> measured result is 20% higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated result, while for<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r phot<strong>on</strong> energies <str<strong>on</strong>g>the</str<strong>on</strong>g> agreement between experiment and calculati<strong>on</strong> is quite good within 3%.<br />

The e ciency is high for 10 keV and ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r at from 20 keV to 120 keV, and rapidly decreases with<br />

energy. The high e ciency at 10 keV is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> small value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uence-to-equivalent dose<br />

c<strong>on</strong>versi<strong>on</strong> factor.<br />

4.3 Angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency<br />

The angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency with 241 Am, 57 Co, 137 Cs, 60 Co and 88 Y phot<strong>on</strong><br />

sources were also studied and we found a good agreement between experimental and calculated results<br />

except for 60 Co with a standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20%. The angular dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciency is<br />

almost c<strong>on</strong>stant for 137 Cs, 60 Co and 88 Y in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 to 90 , but for lower energy phot<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 241 Am and 57 Co, <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciency decreases bey<strong>on</strong>d 60 because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> self-absorpti<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thicker layer for slant incidence. These results revealed that this CZT detector has an almost isotropic<br />

e ciency within 60 .<br />

4.4 E ect <str<strong>on</strong>g>of</str<strong>on</strong>g> various lters<br />

Figure 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciencies for 10, 20 and 40 keV X-rays with various thicknesses<br />

(mm) <str<strong>on</strong>g>of</str<strong>on</strong>g> Al lter. Solid lines are <str<strong>on</strong>g>the</str<strong>on</strong>g> measured results and <str<strong>on</strong>g>the</str<strong>on</strong>g> dotted lines <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated results. The<br />

cut-o energy was also xed at 6 keV. The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciency with Al lter thicknesses is<br />

signi cant at10keV but is negligible at 40 keV. The agreement between measurement and calculati<strong>on</strong><br />

is good.<br />

4


5 C<strong>on</strong> gurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Flat Energy Resp<strong>on</strong>se<br />

By utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained, we tried to obtain at energy resp<strong>on</strong>se to e ective dose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> CZT semic<strong>on</strong>ductor detector in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV to 7 MeV. This is an indispensable<br />

characteristic for use as a gamma-ray m<strong>on</strong>itor. As very good agreement between experiment and<br />

calculati<strong>on</strong> was obtained, we extend to obtain at energy resp<strong>on</strong>se for higher energies up to 7 MeV by<br />

calculati<strong>on</strong>. Three parameters were c<strong>on</strong>sidered for this realizati<strong>on</strong>:<br />

size.<br />

lters, cut-o energy and detector<br />

The energy resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector with di erent kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> lter materials such as Al, Cu, Cd,<br />

Fe and Pb with various thicknesses were calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range from 10 keV to 7 MeV. Low<br />

energy phot<strong>on</strong>s are very sensitive to lter material while high energy phot<strong>on</strong>s are almost insensitive<br />

to any kind <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lters.<br />

lters. We <str<strong>on</strong>g>the</str<strong>on</strong>g>refore found that it is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r di cult to get a at resp<strong>on</strong>se <strong>on</strong>ly using<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, we varied <str<strong>on</strong>g>the</str<strong>on</strong>g> cut-o energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height spectra from 6 to 1500 keV.<br />

For low energy below 100 keV, a at energy resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency can be obtained with<br />

a cut-o energy around 6 keV but for higher energy, a cut-o energy higher than hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> keV is<br />

necessary.<br />

By combing <str<strong>on</strong>g>the</str<strong>on</strong>g>se above-menti<strong>on</strong>ed results parametrically, we tried to get <str<strong>on</strong>g>the</str<strong>on</strong>g> at energy dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency to equivalent dose in units <str<strong>on</strong>g>of</str<strong>on</strong>g> cps per mSv/h within 30% and 10%<br />

di erences over a wide energy regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV to 7 MeV. After many parametric surveys <strong>on</strong> lters,<br />

cut-o energies and detector sizes, we nally optimized to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> at detecti<strong>on</strong> e ciency to equivalent<br />

dose, ", by using two sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detectors 3x3 mm2 by 2 mm thick CZT, and 10x10 mm2 by 2mm thick CZT as follows,<br />

"(cps per Sv=h) = X<br />

ai"1 + X<br />

(9)<br />

where "1 and "2 are <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciencies <str<strong>on</strong>g>of</str<strong>on</strong>g> 3x3x2 mm 3 and 10x10x2 mm 3 CZT, respectively, and<br />

a i and b i are multiplicati<strong>on</strong> factors. Fig. 7 and 8 show <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g>above process using<br />

Eq.(9).<br />

6 C<strong>on</strong>clusi<strong>on</strong><br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height spectra and <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detector <str<strong>on</strong>g>of</str<strong>on</strong>g> 10x10<br />

mm 2 by 2 mm thickness are presented for 10 keV to 1.8 MeV phot<strong>on</strong> energies from both experiment<br />

and calculati<strong>on</strong> using <strong>EGS</strong>4 code. The agreement between <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> is very<br />

good in absolute values.<br />

The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency with <str<strong>on</strong>g>the</str<strong>on</strong>g> cut-<str<strong>on</strong>g>of</str<strong>on</strong>g> energy and with various lters was also<br />

obtained by calculati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 keV to 7 MeV. By using two CZT detectors, 10x10<br />

mm 2 by 2 mm thick CZT with 1.2 mm Pb lter and 3x3 mm 2 by2mmthick CZT without lter, we<br />

nally obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> at energy resp<strong>on</strong>se to e ective dose within 30% and 10% deviati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phot<strong>on</strong> energy 15 keV to 7 MeV by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> counts integrated above a few di erent<br />

cut-o energies for <str<strong>on</strong>g>the</str<strong>on</strong>g> two CZT detectors. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se results, it is evident that it is possible to<br />

realize a gamma ray m<strong>on</strong>itor <str<strong>on</strong>g>of</str<strong>on</strong>g> good quality having a at energy resp<strong>on</strong>se to equivalent dose in a wide<br />

phot<strong>on</strong> energy range. Field measurements will be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r needed to compare with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r commercially<br />

available survey meters.<br />

Acknowledgement<br />

We are grateful to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors H. Hirayama and S. Ban, Drs. T. Kurosawa and Y. Namito for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

fruitful collaborati<strong>on</strong> and advices during <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> and experiment at <strong>KEK</strong>.<br />

5<br />

i<br />

i<br />

b i"2


References<br />

[1] J. Franc, P. Haschl, E. Belas, R. Grill, P. Hledek, P. Moravec, J. Bok, \CdTe and CdZnTe crystals<br />

for room temperature gamma-ray detectors", Nucl. Instrum. Methods A 434(1999)146-151.<br />

[2] A. S. Zerrai, K. Cherkaoui, G. Marrakchi, G. Brem<strong>on</strong>d, P. Fougeres, M. Hage-Ali, J. M. Koebel,<br />

P. Si ert, \In uence <str<strong>on</strong>g>of</str<strong>on</strong>g> deep levels <strong>on</strong> CdZnTe nuclear detectors", Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Crystal Growth<br />

197(1999)646-649.<br />

[3] S. E. Pfantiel, K. J. H<str<strong>on</strong>g>of</str<strong>on</strong>g>stetter, T. A. DeVol, \Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four types <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma and X-ray<br />

detectors for envir<strong>on</strong>mental applicati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 10-450 keV energy range", Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Radioanalytical<br />

and Nuclear Chemistry 223 1-2(1997)89-98. for air, nitrogen at 30 keV", Appl. Radiat.<br />

Isot. 44(1993)769-772.<br />

[4] H. Hirayama, \Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 Code System", <strong>KEK</strong> Internal 97-10, High Energy Accelerator<br />

Research Organizati<strong>on</strong>, 1997, pp. 6-14.<br />

[5] H. Nishizawa, K. Ikegami, K. Takashima, T. Usami, T. Hayakawa, T. Yamamoto, \Development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Multi-layered CdTe Semic<strong>on</strong>ductor Detectors", I<strong>on</strong>izing Radiati<strong>on</strong> Journal Vol.22,<br />

No.3(1996)27-36.<br />

[6] Y. X. Dardenne, T. F. Wang, A. D. Lavietes, G. J. Mauger, W. D. Ruhter, S. A. Kreek, \Cadmium<br />

Zinc Telluride Spectral modeling", Nucl. Instrum. Methods A 422(1999)159-163.<br />

[7] Y. Eisen, A. Shor, \CdTe and CdZnTe materials for room temperature X-ray and gamma ray<br />

detectors", Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Crystal Growth 184/185(1998)1302-1312.<br />

[8] <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <strong>on</strong> Radiological Protecti<strong>on</strong>, \ C<strong>on</strong>versi<strong>on</strong> Coe cients for use in Radiological<br />

Protecti<strong>on</strong> against External Radiati<strong>on</strong>", ICRP Publicati<strong>on</strong> 74, Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ICRP<br />

Vol.26/3, 1995.<br />

6


Table 1. Physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT detector<br />

Size 10x10x2mm 3<br />

Density 5.86 g cm ;3<br />

Resistivity 3x10 10 cm<br />

Band gap 1.56 eV<br />

Mobility and lifetime product 3x10 ;3 cm 2 V ;1 for electr<strong>on</strong> and 2x10 ;5 cm 2 V ;1 for hole<br />

Depleti<strong>on</strong> layer 2mm<br />

Fig.1Comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>measuredpulseheightspectrafor Fig.2Pulseheightspectra<str<strong>on</strong>g>of</str<strong>on</strong>g> 57 Cophot<strong>on</strong>source<br />

40keVX-rayswith<str<strong>on</strong>g>the</str<strong>on</strong>g>calculatedspectraforthreemodels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>chargecollecti<strong>on</strong>.Case1:Energyabsorpti<strong>on</strong><strong>on</strong>ly;<br />

case2:C<strong>on</strong>stantdriftdistance<str<strong>on</strong>g>of</str<strong>on</strong>g>carriers;case3:The <br />

driftdistance<str<strong>on</strong>g>of</str<strong>on</strong>g>carriershasanexp<strong>on</strong>entialdistributi<strong>on</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Countsperunitincidentfluence<br />

Countsperunitincidentfluence<br />

0.016<br />

0.012<br />

0.008<br />

0.004<br />

1.E-03<br />

1.E-04<br />

1.E-05<br />

0<br />

0 200 400 600 800 1000 1200<br />

Channel<br />

Experiment<br />

Case1<br />

Case2<br />

Case3<br />

1.E-06<br />

0 200 400 600 800 1000<br />

Energy[keV]<br />

Experiment<br />

Calculati<strong>on</strong><br />

1.E-05<br />

0 50 100 150 200<br />

Fig.3Pulseheightspectra<str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Csphot<strong>on</strong>source Fig.4Pulseheightspectra<str<strong>on</strong>g>of</str<strong>on</strong>g> 88 Yphot<strong>on</strong>source<br />

7<br />

Countperunitincidentfluence<br />

Countperunitincidentfluence<br />

1.E-02<br />

1.E-03<br />

1.E-04<br />

1.E-02<br />

1.E-04<br />

Energy[keV]<br />

Experiment<br />

Calculati<strong>on</strong><br />

1.E-06<br />

0 500 1000 1500 2000<br />

Energy[keV]<br />

Calculati<strong>on</strong><br />

Experiment


Fig.5Measuredandcalculateddetecti<strong>on</strong>efficiencies<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> <br />

Fig.6Variati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>detecti<strong>on</strong>efficiencywith<br />

<br />

CdZnTesemic<strong>on</strong>ductordetectorasafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>phot<strong>on</strong>energy aluminumfilterfor10to40keVphot<strong>on</strong>s<br />

<br />

Efficiency perequivalentdose<br />

[cps/( Sv/h)]<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1 10 100 1000 10000<br />

<br />

µ<br />

<br />

<br />

<br />

<br />

Energy [keV]<br />

<br />

<br />

<br />

Experiment<br />

Calculati<strong>on</strong><br />

Efficiencyperequivalentdose<br />

[cps/( Sv/h)]<br />

10000<br />

1000<br />

100<br />

0.1mm<br />

0.2mm<br />

0.5mm<br />

No filter<br />

10 0.8mm<br />

Calculati<strong>on</strong><br />

Experiment<br />

1<br />

1.0mm<br />

0 5 10 15 20 25 30 35 40 45<br />

Energy [keV]<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

µ<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.152-160<br />

A M<strong>on</strong>te-Carlo Method<br />

for Determining Absolute Scintillati<strong>on</strong>-Phot<strong>on</strong> Yields<br />

and Energy Resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scintillators for Gamma Rays<br />

H. Tawara, S. Sasaki, K. Saito 1 , and E. Shibamura 2<br />

High Energy Accelerator Research Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan<br />

1 The Graduate University for Advanced Studies<br />

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan<br />

2 College <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Science, Saitama Prefectural University<br />

820 Sannomiya, Koshigaya, Saitama 343-8250, Japan<br />

Abstract<br />

The gamma-ray spectra from NaI(Tl) scintillati<strong>on</strong> detectors have been studied quantitatively<br />

by a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental measurements and M<strong>on</strong>te-Carlo simulati<strong>on</strong>s. In this report,<br />

we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak for an isotropic point source <str<strong>on</strong>g>of</str<strong>on</strong>g> 662-keV gamma rays measured<br />

with a NaI(Tl) crystal <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-inch diameter by 3-inch l<strong>on</strong>g, as a typical case. We simulated three<br />

di erent kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> spectra generated as results from gamma-rayinteracti<strong>on</strong>s in NaI(Tl) and detecti<strong>on</strong><br />

processes <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s with a photocathode: (1) an energy-depositi<strong>on</strong> spectrum, (2) a<br />

scintillati<strong>on</strong>-phot<strong>on</strong> spectrum and (3) a photoelectr<strong>on</strong> spectrum. The calculated photoelectr<strong>on</strong><br />

spectra were compared with those from experiments. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> present method, <str<strong>on</strong>g>the</str<strong>on</strong>g> W s value,<br />

which is de ned as <str<strong>on</strong>g>the</str<strong>on</strong>g> mean energy required to produce <strong>on</strong>e scintillati<strong>on</strong> phot<strong>on</strong> corresp<strong>on</strong>ding<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 662-keV gamma rays, was preliminary obtained to be 11.4 eV.<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> present experimental c<strong>on</strong>diti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak can<br />

be explained in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> an intrinsic energy resoluti<strong>on</strong> caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-linear energy resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl) for electr<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong>-phot<strong>on</strong> number in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector<br />

system, <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> statistics and electric noise. These resoluti<strong>on</strong> losses were also estimated<br />

quantitatively.<br />

1 Introducti<strong>on</strong><br />

Scintillati<strong>on</strong> detectors are widely used for gamma-ray spectroscopy. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> precise measurements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> absolute scintillati<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> various scintillators for gamma rays are di cult, because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> due to gamma rays in <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillators, and <str<strong>on</strong>g>the</str<strong>on</strong>g> transport and detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scintillati<strong>on</strong> phot<strong>on</strong>s in a scintillati<strong>on</strong> detector system are quite complicated processes to analyze<br />

quantitatively.<br />

Our study has two objectives: (1) to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> mean energy required to produce <strong>on</strong>e scintillati<strong>on</strong><br />

phot<strong>on</strong> (W s value) <str<strong>on</strong>g>of</str<strong>on</strong>g> various scintillators for radiati<strong>on</strong>, and (2) a quantitative understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a scintillati<strong>on</strong> detector system. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, <str<strong>on</strong>g>the</str<strong>on</strong>g>W s value is de ned<br />

for gamma-rays having m<strong>on</strong>ochromatic energy:<br />

W s = T<br />

N s<br />

(eV) (1)<br />

where T is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> incident gamma rays in eV and N s is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s<br />

produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator by <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma rays. A detailed descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> W s value for gamma rays is given elsewhere[1].<br />

1


The method used in our study is a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental measurements and M<strong>on</strong>te-Carlo<br />

simulati<strong>on</strong>s. M<strong>on</strong>te-Carlo simulati<strong>on</strong>s have been c<strong>on</strong>ducted with two computer codes, <strong>EGS</strong>4[2] and<br />

SPC[1]. These codes have been improved c<strong>on</strong>tinuously and now incorporate experimental and <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

data indispensable for analyzing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray spectrum measured by NaI(Tl) scintillati<strong>on</strong><br />

detectors: generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s, characteristic X-rays and Auger electr<strong>on</strong>s in K- and L-shell<br />

photoelectric e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> Na, I and Tl energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> resp<strong>on</strong>se for electr<strong>on</strong>s in an<br />

energy regi<strong>on</strong> from 1 keV to 1 MeV <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> a photocathode, which is coupled with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) crystal, and its n<strong>on</strong>-uniform distributi<strong>on</strong>. These M<strong>on</strong>te-Carlo codes allow us to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gross c<strong>on</strong>versi<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) scintillati<strong>on</strong> detector system from scintillati<strong>on</strong> phot<strong>on</strong>s<br />

to photoelectr<strong>on</strong>s. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> individual sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

resoluti<strong>on</strong> losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector system.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following secti<strong>on</strong>s, we treat <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray spectrum, which is obtained by a NaI(Tl) crystal<br />

(3 inch diameter 3 inch l<strong>on</strong>g) irradiated with an isotropic point gamma-ray source <str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Cs. As a<br />

preliminary result, we show <str<strong>on</strong>g>the</str<strong>on</strong>g> W s value corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> 662-keV full-energy peak. In additi<strong>on</strong>,<br />

it is clari ed that <str<strong>on</strong>g>the</str<strong>on</strong>g> main sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resoluti<strong>on</strong> losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intrinsic energy resoluti<strong>on</strong>, transfer variance, photoelectr<strong>on</strong> statistics and electric noise, under <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present experimental c<strong>on</strong>diti<strong>on</strong>s.<br />

2 Method for analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray spectra<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a scintillator exposed to gamma rays, <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s are generated<br />

as a result from energy depositi<strong>on</strong> due to sec<strong>on</strong>dary electr<strong>on</strong>s, such as photoelectr<strong>on</strong>s, Compt<strong>on</strong>recoil<br />

electr<strong>on</strong>s and electr<strong>on</strong>-positr<strong>on</strong> pairs. When <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> resp<strong>on</strong>se for electr<strong>on</strong>s (electr<strong>on</strong> resp<strong>on</strong>se)<br />

depends <strong>on</strong> electr<strong>on</strong> energy, <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray spectrum expressed in scintillati<strong>on</strong>-phot<strong>on</strong> number<br />

(scintillati<strong>on</strong>-phot<strong>on</strong> spectrum) becomes deformed from <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>on</strong>e, expressed in energy depositi<strong>on</strong><br />

(energy-depositi<strong>on</strong> spectrum). In general, this scintillati<strong>on</strong>-phot<strong>on</strong> spectrum cannot be observed<br />

directly. When <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator is coupled with a photomultiplier (PMT), <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s are<br />

c<strong>on</strong>verted into photoelectr<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PMT. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray spectrum<br />

can be observed as counts per unit photoelectr<strong>on</strong> number (photoelectr<strong>on</strong> spectrum).<br />

The method for analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g>se three kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray spectra c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> three parts: (1)<br />

M<strong>on</strong>te-Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray interacti<strong>on</strong>s with scintillati<strong>on</strong> materials and <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scintillati<strong>on</strong> phot<strong>on</strong>s, by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code incorporating <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> resp<strong>on</strong>se data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator<br />

(2) M<strong>on</strong>te-Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Scintillati<strong>on</strong>-Phot<strong>on</strong> Transport (SPT) inside <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> detector<br />

system and <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode by <str<strong>on</strong>g>the</str<strong>on</strong>g> SPC code incorporating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quantum-e ciency data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode and (3) experimental measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a scintillator coupled with a photomultiplier, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s, N pe, is<br />

described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> N s and four parameters,<br />

N pe = N sF cQ eF sF g (2)<br />

where F c is <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector system for scintillati<strong>on</strong> phot<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode,<br />

Q e is <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode, F s is <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> a collecti<strong>on</strong> electrode<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong>s and F g is a total gain <str<strong>on</strong>g>of</str<strong>on</strong>g> a PMT. Thus, N s in eq.(1) can be estimated by<br />

N s =<br />

N pe<br />

F cQ eF sF g<br />

3 Experimental measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Npe<br />

: (3)<br />

Fig. 1 shows a schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> an experimental apparatus. The NaI(Tl) scintillator is<br />

irradiated with an isotropic gamma-ray sources <str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Cs. The scintillati<strong>on</strong> phot<strong>on</strong>s are c<strong>on</strong>verted into<br />

2


Figure 1: Apparatus for photoelectr<strong>on</strong> measurements.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 2: Saturati<strong>on</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> PMT in <str<strong>on</strong>g>the</str<strong>on</strong>g> PD-mode.<br />

3


Figure 3: Electr<strong>on</strong>-resp<strong>on</strong>se data[12] <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl) used for <str<strong>on</strong>g>the</str<strong>on</strong>g> present simulati<strong>on</strong>s.<br />

photoelectr<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode (K). In order to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> precise number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> PMT is operated in <str<strong>on</strong>g>the</str<strong>on</strong>g> Photo-Diode mode (PD mode). A grid (G), <str<strong>on</strong>g>the</str<strong>on</strong>g> rst dynode (D1) and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d dynode (D2) are c<strong>on</strong>nected toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r and act as a collector electrode for those photoelectr<strong>on</strong>s<br />

emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode. The photocathode, <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r dynodes and an anode (A) are c<strong>on</strong>nected<br />

toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r and act as a negative-bias electrode. The charge signals from <str<strong>on</strong>g>the</str<strong>on</strong>g> collector electrode are fed<br />

into a charge-sensitive preampli er. The electric circuit including <str<strong>on</strong>g>the</str<strong>on</strong>g> charge-sensitive preampli er<br />

is calibrated with a high-precisi<strong>on</strong> pulser in order to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s<br />

collected by <str<strong>on</strong>g>the</str<strong>on</strong>g> collector electrode. The details <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments have been described in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

publicati<strong>on</strong>s[3, 4,5,6,7].<br />

Figure 2 shows a saturati<strong>on</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> N pe corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> PD-mode.<br />

This saturati<strong>on</strong> curve indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong>s are fully collected with <str<strong>on</strong>g>the</str<strong>on</strong>g> collector electrode<br />

around -100 V and multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s does not take place. Therefore, both F g and F s<br />

are unity under <str<strong>on</strong>g>the</str<strong>on</strong>g> present experimental c<strong>on</strong>diti<strong>on</strong>s.<br />

4 M<strong>on</strong>te-Carlo simulati<strong>on</strong>s<br />

The<strong>EGS</strong>4codewas used to score <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary electr<strong>on</strong>s generated from gamma-ray interacti<strong>on</strong>s<br />

in NaI(Tl), which are photoelectr<strong>on</strong>s, Compt<strong>on</strong> recoil electr<strong>on</strong>s, electr<strong>on</strong>-positr<strong>on</strong> pairs and Auger electr<strong>on</strong>s.<br />

In order to treat low-energy phot<strong>on</strong> transport precisely, <str<strong>on</strong>g>the</str<strong>on</strong>g> following items were incorporated<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> default <strong>EGS</strong>4 code[8, 9, 10, 11]: photoelectr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> K-, L1-, L2- and L3-shell photoelectric<br />

e ects, K- and L-X rays, energy depositi<strong>on</strong> due to M- and higher-shell photoelectric e ects, K- and<br />

L-Auger electr<strong>on</strong>s, and Doppler broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong>-scattered phot<strong>on</strong>s. The sec<strong>on</strong>dary-electr<strong>on</strong><br />

transport was not simulated for reducing computati<strong>on</strong> time. The energy <str<strong>on</strong>g>of</str<strong>on</strong>g> each sec<strong>on</strong>dary electr<strong>on</strong> is<br />

c<strong>on</strong>verted into scintillati<strong>on</strong> phot<strong>on</strong>s using <str<strong>on</strong>g>the</str<strong>on</strong>g> relative electr<strong>on</strong>-resp<strong>on</strong>se in Fig. 3, which was measured<br />

by Ro<strong>on</strong>ey et al.[12]. The electr<strong>on</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl) is n<strong>on</strong>-linear in an energy regi<strong>on</strong> less than 1<br />

MeV, as shown in Figure 3.<br />

Seven di erent processes relating to SPT are incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> present SPC code, as shown<br />

in Fig. 4. The SPC code was originally developed by our group and recently linked to an <strong>EGS</strong>4<br />

usercode. The details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te-Carlo simulati<strong>on</strong>s are described in a separate paper[1]. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present SPT simulati<strong>on</strong>s for NaI(Tl) detectors, we assumed following: <str<strong>on</strong>g>the</str<strong>on</strong>g> re ectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a re ector<br />

for scintillati<strong>on</strong> phot<strong>on</strong>s is 0.975 <str<strong>on</strong>g>the</str<strong>on</strong>g> re ecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> re ector is di usive<br />

(directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s after re ecti<strong>on</strong> is sampled randomly in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>) Snell's law<br />

is valid at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between NaI(Tl) and a crystal window <str<strong>on</strong>g>the</str<strong>on</strong>g> refractive indices <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl) and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crystal windows <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator and <str<strong>on</strong>g>the</str<strong>on</strong>g> PMT are 1.47 and 1.85, respectively and scintillati<strong>on</strong>-light<br />

4


γ<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 4: Processes treated in a scintillati<strong>on</strong> phot<strong>on</strong> transport (SPT) simulati<strong>on</strong>.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 5: Emissi<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl) and quantum e ciency (Q.E) <str<strong>on</strong>g>of</str<strong>on</strong>g> photocathode.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 6: X, Y dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.E.<br />

5


attenuati<strong>on</strong> inside NaI(Tl) is negligible.<br />

The photocathode c<strong>on</strong>versi<strong>on</strong> e ciency from phot<strong>on</strong>s to photoelectr<strong>on</strong>s is generally called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Quantum E ciency (Q e). The absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> Q e in a centralarea<str<strong>on</strong>g>of</str<strong>on</strong>g>4x4cm 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode<br />

used was measured as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelength by <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PMT (Hamamatsu Phot<strong>on</strong>ics),<br />

which isshown in Fig. 5, al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl). Figure 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative X- and Y-distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Q e, which was measured with a collimated light source. From <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data shown in Figs. 5 and 6, <str<strong>on</strong>g>the</str<strong>on</strong>g> averaged Q e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode was estimated to be 0.272. The<br />

n<strong>on</strong>-uniformity data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode was also incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> SPT simulati<strong>on</strong>.<br />

5 Results and discussi<strong>on</strong>s<br />

Figure 7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> results from M<strong>on</strong>te-Carlo simulati<strong>on</strong>s. The energy-depositi<strong>on</strong> spectrum obtained<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 simulati<strong>on</strong> indicates a m<strong>on</strong>ochromatic full-energy peak at <str<strong>on</strong>g>the</str<strong>on</strong>g> right endpoint<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum, as shown in Fig. 7 (a). The n<strong>on</strong>-linearity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> resp<strong>on</strong>se broadens <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

full-energy peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong>-phot<strong>on</strong> spectrum, and causes ne structures <strong>on</strong> this peak[13], as<br />

shown in Fig. 7 (b). The photoelectr<strong>on</strong> spectrum obtained from an SPT simulati<strong>on</strong> following <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>EGS</strong>4 simulati<strong>on</strong> is also shown in Fig. 7 (b). In measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> spectrum, <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

loss due to electric-noise ( noise) was 470 electr<strong>on</strong>s (4.4%) in FWHM. In order to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated<br />

spectrum with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> spectrum in Fig. 7 (b) was obtained as a<br />

c<strong>on</strong>voluti<strong>on</strong> with Gaussian functi<strong>on</strong>s having a standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (470/2.35=) 200 electr<strong>on</strong>s.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

φ <br />

<br />

<br />

<br />

φ <br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 7: M<strong>on</strong>te-Carlo simulati<strong>on</strong>s. (a) The energy-depositi<strong>on</strong> spectrum. (b) The scintillati<strong>on</strong>-phot<strong>on</strong> spectrum<br />

(thin line) and <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> spectrum (thick line).<br />

Figure 8 is a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> spectra. This gure shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy<br />

6


peak from <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> agrees very well with that from <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se spectra<br />

are di erent around <str<strong>on</strong>g>the</str<strong>on</strong>g>ir back-scattered peaks, it can be explained from a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> massive materials<br />

surrounding NaI(Tl), such as <str<strong>on</strong>g>the</str<strong>on</strong>g> PMT etc., in <str<strong>on</strong>g>the</str<strong>on</strong>g> present geometry for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 simulati<strong>on</strong>. The<br />

total energy resoluti<strong>on</strong> in FWMM <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak ( total) was 7.7% in <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement and<br />

7.6% in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

The gross c<strong>on</strong>versi<strong>on</strong> e ciency from scintillati<strong>on</strong> phot<strong>on</strong>s to photoelectr<strong>on</strong>s, which corresp<strong>on</strong>ds to<br />

Fc phot<strong>on</strong> spectrum and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> spectrum, in Fig. 7(b). The measured full-energy peak in<br />

Fig. (8) was estimated to be about 10600 electr<strong>on</strong>s from tting with Gaussian functi<strong>on</strong>s. Therefore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 662-keV gamma<br />

rays was calculated to be 58200 from eq.(3). We can thus obtain 11.4 eV as <str<strong>on</strong>g>the</str<strong>on</strong>g> preliminary value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ws from eq.(1).<br />

The energy resoluti<strong>on</strong> expected from photoelectr<strong>on</strong> statistics ( pe )was calculated to be 2.3% from<br />

10600 electr<strong>on</strong>s. However, this value is too small to explain <str<strong>on</strong>g>the</str<strong>on</strong>g> measured total resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.7%,<br />

even if <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> loss due to electric noise <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.4% is taken into account. The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r main sources<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> loss are an intrinsic resoluti<strong>on</strong> ( int) and a transfer variance ( trans). Figure 9 shows<br />

a broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peak (<str<strong>on</strong>g>the</str<strong>on</strong>g> intrinsic resoluti<strong>on</strong>) in <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong>-phot<strong>on</strong> spectrum<br />

due to a di erence in <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray interacti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-linear electr<strong>on</strong> resp<strong>on</strong>se. From <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this distributi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> intrinsic resoluti<strong>on</strong> was calculated to be 3.5% in FWHM.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) crystal has some defects, such as an inhomogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> Tl activators, <str<strong>on</strong>g>the</str<strong>on</strong>g>y would cause<br />

additi<strong>on</strong>al resoluti<strong>on</strong> losses. However, such e ects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resoluti<strong>on</strong> were not treated in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present study. The transfer variance c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following sources: (1)scintillati<strong>on</strong>-phot<strong>on</strong> collecti<strong>on</strong><br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a scintillati<strong>on</strong> detector system, (2) photoelectr<strong>on</strong> c<strong>on</strong>versi<strong>on</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photocathode, (3) n<strong>on</strong>uniformity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum e ciency and (4) photoelectr<strong>on</strong> collecti<strong>on</strong> loss. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 662-keV<br />

gamma-ray irradiati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s are generated almost uniformly over <str<strong>on</strong>g>the</str<strong>on</strong>g> entire volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) scintillator. In order to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer variance, we simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a collected number <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s under a c<strong>on</strong>diti<strong>on</strong> similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> present case. Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isotropic scintillati<strong>on</strong> sources was randomly sampled inside a 3-inch-diameter, 3-inch-l<strong>on</strong>g<br />

scintillati<strong>on</strong> crystal each source generated 60000 scintillati<strong>on</strong> phot<strong>on</strong>s. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>,<br />

trans was estimated to be 4.6% in FWHM.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g>se sources <str<strong>on</strong>g>of</str<strong>on</strong>g> resoluti<strong>on</strong> loss are independent each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, we can calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy<br />

resoluti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> following relati<strong>on</strong>:<br />

q<br />

2<br />

2<br />

total = + + int trans 2 + pe 2 : (4)<br />

noise<br />

Q e, was estimated to be 0.182 from a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong>-<br />

Using eq.(4) and values described above, <str<strong>on</strong>g>the</str<strong>on</strong>g> total resoluti<strong>on</strong> was calculated to be 7.6%, which agrees<br />

well with <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

6 C<strong>on</strong>clusi<strong>on</strong>s<br />

The 662-keV gamma-ray spectra from NaI(Tl) scintillati<strong>on</strong> detectors (crystal size, 3" 3") were<br />

analyzed quantitatively by a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental measurements and M<strong>on</strong>te-Carlo simulati<strong>on</strong>s.<br />

The W s value corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> full-energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 662-keV gamma rays was preliminary<br />

determined to be 11.4 eV. The total energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> full energy peak in FWHM was obtained<br />

to be 7.7% in <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment and 7.6% in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s. This total resoluti<strong>on</strong> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intrinsic<br />

energy resoluti<strong>on</strong> (3.5%) caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-linear energy resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI(Tl) for electr<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer<br />

variance (4.6%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong>-phot<strong>on</strong> number in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector system, <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> statistics<br />

(2.3%) and <str<strong>on</strong>g>the</str<strong>on</strong>g> electric noise (4.4%). It is c<strong>on</strong>sidered that <str<strong>on</strong>g>the</str<strong>on</strong>g> present method will help to analyze<br />

di erent types <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> detectors in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

7


φ <br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 8: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> spectra.<br />

φ <br />

γ<br />

<br />

<br />

<br />

<br />

Figure 9: Intrinsic crystal resoluti<strong>on</strong>.<br />

8


References<br />

[1] H. Tawara, S. Sasaki, K. Saito, E. Shibamura and M. Miyajima, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 99-15, 44<br />

(1999).<br />

[2] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, SLAC-265 (Stanford University, Stanford<br />

1985).<br />

[3] M. Miyajima, S. Sasaki and E. Shibamura, Nucl. Instrum. Meth. 224(1984)331.<br />

[4] M. Miyajima, S. Sasaki, H. Tawara, and E. Shibamura, IEEE Trans. Nucl. Sci. 39, 536 (1992).<br />

[5] M. Miyajima, S. Sasaki and H. Tawara, IEEE Trans. Nucl. Sci. 40(1993)417.<br />

[6] S. Sasaki, H. Tawara, and M. Miyajima, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 93-8, 20 (1993).<br />

[7] E. Shibamura, S. Sasaki, H. Tawara and M. Miyajima, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 99-8, 175 (1999).<br />

[8] Y. Namito, S. Ban and H. Hirayama, Radiat. Phys. and Chem. 53(1998)283.<br />

[9] H. Hirayama, Y. Namito and S. Ban, <strong>KEK</strong> Internal 96-10 (1996).<br />

[10] Y. Namito, S. Ban and H. Hirayama, Nucl. Instrum. Meth. A349(1994)489.<br />

[11] Y. Namito, S. Ban and H. Hirayama, Nucl. Instrum. Meth. A332(1993)277.<br />

[12] B. D. Ro<strong>on</strong>ey and J. D. Valentine, IEEE Trans. Nucl. Sci. 44(1997)509.<br />

[13] J. D. Valentine, B. D. Ro<strong>on</strong>ey and J. Li, IEEE Trans. Nucl. Sci. 45(1998)512.<br />

9


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.161-167<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Gamma-Ray Directi<strong>on</strong> Detector<br />

Based <strong>on</strong> MSGC<br />

T. Nagayoshi 1 , H. Kubo 1 , A. Ochi 1 , S. Koishi 1 ,<br />

T. Tanimori 2 , and Y. Nishi 3<br />

1 Tokyo Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Meguro, Tokyo, 152-8551, Japan<br />

2 Kyoto University, Sakyo, Kyoto, 602-8502, Japan<br />

3 The Institure <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical and Chemical Research (RIKEN), Wako, Saitama, 351-0198, Japan<br />

Abstract<br />

The Micro-Strip Gas Chamber (MSGC) has been developed as a real-time X-ray imaging detector.<br />

The MSGC with a l<strong>on</strong>g drift space has been operated well as a Time Projecti<strong>on</strong> Chamber<br />

(TPC), and detected ne tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles with even less than 1mm, which we call this<br />

\Micro TPC". Here we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> imaging detector <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV gamma-rays based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC having a wide solid angle. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV gamma-rays, which interacts<br />

via Compt<strong>on</strong> process with matter, can be obtained <strong>on</strong>ly by observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> recoiled<br />

electr<strong>on</strong> and scattered gamma-ray. Full rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV gamma-rays would be enabled by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> both recoiled electr<strong>on</strong> tracks using <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC and scattered gamma-rays<br />

using ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r gamma-ray positi<strong>on</strong> detector such asascintillator Angular camera combined with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC.<br />

Behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC and scintillati<strong>on</strong> phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scintillator were calculated using <strong>EGS</strong>4. Expected performances <str<strong>on</strong>g>of</str<strong>on</strong>g> this new gamma-ray detector<br />

were estimated.<br />

1 Introducti<strong>on</strong><br />

The Micro-Strip Gas Chamber (MSGC) was proposed by Oed in 1988 [1] as a new type <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong><br />

sensitive proporti<strong>on</strong>al gas detector. Fine positi<strong>on</strong> resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 m is attained for MSGC, since<br />

electrode strips are printed <strong>on</strong> substrate at narrow intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 m. We have developed <str<strong>on</strong>g>the</str<strong>on</strong>g> large<br />

area MSGC with <str<strong>on</strong>g>the</str<strong>on</strong>g> fast data acquisiti<strong>on</strong> system for a real-time X-ray imaging. The ne positi<strong>on</strong><br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 100 m and excellent timing resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 100nsec are attained for our<br />

MSGC. The schematic structure is shown in Fig. 1. In additi<strong>on</strong> to anode and cathode, backstrip<br />

electrodes are printed orthog<strong>on</strong>ally to anodes behind thin substrate. Signals from anode and backstrip<br />

enable us to obtain two-dimensi<strong>on</strong>al image. Stable operati<strong>on</strong> is possible by a capillary plate installed<br />

in our MSGC as a intermediate gas multiplier [2].<br />

Our MSGC has been used for a time-resolved X-ray imaging [3] and an X-ray polarizati<strong>on</strong> measurement<br />

[4]. Recently we have succeeded to observe images <str<strong>on</strong>g>of</str<strong>on</strong>g> ne tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC X-ray imaging system like a cloud chamber. Using this feature observed in this system,<br />

a track <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> recoiled by Compt<strong>on</strong> scattering will be measured. In additi<strong>on</strong>, if a scattered<br />

gamma-ray via Compt<strong>on</strong> process is also detected by some detector behind <str<strong>on</strong>g>the</str<strong>on</strong>g> gas chamber, <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a gamma-ray could be fully determined from both <str<strong>on</strong>g>the</str<strong>on</strong>g> momentum vectors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

recoiled electr<strong>on</strong> detected in MSGC and <str<strong>on</strong>g>the</str<strong>on</strong>g> detected scattered gamma-ray. This method needs no<br />

collimators, and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore provide a wide eld <str<strong>on</strong>g>of</str<strong>on</strong>g> view ( str). This new detector would be very<br />

useful for a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>, e.g. gamma-ray astrophysics, medical diagnoses, radiati<strong>on</strong> c<strong>on</strong>trol, and<br />

so <strong>on</strong>.<br />

Here we presents <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated performances <str<strong>on</strong>g>of</str<strong>on</strong>g> this new gamma-ray detector using <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro<br />

TPC and <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator Angular Camera.<br />

1


2 Detecti<strong>on</strong> Principle<br />

2.1 The Micro TPC based <strong>on</strong> MSGC<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> tracking charged particles, <str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC having a deep gas volume has been<br />

developed, which works as a Time Projecti<strong>on</strong> Chamber (TPC). When a charged particle pass through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gas chamber, an electr<strong>on</strong> cloud is generated al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> track by <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>. This electr<strong>on</strong><br />

cloud drifts toward electrodes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC al<strong>on</strong>g electric eld formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> drift electrode. Then<br />

a two-dimensi<strong>on</strong>al image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> track is projected as a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> hit points <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MSGC (see Fig. 2). Three-dimensi<strong>on</strong>al track image is rec<strong>on</strong>structed from positi<strong>on</strong> informati<strong>on</strong> and<br />

time intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> each hit point. Fig. 3 shows an example <str<strong>on</strong>g>of</str<strong>on</strong>g> three-dimensi<strong>on</strong>al track observed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Micro TPC c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 10cm 10cm two-dimensi<strong>on</strong>al MSGC and <str<strong>on</strong>g>the</str<strong>on</strong>g> 8cm deep drift-gas volume.<br />

This track is c<strong>on</strong>sidered due to particles emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive isotope <str<strong>on</strong>g>of</str<strong>on</strong>g> lead c<strong>on</strong>tained in<br />

a glass capillary plate, which is set <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC and used as a auxiliary gas multiplier. Here ne<br />

tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles less than milli-meter were observed.<br />

2.2 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> incident gamma-ray directi<strong>on</strong><br />

When an incident MeV gamma-ray interact <str<strong>on</strong>g>the</str<strong>on</strong>g> gas in <str<strong>on</strong>g>the</str<strong>on</strong>g> drift volume, an electr<strong>on</strong> is recoiled<br />

mainly by Compt<strong>on</strong> process as following formula:<br />

cos =1+ m ec 2<br />

E k + E 0<br />

; mec 2<br />

<br />

E 0<br />

where m e is rest mass <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> and c is light velocity, and also E k, E 0, and is kinetic energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> recoiled electr<strong>on</strong>, energy <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered gamma-ray, and polar angle <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering, respectively. In this<br />

process, all <str<strong>on</strong>g>the</str<strong>on</strong>g> momenta <str<strong>on</strong>g>of</str<strong>on</strong>g> incident gamma-ray, scattered gamma-ray, and recoiled electr<strong>on</strong> lie <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same plane as shown in Fig. 4. If <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthal angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering plane, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two polar angles<br />

and both <str<strong>on</strong>g>the</str<strong>on</strong>g> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered gamma-ray and a recoiled electr<strong>on</strong> are measured, <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident gamma-ray is fully determined from above equati<strong>on</strong>. In additi<strong>on</strong>, residual polar angle<br />

provide <str<strong>on</strong>g>the</str<strong>on</strong>g> good redanancy for <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong>, which enable us <str<strong>on</strong>g>the</str<strong>on</strong>g> good rejecti<strong>on</strong> power for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

accidental background and <str<strong>on</strong>g>the</str<strong>on</strong>g> false rec<strong>on</strong>structi<strong>on</strong>.<br />

The schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC gamma-ray detector based <strong>on</strong> this idea is drawn in Fig. 5.<br />

Three-dimensi<strong>on</strong>al tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> a recoiled electr<strong>on</strong> is rec<strong>on</strong>structed by <str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas<br />

chamber. In order to suppress <str<strong>on</strong>g>the</str<strong>on</strong>g> di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drifted electr<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas volume, <str<strong>on</strong>g>the</str<strong>on</strong>g> drift volume<br />

is divided into two MSGCs. Also <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator Angular Camera c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

photomultiplier array covers <str<strong>on</strong>g>the</str<strong>on</strong>g> half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas volume in order to detect <str<strong>on</strong>g>the</str<strong>on</strong>g> recoiled gamma-rays. A<br />

trigger is generated from <str<strong>on</strong>g>the</str<strong>on</strong>g> signal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Angular Camera.<br />

3 <strong>EGS</strong>4 Simulati<strong>on</strong><br />

In order to optimize <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector and to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Micro TPC gamma-ray detector, <str<strong>on</strong>g>the</str<strong>on</strong>g> very c<strong>on</strong>venient program package <strong>EGS</strong>4 is used, which can<br />

simulate both <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattered gamma-ray phot<strong>on</strong>s and recoiled electr<strong>on</strong>s. The<br />

<strong>EGS</strong>4 is a general purpose package for M<strong>on</strong>te Carlo simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy electr<strong>on</strong>s and phot<strong>on</strong>s [5].<br />

Here we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> GSO as a scintillator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Angular Camera, which has a better stopping power<br />

for gamma-rays than ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r scintillator. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> GSO scintillator can be also simulated using<br />

<strong>EGS</strong>4. In this simulati<strong>on</strong>, a subroutine for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s is<br />

included.<br />

The geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> is a cubic shape, <str<strong>on</strong>g>of</str<strong>on</strong>g> which inside pure xen<strong>on</strong><br />

is lled with an atmospheric pressure. Also 1 3 cm thick GSO crystal covers around <str<strong>on</strong>g>the</str<strong>on</strong>g> cube (see<br />

Fig. 5). Incident gamma-rays are assumed to be perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> upper surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cube. There<br />

are four types <str<strong>on</strong>g>of</str<strong>on</strong>g> event patterns in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector: (A) no interacti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas volume, (B) photoelectric<br />

2


e ect ( uorescent X-ray is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten absorbed in gas), (C) Compt<strong>on</strong> scattering observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas volume<br />

but scattered gamma-ray missing, (D) both scattered electr<strong>on</strong> and gamma-ray observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas<br />

volume and in <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillator respectively. The available event is <str<strong>on</strong>g>the</str<strong>on</strong>g> last type in <str<strong>on</strong>g>the</str<strong>on</strong>g> four types. The<br />

detecti<strong>on</strong> e ciency satis ed with <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> (D) is shown in Fig. 6 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

gamma-ray energy.<br />

While electr<strong>on</strong>s passing through gas <str<strong>on</strong>g>the</str<strong>on</strong>g> volume, <str<strong>on</strong>g>the</str<strong>on</strong>g> tracks are quite bent bymultiple scattering.<br />

Averaged de ecti<strong>on</strong> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> tracks determines <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> a rec<strong>on</strong>structed directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray. Here <str<strong>on</strong>g>the</str<strong>on</strong>g> de ecti<strong>on</strong> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered electr<strong>on</strong> is de ned as an angular deviati<strong>on</strong><br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered electr<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> point <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> track passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> 3mm<br />

distance. Fig. 7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> de ecti<strong>on</strong> angles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recoiled electr<strong>on</strong> track. Here <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy written in each gure is not electr<strong>on</strong>s', but those <str<strong>on</strong>g>of</str<strong>on</strong>g> incident gamma-rays. The energy become<br />

higher, <str<strong>on</strong>g>the</str<strong>on</strong>g> de ecti<strong>on</strong> angles become smaller drastically. For high energy incident gamma-rays, most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> recoiled electr<strong>on</strong>s pass straight through <str<strong>on</strong>g>the</str<strong>on</strong>g> 3mm thick gas layer without multiple scattering. In<br />

this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> track is determined within <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 degree.<br />

While a i<strong>on</strong>ized electr<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> track drifts toward MSGC electrode, it gradually di uses by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

collisi<strong>on</strong> between electr<strong>on</strong>s and gas molecules. In order to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

recoiled electr<strong>on</strong>, it is necessary to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> track as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> de ecti<strong>on</strong>.<br />

However, it is not so easy to estimate di usi<strong>on</strong> properties, because it str<strong>on</strong>gly depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> electric<br />

eld, gas pressure, and c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quencher gas [6]. Now we are developing <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> by<br />

including above e ects.<br />

Scintillators are used for <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered gamma-rays. Dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> light is<br />

estimated quickly using <str<strong>on</strong>g>the</str<strong>on</strong>g> simpli ed simulati<strong>on</strong>. In this simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong><br />

light is ignored, and it is assumed that all phot<strong>on</strong>s, which reach surface <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal, is absorbed. So<strong>on</strong><br />

we will use <str<strong>on</strong>g>the</str<strong>on</strong>g> full simulati<strong>on</strong> including such e ects. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light is estimated<br />

to be about 1cm for 1cm thick GSO, and about 2cm for 2cm thick <strong>on</strong>e (see Fig. 8).<br />

4 Summary and Future Plan<br />

Our MSGC is applied to Micro TPC, and three-dimensi<strong>on</strong>al tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles ( particles)<br />

were observed. An imaging detector for <str<strong>on</strong>g>the</str<strong>on</strong>g> MeV gamma-ray based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC is proposed,<br />

which is expected to have a wide eld <str<strong>on</strong>g>of</str<strong>on</strong>g> view and provide <str<strong>on</strong>g>the</str<strong>on</strong>g> full rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

gamma-ray. Expected performance <str<strong>on</strong>g>of</str<strong>on</strong>g> this gamma-ray detector was simulated using <strong>EGS</strong>4. Obtained<br />

detecti<strong>on</strong> e ciency is about 1%, and <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray is less than 1<br />

degree for 1MeV gamma-ray. As a preliminary result, <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light in GSO crystal is about<br />

1to2cm.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next step, energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC will be taken into account. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> detector combined with pixel type PMTs<br />

is now in progress.<br />

References<br />

[1] A. Oed, \Positi<strong>on</strong>-sensitive detector with microstrip anode for electr<strong>on</strong> multiplicati<strong>on</strong> with gases",<br />

Nucl. Instrum. Meth. A263 (1988)351-359.<br />

[2] Y. Nishi, T. Tanimori, A. Ochi, Y. Nishi, and H. Toyokawa, \Development <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrid MSGC with<br />

a c<strong>on</strong>ductive capillary plate", <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> SPIE 3774(1999)87-96.<br />

[3] A. Ochi, T. Tanimori, Y. Nishi, T. Nagayoshi, Y. Nishi, Y. Ohashi, H. Uekusa, H. Toyokawa,<br />

K. Inoue, and T. Fujisawa, \Novel X-ray analyzing methods using a MicroStrip Gas Chamber",<br />

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> SPIE 3774 (1999)76-86.<br />

3


[4] A. Ochi, S. Aoki, Y. Nishi, and T. Tanimori, \Development <str<strong>on</strong>g>of</str<strong>on</strong>g> imaging microstrip gas chambers<br />

and measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X-rays", Nucl. Instrum. Meth. A392(1997)124-126.<br />

[5] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \The <strong>EGS</strong>4 code system", SLAC-265 (1985).<br />

[6] A. Peisert, and F Sauli, \Drift and di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s in gases: a compilati<strong>on</strong>" CERN 84-08<br />

(1984).<br />

4


Anode strip<br />

(10ÉIm width)<br />

Figure 2: Two-dimensi<strong>on</strong>al track image projected<br />

<strong>on</strong> 2cm 2cm area <str<strong>on</strong>g>of</str<strong>on</strong>g> MSGC. Each sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dots represents a track image projected <strong>on</strong> electrode<br />

plane.<br />

Drift plane substrate<br />

(20ÉIm<br />

polyimide)<br />

200ÉIm<br />

Cathode strip<br />

(100ÉIm width)<br />

200ÉIm<br />

Back strip<br />

(180ÉIm width)<br />

Base<br />

(Ceramic)<br />

Figure 1: Schematic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> 2D MSGC.<br />

5<br />

Figure 3: A three-dimensi<strong>on</strong>al track image <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

particle. A track is rec<strong>on</strong>structed from positi<strong>on</strong><br />

and timing data <str<strong>on</strong>g>of</str<strong>on</strong>g> each dot.


γ<br />

(azimuth)<br />

ϕ<br />

θ<br />

α<br />

e<br />

γ '<br />

Figure 4: Directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered gamma-ray<br />

and recoiled electr<strong>on</strong>.<br />

efficiency [%]<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

1<br />

electr<strong>on</strong><br />

MSGC<br />

e -<br />

~1MeV<br />

~50cm<br />

pixel type PMTs<br />

gamma ray<br />

drift plane<br />

e + e -<br />

scintillator<br />

~10MeV<br />

~50cm<br />

Figure 5: Schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC<br />

gamma-ray detector. Recoiled electr<strong>on</strong> tracks are detected<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Micro TPC based <strong>on</strong> MSGC, and scattered<br />

gamma-rays are absorbed in scintillators behind <str<strong>on</strong>g>the</str<strong>on</strong>g> gas<br />

chamber.<br />

gas (all interacti<strong>on</strong>)<br />

gas and GSO<br />

0.2 0.4 0.6 0.8 1 1.2<br />

energy [MeV]<br />

Figure 6: Detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> Micro TPC gamma-ray detector. Round markers mean e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong><br />

<strong>on</strong>ly in gas regi<strong>on</strong>. E ciency shown as square marker is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective events.<br />

6


Y[cm]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30 35 40 45<br />

deflecti<strong>on</strong> angle [deg]<br />

0.40 MeV γ-ray<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

X[cm]<br />

thickness=1.0cm<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Figure 7: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> de ecti<strong>on</strong> angle.<br />

Y[cm]<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

deflecti<strong>on</strong> angle [deg]<br />

1.00 MeV γ-ray<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

X[cm]<br />

thickness=2.0cm<br />

Figure 8: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s. Energy <str<strong>on</strong>g>of</str<strong>on</strong>g> incident gamma-ray is 700keV. Total event number<br />

is 20.<br />

7


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.168-175<br />

Resp<strong>on</strong>se Functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NE213 Liquid Saintillati<strong>on</strong> Detector<br />

Simulated by <strong>EGS</strong>4/PRESTA Code<br />

for a Collimated -Ray Beam<br />

N. Takeda, K. Kudo, S. Koshikawa, H. Ohgaki, H. Toyokawa, and T. Sugita 1<br />

Quantum Radiati<strong>on</strong> Divisi<strong>on</strong>, Electrotechnical Laboratory<br />

1-1-4 Umez<strong>on</strong>o, Tsukuba-shi, Ibaraki 305-8568, Japan<br />

1 Science System Laboratory<br />

1342-6 Sumiyoshi, Tomobe-cho, Ibaraki 309-1716, Japan<br />

Abstract<br />

For phot<strong>on</strong> spectrometry in a mixed neutr<strong>on</strong>-phot<strong>on</strong> eld, a NE213 liquid scintillati<strong>on</strong> detector<br />

is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> useful instruments which has an excellent neutr<strong>on</strong>-phot<strong>on</strong> discriminati<strong>on</strong> capability.<br />

The -ray resp<strong>on</strong>se functi<strong>on</strong> for a NE213 detector is required for unfolding measured pulse height<br />

spectra. The <strong>EGS</strong>4/PRESTA codewas used to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray resp<strong>on</strong>se functi<strong>on</strong> taking into<br />

accounts <str<strong>on</strong>g>the</str<strong>on</strong>g> detail informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector assembly. Experimental data were taken in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy range below 1.8 MeV using a collimated -ray beam <str<strong>on</strong>g>of</str<strong>on</strong>g> radioisotope reference sources. For<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> higher energies up to 10 MeV, a laser-Compt<strong>on</strong>-scattered (LCS) phot<strong>on</strong> source was used as<br />

a collimated quasi-m<strong>on</strong>oenergetic phot<strong>on</strong> beam. The simulated resp<strong>on</strong>se functi<strong>on</strong> showed a good<br />

agreement with experimental data at di erent energies.<br />

1 Introducti<strong>on</strong><br />

It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten required in neutr<strong>on</strong> calibrati<strong>on</strong> elds to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> dose <str<strong>on</strong>g>of</str<strong>on</strong>g> -rays produced in a<br />

neutr<strong>on</strong> source and in <str<strong>on</strong>g>the</str<strong>on</strong>g> surroundings, because some types <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong> detector are sensitive both<br />

to neutr<strong>on</strong>s and -rays. In <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> -rays mixed in a neutr<strong>on</strong> eld, c<strong>on</strong>venti<strong>on</strong>al -ray<br />

detectors such as GM counter, NaI scintillator and Ge detector are in uenced by neutr<strong>on</strong>-induced<br />

reacti<strong>on</strong>s in a detector assembly, which can not be separated easily from phot<strong>on</strong> detecting reacti<strong>on</strong>s.<br />

Bueermann and Novotny etal.developed phot<strong>on</strong> spectrometry using NE213 scintillati<strong>on</strong> detectors<br />

in mixed neutr<strong>on</strong>-phot<strong>on</strong> elds, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its excellentn- separati<strong>on</strong> properties [1-3]. They calculated<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong> due to phot<strong>on</strong>s induced by fast neutr<strong>on</strong>s in NE213 scintillators using a coupled<br />

MCNP4A/<strong>EGS</strong>4 simulati<strong>on</strong>, and nally obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy distributi<strong>on</strong> existing in some<br />

neutr<strong>on</strong>-phot<strong>on</strong> eld.<br />

In this paper as a rst step to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray energy distributi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray resp<strong>on</strong>se<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a NE213 scintillati<strong>on</strong> detector will be calculated by <strong>EGS</strong>4/PRESTA code and folded properly<br />

with a resoluti<strong>on</strong> functi<strong>on</strong>. The light output functi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resoluti<strong>on</strong> will be determined<br />

by using reference -ray sources. The simulated results would be compared with experimental data<br />

for collimated beams <str<strong>on</strong>g>of</str<strong>on</strong>g> radioisotope reference sources below 1.8 MeV and a laser-Compt<strong>on</strong>-scattered<br />

(LCS) phot<strong>on</strong> source at higher energies up to 10 MeV.<br />

2 Experimental Setup<br />

In order to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> -rays, a NE213 scintillati<strong>on</strong> counter was set as shown<br />

in Fig. 1. The NE213 scintillati<strong>on</strong> detector was encapsulated in a standard BA1 cylindrical cell (inner<br />

1


size: 5.08 cm in diameter and 5.08 cm length) and designed to avoid any air bubble in <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitive<br />

regi<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> an expansi<strong>on</strong> reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> polyethylene tube around <str<strong>on</strong>g>the</str<strong>on</strong>g> circumference. A<br />

c<strong>on</strong>venti<strong>on</strong>al measuring system <str<strong>on</strong>g>of</str<strong>on</strong>g> pulse shape discriminati<strong>on</strong> and multi-parameter data acquisiti<strong>on</strong> was<br />

used to process <str<strong>on</strong>g>the</str<strong>on</strong>g> signals from a photomultiplier tube (R329-02 manufactured by HAMAMATSU)<br />

and to separate phot<strong>on</strong> signals from neutr<strong>on</strong> induced <strong>on</strong>es.<br />

The -ray resp<strong>on</strong>se functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NE213 scintillati<strong>on</strong> counter was measured using gamma-ray<br />

reference sources <str<strong>on</strong>g>of</str<strong>on</strong>g> 88 Y, 60 Co, 22 Na, 54 Mn and 137 Cs provided by Amersham Buchler GmbH & Co<br />

KG. In <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NE213 scintillati<strong>on</strong> counter, <str<strong>on</strong>g>the</str<strong>on</strong>g> source was located at <str<strong>on</strong>g>the</str<strong>on</strong>g> distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 23cm<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> NE213 scintillator <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical axis. The gamma-rays from <str<strong>on</strong>g>the</str<strong>on</strong>g> sources were<br />

collimated by a lead collimator (10 cm x 10 cm cross secti<strong>on</strong> and 20 cm l<strong>on</strong>g) to make a narrow beam<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3.85 mm diameter. In order to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> precise resp<strong>on</strong>se functi<strong>on</strong> depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> irradiati<strong>on</strong><br />

positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray beam, <str<strong>on</strong>g>the</str<strong>on</strong>g> collimated beam was irradiated to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parallel or vertical to its axis, and scanned to radius or height directi<strong>on</strong>, respectively.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment above 1.8 MeV, <str<strong>on</strong>g>the</str<strong>on</strong>g> NE213 detector was calibrated by using <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS phot<strong>on</strong><br />

beam which is expected as a new source <str<strong>on</strong>g>of</str<strong>on</strong>g> quasim<strong>on</strong>oenergetic phot<strong>on</strong>s between 2 MeV and 22<br />

MeV [4,5]. As shown in Fig.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d harm<strong>on</strong>ic light emitted from a Q-switched Nd:YLF laser<br />

(maximum output: 20 W, wavelength: 527 nm, minimum pulse width: 150 ns, and pulse reputati<strong>on</strong><br />

rate: 2-50 kHz), was guided into <str<strong>on</strong>g>the</str<strong>on</strong>g> laser-electr<strong>on</strong> interacti<strong>on</strong> regi<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g> laser polarizing<br />

c<strong>on</strong>troller, re ecti<strong>on</strong> mirror, and focusing lens. High-energy phot<strong>on</strong>s back-scattered by relativistic<br />

electr<strong>on</strong>s (maximum energy: 800 MeV, maximum beam: 300 mA, and pulse reputati<strong>on</strong> rate: 166<br />

MHz) were collimated to a beam diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mm using a lead block. The sec<strong>on</strong>d lead collimator<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding lead surrounding a NE213 scintillati<strong>on</strong> detector reduce background bremsstrahlung<br />

phot<strong>on</strong>s generated in <str<strong>on</strong>g>the</str<strong>on</strong>g> synchrotr<strong>on</strong> storage ring.<br />

3 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Resp<strong>on</strong>se Functi<strong>on</strong> by <strong>EGS</strong>4/PRESTA Code<br />

The -ray resp<strong>on</strong>se functi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> NE213 scintillati<strong>on</strong> counter was calculated using <strong>EGS</strong>4 code<br />

coupled with <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter reduced electr<strong>on</strong>-step transport algorithm (PRESTA) routine which was<br />

developed to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> results <strong>on</strong> step size in electr<strong>on</strong> transport simulati<strong>on</strong> [6].<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s for reference gamma-ray sources was made under <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s:<br />

1. <str<strong>on</strong>g>the</str<strong>on</strong>g> reference gamma-ray source was assumed to be an isotropic point source.<br />

2. <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> model and <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NE213 detector assembly were chosen precisely as<br />

shown in Fig. 1.<br />

3. In <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LCS facility, <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry routine was written by taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detailed system c<strong>on</strong> gurati<strong>on</strong>, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a volume source <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s produced in an electr<strong>on</strong>laser<br />

collisi<strong>on</strong> regi<strong>on</strong>, a lead collimator, and <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical NE213 detector with all physical<br />

processes necessary for accurate calculati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy regi<strong>on</strong> from 300 MeV to<br />

800 MeV. The 527 nm coherent light generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 W Nd-YLF laser was guided to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vacuum chamber located at <str<strong>on</strong>g>the</str<strong>on</strong>g> straight porti<strong>on</strong> between two bending magnets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> storage<br />

ring TERAS [4] and collided head-<strong>on</strong> with high-energy electr<strong>on</strong>s. Back-scattered phot<strong>on</strong> energy<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> angle corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> backward directi<strong>on</strong> were randomly generated by<br />

following a kinematic formula for Compt<strong>on</strong> scattering, as input data for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4/PRESTA<br />

calculati<strong>on</strong>. The electr<strong>on</strong> beam divergence and energy spread were ignored in calculati<strong>on</strong>. To<br />

shorten computing time, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum solid angle c<strong>on</strong>e to <str<strong>on</strong>g>the</str<strong>on</strong>g> backward emissi<strong>on</strong> was limited<br />

to be slightly little larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> rst collimator, positi<strong>on</strong>ed 503.6 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> volume source.<br />

4. The NE213 detector used in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 calculati<strong>on</strong> was assumed to be composed <str<strong>on</strong>g>of</str<strong>on</strong>g> multilayer<br />

cylinders according to factory informati<strong>on</strong>, as shown in Fig.3.<br />

2


5. The energy intervals for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong> were chosen as:<br />

(a) 100keV in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range up to 400 keV,<br />

(b) 20 keV in <str<strong>on</strong>g>the</str<strong>on</strong>g> range from 400 keV to 1.9 MeV,<br />

(c) 100 keV from 1.9 MeV to 5 MeV and<br />

(d) 500 keV up to 10MeV.<br />

The pulse height axiswas divided into 1000 channels corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy bin width <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 keV/channel.<br />

4 Results and Discussi<strong>on</strong><br />

The pulse height spectra measured for <str<strong>on</strong>g>the</str<strong>on</strong>g> reference -ray sources <str<strong>on</strong>g>of</str<strong>on</strong>g> 88 Y, 60 Co, 22 Na, 54 Mn and<br />

137 Cs were compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4/PRESTA code. The calculated<br />

spectrum was folded with <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height dependent resoluti<strong>on</strong> assuming to be dL/L =B/L 1=2 , where<br />

L and B are <str<strong>on</strong>g>the</str<strong>on</strong>g> light output and arbitrary parameter, including <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Compt<strong>on</strong><br />

edge and tted to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured distributi<strong>on</strong> [7]. By changing <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter B properly, a besttted<br />

distributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental spectrum was determined by a least square t and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precise positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong>-edge could be determined for <str<strong>on</strong>g>the</str<strong>on</strong>g> reference sources. As an example, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated spectra with measured <strong>on</strong>es for <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray beam from a 137 Cs source is shown<br />

in Fig. 4bychanging <str<strong>on</strong>g>the</str<strong>on</strong>g> incident positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a -ray beam corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> bold arrows (in <str<strong>on</strong>g>the</str<strong>on</strong>g> left<br />

hand sketches) incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. The arrows (in <str<strong>on</strong>g>the</str<strong>on</strong>g> right hand gures) in <str<strong>on</strong>g>the</str<strong>on</strong>g> spectra indicated<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> precise Compt<strong>on</strong> edge at di erent incident points perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical detector axis.<br />

The light output functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NE213 scintillator resulted in linear output relati<strong>on</strong>ship, expressed<br />

as L=E e - 0.0065, between <str<strong>on</strong>g>the</str<strong>on</strong>g> measured pulse height L and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding equivalent electr<strong>on</strong><br />

energy E e in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range below 1.6 MeV. Toverify qualitative simulati<strong>on</strong> by <strong>EGS</strong>4/PRESTA code,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> radioactivities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference sources were determined by tting simulated resp<strong>on</strong>se functi<strong>on</strong>s to<br />

experimental data. The derived radioactivities agreed well within <str<strong>on</strong>g>the</str<strong>on</strong>g> reference uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> 5%<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> di erent -ray sources.<br />

The parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> A, B and C in <str<strong>on</strong>g>the</str<strong>on</strong>g> formula <str<strong>on</strong>g>of</str<strong>on</strong>g> pulse height resoluti<strong>on</strong> dL/L described by (A 2 +<br />

B 2 /L + C 2 /L 2 ) 1=2 were determined as 0.032, 0.103 and 0.002, respectively.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> higher energies above 1.8 MeV, <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated spectra with experimental<br />

results were shown in Fig. 5 at energies <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.43, 4.311, 5.151 and 5.985 MeV and in Fig. 6 at 6.816,<br />

7.787, 8.780 and 9.869 MeV, respectively. The simulated resp<strong>on</strong>se functi<strong>on</strong> showed a relatively better<br />

agreement with experimental data at di erent energies. The light output functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NE213<br />

scintillator resulted in n<strong>on</strong>-linear output relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> deposited energy as shown in Fig 7.<br />

5 C<strong>on</strong>clusi<strong>on</strong><br />

The <strong>EGS</strong>4/PRESTA codewas used to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray resp<strong>on</strong>se functi<strong>on</strong> taking into accounts<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> detail informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector assembly. Experimental data were taken in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range<br />

below 1.8 MeV using a collimated -ray beam <str<strong>on</strong>g>of</str<strong>on</strong>g> radioisotope reference sources. For <str<strong>on</strong>g>the</str<strong>on</strong>g> higher energies<br />

up to 10 MeV, a LCS phot<strong>on</strong> source was used as a collimated quasi-m<strong>on</strong>oenergetic phot<strong>on</strong> beam. The<br />

simulated resp<strong>on</strong>se functi<strong>on</strong> showed a good agreement with experimental data at di erent energies.<br />

The resp<strong>on</strong>se matrix calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4/PRESTA code coupled with <str<strong>on</strong>g>the</str<strong>on</strong>g> light output and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resoluti<strong>on</strong> functi<strong>on</strong> would be applied for unfolding pulse height spectra measured for <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

-ray sources by using unfolding codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GRAVEL and <str<strong>on</strong>g>the</str<strong>on</strong>g> MIEKE [8].<br />

3


Figure 2: Experimental setup for a collimated beam <str<strong>on</strong>g>of</str<strong>on</strong>g> LCS phot<strong>on</strong> source.<br />

φ<br />

φ<br />

φ<br />

φ<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ρ <br />

<br />

<br />

φ<br />

<br />

<br />

<br />

<br />

φ<br />

<br />

<br />

<br />

Figure 3: Calculati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> NE213 Scintillator.<br />

5<br />

φ


Figure 4: Positi<strong>on</strong> dependent pulse height spectra for a phot<strong>on</strong> beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Cs source.<br />

6


Fig.5Positi<strong>on</strong>dependentpulseheightspectraforaLCSphot<strong>on</strong>beamatenergies<str<strong>on</strong>g>of</str<strong>on</strong>g>3-6MeV<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

1500<br />

1000<br />

500<br />

2000<br />

1000<br />

3000<br />

2000<br />

1000<br />

0<br />

100 200 300 400<br />

Channelnumber<br />

2000<br />

1000<br />

Exp.<br />

Cal. Cal.<br />

0<br />

0 100 200 300 400<br />

Channelnumber<br />

Channelnumber<br />

Exp.<br />

Cal.<br />

Exp.<br />

Cal.<br />

Exp.<br />

Cal.<br />

6.816MeV<br />

7.787MeV<br />

3.43MeV<br />

4.331MeV<br />

0<br />

0 100 200 300 400<br />

Channelnumber<br />

Channelnumber<br />

0<br />

100 200 300 400<br />

Channelnumber<br />

0<br />

100 200 300 400<br />

Channelnumber<br />

Fig.6Positi<strong>on</strong>dependentpulseheightspectraforaLCSphot<strong>on</strong>beamatenergies<str<strong>on</strong>g>of</str<strong>on</strong>g>7-10MeV<br />

CountsperChannel<br />

CountsperChannel<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

Countsperchannel<br />

2000<br />

1000<br />

2000<br />

1000<br />

2000<br />

1000<br />

1500<br />

1000<br />

7<br />

0<br />

100 200<br />

Channelnumber<br />

300 400<br />

500<br />

0<br />

0 100 200 300 400<br />

Channelnumber<br />

Channelnumber<br />

Exp.<br />

Cal.<br />

Exp.<br />

Cal.<br />

Exp.<br />

Cal.<br />

Exp.<br />

Cal.<br />

9.869MeV<br />

LCSphot<strong>on</strong>s<br />

LCSphot<strong>on</strong>s<br />

LCSphot<strong>on</strong>s<br />

5.152MeV<br />

5.985MeV<br />

0<br />

0 100 200 300 400<br />

Channelnumber<br />

Channelnumber<br />

Channelnumber<br />

8.780MeV


Figure 7: Light output functi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> NE213 scintillator (PM tube: R329-02)<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.176-181<br />

The E ect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Build-up Wall<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD Calibrati<strong>on</strong> Using Co-60<br />

N. Nariyama<br />

Nuclear Technology Divisi<strong>on</strong>, Ship Research Institute,<br />

Mitaka, Tokyo 181-0004, Japan<br />

Abstract<br />

Absorbed dose in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoluminescent dosimeter (TLD) material at <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong> using Co-60<br />

gamma rays depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD thickness and <str<strong>on</strong>g>the</str<strong>on</strong>g> wall material used for electric equilibrium c<strong>on</strong>diti<strong>on</strong>.<br />

The relati<strong>on</strong> was examined for LiF, BeO and CaF2 TLDs sandwiched with PMMA, Te <strong>on</strong><br />

and Pyrex glass walls using a M<strong>on</strong>te Carlo transport code and compared with cavity i<strong>on</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory calculati<strong>on</strong>s. For <str<strong>on</strong>g>the</str<strong>on</strong>g> mismatched combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF, BeO/Pyrex glass and CaF2/PMMA,<br />

it was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> did not change m<strong>on</strong>ot<strong>on</strong>ously with TLD thickness from<br />

small cavity to large cavityvalue: a depressi<strong>on</strong> observed around 1-mm thickness for LiF/Pyrex glass<br />

and a peak around 0.6-mm thickness for CaF2/PMMA. The phenomena were explained by using<br />

di erent exp<strong>on</strong>ential attenuati<strong>on</strong> coe cients and ' for <str<strong>on</strong>g>the</str<strong>on</strong>g> weighting functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cavity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

Moreover, use <str<strong>on</strong>g>of</str<strong>on</strong>g> large cavity values was found to lead possibly to 3-5% errors in <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thin TLDs.<br />

1 Introducti<strong>on</strong><br />

Recently, increase <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> and i<strong>on</strong> beam facilities make <str<strong>on</strong>g>the</str<strong>on</strong>g> LET e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong><br />

dosimeters an interesting and important subject because <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> c<strong>on</strong>siderably di ers from that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear industry facilities and ordinary medical machines in regard to energy, strength and beam<br />

quality. For <str<strong>on</strong>g>the</str<strong>on</strong>g> LET e ect, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoluminescent dosimeters (TLDs) have been extensively examined<br />

[1] because TLDs are used for pers<strong>on</strong>al dosimetry and many kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> materials are available.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> use, TLDs are calibrated using Co-60 or Cs-137 in general. In <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong>, dose in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TL material does not have to be estimated: <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between TL signal and dose equivalent is<br />

important. The LET e ect, however, is <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomen<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> TL material itself shows. To investigate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> e ect quantitatively, estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> TL material is indispensable.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong>, TL material is sandwiched with wall materials such asTe <strong>on</strong> to attain electric<br />

equilibrium c<strong>on</strong>diti<strong>on</strong>. The absorbed dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> TL material is obtained as follows[2]:<br />

DTLD = f( en= ) wall=( en= )airDair<br />

where f is <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se, which is obtained based <strong>on</strong> Burlin's cavity i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [3], ( en/ ) wall<br />

and ( en/ )air are <str<strong>on</strong>g>the</str<strong>on</strong>g> mass energy absorpti<strong>on</strong> coe cients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall material and air, and Dair is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absorbed dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> air. If <str<strong>on</strong>g>the</str<strong>on</strong>g> in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall is neglected, which is a simpler method for rough<br />

approximati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> dose in <str<strong>on</strong>g>the</str<strong>on</strong>g> TL material is obtained <strong>on</strong>ly by multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> air absorbed dose by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass energy absorpti<strong>on</strong> coe cients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD material and air.<br />

Cavity i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for TLDs has been extensively investigated using M<strong>on</strong>te Carlo transport<br />

codes [4]-[6], in which energy depositi<strong>on</strong> distributi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> TLDs and electr<strong>on</strong> spectra were calculated.<br />

Practically, <str<strong>on</strong>g>the</str<strong>on</strong>g> sandwich materials <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used are tissue-equivalent materials suchasTe <strong>on</strong> or PMMA.<br />

Moreover, Pyrex glass is employed as powder capsule because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> good heat resistance. It is<br />

important toestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> f values for <str<strong>on</strong>g>the</str<strong>on</strong>g> materials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness.<br />

1<br />

(1)


In this study, to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall material e ect at <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong>, energy depositi<strong>on</strong><br />

in LiF, BeO and CaF2 TLDs sandwiched with Te <strong>on</strong>, PMMA and Pyrex glass were calculated<br />

for Co-60 gamma rays as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness with a M<strong>on</strong>te Carlo transport code. The result<br />

was compared with that <str<strong>on</strong>g>of</str<strong>on</strong>g> cavity i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

2 M<strong>on</strong>te Carlo Calculati<strong>on</strong><br />

A M<strong>on</strong>te Carlo transport code used was TIGER <str<strong>on</strong>g>of</str<strong>on</strong>g> ITS package [7]. The geometry available is<br />

<strong>on</strong>e-dimensi<strong>on</strong>al slab. Cut-o energy used was 1keV for phot<strong>on</strong>s and electr<strong>on</strong>s. The TLD thickness<br />

was varied from 0.1 mm to 10 mm. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall was determined so as to establish electric<br />

equilibrium c<strong>on</strong>diti<strong>on</strong>, that is, 3 to 4 mm. The statistical errors were all below 1%.<br />

3 Results and Discussi<strong>on</strong><br />

Figure 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF between Te <strong>on</strong> walls as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness.<br />

The values change smoothly from small cavity to large cavity value. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, Fig. 2<br />

represents <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> Pyrex glass. The value decreases from small cavity value and increase at 1-mm<br />

thickness. When using large cavity value for 0.1-mm thickness, 3% error will appear.<br />

The reas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> observed at 1-mm thickness was attributable to <str<strong>on</strong>g>the</str<strong>on</strong>g> di erent rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> attenuati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> wall and electr<strong>on</strong> buildup in <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD. Cavity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory calculati<strong>on</strong> was<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n made using larger value than ' value in <str<strong>on</strong>g>the</str<strong>on</strong>g> weighting functi<strong>on</strong>s d and d' as suggested by<br />

Attix[8]:<br />

and<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong><br />

d 0 =<br />

d =<br />

R g<br />

0 e; x dx<br />

R g<br />

0 dx<br />

R g<br />

0 (1 ; e; 0 x )dx<br />

R g<br />

0 dx<br />

f = dfs + d 0 f l<br />

where fs and f l are small and large cavity values, respectively, and g is a mean chord <str<strong>on</strong>g>of</str<strong>on</strong>g> length in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cavity. The result is shown in Fig. 3, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> similar shape having a depressi<strong>on</strong> to that in Fig.<br />

2was obtained. The depressi<strong>on</strong> was also found in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental deta <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF/aluminum[9].<br />

The result <str<strong>on</strong>g>of</str<strong>on</strong>g> BeO between PMMA is indicated in Fig. 4. M<strong>on</strong>ot<strong>on</strong>ous change was observed. On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> Pyrex glass is shown in Fig. 5, in which a depressi<strong>on</strong> larger than that in<br />

Fig. 2was seen because <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective atomic number <str<strong>on</strong>g>of</str<strong>on</strong>g> BeO is smaller than that <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF.<br />

Figure 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CaF2 between PMMA walls. C<strong>on</strong>trary to Fig. 2, a peak<br />

was observed: <str<strong>on</strong>g>the</str<strong>on</strong>g> values rise until 1-mm thickness and decrease. This time by using smaller value<br />

than ' value, cavity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory calculati<strong>on</strong> was made. Figure 7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> result. The similar shape<br />

including a peak was observed in Fig. 6. If <str<strong>on</strong>g>the</str<strong>on</strong>g> large cavity value is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.4-mm thickness,<br />

5% error will be introduced.<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy depositi<strong>on</strong> in LiF, BeO and CaF2 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness showed<br />

a depressi<strong>on</strong> and a peak for LiF, BeO/Pyrex glass and CaF2/PMMA, respectively. The behavior was<br />

reproduced by cavity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory calculati<strong>on</strong>. Practically, if <str<strong>on</strong>g>the</str<strong>on</strong>g> large cavity value is used, 3-5% errors will<br />

appear for <str<strong>on</strong>g>the</str<strong>on</strong>g> mismatched combinati<strong>on</strong>. The errors are in uential when a high accuracy is required.<br />

2<br />

(2)<br />

(3)<br />

(4)


References<br />

[1] Y. S. Horowitz, Thermoluminescence and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoluminescent dosimetry, Vol. 2, CRC Press, Inc.<br />

Florida (1984)<br />

[2] N. Nariyama and S. Tanaka, J. Nucl. Sci. Tech., 34(1997)137-147.<br />

[3] T. E. Burlin, Br. J. Radiol., 39(1966)727-734.<br />

[4] K. O'Brien, Phys. Med. Biol., 22(1977)836-851.<br />

[5] A. F. Bielajew and D.W.O Rogers, AAPM Meeting, Lexingt<strong>on</strong>, USA (1986).<br />

[6] Y. S. Horowitz, M. Moscovitch, J. M. Mack, H. Hsu and E. Kearsley, Nucl. Sci. Eng., 94(1986)233-<br />

240.<br />

[7] J. A. Halbleib, et al., SAND91-1634, (1992).<br />

[8] F. H. Attix, Introducti<strong>on</strong> to radiological physics and radiati<strong>on</strong> dosimetry, John Wiley & S<strong>on</strong>s, Inc.<br />

New York (1986)<br />

[9] O. T. Ogunleye, F. H. Attix and B. R. Paliwal, Phys. Med. Biol., 25(1980)203-213.<br />

Energy depositi<strong>on</strong> (MeV cm2/g)<br />

0.032<br />

0.031<br />

10 –1<br />

10 0<br />

LiF/Tefl<strong>on</strong><br />

TLD thickness (mm)<br />

Figure 1: Energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF between Te <strong>on</strong> walls as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

3<br />

10 1


Energy depositi<strong>on</strong> (MeV cm2/g)<br />

0.032<br />

0.031<br />

10 –1<br />

10 0<br />

LiF/Pyrex glass<br />

TLD thickness (mm)<br />

Figure 2: Energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF between pyrex glass walls as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

f<br />

0.95<br />

0.94<br />

0.93<br />

0.92<br />

10 –1<br />

10 0<br />

f=df s +d'f l<br />

TLD thickness (mm)<br />

Figure 3: fvalue calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF with cavity i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

4<br />

10 1<br />

10 1


Energy depositi<strong>on</strong> (MeV cm2/g)<br />

0.033<br />

0.032<br />

10 –1<br />

10 0<br />

BeO/PMMA<br />

TLD thickness (mm)<br />

Figure 4: Energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BeO between PMMA walls as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

Energy depositi<strong>on</strong> (MeV cm2/g)<br />

0.033<br />

0.032<br />

10 –1<br />

10 0<br />

BeO/Pyrex glass<br />

TLD thickness (mm)<br />

Figure 5: Energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BeO between Pyrex glass walls as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

5<br />

10 1<br />

10 1


Energy depositi<strong>on</strong> (MeV cm2/g)<br />

0.034<br />

0.033<br />

10 –1<br />

10 0<br />

CaF 2/PMMA<br />

TLD thickness (mm)<br />

Figure 6: Energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CaF2 between PMMA walls as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

f<br />

1<br />

0.95<br />

0.9<br />

10 –1<br />

10 0<br />

TLD thickness (mm)<br />

f=df s+d'f l<br />

Figure 7: fvalue calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CaF2 with cavity i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD thickness<br />

6<br />

10 1<br />

10 1


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.182-192<br />

A C<strong>on</strong>voluti<strong>on</strong> Method for Determining Temperature Rise<br />

in Targets Struck by Beams <str<strong>on</strong>g>of</str<strong>on</strong>g> Various Size 1<br />

W. R. Nels<strong>on</strong>, S. Ecklund and S. Rokni<br />

Stanford Linear Accelerator Center,<br />

P.O. Box 4349, Stanford, CA 94309, USA<br />

Abstract<br />

The temperature rise in targets struckby high-energy electr<strong>on</strong>s can be calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

code[1] simply by scoring <str<strong>on</strong>g>the</str<strong>on</strong>g> energy-depositi<strong>on</strong> density in small cylindrical volumes centered up<strong>on</strong>,<br />

and divided al<strong>on</strong>g, <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam. The temperature rise per pulse, Tp ( C/pulse), is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n obtained for each volume using <str<strong>on</strong>g>the</str<strong>on</strong>g> speci c heat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material, and <str<strong>on</strong>g>the</str<strong>on</strong>g> time dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat ow can be calculated using c<strong>on</strong>venti<strong>on</strong>al heat-transfer principles. Most typically <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

beam size is accounted for in a straight-forward way by sampling <str<strong>on</strong>g>the</str<strong>on</strong>g> incident coordinates, but this<br />

involves yet ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r statistical process that can result in a signi cant increase in computati<strong>on</strong> time<br />

in order to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> variance, particularly for thick targets at very high energies. In this paper an<br />

o -line c<strong>on</strong>voluti<strong>on</strong> method is presented in which <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry and <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaussian<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam is used, al<strong>on</strong>g with a set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 runs made with a -functi<strong>on</strong> (i.e., pencil)<br />

beam, to quickly obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse for beams <str<strong>on</strong>g>of</str<strong>on</strong>g> any size. Examples are<br />

given for studies that have recently been performed at SLAC in <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Next Linear<br />

Collider.<br />

1 Introducti<strong>on</strong><br />

There are three important quantities which must be determined when designing targets capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> handling large temperature-rise excursi<strong>on</strong>s. Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum stress at <str<strong>on</strong>g>the</str<strong>on</strong>g> central core and <str<strong>on</strong>g>the</str<strong>on</strong>g> steady-state temperature. The latter two, however, are<br />

derivable from <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise per pulse, T p ( C/pulse), and this, in turn, is obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy-depositi<strong>on</strong> density (i.e., fracti<strong>on</strong>al energy-loss per unit volume), dE=E 0dV , as follows[2] [3] [4]<br />

:<br />

where<br />

T p = C NE 0<br />

C p<br />

1<br />

E 0<br />

dE<br />

dV<br />

= material density (g=cm 3 )<br />

C p = heat capacity<br />

N = electr<strong>on</strong>s=pulse<br />

6:0<br />

A<br />

(1)<br />

(cal=g C)<br />

E 0 = incident beam energy (MeV)<br />

A = atomic weight (g=mole)<br />

C = 1:6 10 ;13 =4:184 (cal=MeV): :<br />

1 Work supported in part by <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy c<strong>on</strong>tract DE-AC03-76SF00515.<br />

1


The maximum radial stress (r=0) in a pulse, r (psi), is <str<strong>on</strong>g>the</str<strong>on</strong>g>n obtained with<br />

where<br />

r = Ey Tp (2)<br />

2(1 ; p)<br />

p = Poiss<strong>on</strong> ratio (0:25 to 0:30)<br />

= coe cient <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> ( C ;1 )<br />

E y = Young 0 s modulus (psi) :<br />

The steady state temperature pro le, T (r), is given by equating <str<strong>on</strong>g>the</str<strong>on</strong>g> heat input, _ Q, inside a cylinder<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radius r to <str<strong>on</strong>g>the</str<strong>on</strong>g> heat c<strong>on</strong>ducti<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder.<br />

where<br />

_Q = NE 0C<br />

Z r<br />

0<br />

1<br />

E 0<br />

= pulse repetiti<strong>on</strong> rate (sec ;1 )<br />

dE<br />

dV 2 r dr = kT 2 r dT<br />

(3)<br />

dr<br />

k T = <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity coe cient (calsec ;1 cm ;1 C ;1 ) :<br />

Therefore, <strong>on</strong>e <strong>on</strong>ly needs to determine dE=E 0dV using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code.<br />

2 Accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> Radial Extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Beam<br />

The straight-forward method <str<strong>on</strong>g>of</str<strong>on</strong>g> accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> beam size with <strong>EGS</strong>4 is to sample <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

coordinates (X IY I) over an appropriate distributi<strong>on</strong>, such as a Gaussian, just prior to each call to<br />

SUBROUTINE SHOWER. However, several problems arise from this direct method. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, at high<br />

energies (multi-GeV) and for thick targets (many radiati<strong>on</strong> lengths), a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> computer time<br />

is spent just tracking <str<strong>on</strong>g>the</str<strong>on</strong>g> particles in <str<strong>on</strong>g>the</str<strong>on</strong>g> shower to <str<strong>on</strong>g>the</str<strong>on</strong>g> very low energies required in determining <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy-depositi<strong>on</strong> density itself. A limit must <str<strong>on</strong>g>the</str<strong>on</strong>g>n be imposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> incident particles<br />

that can be sampled, for any given beam size, and <str<strong>on</strong>g>the</str<strong>on</strong>g> end result is that <str<strong>on</strong>g>the</str<strong>on</strong>g> radial distributi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature rise c<strong>on</strong>tains large uctuati<strong>on</strong>s.<br />

<str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g>ly, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> has to be run over and over again for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam-spot sizes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest. Clearly, <str<strong>on</strong>g>the</str<strong>on</strong>g> time is better spent performing <strong>EGS</strong>4 calculati<strong>on</strong>s with good statistics, using a<br />

(X I) (Y I) (i.e., pencil beam) input, and subsequently performing c<strong>on</strong>voluti<strong>on</strong>-type integrati<strong>on</strong>s for<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

The c<strong>on</strong>voluti<strong>on</strong> method that we have developed applies to round Gaussian beams|i.e.,<br />

x = y = . It was developed by Ecklund and Nels<strong>on</strong> in 1981 [5] and subsequently used in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>sis by D<strong>on</strong>ahue [6] .<br />

3 Gaussian C<strong>on</strong>voluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pencil Beams<br />

The general form <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-dimensi<strong>on</strong>al Gaussian distributi<strong>on</strong> is<br />

f(x) = 1<br />

p 2<br />

Z 1<br />

;1<br />

(x;x)<br />

;<br />

e 2 2 dx: (4)<br />

If we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy-depositi<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pencil beam is given by<br />

W 0(r)<br />

1<br />

E 0<br />

2<br />

dE<br />

dV<br />

(5)


<str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluted energy-depositi<strong>on</strong> density is<br />

Z<br />

W (r) =f W0 = f(x)W0(x) dx : (6)<br />

For a two-dimensi<strong>on</strong>al Gaussian distributi<strong>on</strong> in radial coordinates (x = r cos , y = r sin ),<br />

W (r) =<br />

=<br />

1<br />

Z 1<br />

2 2<br />

0<br />

Z 1<br />

1<br />

2 2<br />

0<br />

dr<br />

Z 2<br />

d re ;( r2 +r 2 ;2rr cos( ; ))<br />

2 2 W 0(r)<br />

0<br />

rdre ;(r;r)2<br />

2 2 Z 2<br />

W0(r) where we have taken = 0 without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality.<br />

0<br />

d e<br />

rr ; (1;cos )<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 output is in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> a histogram averaged over radial bins, we have<br />

W (i)<br />

Z ri+1<br />

r i<br />

2<br />

(7)<br />

W (r) rdr : (8)<br />

The c<strong>on</strong>voluted distributi<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> same binning is <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

W (i) = X<br />

MijW (j) (9)<br />

where<br />

M ij =<br />

1<br />

2 2 (ri+1 ; r2<br />

i )<br />

Z Z ri+1 rj+1<br />

r i<br />

r j<br />

j<br />

rdr rdre ;(r;r)2<br />

2 2<br />

Z 2<br />

0<br />

rr ; 2 e (1;cos ) d : (10)<br />

The integral over can be reduced to a modi ed Bessel functi<strong>on</strong>, I 0. The double integrati<strong>on</strong> is d<strong>on</strong>e<br />

numerically, taking special care (al<strong>on</strong>g i = j) to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> quadrature routine with an integrand that<br />

is not ill-behaved over <str<strong>on</strong>g>the</str<strong>on</strong>g> bin in questi<strong>on</strong>. The above equati<strong>on</strong> assumes that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy-depositi<strong>on</strong><br />

density does not vary signi cantly over <str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> each bin.<br />

4 Computer Codes for O ine C<strong>on</strong>voluti<strong>on</strong><br />

The following computer codes have been written in order to dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> technique<br />

presented in this paper.<br />

<strong>EGS</strong>4 User Code to create energy-depositi<strong>on</strong> density data for small radial bins at various depths<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> target. The code can be run with a pencil beam input, =0:0. in order to generate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

W (j) required by <str<strong>on</strong>g>the</str<strong>on</strong>g> o -line c<strong>on</strong>voluti<strong>on</strong> scheme. It can also be run with a Gaussian incident<br />

beam, e.g., =10or = 100 micr<strong>on</strong>s.<br />

A program that creates <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaussian c<strong>on</strong>voluti<strong>on</strong> matrix elements, M ij, foragiven set <str<strong>on</strong>g>of</str<strong>on</strong>g> beam<br />

, and a sec<strong>on</strong>d program to check <str<strong>on</strong>g>the</str<strong>on</strong>g> P j M ij =1:0 for any i-bin.<br />

A program to c<strong>on</strong>volute W (j) and M ij and produce a new output le for plotting <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

dE=E 0dV (left ordinate) and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding temperature rise, T p ( C/pulse) (right ordinate).<br />

A comm<strong>on</strong> element with all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se codes is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y must have <str<strong>on</strong>g>the</str<strong>on</strong>g> same radial binning structure.<br />

In our example case (see Appendix 1), <str<strong>on</strong>g>the</str<strong>on</strong>g> target c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 17 cylinders with radii <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 3, 5, 7, 10,<br />

30, . . . , 3000, 5000, 7000 10000 micr<strong>on</strong>s.<br />

These codes are <str<strong>on</strong>g>of</str<strong>on</strong>g> a general enough nature to be <str<strong>on</strong>g>of</str<strong>on</strong>g> use in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature-rise (and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r)<br />

problems and can be downloaded from SLAC 2 .<br />

2 The les are kept in /afs/slac.stanford.edu/public/groups/egs4/C<strong>on</strong>voluti<strong>on</strong> and can be obtained using an<strong>on</strong>ymous<br />

ftp|i.e., ftp ftp.slac.stanford.edu followed by cd groups/egs4/C<strong>on</strong>voluti<strong>on</strong>s).<br />

3


4.1 <strong>EGS</strong>4 User Code to determine energy-depositi<strong>on</strong> density, W (j)<br />

A general-purpose <strong>EGS</strong>4 User Code, called ucRTZ temp.mortran, has recently been written at<br />

SLAC foracylinder-slab geometry, with input read in from a .data le. This code is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

DOSRZ code by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, which comes with <str<strong>on</strong>g>the</str<strong>on</strong>g> standard distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4, but it is tailored for more general use o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than dosimetry. For <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest in this paper, ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r User Code was cl<strong>on</strong>ed from ucRTZ temp.mortran and given <str<strong>on</strong>g>the</str<strong>on</strong>g> name<br />

ucRTZ temp spot.mortran, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly real di erence being <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capability <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> incident beam-spot size from a Gaussian distributi<strong>on</strong>. Associated with this code is <str<strong>on</strong>g>the</str<strong>on</strong>g> input le<br />

ucRTZ temp spot.data, an example <str<strong>on</strong>g>of</str<strong>on</strong>g> which is provided in Appendix 1.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong> below entitled Veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>voluti<strong>on</strong> Method we will use ucRTZ temp to generate<br />

10 computer runs, each with 1000 incident electr<strong>on</strong>s, using two modes:<br />

Pencil-beam mode: With =0:0 to create an output histogram, from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ten<br />

runs, to be used as input for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> code.<br />

Direct-sampling mode: With set to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 10 or 100 micr<strong>on</strong>s to create an output histogram,<br />

again a c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ten runs, that can be compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> (at<br />

10 and 100 micr<strong>on</strong>s).<br />

4.2 Programs to create (and check) matrix elements, M ij<br />

After getting <str<strong>on</strong>g>the</str<strong>on</strong>g> basic set <str<strong>on</strong>g>of</str<strong>on</strong>g> histogram data|i.e., ten separate runs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> User Code with<br />

di erent random number seeds|<str<strong>on</strong>g>the</str<strong>on</strong>g> next step is to create a set <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> required in <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. To facilitate this a program called RTZ mat.mortran was created,<br />

documentati<strong>on</strong> for which is c<strong>on</strong>tained within <str<strong>on</strong>g>the</str<strong>on</strong>g> code itself. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r code, RTZ matck.mortran, has<br />

also been created to check that <str<strong>on</strong>g>the</str<strong>on</strong>g> P j M ij =1:0 for any i-bin.<br />

4.3 Program to c<strong>on</strong>volute W (j) and M ij<br />

The program that performs <str<strong>on</strong>g>the</str<strong>on</strong>g> actual c<strong>on</strong>voluti<strong>on</strong> is called RTZ temp spot.mortran. As described<br />

above, it requires <str<strong>on</strong>g>the</str<strong>on</strong>g> following two input les:<br />

RTZ temp spot.data<br />

RTZ mat.data<br />

The rst le is a c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 runs, ten in our example case, each created with <str<strong>on</strong>g>the</str<strong>on</strong>g> code<br />

ucRTZ temp spot.mortran and its input data le ucRTZ temp spot.data. The sec<strong>on</strong>d le is a c<strong>on</strong>catenati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix output from <strong>on</strong>e or more runs <str<strong>on</strong>g>of</str<strong>on</strong>g> RTZ mat.mortran for each <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. In<br />

our case, = 3.16, 10, 20, 30, 50, 100, 500, 1000, 2000 and 3000 micr<strong>on</strong>s. Note, however, that we will<br />

<strong>on</strong>ly make use<str<strong>on</strong>g>of</str<strong>on</strong>g> = 10 and 100 micr<strong>on</strong>s in our veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> method, which is presented next.<br />

5 Veri cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>voluti<strong>on</strong> Method<br />

If a beam-spot size is directly sampled prior to each SHOWER call in <strong>EGS</strong>4 a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> computer time<br />

is required in order to get adequate statistics, especially at high-energies, low cut-o s, and for thick<br />

materials. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> for developing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> method in <str<strong>on</strong>g>the</str<strong>on</strong>g> rst place. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> direct-sampling method itself provides us with a way to verify that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> technique<br />

works, provided that we limit <str<strong>on</strong>g>the</str<strong>on</strong>g> check to reas<strong>on</strong>ably low-energy incident beams (note: a 1-GeV<br />

shower takes 100 times less time than does a 100-GeV shower).<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> ucRTZ temp spot User Code, we have d<strong>on</strong>e this veri cati<strong>on</strong> for an 8-r.l. thick copper<br />

target (1-cm radius) struck by 1-GeV electr<strong>on</strong> beams. The target is broken up al<strong>on</strong>g Z into eight<br />

cylindrical slabs, each cylinder composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 17 subcylinders, as indicated earlier (see Appendix 1).<br />

4


Accordingly, this same radial structure was also employed with <str<strong>on</strong>g>the</str<strong>on</strong>g> RTZ temp spot.mortran and and<br />

RTZ mat.mortran codes.<br />

The results are shown in Figures 1 and 2 for beam sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 and 100 micr<strong>on</strong>s, respectively. The<br />

c<strong>on</strong>voluted results (solid curves) are seen to be in excellant agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> directly-sampled results<br />

(histograms), at both <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t (0-1 r.l.) and back (7-8 r.l.) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby dem<strong>on</strong>strating that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> method works.<br />

Figure 1: Comparisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> direct-sampling (histogram) and c<strong>on</strong>voluti<strong>on</strong> (solid curve) methods for a 1-GeV beam<br />

striking an 8-radiati<strong>on</strong> length Cu cylinder: x = y = 10 micr<strong>on</strong>s.<br />

6 Temperature-Rise Examples from <str<strong>on</strong>g>the</str<strong>on</strong>g> NLC<br />

The beam parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> Next Linear Collider (NLC)[7] create a very serious problem with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse temperature-rise in objects that <str<strong>on</strong>g>the</str<strong>on</strong>g> beam may inadvertantly strike. To illustrate<br />

this problem using <str<strong>on</strong>g>the</str<strong>on</strong>g> codes described in this paper, we c<strong>on</strong>sidered a pencil-beam energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 GeV<br />

impinging up<strong>on</strong> a 10-r.l. l<strong>on</strong>g Cu cylinder having a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm. The energy-depositi<strong>on</strong> density and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding pulse temperature rise are shown as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radius in Figures 3 through 5, for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> beginning, middle and end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target, respectively.<br />

A full beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 12 electr<strong>on</strong>s/pulse was used in <str<strong>on</strong>g>the</str<strong>on</strong>g>se calculati<strong>on</strong>s and <strong>on</strong>e sees that even in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rst layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target (Figure 3), where <str<strong>on</strong>g>the</str<strong>on</strong>g> shower has yet to develop fully, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pulse exceeds 20-milli<strong>on</strong> C/p for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pencil beam (histogram). In order to get <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature down to something more reas<strong>on</strong>able, say 100 C/p, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> curves tell us that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> beam would have to be larger than 500 micr<strong>on</strong>s.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> shower develops in <str<strong>on</strong>g>the</str<strong>on</strong>g> target, multiple scattering also leads to a lateral spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy-depositi<strong>on</strong> density. In Figures 4 and 5 we see that, indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering has some<br />

e ect <strong>on</strong> reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise for incident beams with small emittance, but <str<strong>on</strong>g>the</str<strong>on</strong>g> shower<br />

multiplicati<strong>on</strong> is just too str<strong>on</strong>g for large beams (e.g., 500 micr<strong>on</strong>s), resulting in temperatures several<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude higher deep in <str<strong>on</strong>g>the</str<strong>on</strong>g> shower, relative to what <str<strong>on</strong>g>the</str<strong>on</strong>g>y were near <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

5


Figure 2: Comparisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> direct-sampling (histogram) and c<strong>on</strong>voluti<strong>on</strong> (solid curve) methods for a 1-GeV beam<br />

striking an 8-radiati<strong>on</strong> length Cu cylinder: x = y = 100 micr<strong>on</strong>s.<br />

Figure 3: Energy-depositi<strong>on</strong> density and temperature rise as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radius at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

( z = 0-1 r.l.)<br />

6


Figure 4: Energy-depositi<strong>on</strong> density andtemperature rise as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radius in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

( z = 4-5 r.l.)<br />

Figure 5: Energy-depositi<strong>on</strong> density and temperature rise as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radius at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target ( z =<br />

9-10 r.l.)<br />

7


To show <str<strong>on</strong>g>the</str<strong>on</strong>g> dramatic e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> shower multiplicity <strong>on</strong>beams <str<strong>on</strong>g>of</str<strong>on</strong>g> all sizes, we plot in Figure 6 <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum temperature rise as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depth, for <str<strong>on</strong>g>the</str<strong>on</strong>g> pencil beam and for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> curves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ten incident beams c<strong>on</strong>sidered. Also shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu (dashed<br />

line) and its stress limit (dotted line)[7].<br />

Figure 6: Pulse temperature rise vs. target depth for a 500 GeV beam in Cu<br />

From this gure it becomes clear that even beams as large as 3000 micr<strong>on</strong>s could damage <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

copper target in a single pulse. The questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n becomes: \Is <str<strong>on</strong>g>the</str<strong>on</strong>g>re a material that is more suitable<br />

for full beams <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 12 electr<strong>on</strong>s/pulse?"<br />

To answer this questi<strong>on</strong> we performed a similar analysis for Al and Be, with <str<strong>on</strong>g>the</str<strong>on</strong>g> results shown<br />

in Figures 7 and 8, respectively. The results show that aluminum and beryllium might be able to<br />

withstand a single pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 and 500 micr<strong>on</strong>s, respectively.<br />

8


Figure 7: Pulse temperature rise vs. target depth for a 500 GeV beam in Al<br />

Figure 8: Pulse temperature rise vs. target depth for a 500 GeV beam in Be<br />

9


7 C<strong>on</strong>clusi<strong>on</strong><br />

Running thick-target <strong>EGS</strong>4 calculati<strong>on</strong>s at high energies can be costly in computer time. That is,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>the</str<strong>on</strong>g> shower multiplicity, implying that more particles must be followed<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g>y reach <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energy cuto s. This, in turn, makes it di cult and time-c<strong>on</strong>suming to study<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> temperature-rise in targets, where <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam must also be incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te<br />

Carlo calculati<strong>on</strong> in order to study real beams. Direct sampling over <str<strong>on</strong>g>the</str<strong>on</strong>g> beam size simply introduces<br />

yet ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r statistical variance into <str<strong>on</strong>g>the</str<strong>on</strong>g> results, requiring l<strong>on</strong>ger and l<strong>on</strong>ger jobs to be run.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> study presented in this paper, we have created a c<strong>on</strong>voluti<strong>on</strong> technique in which a reas<strong>on</strong>able<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> computer runs, using a -functi<strong>on</strong> incident beam, can be used toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with a predetermined<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> beam matrices to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise for a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> beam sizes. We have<br />

dem<strong>on</strong>strated, at 1 GeV, that <str<strong>on</strong>g>the</str<strong>on</strong>g> results are c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> more laborious \direct sampling"<br />

approach, but <str<strong>on</strong>g>the</str<strong>on</strong>g> technique should be viable at any energy.<br />

Also presented in this paper are some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong> technique for<br />

temperature-rise studies for <str<strong>on</strong>g>the</str<strong>on</strong>g> Next Linear Collider, where <str<strong>on</strong>g>the</str<strong>on</strong>g> basic problem <str<strong>on</strong>g>of</str<strong>on</strong>g> very-small emittance<br />

beams <str<strong>on</strong>g>of</str<strong>on</strong>g> high-intensity and high-energy is shown to be formidable.<br />

References<br />

[1] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System", SLAC Report<br />

265 (1985).<br />

[2] H. DeStaebler, \Temperature Calculati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> Positr<strong>on</strong> Target", SLAC Internal Report CN-<br />

21 (1980).<br />

[3] H. DeStaebler, \Calculati<strong>on</strong>s for Positr<strong>on</strong> Target Test in ESA" SLAC Internal Report CN-23<br />

(1980).<br />

[4] H. DeStaebler, \More Calculati<strong>on</strong>s for Positr<strong>on</strong> Target Test in ESA" SLAC Internal Report<br />

CN-24 (1980).<br />

[5] S. Ecklund and W. R. Nels<strong>on</strong>, \Energy Depositi<strong>on</strong> and Thermal Heating in Materials Due to<br />

Low Emittance Electr<strong>on</strong> Beams", SLAC Internal Report CN-135 (1981).<br />

[6] R. J. D<strong>on</strong>ahue and W. R. Nels<strong>on</strong>, \Alternative Positr<strong>on</strong>-Target Design for Electr<strong>on</strong>-Positr<strong>on</strong><br />

Colliders", LBL Internal Report LBL-30724 (1991) [and SLAC-PUB-5702 (1991)].<br />

[7] \Zeroth-Order Design Report for <str<strong>on</strong>g>the</str<strong>on</strong>g> Next Linear Collider", SLAC Report 474 (May 1996).<br />

10


ucRTZ_temp_spot.data<br />

Appendix 1<br />

Representative example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> data-input le: ucRTZ temp spot.data<br />

1 NMED (I10)<br />

CU MEDIA(J,1) (24A1)<br />

0.0 0.0 ECUTin,PCUTin (Kinetic) (MeV) (2F10.0)<br />

17 1 8 Imax,Jmax,Kmax (3I10)<br />

0.0001 I=1 CYRAD (cm) (F10.0)<br />

0.0003 =2<br />

0.0005 =3<br />

0.0007 =4<br />

0.0010 =5<br />

0.0030 =6<br />

0.0050 =7<br />

0.0070 =8<br />

0.0100 =9<br />

0.0300 =10<br />

0.0500 =11<br />

0.0700 =12<br />

0.1000 =13<br />

0.3000 =14<br />

0.5000 =15<br />

0.7000 =16<br />

1.0000 =17=Imax<br />

0.0 J=1=Jmax THEPL (degrees) (F10.0) (no azimuthal)<br />

0.0 K=1 ZPL (r.l. here, hard coded to cm in program)<br />

1.0 =2<br />

2.0 =3<br />

3.0 =4<br />

4.0 =5<br />

5.0 =6<br />

6.0 =7<br />

7.0 =8=Kmax<br />

8.0 =9=Kmax+1<br />

1 17 1 1 1 8 1 0.0 CU<br />

0.0 0.0 0.0 Xin,Yin,Zin (3F10.0)<br />

1 1 1 Iin,Jin,Kin (3I10)<br />

0.0 0.0 1.0 Uin,Vin,Win (3F10.0)<br />

1 1 IXX,JXX (2I10)<br />

blank card (required EOF)<br />

1000 0.0100 Ncases,Sigma (I10,F10.0) (Sigma=0.0 implies pencil beam)<br />

1000.0 -1 0 EKEin(MeV),IQin,Isamp (F10.0,2I10)<br />

1 2 0 0 IBRDST,IPRDST,IBRSPL,NBRSPL (4I5)<br />

0 0 0 0 0.0 IPLC,IBCA,ILCA,IOLDTM,BLCMIN (4I5,F10.0)<br />

11


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.193-198<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 for Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Damage<br />

due to Gamma-ray Irradiati<strong>on</strong><br />

O. Sato, T. Tobita 1 and M. Suzuki 1<br />

Mitsubishi Research Institute, Inc.<br />

2-3-6 Ohtemachi, Chiyoda-ku, Tokyo, 100-8141, Japan<br />

1 Japan Atomic Energy Research Institute<br />

Tokai-mura, Ibaraki-ken, Japan, 319-1195<br />

Abstract<br />

An <strong>EGS</strong>4 user code named UCDPA was developed for <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material damages by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s and phot<strong>on</strong>s c<strong>on</strong>sidering electromagnetic cascade. The calculated depth distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dpa in ir<strong>on</strong> slab were compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> material hardening due to 2 and 2.5MeV<br />

electr<strong>on</strong> beam irradiati<strong>on</strong>s. The calculated dpa distributi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> measured hardening distributi<strong>on</strong>s<br />

were in a similar shape which have a peak at about 0.2mm from irradiated surface. The<br />

depth distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa were also calculated for phot<strong>on</strong>s from 0.7 to 10 MeV.<br />

1 Introducti<strong>on</strong><br />

The unexpected accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>-induced embrittlementwas discovered in <str<strong>on</strong>g>the</str<strong>on</strong>g> surveillance<br />

materials <str<strong>on</strong>g>of</str<strong>on</strong>g> High Flux Isotope Reactor (HFIR) in 1986[1]. A lot <str<strong>on</strong>g>of</str<strong>on</strong>g> studies have been made to explain<br />

this phenomena, and <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray induced reacti<strong>on</strong>s were supposed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant process[2],[3].<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> energy required to displace atoms from metallic lattice (Lindhard cuto energy Ed) is<br />

few ten eV, <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s produced from gamma-ray can knock-<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms when <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy<br />

is above several hundred keV. In preceding studies, <str<strong>on</strong>g>the</str<strong>on</strong>g> material damages due to gamma rays have<br />

been evaluated with <str<strong>on</strong>g>the</str<strong>on</strong>g> primary knock-<strong>on</strong> atom (PKA) or displacement per atom (dpa) cross secti<strong>on</strong>s<br />

for phot<strong>on</strong>s and phot<strong>on</strong> ux in materials. These damage cross secti<strong>on</strong>s have been calculated assuming<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary electr<strong>on</strong> spectrum in in nite media <str<strong>on</strong>g>of</str<strong>on</strong>g> metals, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> damage distributi<strong>on</strong>s in<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> materials were not c<strong>on</strong>sidered. These studies also have not been c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s produced at deep positi<strong>on</strong> by bremsstrahlang phot<strong>on</strong>s.<br />

We developed an user code for <strong>EGS</strong>4[4] named UCDPA for <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material damages<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s and phot<strong>on</strong>s c<strong>on</strong>sidering electromagnetic cascade. The user code calculates <str<strong>on</strong>g>the</str<strong>on</strong>g> PKA<br />

and dpa cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-atom collisi<strong>on</strong>s, and calculates damage<br />

distributi<strong>on</strong>s in a semi-in nite slab geometry. We calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> dpa depth distributi<strong>on</strong>s in ir<strong>on</strong> slab<br />

irradiated by 2 or 2.5MeV electr<strong>on</strong>s and up to 10MeV phot<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> user code.<br />

2 Displacement Cross Secti<strong>on</strong>s<br />

The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray damage to metals is schematically shown in Fig.1. When <str<strong>on</strong>g>the</str<strong>on</strong>g> metal<br />

irradiated by gamma-rays above several hundreds keV, <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> metal su er <str<strong>on</strong>g>the</str<strong>on</strong>g> collisi<strong>on</strong> with<br />

energitic electr<strong>on</strong>s produced by compt<strong>on</strong> scatterings or pair creati<strong>on</strong>s. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atoms in metal lattice (displacement energy) is from 20eV to 40eV, and mass ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and<br />

metal atoms are about 10 5 , <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s above 400keV can remove an atom from <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice. The<br />

removed atom is so called "Primary Knock-<strong>on</strong> Atom (PKA)". The PKA cross secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1


PKA's per unit uence <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>, are calculated with following formula derived from Mott scattering<br />

cross secti<strong>on</strong>,<br />

where,<br />

P = 4<br />

1<br />

4 2<br />

Za0ER<br />

"<br />

mc 2<br />

Tm<br />

Ed<br />

Z :atomic number <str<strong>on</strong>g>of</str<strong>on</strong>g> target atom,<br />

2<br />

; 1<br />

a0 :Bohr radius (= 0:529 10 ;10 m),<br />

ER :Rydberg energy : e 2 =2a0 =13:6eV,<br />

=Z/137,<br />

2 ln Tm<br />

:ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> velocity to light velocity,<br />

Ed<br />

+<br />

(<br />

2<br />

s<br />

Tm<br />

Tm =2 m M E<br />

mc 2 (E +2mc 2 )(maximum kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> recoil atom),<br />

M :mass <str<strong>on</strong>g>of</str<strong>on</strong>g> target atom,<br />

m :mass <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>,<br />

E :electr<strong>on</strong> kinetic energy,<br />

Ed :displacement energy.<br />

Ed<br />

; 1<br />

!<br />

; ln Tm<br />

Ed<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> recoil atom has <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy above <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement energy, sec<strong>on</strong>dary atoms can be<br />

knocked-<strong>on</strong> by PKA and removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary displaced atoms per<br />

PKA <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetic energy T is approximately calculated as follows,<br />

8<br />

><<br />

(T )=<br />

>:<br />

0 T


4 Electr<strong>on</strong> Irradiati<strong>on</strong> Experiment and Analysis<br />

The UCDPA was applied to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> dpa distributi<strong>on</strong> in a specimen <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe-0.6wt%Cu alloy<br />

used for <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment performed by JAERI[5] using 3MV single-ended electr<strong>on</strong> accelerator <str<strong>on</strong>g>of</str<strong>on</strong>g> TIARA<br />

(JAERI-Takasaki). In this experiment, 5 10mm specimen was irradiated by 2MeV-10mA broad<br />

parallel beam <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s. The specimen was heated to 250 C, and placed in vacuum. The di erence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hardenings between irradiated (5-15 hours) and un-irradiated specimen ( v) were measured.<br />

The dpa and PKA distributi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> beam axis was calculated using UCDPA to compare <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hardening. Fig.3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated dpa and PKA distributi<strong>on</strong> in an ir<strong>on</strong><br />

slab for electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2, 2.5 and 10MeV assuming that its displacement energy is 40eV. The dpa<br />

and PKA was same for <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2MeV and 2.5MeV, because <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> PKA<br />

was lower than displacement energy. The peak <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa was observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.2mm from<br />

irradiated surface where <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> primary and sec<strong>on</strong>dary electr<strong>on</strong>s was maximum. The<br />

measured peak <str<strong>on</strong>g>of</str<strong>on</strong>g> hardening was also observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> few-hundred mm.<br />

5 DPA Distributi<strong>on</strong> From High Energy Phot<strong>on</strong>s<br />

Depth distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa in an ir<strong>on</strong> slab caused by phot<strong>on</strong> irradiati<strong>on</strong> were calculated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phot<strong>on</strong> energy from 700keV to 10MeV. In Fig.4 and Fig.5 are shown <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated dpa distributi<strong>on</strong>s<br />

at depth from 0 to 10cm and <str<strong>on</strong>g>the</str<strong>on</strong>g> peak values <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa at each phot<strong>on</strong> energy, respectively. The peak<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dpa appeared at more deep positi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> peak became broader at <str<strong>on</strong>g>the</str<strong>on</strong>g> higher phot<strong>on</strong><br />

energy. The dpa decreases in exp<strong>on</strong>ential with depth at any phot<strong>on</strong> energies. The peak value <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa<br />

increases linearly with phot<strong>on</strong> energy above 2MeV, and it increases in exp<strong>on</strong>ential below 2MeV.<br />

6 C<strong>on</strong>clusi<strong>on</strong><br />

UCDPA is a tool to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> depth distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material damage caused by gamma-ray<br />

or electr<strong>on</strong> irradiati<strong>on</strong>. The calculated dpa distributi<strong>on</strong>s showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa is at <str<strong>on</strong>g>the</str<strong>on</strong>g> inside<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> materials. The detailed estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material damage in nuclear reactors, such asreactorvessels,<br />

shrouds, or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r structures, can be performed by <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong>-gamma coupled<br />

shielding calculati<strong>on</strong>s and gamma-ray damage calculati<strong>on</strong>s with UCDPA.<br />

References<br />

[1] R. D. Chevert<strong>on</strong>, J. G. Merkle and R. K. Nanstad, eds., \Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HFIR Pressure-Vessel<br />

Integrity C<strong>on</strong>sidering Radiati<strong>on</strong> Embrittlement", ORNL/TM-10444, 1988.<br />

[2] K. Farrell, S. T. Mahmod, R. E. Stoller and L. K. Mansur, \An evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low temperature<br />

radiati<strong>on</strong> embrittlement mechanism in ferritic alloys," J. Nucl. Mater. 210(1994)261-281.<br />

[3] I. Remec, J. A. Wang, F. B. K. Kam and K. Farrell, \E ects <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-induced displacements<br />

<strong>on</strong> HFIR pressure vessel materials," J. Nucl. Mater. 217(1994)258-268.<br />

[4] W. R. Nels<strong>on</strong>, H. Hirayama, D. W. O. Rogers, \The <strong>EGS</strong>4 Code System", SLAC{65, Stanford<br />

Linear Accelerator Center,1985.<br />

[5] T. Tobita, M. Suzuki, Y. Idei, A. Iwase and K. Aizawa, \Study <strong>on</strong> -ray Induced Embrittlement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Light Water Reactor Pressure Vessel steel," Trans. Int. C<strong>on</strong>f. Struct. Mech. React. Technol.<br />

15(10)(1999)X.205-X.212.<br />

3


Figure 2: Calculated PKA and dpa cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> for electr<strong>on</strong>s. Displacement energy (Ed) is assumed<br />

to be 40eV.<br />

dpaorPKA[10 -24 /Incidentphot<strong>on</strong>]<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

E=10MeV(dpa)<br />

E=10MeV(PKA)<br />

E=2.5MeV(dpa=PKA)<br />

E=2.0MeV(dpa=PKA)<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Depth(cm)<br />

Figure 3: Calculated depth distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa in ir<strong>on</strong> slab irradiated by 2.0, 2.5 and 10MeV broad parallel<br />

electr<strong>on</strong> beam. The uctuati<strong>on</strong>s at deep positi<strong>on</strong> are due to statistical errors <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculati<strong>on</strong>s.<br />

5


dpa[10 -24 /Incidentphot<strong>on</strong>]<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0<br />

Depth(cm)<br />

Eγ=10MeV<br />

Eγ=5MeV<br />

Eγ=2MeV<br />

Eγ=1MeV<br />

Eγ=700keV<br />

Figure 4: Calculated depth distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dpa in ir<strong>on</strong> slab irradiated by 700keV - 10MeV broad parallel phot<strong>on</strong><br />

beam. The uctuati<strong>on</strong>s for lower phot<strong>on</strong> energies are due to statistical errors <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo calculati<strong>on</strong>s.<br />

maximumdpainir<strong>on</strong>[10 -24 /Incidentphot<strong>on</strong>]<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0<br />

Phot<strong>on</strong>energy(MeV)<br />

Figure 5: Maximum dpa in ir<strong>on</strong> slab irradiated by 700keV - 10MeV phot<strong>on</strong>s.<br />

6


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.199-208<br />

Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-Ray Piping Diagnostic System<br />

using <strong>EGS</strong>4 (Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Film and Ir<strong>on</strong> Rust)<br />

G. Kajiwara<br />

Shimizu Corporati<strong>on</strong>, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

3-4-17, Etchujima, Koto-ku, Tokyo, 135-8530 JAPAN<br />

Abstract<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray piping diagnosis system, <str<strong>on</strong>g>the</str<strong>on</strong>g> old pipe is taken X-ray photograph, and from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe in <str<strong>on</strong>g>the</str<strong>on</strong>g> lm, <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe is measured using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> density and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness.<br />

First, as for <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> density and <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed energy in <str<strong>on</strong>g>the</str<strong>on</strong>g> lm, though<br />

good agreement was obtained last year, it is improved more by making energy bin smaller in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4. The reas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> agreement was researched and understood.<br />

Next, using <strong>EGS</strong>4, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel was carried out which iscovered<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> rust, using <str<strong>on</strong>g>the</str<strong>on</strong>g> element analysis result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust sample that was collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> old<br />

pipe.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness changes, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate for <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel and <str<strong>on</strong>g>the</str<strong>on</strong>g> rust layer<br />

changes. This relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> layers is expressed<br />

approximately in <str<strong>on</strong>g>the</str<strong>on</strong>g> formula. It will be re ected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe.<br />

1 Introducti<strong>on</strong><br />

Since its development about ten years ago, <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray piping diagnostic system used for renewal<br />

c<strong>on</strong>structi<strong>on</strong> or planning has been an e ective and practical system for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

residual years <str<strong>on</strong>g>of</str<strong>on</strong>g> old piping, more than 500 actual results. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall in an old pipe is<br />

estimated using <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between steel thickness and lm density. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> system does<br />

not work when <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel changes due to <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rust. Electr<strong>on</strong> Gamma<br />

Shower 4 (<strong>EGS</strong>4) was used to overcome this problem.<br />

2 X-ray Piping Diagnostic System<br />

2.1 System outline<br />

Fig.1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray piping diagnostic system [1]. Old pipe settled in a building is taken X-ray<br />

photograph and <str<strong>on</strong>g>the</str<strong>on</strong>g> lm is observed and evaluated whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r it is necessary to be analyzed fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r or<br />

not. When it is judged it is no use to analyze because <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no corrosi<strong>on</strong> or so, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> report will<br />

be made. When <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis is necessary because damage seems to be proceeding, lms are put in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

analysis device and <str<strong>on</strong>g>the</str<strong>on</strong>g> residual year is computed through <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe.<br />

2.2 Main logic<br />

Main logic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical part is shown in Fig.2. Standard pipe that has four-step thickness is<br />

set parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe that is inspected. On <str<strong>on</strong>g>the</str<strong>on</strong>g> developed lm four points are selected and <str<strong>on</strong>g>the</str<strong>on</strong>g> curve<br />

which is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> four points is drawn <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness and density plane. Most damaged point is<br />

1


selected and <str<strong>on</strong>g>the</str<strong>on</strong>g> density is measured, <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> density reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g>thickness through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

density-thickness curve.<br />

There is a weak point in this system because <str<strong>on</strong>g>the</str<strong>on</strong>g> in uence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust appeared <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inner surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe was neglected, because <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no way to get <str<strong>on</strong>g>the</str<strong>on</strong>g>n. And when I knew <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>EGS</strong>4 three years ago, <str<strong>on</strong>g>the</str<strong>on</strong>g> trial was started.<br />

3 The Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spectrum<br />

3.1 Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum<br />

Fig.3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> new X-ray spectrum and <str<strong>on</strong>g>the</str<strong>on</strong>g> old spectrum obtained last year, which showed good<br />

agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> lm.The new <strong>on</strong>e is smooth in its shape,<br />

and it is adopted in simulati<strong>on</strong> in this paper.<br />

3.2 The agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lm and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong><br />

As for <str<strong>on</strong>g>the</str<strong>on</strong>g> agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lm and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lm, <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

veri cati<strong>on</strong> is delayed. An investigati<strong>on</strong> result is described here to make <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> clear [2].<br />

D is expressed approximately as following under c<strong>on</strong>diti<strong>on</strong>s stated underneath.<br />

D = log 10(I0=I) =kaN[1 ; exp(;aF )] (1)<br />

N: Number <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallized particles per unit area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emulsi<strong>on</strong><br />

a: average projecti<strong>on</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallized particle<br />

k: coe cient =log10e<br />

F: particle uence<br />

C<strong>on</strong>diti<strong>on</strong>s<br />

1. The incidence angle <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles into <str<strong>on</strong>g>the</str<strong>on</strong>g> lm is perpendicular and <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> emulsi<strong>on</strong> is neglected.<br />

2. Average area <str<strong>on</strong>g>of</str<strong>on</strong>g> a crystallized particle is a.<br />

3. The collisi<strong>on</strong> between incident particle and crystallized particle surely yields <str<strong>on</strong>g>the</str<strong>on</strong>g> latent image.<br />

In case F is small, <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> (1) becomes<br />

Therefore D becomes<br />

4 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Steel with <str<strong>on</strong>g>the</str<strong>on</strong>g> Rust<br />

4.1 Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust<br />

1 ; exp(;aF ) ! aF: (2)<br />

D = ka 2 NF / F / Absorbed energy (3)<br />

Table.1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> rust in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe. The rust was collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> old pipe<br />

removed for renewal in <str<strong>on</strong>g>the</str<strong>on</strong>g> building. Two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe were selected, <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe for <str<strong>on</strong>g>the</str<strong>on</strong>g> cooling water <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

air-c<strong>on</strong>diti<strong>on</strong>ing and <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe for supplying water. The supplying water pipe was preferred. Whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

it is <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> supplying water pipe, no <strong>on</strong>e knows, and it isn't a problem here.<br />

4.2 The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel with rust<br />

The rust was taken X-ray photograph. Fig.4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials in taking<br />

X-ray photograph, X-ray apparatus was moved every time X-ray photograph was taken to set <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

incidence angle into <str<strong>on</strong>g>the</str<strong>on</strong>g> lm perpendicular. The rust was ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel block and was enclosed<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> plastic plate.<br />

2


4.3 The simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel with rust<br />

Fig.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness vs. density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray photograph. Two lines are drawn<br />

straight, and it seems 3 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 mm can be discriminated clearly, probably<br />

1 mm can be discriminated.<br />

Fig.6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same model that was taken X-ray photograph, but <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust changes. It seems every line clearly separated though very l<strong>on</strong>g time it took. It<br />

shows, by simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence <str<strong>on</strong>g>of</str<strong>on</strong>g> rust thickness in 3 mm can be discriminated.<br />

Fig.7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> model set up for <str<strong>on</strong>g>the</str<strong>on</strong>g> next simulati<strong>on</strong>, upper part means X-ray apparatus surrounding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bulb, and <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom means <str<strong>on</strong>g>the</str<strong>on</strong>g> lm. In <str<strong>on</strong>g>the</str<strong>on</strong>g> midst steel plate and rust were set.<br />

Fig.8 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lm according to <str<strong>on</strong>g>the</str<strong>on</strong>g> rust thickness change set <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

steel plate.<br />

Fig.9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> energy absorpti<strong>on</strong>, upper part is for rust and lower part is for steel, <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each bar is shown at, but in detail it makes curb as shown in Fig.10. But <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence is so small<br />

in comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> whole.<br />

4.4 The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong><br />

The simulati<strong>on</strong> result was obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> energy absorpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> lm that occurs in<br />

accordance with <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> steel and rust. It shows, because energy<br />

absorpti<strong>on</strong> is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lm, that <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

steel and <str<strong>on</strong>g>the</str<strong>on</strong>g> rust has been obtained c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lm. In case when <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel and <str<strong>on</strong>g>the</str<strong>on</strong>g> rust is got, which is expressed equivalently in steel with using <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

logic, <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness is divided into two parts, <str<strong>on</strong>g>the</str<strong>on</strong>g> steel and <str<strong>on</strong>g>the</str<strong>on</strong>g> rust, using <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m in Fig.6. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> subject to make practically in <str<strong>on</strong>g>the</str<strong>on</strong>g> future system making. When ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

equati<strong>on</strong> is got c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rust and <str<strong>on</strong>g>the</str<strong>on</strong>g> steel, <str<strong>on</strong>g>the</str<strong>on</strong>g>n by solving two equati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel and <str<strong>on</strong>g>the</str<strong>on</strong>g> rust can be measured.<br />

5 Summary<br />

Followings are got this time.<br />

A smoo<str<strong>on</strong>g>the</str<strong>on</strong>g>r spectrum curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray bulb can be got.<br />

Therust<str<strong>on</strong>g>of</str<strong>on</strong>g>pipewas acquired and <str<strong>on</strong>g>the</str<strong>on</strong>g> element was analyzed.<br />

The rust was placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> steel plate and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m was d<strong>on</strong>e. Satisfactory<br />

resoluti<strong>on</strong> could be got.<br />

The relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> rust and steel was obtained using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy absorpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> lm. It shows <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g>measuring two material layers when<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness can be got.<br />

Acknowledgement<br />

The author is very grateful to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Hirayama <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>KEK</strong> (High Energy Research Organizati<strong>on</strong>) who<br />

assisted me in using <strong>EGS</strong>4.<br />

3


References<br />

[1] G. Kajiwara, \X-ray piping diagnostic system", Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Testing and Evaluati<strong>on</strong> Vol.<br />

26(1998)346-351.<br />

[2] G. Kajiwara, \EXAMINATION OF THE X-RAY PIPING DIAGNOSTIC SYSTEM USING<br />

<strong>EGS</strong>4 (IN CASE CONSIDERING SPECTRUM OF X-RAY)", <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th Egs Users'<br />

Meeting in Japan, p71.<br />

[3] A. Sekiguchi, \An introducti<strong>on</strong> to Measuring radiati<strong>on</strong>", Tokyo University Press.<br />

Tanble. 1(1) Speci c garavity <str<strong>on</strong>g>of</str<strong>on</strong>g> rust sample.<br />

Usage <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe Speci c gravity Bulk speci c gravity<br />

Cooling water 4.08 0.66<br />

Water supply 2.03 0.97<br />

Table 1(2) Result <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> rust sample (%).<br />

Usage <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe O Fe Si Na C S Zn<br />

Cooling water 33.00 56.50 0.03


6


20<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Positi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>X-rayapparatus<br />

Stepblock<br />

60<br />

Filmcassette<br />

<br />

<br />

FFD=600<br />

Rust<br />

Fig.4Arrangement<str<strong>on</strong>g>of</str<strong>on</strong>g>devicesintakingX-rayphotograph<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>rustandsteel<br />

unit:mm<br />

7


8


9


10


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.209-215<br />

E ective Bending Point to Reduce Dose-Equivalent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Bending Duct Streaming System<br />

K. Ueki<br />

Nuclear Technology Divisi<strong>on</strong>, Ship Research Institute<br />

6-38-1 Shinkawa, Mitaka, Tokyo 181-0004, Japan<br />

Abstract<br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo analysis is carried out to nd out an e ective bending point<br />

to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong> streaming <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-bent rectangular duct streaming<br />

system. As a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg, neutr<strong>on</strong> dose-equivalent rate distributi<strong>on</strong>s<br />

are calculated not <strong>on</strong>ly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> centerline in <str<strong>on</strong>g>the</str<strong>on</strong>g> bending duct but also <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> line <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg. On <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> line <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg, <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong> dose-equivalent<br />

rates are increase exp<strong>on</strong>entially as <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point comes up to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

those distributi<strong>on</strong>s al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> centerline in <str<strong>on</strong>g>the</str<strong>on</strong>g> duct have a minimum point <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

it. Finding <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective bending point is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most positive applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo<br />

method to a shielding design.<br />

1 Introducti<strong>on</strong><br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> following two-bend (three-legged) rectangular duct neutr<strong>on</strong> streaming system is<br />

prepared, and <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong> streaming <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding system is analyzed by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous energy M<strong>on</strong>te<br />

Carlo code MCNP 4B[1]. C<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> duct neutr<strong>on</strong> streaming system is shown in Fig. 1.<br />

1. Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> duct streaming system are 150x150 2 x200 cm.<br />

2. The shield around <str<strong>on</strong>g>the</str<strong>on</strong>g> duct is a homogenized material <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 volume percents <str<strong>on</strong>g>of</str<strong>on</strong>g> stainless steel<br />

and 20 volume percents <str<strong>on</strong>g>of</str<strong>on</strong>g> water. The homogenized shield is expected to have superior shielding<br />

ability not <strong>on</strong>ly for fast neutr<strong>on</strong>s but also for sec<strong>on</strong>dary gamma rays produced by H (n, ) reacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal neutr<strong>on</strong>s in water.<br />

3. Diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> duct is xed <strong>on</strong> 15.0 cm and <str<strong>on</strong>g>the</str<strong>on</strong>g> bending angle between <str<strong>on</strong>g>the</str<strong>on</strong>g> rst duct and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d <strong>on</strong>e, and also <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d duct and <str<strong>on</strong>g>the</str<strong>on</strong>g> third <strong>on</strong>e is a right angle, respectively. The distance<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet and <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d leg is xed <strong>on</strong> 50 cm, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> dose-equivalent<br />

rates are calculated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg, unirarerally.<br />

4. Point isotropic neutr<strong>on</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 MeV is located at 50 cm-distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rst-leg.<br />

2 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E ective Bending Point<br />

1. The point detector estimators are set al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> center line <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> duct and <str<strong>on</strong>g>the</str<strong>on</strong>g> NESXE's (Next<br />

Event Surface Crossing Estimator)[2] are set al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> line <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg. The<br />

NESXE estimator is not provided in <str<strong>on</strong>g>the</str<strong>on</strong>g> MCNP 4B code. Therefore, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point<br />

detector estimator, <str<strong>on</strong>g>the</str<strong>on</strong>g> NESXE estimator was newly built into <str<strong>on</strong>g>the</str<strong>on</strong>g> subroutine TALLYD <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MCNP 4B code.<br />

1


2. The weight window importance is assigned in every 5-cm-thik cell to get enough collisi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cells. As <str<strong>on</strong>g>the</str<strong>on</strong>g> results, <str<strong>on</strong>g>the</str<strong>on</strong>g> fsd's (fracti<strong>on</strong>al standard deviati<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated dose-equivalent<br />

rates are less than 0.075 (7.5 %).<br />

The cells, 1 45, for weight window importance, detector locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point detectors and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NESXE's are indicated in Fig. 2.<br />

3 Results and Discussi<strong>on</strong>s<br />

The neutr<strong>on</strong> dose-equivalent rate distributi<strong>on</strong>s at Pout-1 and at Pout-2 in Fig.1 are shown in<br />

Fig.3. As shown in Fig. 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro le <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose-equivalent rates at Point 2 that is <str<strong>on</strong>g>the</str<strong>on</strong>g> crossing<br />

point <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extended line <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg and <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding system, increases<br />

exp<strong>on</strong>entially. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro le <str<strong>on</strong>g>of</str<strong>on</strong>g> it at Point 1that is <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

minimum point at <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 cm. As <str<strong>on</strong>g>the</str<strong>on</strong>g> bending points coming up to <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> more source neutr<strong>on</strong>s coming up <str<strong>on</strong>g>the</str<strong>on</strong>g> Pout 1. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> dose-equivalent rate at Pout-1 increases<br />

exp<strong>on</strong>entially as <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg bending point. The dose-equivalent rate distributi<strong>on</strong>s<br />

al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> centerline <str<strong>on</strong>g>of</str<strong>on</strong>g> each duct are shown in Fig. 4 and <str<strong>on</strong>g>the</str<strong>on</strong>g> following attenuati<strong>on</strong> factors (Fa) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dose-equivalent rates are obtained from Fig. 4 for each leg.<br />

1. Bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg is at 50 cm.<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg: 1/3<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d: 1/50<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg: 1/500<br />

2. Bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg is at 100 cm.<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg: 1/10<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d: 1/200<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg: 1/500<br />

3. Bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg is at 150 cm.<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg: 1/15<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d: 1/250<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg: 1/50<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> (1), Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg, 1/500 is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum in <str<strong>on</strong>g>the</str<strong>on</strong>g> three, but Fa's <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d leg is <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum in <str<strong>on</strong>g>the</str<strong>on</strong>g> three. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg is <strong>on</strong>ly 50 cm and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> source point to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d leg is near than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> more<br />

source neutr<strong>on</strong>s enter <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d leg directory. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> (2), Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d leg, 1/250 is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum in <str<strong>on</strong>g>the</str<strong>on</strong>g> three, but Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg is <str<strong>on</strong>g>the</str<strong>on</strong>g> 1/10 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (1) and (2). Because <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> third leg is <strong>on</strong>ly 50 cm, so <str<strong>on</strong>g>the</str<strong>on</strong>g> large attenuati<strong>on</strong> factor is not expected for it. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> (2),<br />

Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d leg is a little bit small than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (3), but Fa <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> three. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum dose-equivalent rate at <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third leg is made up in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> (2).<br />

4 C<strong>on</strong>cluding Remarks<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> line <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rst leg, <str<strong>on</strong>g>the</str<strong>on</strong>g> neutr<strong>on</strong> dose-equivalent rates<br />

are increase exp<strong>on</strong>entially as <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point comes up to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, those<br />

distributi<strong>on</strong>s al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> centerline in <str<strong>on</strong>g>the</str<strong>on</strong>g> duct have a minimum point <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

2


In this study, M<strong>on</strong>te Carlo method is useful to nd out an e ective bending point <str<strong>on</strong>g>of</str<strong>on</strong>g> a duct<br />

streaming system, and it is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most positive applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo method to a<br />

shielding design.<br />

References<br />

[1] \MCNP TM - A General M<strong>on</strong>te Carlo N-Particle Transport Code Versi<strong>on</strong> 4B," J. F. Briesmeister,<br />

Ed., LA-12625-M, Los Alamos Nati<strong>on</strong>al Laboratory (1997).<br />

[2] K. Ueki, A. Ohashi and M. Kawai, \C<strong>on</strong>tinuous Energy M<strong>on</strong>te Carlo Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Neutr<strong>on</strong> Shielding<br />

Benchmark Experiments with Cross Secti<strong>on</strong> JENDL-3," J. Nucl. Sci. Technol. 30(1993)4.<br />

3


4<br />

<br />

<br />

<br />

<br />

φ


5<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

φ


Dose-EquivalentRate(µSv -1 /SourceNeutr<strong>on</strong>)<br />

10 -9<br />

10 -11<br />

10 -13<br />

10 -15<br />

10 -17<br />

10 -19<br />

Distributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>Neutr<strong>on</strong>Dose-EquivalentRates<br />

asaFuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>BendingPoint<br />

AtPoint-1inFig.1<br />

AtPoint-2inFig.1<br />

0 50 100 150 200<br />

BendingPointin<str<strong>on</strong>g>the</str<strong>on</strong>g>FirstLeg(cm)<br />

Fig.3NCNP4Bcalculatedneutr<strong>on</strong>dose-equivalentrate<br />

distributi<strong>on</strong>atPoint-1andPoint-2inFig.1,asa<br />

functi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>BendingPoint.<br />

6


7


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.216-223<br />

<strong>EGS</strong>4 Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> Scattering<br />

for N<strong>on</strong>destructive Testing<br />

N. Shengli, Z. Jun, and H. Liuxing<br />

Northwest Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Technology,<br />

P. O. Box 69, No.15, Xi'an, 710024,CHINA<br />

Abstract<br />

This paper presents <str<strong>on</strong>g>the</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>destructive testing based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Compt<strong>on</strong>-scattered phot<strong>on</strong>s. When a well-collimated beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.662MeV gamma rays from Cs-<br />

137 isotope source is radiated vertically into a c<strong>on</strong>crete wall, scattered phot<strong>on</strong>s can be detected at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall by a NaI detector. The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>single Compt<strong>on</strong> scattered phot<strong>on</strong>s<br />

is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> density at <str<strong>on</strong>g>the</str<strong>on</strong>g> point where <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering occurs. However, most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong>s are scattered more than <strong>on</strong>e time. The single and multiple scattering are<br />

studied by M<strong>on</strong>te Carlo program package <strong>EGS</strong>4. This paper presents <str<strong>on</strong>g>the</str<strong>on</strong>g> ow <str<strong>on</strong>g>of</str<strong>on</strong>g> single and multiple<br />

scattered phot<strong>on</strong>s before reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI detector when a ir<strong>on</strong> block isburiedin<str<strong>on</strong>g>the</str<strong>on</strong>g>wall or<br />

not. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> results, it can be c<strong>on</strong>cluded that this system can detect <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> block buried<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>crete wall. In this process, <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence between i<strong>on</strong> and no i<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> single scattered<br />

phot<strong>on</strong>s is more obvious than that for <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattered phot<strong>on</strong>s. The system can also be used<br />

to detect any n<strong>on</strong>-ir<strong>on</strong> object in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r material with di erent electr<strong>on</strong> densities.<br />

1 Introducti<strong>on</strong><br />

The CSI technique is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattered phot<strong>on</strong>s. In c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>venti<strong>on</strong>al transmissi<strong>on</strong> tomography, this process relies <strong>on</strong> measuring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> back-scattered radiati<strong>on</strong><br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> interior <str<strong>on</strong>g>of</str<strong>on</strong>g> an object surface to achieve a three-dimensi<strong>on</strong>al image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> object interior. So<br />

CSI is useful in imaging <strong>on</strong> extended industrial objects or in cases where access to two opposite sides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> object is not possible[1, 2,3,4].<br />

The objecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> NDT technique to massive<br />

extended structure. The emphasis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study was to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g>detecting defects<br />

or foreign object in c<strong>on</strong>crete structures. The Compt<strong>on</strong> scattering process is simulated using M<strong>on</strong>te<br />

Carlo program package <strong>EGS</strong>4. Owing to <strong>EGS</strong>4's open-architecture, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity and energy spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single and multiple scattering phot<strong>on</strong>s can be given separately. Meanwhile, program MCNP<br />

is used to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> total scattered phot<strong>on</strong>s. The two results agreed very well. So <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong><br />

method is valid and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are believable.<br />

The paper is organized as follows. In secti<strong>on</strong> 2, a brief discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CSI <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model is<br />

presented. A descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong> is c<strong>on</strong>tained in secti<strong>on</strong> 3. Secti<strong>on</strong> 4 summarizes<br />

and c<strong>on</strong>cludes this paper.<br />

2 Theoretical Model<br />

An isotope source Cs-137 is assumed to be placed beside a c<strong>on</strong>crete wall. Around <str<strong>on</strong>g>the</str<strong>on</strong>g> source, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is an annular NaI detector with its axis vertical to <str<strong>on</strong>g>the</str<strong>on</strong>g> wall. The well-collimated gamma ray from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

source is radiated vertically into <str<strong>on</strong>g>the</str<strong>on</strong>g> wall, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> detector will detect <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered phot<strong>on</strong>s.<br />

Before entering <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI, phot<strong>on</strong>s will pass through a narrow collimator, which is used to determine<br />

1


<str<strong>on</strong>g>the</str<strong>on</strong>g> particular point to focus at. The geometry secti<strong>on</strong>al drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure is given in Figure 1.<br />

Assume <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a foreign object buried 60mm below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall. It is a cylindrical block<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, 5mm in height, and 5mm in diameter. Out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>crete wall 40mm in distance <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

an ir<strong>on</strong> double-frustum-<str<strong>on</strong>g>of</str<strong>on</strong>g>-c<strong>on</strong>e-shape collimator. The c<strong>on</strong>ical angle is 120 , and <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical height <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collimator is 100mm.<br />

The energy <str<strong>on</strong>g>of</str<strong>on</strong>g> isotope Cs-137's gamma ray is 0.662 MeV. When it emits into <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>crete, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main interacti<strong>on</strong>s are photoelectric e ect and Compt<strong>on</strong> scattering. The energy <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s ejected<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> two interacti<strong>on</strong>s is too low to create new phot<strong>on</strong>s. So all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>s detected by NaI are<br />

Compt<strong>on</strong> scattered phot<strong>on</strong>s.<br />

The Compt<strong>on</strong> scattering process is strictly an interacti<strong>on</strong> between a phot<strong>on</strong> and an individual<br />

electr<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> does not disappear (Figure 2). In stead, it is de ected<br />

through a scattering angle and part <str<strong>on</strong>g>of</str<strong>on</strong>g> its energy is transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> recoil electr<strong>on</strong>. The energy loss<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> process depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial phot<strong>on</strong> energy as well as <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering angle. Under <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> is free and stati<strong>on</strong>ary before collisi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

phot<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering angle is related to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by<br />

E 0 =<br />

E<br />

1+ E<br />

m0c 2 (1 ; cos )<br />

where E 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered phot<strong>on</strong>, E is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> incident phot<strong>on</strong>, m0c 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g> rest mass<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>, and is <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering angle.<br />

The Compt<strong>on</strong> phot<strong>on</strong>s is not isotropically scattered. The di erential total Compt<strong>on</strong> scattering<br />

cross secti<strong>on</strong>s are given by <str<strong>on</strong>g>the</str<strong>on</strong>g> formula[5]<br />

d c<br />

(E )=<br />

d<br />

"<br />

2<br />

0<br />

2<br />

E 0<br />

E<br />

# 2 "<br />

E 0<br />

E<br />

+ E<br />

E 0<br />

; sin 2<br />

where d c=d is <str<strong>on</strong>g>the</str<strong>on</strong>g> di erential scattering cross secti<strong>on</strong>, and r0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> classical electr<strong>on</strong> radius (cm).<br />

The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single scattered phot<strong>on</strong>s can be written as<br />

Z<br />

d c<br />

Nd = N0 4 n4Zexp ;<br />

d<br />

l1<br />

dl exp ; Z<br />

l2<br />

#<br />

(1)<br />

(2)<br />

0 dl 0 (3)<br />

where, N0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> source collimator, d c=d is <str<strong>on</strong>g>the</str<strong>on</strong>g> di erential Compt<strong>on</strong><br />

scattering cross secti<strong>on</strong>, 4 and4Z are solid angle and depth focused by collimator <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI, n is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong> density at <str<strong>on</strong>g>the</str<strong>on</strong>g> focus point, exp(; R<br />

R<br />

0 0<br />

1 dl) and exp(; 2 dl ) are respectively <str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> incident phot<strong>on</strong>s and scattered phot<strong>on</strong>s. It can be c<strong>on</strong>cluded that Nd is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong> density at <str<strong>on</strong>g>the</str<strong>on</strong>g> focus point if <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry and source are given.<br />

However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> 3, we havejust talked about <str<strong>on</strong>g>the</str<strong>on</strong>g> single scattered phot<strong>on</strong>s. There will be<br />

more phot<strong>on</strong>s scattered more than <strong>on</strong>e time before reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI detector. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

single scattered phot<strong>on</strong>s entering detector is <str<strong>on</strong>g>the</str<strong>on</strong>g> designed signal. The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>multiple scattered<br />

phot<strong>on</strong>s is <str<strong>on</strong>g>the</str<strong>on</strong>g> background. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our study is to restrain <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering background.<br />

And <str<strong>on</strong>g>the</str<strong>on</strong>g>n increase <str<strong>on</strong>g>the</str<strong>on</strong>g> signal-to-noise ratio. By adopting narrow collimator, <str<strong>on</strong>g>the</str<strong>on</strong>g> high signal-to-noise<br />

ratio can be achieved.<br />

3 M<strong>on</strong>te Carlo Simulati<strong>on</strong><br />

The single and multiple scatterings are studied by M<strong>on</strong>te Carlo radiati<strong>on</strong> transport simulati<strong>on</strong>. In<br />

order to distinguish <str<strong>on</strong>g>the</str<strong>on</strong>g> single and multiple scattered phot<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo program package <strong>EGS</strong>4<br />

is adopted. The physical mechanism in <str<strong>on</strong>g>the</str<strong>on</strong>g> problem is <strong>on</strong>ly c<strong>on</strong>cerned with <str<strong>on</strong>g>the</str<strong>on</strong>g> shower <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and<br />

gamma ray, so <str<strong>on</strong>g>the</str<strong>on</strong>g> package <strong>EGS</strong>4 is feasible. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> whole c<strong>on</strong> gurati<strong>on</strong>, geometry c<strong>on</strong>diti<strong>on</strong>,<br />

informati<strong>on</strong> needed and <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> source have not been determined, <str<strong>on</strong>g>the</str<strong>on</strong>g> open-architecture <strong>EGS</strong>4<br />

2


is preferred[6]. The most important, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 can easily tell <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles' interacti<strong>on</strong>s,<br />

so we can distinguish <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple and single scattered phot<strong>on</strong>s.<br />

The main program is edited by user in <strong>EGS</strong>4, thus <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> process can be c<strong>on</strong>trolled well.<br />

To distinguish <str<strong>on</strong>g>the</str<strong>on</strong>g> single and multiple scattering, we didn't choose <str<strong>on</strong>g>the</str<strong>on</strong>g> auxiliary subprogram already<br />

in <strong>EGS</strong>4, like WATCH. By setting <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate ag IAUSFL (19) from 0 to 1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> main program,<br />

call AUSGAB with IARG=18 if a Compt<strong>on</strong> interacti<strong>on</strong> has occurred. An arithmometer is used to<br />

record <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattering. The arithmometer adds 1 if a Compt<strong>on</strong> scattering occurs<br />

except in <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI detector. When this phot<strong>on</strong> is terminated, <str<strong>on</strong>g>the</str<strong>on</strong>g> arithmometer can show how many<br />

times <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong>-scattering have occurred.<br />

In order to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4, <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>te Carlo program MCNP [7] is also used to<br />

calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> total scattered phot<strong>on</strong>s.<br />

4 Results and C<strong>on</strong>clusi<strong>on</strong>s<br />

First, three cases are simulated, namely, no block, aimed (source rays emitted al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> axe <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

block cylinder), and deviated. Table 1 gives <str<strong>on</strong>g>the</str<strong>on</strong>g> intensities and energy deposited in NaI.<br />

Table 1: Intensity and Energy Deposited<br />

Intensity Energy Deposited(10 ;6 Mev/phot<strong>on</strong>) Relative Error <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Single Total Single Total MCNP Total <strong>EGS</strong> & MCNP<br />

Scattered Scattered<br />

No Block 136 2455 0.2544 3.338 3.347 0.3%<br />

Deviated 126 2459 0.2362 3.342 3.427 2.5%<br />

Aimed 294 2887 0.5806 4.083 3.983 2.5%<br />

It can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> table that <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> total phot<strong>on</strong>s obtained by <strong>EGS</strong>4 is close to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> MCNP. So <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> are believable. The single scattered phot<strong>on</strong>s are <strong>on</strong>ly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total phot<strong>on</strong>s. But <str<strong>on</strong>g>the</str<strong>on</strong>g>y can distinctly tell if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a change <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

density at<str<strong>on</strong>g>the</str<strong>on</strong>g> focus point. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered phot<strong>on</strong>s are attenuated by <str<strong>on</strong>g>the</str<strong>on</strong>g> deviated ir<strong>on</strong> block,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s in deviated case is lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> no ir<strong>on</strong> block.<br />

Then, we change <str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI. We choose <str<strong>on</strong>g>the</str<strong>on</strong>g> width as 0.2cm,<br />

0.6cm, or 2.0cm. The counts <str<strong>on</strong>g>of</str<strong>on</strong>g> single and multiple scattered phot<strong>on</strong>s detected by NaI are listed in<br />

table 2. The pulse-height distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three cases can be seen respectively in Figures 4, 5, and<br />

6.<br />

Table 2: Counts at di erent Collimator Width<br />

Width (cm) Single multiple Single/multiple<br />

0.2 283 2491 0.114<br />

0.6 1929 23497 0.082<br />

2.0 21079 263032 0.080<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> width is 0.2cm, <str<strong>on</strong>g>the</str<strong>on</strong>g> counts <str<strong>on</strong>g>of</str<strong>on</strong>g> detected phot<strong>on</strong>s are very low. But <str<strong>on</strong>g>the</str<strong>on</strong>g> signal-to-noise<br />

ratio is high. It takes a l<strong>on</strong>g time to get enough counts. As shown in gure 4, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a peak at<br />

0.225MeV. It just equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered phot<strong>on</strong> when scatter angle is 120 and incident<br />

phot<strong>on</strong> energy is 0.662MeV in Eq.1.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> width is 0.6cm or 2.0cm, <str<strong>on</strong>g>the</str<strong>on</strong>g> counts <str<strong>on</strong>g>of</str<strong>on</strong>g> detected phot<strong>on</strong>s are high, but <str<strong>on</strong>g>the</str<strong>on</strong>g> signal-to-noise<br />

ratio is low. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> background is high, <str<strong>on</strong>g>the</str<strong>on</strong>g> counts <str<strong>on</strong>g>of</str<strong>on</strong>g> detected phot<strong>on</strong>s cannot tell <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong> density exactly. The broader collimator makes <str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering angle, thus <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

range increase. It is shown in Figure 6, energy peak is wider than that in Figure 4.<br />

According to all <str<strong>on</strong>g>of</str<strong>on</strong>g> above analysis, <strong>on</strong>e should prefer narrow collimator as possible, especially in<br />

detecting small foreign body. We suppose <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator width should be 0.2cm. The results and<br />

analysis can be used as reference <strong>on</strong> this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment and apparatus.<br />

3


In summary, this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> complete process is easy to be simulated using <strong>EGS</strong>4.The results obtained<br />

by MCNP shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 simulati<strong>on</strong> is believable.<br />

References<br />

[1] J. Wehlburg, S. Keshavmurthy, Y. Watanabe, E. Dugan, and A. Jacobs, \Image restorati<strong>on</strong><br />

technique using Compt<strong>on</strong> backscatter imaging for <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> buried landmines ", SPIE<br />

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>, 1995, Vol.2496:336-347.<br />

[2] S. J. Nort<strong>on</strong>, \Compt<strong>on</strong> scattering tomography", J. Appl. Phys. 76(4)(1994)2007-2015.<br />

[3] G. Harding, and J. Kosanetzky, \Scattered x-ray beam n<strong>on</strong>destructive testing", Nucl. Insru.<br />

Meth. A280(1989)517-528.<br />

[4] S. Anghaie, L. L. Humphries, and N. J. Diaz, \Material characterizati<strong>on</strong> and aw detecti<strong>on</strong>,<br />

sizing, and gamma scattering spectroscopy technique", Nucl. Tech. 91(1990)361-387.<br />

[5] R. L. Morin, M<strong>on</strong>te Carlo Simulati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Radiological Science, CRC Inc., 1988.<br />

[6] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System". SLAC-265 (1985).<br />

[7] J. F. Briesmeister, \MCNP{A General M<strong>on</strong>te Carlo N-Particle Transport Code", America La-<br />

12625-M.<br />

4


Figure 1: Geometry secti<strong>on</strong>al drawing<br />

<br />

θ<br />

Figure 2: Compt<strong>on</strong> scattering.<br />

5


ComScat?<br />

Ncom=?<br />

APhot<strong>on</strong><br />

Ncom=0<br />

RecordIt<br />

EndThisPhot<strong>on</strong><br />

SubAusgab<br />

Ncom=ncom+1<br />

RecordItasSingle<br />

Figure 3: Block Diagram used to Distinguish Single and Multiple Scattering.<br />

6


Figure 4: Pulse-height Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Detected Phot<strong>on</strong>s (Width=0.2cm).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 5: Pulse-height Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Detected Phot<strong>on</strong>s (Width=0.6cm).<br />

7


Counts<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Total(NoIr<strong>on</strong>)<br />

Single(NoIr<strong>on</strong>)<br />

Double(NoIr<strong>on</strong>)<br />

Total(Ir<strong>on</strong>Block)<br />

Single(Ir<strong>on</strong>Block)<br />

Double(Ir<strong>on</strong>Block)<br />

0<br />

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35<br />

<br />

Energy(MeV)<br />

Figure 6: Pulse-height Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Detected Phot<strong>on</strong>s (Width=2.0cm).<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.224-234<br />

Implementati<strong>on</strong> and Performance Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Iterative Rec<strong>on</strong>structi<strong>on</strong> Algorithms in SPECT:<br />

A Simulati<strong>on</strong> Study Using <strong>EGS</strong>4<br />

T. Yokoi 1 , H. Shinohara 2 , T. Hashimoto 3 , T. Yamamoto 4 , and Y. Niio 4<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Research and Development for Nuclear Medicine,<br />

Shimadzu Corporati<strong>on</strong>, Kyoto, Japan<br />

2<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiological Sciences,<br />

Tokyo Metropolitan University <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences, Tokyo, Japan<br />

3<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Processing, Yokohama Soei College, Yokohama, Japan<br />

4Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiology, Showa University Fujigaoka Hospital, Yokohama, Japan<br />

Abstract<br />

We implemented three iterative rec<strong>on</strong>structi<strong>on</strong> algorithms (maximum likelihood-expectati<strong>on</strong><br />

maximizati<strong>on</strong> (MLEM) algorithm, multiplicative simultaneous iterative rec<strong>on</strong>structi<strong>on</strong> technique<br />

(MSIRT) and additive simultaneous iterative rec<strong>on</strong>structi<strong>on</strong> technique (ASIRT)) incorporating attenuati<strong>on</strong><br />

correcti<strong>on</strong> (AC) and scatter correcti<strong>on</strong> (SC) for single phot<strong>on</strong> emissi<strong>on</strong> computed tomography<br />

(SPECT). The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three<br />

iterative methods by computer simulati<strong>on</strong> using <strong>EGS</strong>4. Digital brain and cyrindrical phantoms<br />

were designed for activity distributi<strong>on</strong> and linear attenuati<strong>on</strong> coe cient maps. In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simulated radioisotope was Tc-99m (phot<strong>on</strong> energy = 140keV). The phot<strong>on</strong> attenuati<strong>on</strong> and scatter<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> distance-dependent blurring due to <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator were involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated SPECT<br />

system. In <str<strong>on</strong>g>the</str<strong>on</strong>g> implemented rec<strong>on</strong>structi<strong>on</strong> algorithms, modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> attenuati<strong>on</strong> and<br />

scattering were involved but <str<strong>on</strong>g>the</str<strong>on</strong>g> distance-depend blurring was not included. The progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rec<strong>on</strong>structi<strong>on</strong> was m<strong>on</strong>itored by observing <str<strong>on</strong>g>the</str<strong>on</strong>g> residual squares error ( 2 )between <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated<br />

projecti<strong>on</strong>s and measurement dataateach iterati<strong>on</strong>.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>s needed to reach a c<strong>on</strong>stant 2 value were di erent for each algorithm.<br />

ASIRT needed <str<strong>on</strong>g>the</str<strong>on</strong>g> largest number, MLEM <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest number <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>. The ASIRT required<br />

more than 100 iterati<strong>on</strong> to produce a comparable result <str<strong>on</strong>g>of</str<strong>on</strong>g> MLEM and MSIRT. We observed almost<br />

equivalent performance between MLEM and MSIRT. All iterative rec<strong>on</strong>structi<strong>on</strong> algorithms were<br />

e ective in compensating for n<strong>on</strong>-uniform attenuati<strong>on</strong> distributi<strong>on</strong>. There are potential in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

iterative rec<strong>on</strong>structi<strong>on</strong> algorithms for improvement <str<strong>on</strong>g>of</str<strong>on</strong>g>quantitative SPECT capability. <strong>EGS</strong>4 is<br />

powerful tool for investigating <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> algorithms without actual phantom<br />

experiments using <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive isotopes.<br />

1 Introducti<strong>on</strong><br />

Many iterative rec<strong>on</strong>structi<strong>on</strong> algorithms for single phot<strong>on</strong> emissi<strong>on</strong> computed tomography<br />

(SPECT) have been proposed[1-4]. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important issues in SPECT is quantitative<br />

accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> radi<strong>on</strong>uclide distributi<strong>on</strong>s and c<strong>on</strong>centrati<strong>on</strong>s. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tracer gives physiological<br />

informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> a living tissue. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative rec<strong>on</strong>structi<strong>on</strong><br />

algorithms is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y can easily incorporate a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical processes in uencing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> absolute quantitati<strong>on</strong>, such as phot<strong>on</strong> attenuati<strong>on</strong> and scatter in organ [5]. In SPECT, <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial<br />

resoluti<strong>on</strong> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> detector due to <str<strong>on</strong>g>the</str<strong>on</strong>g> nite hole-diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator.<br />

The compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance-dependent blurring can be also included into <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm [4].<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative rec<strong>on</strong>structi<strong>on</strong> algorithms are expected to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> quantitative capability<br />

1


<str<strong>on</strong>g>of</str<strong>on</strong>g> SPECT. These methods have l<strong>on</strong>g been c<strong>on</strong>sidered not to be suitable in clinical routine studies due<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> excessive computati<strong>on</strong>al requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> each iterati<strong>on</strong> step and slow c<strong>on</strong>vergence. Because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increases in computer power, <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative rec<strong>on</strong>structi<strong>on</strong> for SPECT has recently become clinically<br />

available as an alternative to c<strong>on</strong>venti<strong>on</strong>al ltered backprojecti<strong>on</strong> algorithm.<br />

We implemented three iterative rec<strong>on</strong>structi<strong>on</strong> algorithms, maximum likelihood-expectati<strong>on</strong> maximizati<strong>on</strong><br />

(MLEM) algorithm [1,2], multiplicative simultaneous iterative rec<strong>on</strong>structi<strong>on</strong> technique<br />

(MSIRT)[3,6] and additive simultaneous iterative rec<strong>on</strong>structi<strong>on</strong> technique (ASIRT)[3], incorporating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> and scatter compensati<strong>on</strong> for SPECT. The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm and selecting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a stopping iterati<strong>on</strong> number depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s in a given clinical envir<strong>on</strong>ment. The object<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative rec<strong>on</strong>structi<strong>on</strong> algorithms<br />

using <strong>EGS</strong>4 [7].<br />

2 Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Iterative Rec<strong>on</strong>structi<strong>on</strong> Algorithms<br />

2.1 De niti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong><br />

Figure 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> and coordinati<strong>on</strong> system for <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong>. k j is <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rec<strong>on</strong>structed image at <str<strong>on</strong>g>the</str<strong>on</strong>g> pixel j for <str<strong>on</strong>g>the</str<strong>on</strong>g> k-th iterati<strong>on</strong>, yi is <str<strong>on</strong>g>the</str<strong>on</strong>g> measured projecti<strong>on</strong> data at i-th<br />

bin, and Cij is <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> probability that give <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s from pixel j to projecti<strong>on</strong><br />

bin i. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> Cij represents as <str<strong>on</strong>g>the</str<strong>on</strong>g> overlapped area between i-th ray tube and pixel j.<br />

2.2 Iterative rec<strong>on</strong>structi<strong>on</strong> algorithms<br />

Maximum likelihood-expectati<strong>on</strong> maximizati<strong>on</strong> (MLEM) algorithm is described as follows:<br />

k+1<br />

j<br />

=<br />

k<br />

j Pmi Cij<br />

mX i<br />

Cij Pmj Cij k j<br />

where k is <str<strong>on</strong>g>the</str<strong>on</strong>g> iterati<strong>on</strong> number. This algorithm c<strong>on</strong>verges to <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum likelihood estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

probability distributi<strong>on</strong> functi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> observed data [8]. In this algorithm, <str<strong>on</strong>g>the</str<strong>on</strong>g> measured emissi<strong>on</strong><br />

data is assumed a spatially dependent Poiss<strong>on</strong> model.<br />

Additivesimultaneous iterative rec<strong>on</strong>structi<strong>on</strong> technique (ASIRT) and multiplicative simultaneous<br />

iterative rec<strong>on</strong>structi<strong>on</strong> technique (MSIRT) are described as follows, respectively:<br />

k+1<br />

j = k j +<br />

k+1<br />

j = k j<br />

1 Pmi Cij<br />

mX i<br />

(yi ; Pm j Cij k j )Cij Pmj Cij<br />

P ni (Cijyi= P m j Cij)<br />

P ni ( P m j Cij k j =P m j Cij)<br />

In ASIRT and MSIRT methods, <str<strong>on</strong>g>the</str<strong>on</strong>g> measured emissi<strong>on</strong> data is assumed a Gauss distributi<strong>on</strong>.<br />

Figure 2 show <str<strong>on</strong>g>the</str<strong>on</strong>g> owcharts <str<strong>on</strong>g>of</str<strong>on</strong>g> each algorithm. The rec<strong>on</strong>structi<strong>on</strong> images are iteratively upgraded<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> di erent manners. All algorithms must be started from positive initial estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 , and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Cij is calculated at <strong>on</strong>ce before <str<strong>on</strong>g>the</str<strong>on</strong>g> iterati<strong>on</strong> cycle. There is no ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical rule for stopping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

iterati<strong>on</strong>, so it must be found empirically.<br />

2.3 Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> attenuati<strong>on</strong> and scatter correcti<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithms<br />

The e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> attenuati<strong>on</strong> can be easily incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> probability Cij. The number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s are exp<strong>on</strong>entially decreased passing through a pixel j. The attenuati<strong>on</strong> factor is given<br />

by exp(; P j2J i jlij), where j is <str<strong>on</strong>g>the</str<strong>on</strong>g> linear attenuati<strong>on</strong> coe cient [cm ;1 ] at <str<strong>on</strong>g>the</str<strong>on</strong>g> pixel j, Ji is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> pixels passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th ray and lij is <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong> length [cm]. The j map is<br />

supplied as a prior informati<strong>on</strong> measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> external radioisotope source or X-ray CT scanner. The<br />

2<br />

(1)<br />

(2)<br />

(3)


probability incorporating <str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> c<strong>on</strong>sists in calculating Cij exp(; P j2J jlij). In practical<br />

i<br />

implementati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> was approximated by Cij x [pixel size].<br />

The scatter comp<strong>on</strong>ent c<strong>on</strong>taminated in <str<strong>on</strong>g>the</str<strong>on</strong>g> main window was approximated by <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ogawa et al [9,10]. This method was assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter comp<strong>on</strong>ent could be calculated by<br />

linear interpolati<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> images <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-window as follows:<br />

Si =0:5 CS i<br />

Wm<br />

Ws<br />

where CS i is <str<strong>on</strong>g>the</str<strong>on</strong>g> measured counts in <str<strong>on</strong>g>the</str<strong>on</strong>g> sub-windowati-th bin, Ws and Wm are <str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> sub- and<br />

main- window [keV], respectively. In order to incorporate <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter correcti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated scatter<br />

comp<strong>on</strong>ent Si was subtracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured projecti<strong>on</strong> data yi in each algorithm. Including<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> above-menti<strong>on</strong>ed procedures, <str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> correcti<strong>on</strong> (AC) and scatter correcti<strong>on</strong> (SC) can be<br />

accomplished. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> blurring due to <str<strong>on</strong>g>the</str<strong>on</strong>g> solid angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collimator hole was included in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simulati<strong>on</strong> data, it was not included in <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> algorithms.<br />

3 Simulati<strong>on</strong><br />

3.1 Digital phantoms and material data<br />

To evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implemented iterative rec<strong>on</strong>structi<strong>on</strong> algorithms, we performed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> study using <str<strong>on</strong>g>the</str<strong>on</strong>g> digital brain and cylindrical phantoms as shown in Fig.3. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

brain phantom, <str<strong>on</strong>g>the</str<strong>on</strong>g> activity distributi<strong>on</strong> map was modeled as <str<strong>on</strong>g>the</str<strong>on</strong>g> gray and white matter structures<br />

segmented from autopsy brain phantom [11]. The activity ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> gray/white matter was assumed to<br />

4:1. The linear attenuati<strong>on</strong> coe cient map c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> brain tissue and skull regi<strong>on</strong>s. The comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brain tissue was assumed to equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>water (H 2O). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> skull regi<strong>on</strong><br />

that has no activity c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> six elements from H, C, N, O, P, and Ca. These data were supplied<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> P<strong>EGS</strong> program to produce <str<strong>on</strong>g>the</str<strong>on</strong>g> material le that c<strong>on</strong>tained <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>. In<br />

this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated radioisotope was Tc-99m (phot<strong>on</strong> energy = 141keV). The linear attenuati<strong>on</strong><br />

coe cients for <str<strong>on</strong>g>the</str<strong>on</strong>g> narrow beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 141 keV were estimated about 0.15 and 0.26 cm ;1 for tissue and<br />

skull, respectively. The cylindrical phantom was de ned as <str<strong>on</strong>g>the</str<strong>on</strong>g> same fashi<strong>on</strong> but a uniform activity<br />

distributi<strong>on</strong> was assumed. The phantoms werea128x 128 matrix with a pixel size <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.125 mm.<br />

3.2 Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> data using <strong>EGS</strong>4<br />

The phot<strong>on</strong>s were generated using <strong>EGS</strong>4 [7] and user extended program for a SPECT system coded<br />

by Narita et al. [12,13]. The codes were implemented into <str<strong>on</strong>g>the</str<strong>on</strong>g> Windows based computer (Pentium-<br />

III, 600MHz, 128MB ) by Visual Fortran Ver 6.1(Compaq Corp.). The digital phantoms and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pre-calculated material le by P<strong>EGS</strong> were supplied into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 program. The physical processes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> attenuati<strong>on</strong>, scatter and <str<strong>on</strong>g>the</str<strong>on</strong>g> blurring due to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector resp<strong>on</strong>se were involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated<br />

SPECT system. Two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> collimator (ultra high-resoluti<strong>on</strong> type (UHR) and high-sensitive type<br />

(HS)) were examined. The parameters used in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> were summarized in Table 1.<br />

3.3 C<strong>on</strong>vergence criteria<br />

To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implemented iterative algorithms, two criteria<br />

have been examined. First <str<strong>on</strong>g>the</str<strong>on</strong>g> progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> was m<strong>on</strong>itored by observing <str<strong>on</strong>g>the</str<strong>on</strong>g> residual<br />

squares error ( 2 ) at each iterati<strong>on</strong>. 2 is de ned as follows:<br />

2 =<br />

mX i<br />

(4)<br />

(p ;yi) (5)<br />

2 is interpreted that how well <str<strong>on</strong>g>the</str<strong>on</strong>g> forward projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> image matches with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured data.<br />

Therefore it will be expected to decrease with increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> iterati<strong>on</strong> number, and approach to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

3


plateau. <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g>ly,evaluating <str<strong>on</strong>g>of</str<strong>on</strong>g> gray/white count ratio also m<strong>on</strong>itored <str<strong>on</strong>g>the</str<strong>on</strong>g> image c<strong>on</strong>trast. The regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest (ROI) were de ned <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> deep gray matter and white matter by 3 x 3 square pixels. The<br />

gray/white ratio will be approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumed value <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.0 if <str<strong>on</strong>g>the</str<strong>on</strong>g> AC, SC and compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

blurring by collimator are perfect.<br />

4 Results and Discussi<strong>on</strong><br />

The simulated energy spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Tc-99m using <str<strong>on</strong>g>the</str<strong>on</strong>g> UHR collimator and <str<strong>on</strong>g>the</str<strong>on</strong>g> brain phantom are<br />

shown in Fig.4. The de ned energy windows are also indicated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same gure. The primary<br />

spectrum, which cannot be measured in actual experiment, represents that phot<strong>on</strong> experience no<br />

interacti<strong>on</strong> passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> organ. The total spectrum is summati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primary and scatter.<br />

The estimated energy spectra were similar with <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> previous report <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> study [14].<br />

Fig.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> progress <str<strong>on</strong>g>of</str<strong>on</strong>g> rec<strong>on</strong>structed images <str<strong>on</strong>g>of</str<strong>on</strong>g> cylindrical phantom using MLEM algorithm<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> HS collimator as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> iterati<strong>on</strong> number. 2 decreased rapidly at early iterati<strong>on</strong>s.<br />

Subsequently it declines slightly at late iterati<strong>on</strong>s. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> feasible iterati<strong>on</strong> number could be<br />

determined as about 40 iterati<strong>on</strong> for with attenuati<strong>on</strong> and scatter correcti<strong>on</strong> (ACSC) and 30 iterati<strong>on</strong><br />

for without ACSC. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 performed by AC and SC were small compared to those without<br />

correcti<strong>on</strong>. The same tendency was observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> results using UHR. The computati<strong>on</strong> time for<br />

image rec<strong>on</strong>structi<strong>on</strong> was about 2 sec for <strong>on</strong>e iterati<strong>on</strong>.<br />

Fig.6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> generated sinogram (projecti<strong>on</strong> data) from brain phantom and rec<strong>on</strong>structed<br />

images using MLEM with and without ACSC for both collimators. The maximum counts in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

projecti<strong>on</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> main window were 17805 and 1811 counts/pixel using HS and UHR, respectively.<br />

The sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> HS was about 10 times higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> UHR. The computati<strong>on</strong> times for<br />

generating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sinograms were about 10 hr and 16 hr using HS and UHR, respectively. The values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 2 using MLEM algorithm with and without ACSC are shown in Fig.7 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>. The rec<strong>on</strong>structed images at each iterati<strong>on</strong> were also shown. The feasible iterati<strong>on</strong><br />

numbers were about 40 for HS and 50 for UHR when AC and SC were performed. Visual inspecti<strong>on</strong><br />

has c<strong>on</strong> rmed that <str<strong>on</strong>g>the</str<strong>on</strong>g> stopping rule work well. It is evident that <str<strong>on</strong>g>the</str<strong>on</strong>g> performing <str<strong>on</strong>g>of</str<strong>on</strong>g> AC and SC<br />

slows <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative process down. Fig.8 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three algorithms <strong>on</strong> 2 with ACSC.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>s needed to reach a c<strong>on</strong>stant value were di erent for each algorithm. ASIRT<br />

needed <str<strong>on</strong>g>the</str<strong>on</strong>g> largest number, MLEM <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest number <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>. The ASIRT required more than<br />

100 iterati<strong>on</strong> to produce a comparable result <str<strong>on</strong>g>of</str<strong>on</strong>g> MLEM and MSIRT. We observed almost equivalent<br />

performance between MLEM and MSIRT. The similar results were obtained using HS.<br />

Fig. 9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> count ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> gray and white matter in ROIs as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> iterati<strong>on</strong><br />

number using MLEM. By performing <str<strong>on</strong>g>the</str<strong>on</strong>g> AC and SC, <str<strong>on</strong>g>the</str<strong>on</strong>g> gray/white ratio was improved from 1.99<br />

to 2.89 using HS and 2.89 to 3.82 using UHR at 80 iterati<strong>on</strong>. In UHR collimator study, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated<br />

gray/white values were nearly equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumed value <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.0, but a little underestimati<strong>on</strong> (-4.5%)<br />

was observed. The reas<strong>on</strong>able explanati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> underestimati<strong>on</strong> is that modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> distancedependent<br />

blurring was not included in <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> algorithms. Fig.10 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> algorithms <strong>on</strong> gray/white ratio using UHR collimator. All iterative rec<strong>on</strong>structi<strong>on</strong> algorithms<br />

were e ective in compensating for scatter and n<strong>on</strong>-uniform attenuati<strong>on</strong> distributi<strong>on</strong>. The simulati<strong>on</strong>s<br />

revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> slow c<strong>on</strong>vergence property <str<strong>on</strong>g>of</str<strong>on</strong>g> ASIRT. It also makes little di erent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> results whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

we utilize MLEM or MSIRT for <str<strong>on</strong>g>the</str<strong>on</strong>g> image rec<strong>on</strong>structi<strong>on</strong>.<br />

5 C<strong>on</strong>clusi<strong>on</strong><br />

We implemented three iterative rec<strong>on</strong>structi<strong>on</strong> algorithms incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scatter and attenuati<strong>on</strong><br />

compensati<strong>on</strong>. In order to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence properties, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> SPECT system<br />

using <strong>EGS</strong>4 was c<strong>on</strong>structed. The simulati<strong>on</strong> studies makes clear c<strong>on</strong>vergence properties <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

algorithm for two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> phantoms and collimators. In c<strong>on</strong>clusi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods are potential for<br />

4


improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative SPECT capability. <strong>EGS</strong>4 is powerful tool for investigating <str<strong>on</strong>g>the</str<strong>on</strong>g> properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> algorithms without actual phantom experiments using <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive isotopes.<br />

Acknowledgment<br />

We thank to Dr. Yuichiro Narita <str<strong>on</strong>g>of</str<strong>on</strong>g> Chiba Cancer Center for providing <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> program<br />

and helpful suggesti<strong>on</strong> for <strong>EGS</strong>4.<br />

References<br />

[1] L. Shepp and Y. Vardi, \Maximum likelihood rec<strong>on</strong>structi<strong>on</strong> for emissi<strong>on</strong> tomography". IEEE<br />

Trans. Med. Imaging MI-1(1982)113-122.<br />

[2] K. Lange and R. Cars<strong>on</strong>, \EM rec<strong>on</strong>structi<strong>on</strong> algorithms for emissi<strong>on</strong> and transmissi<strong>on</strong> tomography",<br />

J. Comput Assist Tomogr 8(1984)306-316.<br />

[3] P. Gilbert, \Iterative methods for <str<strong>on</strong>g>the</str<strong>on</strong>g> three-dimensi<strong>on</strong>al rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an object from projecti<strong>on</strong>s",<br />

J. Theor. Biol. 36(1972)105-117.<br />

[4] B. M. W. Tsui, X. Zhao, E. C. Frey, G. T. Gullberg. \Comparis<strong>on</strong> between ML-EM and WLS-CG<br />

algorithms for SPECT image rec<strong>on</strong>structi<strong>on</strong>", IEEE Trans Med Imaging MI-13(1994)601-609.<br />

[5] S. Mastuoka, H. Shinohara, S. Yamamoto, Y. Niio, H. Shima, M. Yamada, et al., \Combined scatter<br />

and attenuati<strong>on</strong> correcti<strong>on</strong> for Tl-201 myocardial perfusi<strong>on</strong> SPECT using OS-EM algorithm",<br />

Nipp<strong>on</strong> Acta Radiologica 58(1998)751-757.<br />

[6] DM Titteringt<strong>on</strong>, \On <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative image space rec<strong>on</strong>structi<strong>on</strong> algorithm for ECT", IEEE Trans.<br />

Med. Imaging MI-6(1987)52-56.<br />

[7] W. R. Nels<strong>on</strong>, H. Hirayama, D. W. O. Rogers, \The <strong>EGS</strong>4 code system", Stanford Linear Accelerator<br />

Center Report SLAC-265, 1985.<br />

[8] A. P. Dempster, N. M. Laird, D. B. Rubin, \Maximum likelihood from incomplete data via <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

EM algorithm", J. Roy Statis Soc B39(1977)1-38.<br />

[9] K. Ogawa, Y. Harata, T. Ichihara, A. Kubo, S. Hashimoto, \A practical method for positi<strong>on</strong>dependent<br />

Compt<strong>on</strong>-scatter correcti<strong>on</strong> in single phot<strong>on</strong> emissi<strong>on</strong> CT", IEEE Trans. Med. Imag.<br />

10(1991)408-412.<br />

[10] T. Ichihara, H. Maeda, K. Yamakado, N. Motomura, K. Matsumura, K. Takeda, T. Nakagawa,<br />

\Quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> scatter- and attenuati<strong>on</strong>-compensated dynamic single-phot<strong>on</strong> emissi<strong>on</strong><br />

tomography for functi<strong>on</strong>al hepatic imaging with a receptor-binding radiopharmaceutical", Eur.<br />

J. Nucl. Med. 24(1997)59-67.<br />

[11] G. Salam<strong>on</strong> and Y. P. Huang,\Computed tomography <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brain", Springer-Verlag, Berlin<br />

Heidelberg New York, 1980.<br />

[12] H. Iida, Y. Narita, S. Eberl, \Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scatter in single phot<strong>on</strong>-emissi<strong>on</strong> computedtomography",<br />

Fifth <strong>EGS</strong>4 User's Meeting in Japan, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 95-9, 33-46, 1995.<br />

[13] Y. Narita, H. Iida, S. Eberl, et al., \M<strong>on</strong>te Calro evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy and noise properties <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

scatter correcti<strong>on</strong> methods for 201 Tl cardiac SPECT", IEEE Trans. <strong>on</strong> Nucl. Sci. 44(1997)2465-<br />

2472.<br />

[14] S. Maeda, K. Ogawa, \Quantitative assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered phot<strong>on</strong>s c<strong>on</strong>sidering skull b<strong>on</strong>e in<br />

brain SPECT", Jpn. J. Nucl. Med. (Kaku-Igaku) 31(1994)431-439.<br />

5


Table 1. Simulati<strong>on</strong> parameters<br />

Detector size 400 mm x 250 mm<br />

Collimator geometry<br />

Ultra high resoluti<strong>on</strong> (UHR) 1.0 mm x60mm<br />

High sensitive (HS) 2.0 mm x35mm<br />

Scintillator material and thickness NaI(Tl), 9.5mm<br />

Energy windows<br />

Main window 141 keV 10%<br />

Sub window 120 keV 5%<br />

Energy resoluti<strong>on</strong> 10%<br />

Rotati<strong>on</strong> radius 250 mm<br />

Projecti<strong>on</strong> 128 x 128 matrix, 128 views over 360 degree<br />

Pixel size 3.125 mm<br />

6


Figure 1: Notati<strong>on</strong> and coordinate systems.<br />

Figure 2: Flowchart <str<strong>on</strong>g>of</str<strong>on</strong>g> three iterative algorithms.<br />

7


Figure 3: Digital cylindrical and brain phantoms used in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

Figure 4: Simulated energy spectra using <strong>EGS</strong>4.<br />

8


Figure 5: Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical phantom using MLEM algorithm as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong><br />

number.<br />

Figure 6: The generated sinograms (projecti<strong>on</strong> data) from brain phantom and rec<strong>on</strong>structed images using<br />

MLEM with and without ACSC for both collimators.<br />

9


Figure 7: The values <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 using MLEM algorithm with and without ACSC as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

iterati<strong>on</strong>.<br />

Figure 8: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three iterative algorithms <strong>on</strong> 2 using UHR collimator as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

iterati<strong>on</strong>.<br />

10


Figure 9: The values <str<strong>on</strong>g>of</str<strong>on</strong>g> gray/white matter counts ratio using MLEM algorithm with and without ACSC as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>.<br />

Figure 10: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three iterative algorithms <strong>on</strong> gray/white matter counts ratio using UHR collimator<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> iterati<strong>on</strong>.<br />

11


Table 1 The radi<strong>on</strong>uclides used in <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement, and <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energies emitted<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> radi<strong>on</strong>uclides and <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic X-rays.<br />

Radio Nuclide Energy Ratio<br />

Am-241 26.3keV 2.40%<br />

33.2keV 0.13%<br />

59.5keV 35.90%<br />

13.9keV (Np-L) 42.00%<br />

Ba-133 81.0keV 34.10%<br />

276.0keV 7.20%<br />

31.0keV (Cs-K ) 23.1%<br />

35.0keV (Cs-K ) 23.10%<br />

Co-57 14.4keV 9.20%<br />

122.0keV 85.60%<br />

136.0keV 10.70%<br />

Tc-99m 141.0keV 89.10%<br />

18.4keV (Tc-K ) 8.10%<br />

20.6keV (Tc-K ) 1.20%<br />

<br />

φ <br />

<br />

<br />

γ<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 1: The geometrical relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radi<strong>on</strong>uclide and <str<strong>on</strong>g>the</str<strong>on</strong>g> HP-Ge detector.<br />

3


Figure 2: Aschematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray Tube (CIRCLEX6/1.2P18DE, Shimadzu).<br />

4


StrippingMethodwith<strong>EGS</strong>4<br />

Absorpti<strong>on</strong>Spectrum<br />

insideHP-Ge<br />

form<strong>on</strong>o-energyphot<strong>on</strong><br />

Normalizati<strong>on</strong>withPhoto-Peak<br />

(Compt<strong>on</strong>Escape,K-Escape&SumPeak)<br />

Eliminati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Compt<strong>on</strong>escape,<br />

K-escape<br />

-<strong>EGS</strong>4-<br />

NCASE500,000<br />

AE0.52<br />

AP0.001<br />

ECUT0.52<br />

X-raySpectrum<br />

measuredwithHP-GeCrystal<br />

Photo-Peak<br />

Efficiency<br />

Correcti<strong>on</strong>with<br />

Photo-Peak<br />

X-raySpectrum<br />

correctedwithStrippingMethod<br />

Figure 3: The ow diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stripping method procedure using <strong>EGS</strong>4.<br />

5


Efficiency ( % )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Co-57:14.4keV<br />

Photo-Peak Efficiency inside HP-Ge Crystal Detector<br />

Am-<br />

Ba-133:31.0keV<br />

Ba-133:35.0keV<br />

Ba-133:53.2keV<br />

Am-<br />

6mmφ×10mm<br />

6mmφ×5mm<br />

0 20 40 60 80 100 120 140<br />

Phot<strong>on</strong> Energy ( keV )<br />

Figure 4: The phot<strong>on</strong> energy coe ciency inside <str<strong>on</strong>g>the</str<strong>on</strong>g> HP-Ge detector (6 mm 5 mm, 6 mm 10 mm).<br />

Pulseheight(Counts/MeV/incident)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

Absorpti<strong>on</strong>spectruminsideHP-Ge<br />

form<strong>on</strong>o-energyphot<strong>on</strong><br />

0 20 40 60 80 100 120<br />

Ba-133:81.0keV<br />

110keV<br />

Phot<strong>on</strong>Energy(keV)<br />

Figure 5: The absorpti<strong>on</strong> spectrum inside <str<strong>on</strong>g>the</str<strong>on</strong>g> HP-Ge detector for a m<strong>on</strong>o-energy phot<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 110 keV.<br />

6<br />

Co-57:122keV


2.0E+04<br />

1.8E+04<br />

1.6E+04<br />

1.4E+04<br />

1.2E+04<br />

1.0E+04<br />

8.0E+03<br />

6.0E+03<br />

4.0E+03<br />

2.0E+03<br />

0.0E+00<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Birch&MarshallSimulati<strong>on</strong><br />

90kV(2.5mmAl)<br />

90kV(SiO2+...)<br />

110kV(2.5mmAl)<br />

110kV(SiO2+..)<br />

0<br />

0 20 40 60 80 100 120<br />

Phot<strong>on</strong>Energy(kev)<br />

Figure 6: The simulated spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray tube at 90 kV and 110 kV.<br />

Birch&Marshall<br />

correcti<strong>on</strong>.(+)<br />

correcti<strong>on</strong>.(-)<br />

0 20 40 60 80 100 120<br />

Phot<strong>on</strong> Energy ( keV )<br />

Figure 7: The observed X-ray spectra. Correcti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous X-ray by <str<strong>on</strong>g>the</str<strong>on</strong>g> stripping method produces a<br />

spectrum from a radi<strong>on</strong>uclide with multiple-energy phot<strong>on</strong> radiati<strong>on</strong> that is almost <str<strong>on</strong>g>the</str<strong>on</strong>g> same as that obtained<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> semi-empirical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> Birch & Marshall.<br />

7


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.242-249<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> CdZnTe Detector<br />

in Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Diagnostic X-ray Spectra<br />

S. Miyajima 1 , H. Sakuragi 2 and M. Matsumoto 2<br />

1<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Course <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences, Osaka University<br />

1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan<br />

2<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Allied Health Sciences, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Osaka University<br />

1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan<br />

Abstract<br />

We calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a CdZnTe detector to be employed in x-ray spectrometry<br />

using LSCAT (Low energy phot<strong>on</strong> SCATtering expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code). Incident energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x-rays was from 10 to 150keV. In <str<strong>on</strong>g>the</str<strong>on</strong>g> usercode, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong> was utilized to deal with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers in a CZT crystal. Parameters in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean<br />

free path <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers, were determined by comparing shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se<br />

functi<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in measured -ray spectra (source: 241 Am, 133 Ba). Finally, we corrected<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured x-ray spectra with <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s. The results indicated a CdZnTe detector<br />

is valid as a x-ray spectrometer with proper correcti<strong>on</strong>s.<br />

1 Introducti<strong>on</strong><br />

X-ray spectrometry is <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> energy distributi<strong>on</strong> in x-rays emitted from an x-ray<br />

tube. A High-Purity Germanium (HPGe) detector has usually been employed for its high e ciency<br />

and excellent charge transport properties[1]. In x- or gamma-ray spectrometry, output pulse height<br />

is not always proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> incident energy <str<strong>on</strong>g>of</str<strong>on</strong>g> x-rays because <str<strong>on</strong>g>of</str<strong>on</strong>g> escapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident and<br />

sec<strong>on</strong>dary x-rays. Therefore, correcti<strong>on</strong>s for detector resp<strong>on</strong>se are required to obtain a real x-ray<br />

spectrum we need to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> incident x-ray energies from <str<strong>on</strong>g>the</str<strong>on</strong>g> output <str<strong>on</strong>g>of</str<strong>on</strong>g> a detector <str<strong>on</strong>g>the</str<strong>on</strong>g> output<br />

indicates energy deposited by <str<strong>on</strong>g>the</str<strong>on</strong>g> incident x-rays. To do this, resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a detector are<br />

usually utilized to calculate a real x-ray spectrum from an output pulse height spectrum.<br />

We employed a CdZnTe (CZT) detector as an x-ray spectrometer in this study. The CZT detector<br />

can be operated at room temparature because it has a large band gap. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> detector<br />

doesn't need to be cooled by liquid nitrogen during measurement. It means a specroscopy system<br />

with a CZT detector is relatively compact. However, charge transport properties in <str<strong>on</strong>g>the</str<strong>on</strong>g> CZT crystal<br />

are poor because trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers is severe. For that reas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> e ects should be corrected<br />

in addti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> escape <str<strong>on</strong>g>of</str<strong>on</strong>g> incident and sec<strong>on</strong>dary x-rays.<br />

In this study we analized a resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a CZT detector to m<strong>on</strong>oenergetic x-rays to obtain parameters<br />

in correcti<strong>on</strong>s. We calculated resp<strong>on</strong>se functi<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters. To validate <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se<br />

functi<strong>on</strong>s, we corrected gamma-ray spectra and compared <str<strong>on</strong>g>the</str<strong>on</strong>g> results with <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray emissi<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> source. After that, we corrected x-ray spectra using <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s.<br />

2 Methods<br />

A CdZnTe crystal in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector (Amptek XR-100T) was a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.86g/cm 3 and atomic<br />

percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> 45.0% (Cd), 5.0% (Zn), 50.0% (Te) respectively. The size was 3 3mm 2 with a<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 2mm. It had a 0.25mm Be window <strong>on</strong> its face. Bias voltage was 2500V/cm (500V/0.2cm).<br />

Incident x-rays were in pencil beams in both calculati<strong>on</strong> and measurement.<br />

1


2.1 M<strong>on</strong>te Carlo calculati<strong>on</strong><br />

We calculated resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a CZT detector to m<strong>on</strong>oenergetic x-rays with LSCAT (Low<br />

energy phot<strong>on</strong> SCATtering expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code)[2]. Incident energy <str<strong>on</strong>g>of</str<strong>on</strong>g> x-rays was from 10<br />

to 150keV in 0.5keV increments. The followings were especially taken into account in <str<strong>on</strong>g>the</str<strong>on</strong>g> code<br />

1. producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-shell uorescence x-rays (K x-rays),<br />

2. e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers.<br />

Escape peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> K x-rays in a spectrum are prominent for low energy x-rays such as diagnostic<br />

x-rays because <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectric e ect is <str<strong>on</strong>g>the</str<strong>on</strong>g> most probable and <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>s tend to occur near a<br />

detector surface. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> default versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4 deals with producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K x-rays in elements.<br />

Therefore, we employed <str<strong>on</strong>g>the</str<strong>on</strong>g> test versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LSCAT (Low energy phot<strong>on</strong> SCATtering expansi<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code), which had been developed at <strong>KEK</strong>, to deal with K x-rays in compounds. Now <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

default versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LSCAT (kek_improve) can handle <str<strong>on</strong>g>the</str<strong>on</strong>g>m easily[3].<br />

Such semic<strong>on</strong>ductors as CZT have poor charge transport properties because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relatively high<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> trapping centers. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>y cause incomplete charge collecti<strong>on</strong>, peaks in a spectrum have<br />

tails to <str<strong>on</strong>g>the</str<strong>on</strong>g> low energy side. Accordingly, we utilized <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong> to take e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m into<br />

account in <str<strong>on</strong>g>the</str<strong>on</strong>g> code.<br />

where<br />

= e<br />

D<br />

(1 ; exp(;(D ; x)<br />

:ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> induced charge to initial charge,<br />

x :distance from interacti<strong>on</strong> site to cathode,<br />

D :thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> a crystal,<br />

e :mean free path <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s,<br />

h :mean free path <str<strong>on</strong>g>of</str<strong>on</strong>g> holes.<br />

e<br />

)) + h<br />

D<br />

(1 ; exp(;x))<br />

(1)<br />

h<br />

In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced charge due to energy depositi<strong>on</strong> by an x-ray is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> initial charge<br />

multiplied by . The parameters in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>, mean free path <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers, were<br />

determined by comparing shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks (tails) in resp<strong>on</strong>se functi<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in measured<br />

gamma-ray spectra. And we determined <str<strong>on</strong>g>the</str<strong>on</strong>g> mean free path <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s ( e) was 200 times larger<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> holes ( h) in reference to literature <strong>on</strong> this subject to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters in M<strong>on</strong>te<br />

Carlo calculati<strong>on</strong>s, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> was h <strong>on</strong>ly.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> code, cut o energy was set at 5.0keV for phot<strong>on</strong>s (AP=0.005 in <str<strong>on</strong>g>the</str<strong>on</strong>g> P<strong>EGS</strong>4 input le) and<br />

150.0keV for electr<strong>on</strong>s (ECUT=0.150+0.511 in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 user code we did not transport electr<strong>on</strong>s). To<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> binding e ects in <str<strong>on</strong>g>the</str<strong>on</strong>g> Rayleigh and Compt<strong>on</strong> scattering, opti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> P<strong>EGS</strong>4<br />

input les and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 user code were turned <strong>on</strong> (IRAYL=1, IBOUND=1, INCOH=1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> P<strong>EGS</strong>4<br />

input les, IRAYLR(I)=1, INCOHR(I)=1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 user code).<br />

2.2 Experimental c<strong>on</strong>siderati<strong>on</strong>s<br />

In measurement, we placed collimators in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector (0.8mm for gamma-rays, 0.4mm<br />

for x-rays, made from tungsten). We usually use collimators in x-ray spectrometry to reduce pulse<br />

pileup. The pulse pileup causes distorti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> output spectrum which cannot be easily corrected.<br />

Channel width was 0.1keV per channel in gamma-ray spectrometry and 0.5keV per channel in x-ray<br />

spectrometry. The channel width for gamma-rays was smaller to avoid distorti<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> channel<br />

width after FWHM (Full Width at Half Maximum) analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray data was c<strong>on</strong>verted to<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5keV per channel for correcti<strong>on</strong> procedures.<br />

2


To compare measured peaks in gamma-ray spectra with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in resp<strong>on</strong>se functi<strong>on</strong>s, we have to<br />

remove distorti<strong>on</strong> due to electric noise and statistical uctuati<strong>on</strong>s in number <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s d<strong>on</strong>'t c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g>se e ects. Therefore, we employed <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolding method to<br />

calculate a spectrum without this distorti<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure, we regarded e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> this distorti<strong>on</strong> as<br />

gaussian distributi<strong>on</strong> based <strong>on</strong> measured FWHM. In <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolding method, we used relati<strong>on</strong>s between<br />

input and output as follows.<br />

Z 1<br />

M(E) =<br />

where<br />

S(E 0 ) :number <str<strong>on</strong>g>of</str<strong>on</strong>g> input x-rays with energy E 0 ,<br />

0<br />

R(EE 0 )S(E 0 )dE 0 (2)<br />

R(EE 0 ) :resp<strong>on</strong>se functi<strong>on</strong>s (matrix) probability <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong> in channels corresp<strong>on</strong>ding<br />

to energy E with incident energy E 0 ,<br />

M(E) :number <str<strong>on</strong>g>of</str<strong>on</strong>g> output x-rays counted in channels corresp<strong>on</strong>ding to energy E.<br />

We can obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> input (S(E)) by solving <str<strong>on</strong>g>the</str<strong>on</strong>g> determinant(2). This determinant can be solved as<br />

simultaneous equati<strong>on</strong>s.<br />

2.3 Correcti<strong>on</strong> for spectra<br />

We employed <str<strong>on</strong>g>the</str<strong>on</strong>g> stripping method to correct gamma- and x-ray spectra[4-6]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> stripping<br />

method, we assume counts in each channel c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following two comp<strong>on</strong>ents<br />

1. counts due to photoelectric e ect without trapping,<br />

2. counts due to c<strong>on</strong>tributi<strong>on</strong> by incident x-rays with higher energies going through escapes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sec<strong>on</strong>dary x-rays or trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers during charge transport.<br />

In energy depositi<strong>on</strong> in 2nd case, x-rays are counted <strong>on</strong> channels lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> incident energy.<br />

Procedures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stripping method are as follows<br />

1. remove counts due to 2. in spectrum,<br />

2. divide <str<strong>on</strong>g>the</str<strong>on</strong>g> counts to be left with probability <str<strong>on</strong>g>of</str<strong>on</strong>g> full energy depositi<strong>on</strong> without trapping (1.).<br />

where<br />

This procedure is represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>.<br />

S(E) = M(E) ; P Emax<br />

E 0 =E+1 R(EE0 )S(E 0 )<br />

R(EE 0 )<br />

S(E) :number <str<strong>on</strong>g>of</str<strong>on</strong>g> incident phot<strong>on</strong>s with energy E,<br />

M(E) :number <str<strong>on</strong>g>of</str<strong>on</strong>g> output phot<strong>on</strong>s counted in channels corresp<strong>on</strong>ding to energy E,<br />

Emax :maximum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a x-ray spectrum (determined by tube voltage),<br />

R(EE 0 ) :resp<strong>on</strong>se functi<strong>on</strong>s probability <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong> in channels corresp<strong>on</strong>ding to energy<br />

E with incident energy E 0 .<br />

In this procedure, we assume counts in <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy <str<strong>on</strong>g>of</str<strong>on</strong>g> x-ray spectra d<strong>on</strong>'t c<strong>on</strong>tain counts<br />

due to c<strong>on</strong>tributi<strong>on</strong> from its higher energies, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> M(Emax) is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> S(Emax).<br />

3<br />

(3)


2.4 Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results<br />

First, to validate <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated resp<strong>on</strong>se functi<strong>on</strong>s, we corrected gamma-ray spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> 241 Am<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g>m and compared relative intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks in corrected spectra with <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray emissi<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 241 Am. If <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s are valid, corrected results are close to input data, i.e. source<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> Radio Isotopes. Next, we corrected measured x-ray spectra with <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s. The<br />

results were compared with corrected spectra measured with a HPGe detector.<br />

3 Results<br />

The results we obtained in this study were as follows<br />

1. In <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> code, escape peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> each element (Cd, Zn, Te)<br />

and tails <str<strong>on</strong>g>of</str<strong>on</strong>g> each peak appeared (Fig.1). Parameters in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s were h = 0:20cm<br />

( h =8:010 ;5 cm 2 =V in 2500V=cm), e =40:0cm ( e =1:610 ;2 cm 2 =V in 2500V=cm).<br />

2. In gamma-ray spectra corrected with <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s, relative counts <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks were in<br />

good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray emissi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> source. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, tails to <str<strong>on</strong>g>the</str<strong>on</strong>g> low<br />

energy side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks, due to trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers, also disappeared in spectra (Fig.2).<br />

The results meant input spectra were calculated from output spectra and <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s<br />

were valid.<br />

3. X-ray spectra corrected with <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s were close to corrected spectra measured<br />

with a HPGe detector (Fig.3).<br />

4 Discussi<strong>on</strong>s<br />

As you can see in Fig.4, tails in <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s d<strong>on</strong>'t completely t <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in measured<br />

gamma-ray spectra. The discrepancies were more signi cant in<str<strong>on</strong>g>the</str<strong>on</strong>g> high energy regi<strong>on</strong>. We suppose<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are problems in <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s made in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Hecht equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

followings are assumed<br />

1. trapped charges are not detrapped,<br />

2. a uniform density <str<strong>on</strong>g>of</str<strong>on</strong>g> trapping centers in a crystal exists,<br />

3. electric eld in a crystal is uniform.<br />

Since presence <str<strong>on</strong>g>of</str<strong>on</strong>g> detrapping in a CZT crystal and models including <str<strong>on</strong>g>the</str<strong>on</strong>g> e ects are already published,<br />

we should take <str<strong>on</strong>g>the</str<strong>on</strong>g> e ects into account in <str<strong>on</strong>g>the</str<strong>on</strong>g> code.<br />

And <str<strong>on</strong>g>the</str<strong>on</strong>g> discrepancies in <str<strong>on</strong>g>the</str<strong>on</strong>g> high energy regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x-ray spectra must also be due to di erences<br />

between calculated and measured resp<strong>on</strong>ses. We believe <str<strong>on</strong>g>the</str<strong>on</strong>g> discrepancies must be smaller with improvements<br />

made <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> model related to <str<strong>on</strong>g>the</str<strong>on</strong>g> trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers.<br />

5 C<strong>on</strong>clusi<strong>on</strong>s<br />

We calculated resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a CdZnTe detector using LSCAT (Low energy phot<strong>on</strong> SCATtering<br />

expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code). Corrected spectra with <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong>s were close to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>es measured with a High Purity Germanium detector. A CdZnTe detector can be used in x-ray<br />

spectrometry with proper correcti<strong>on</strong>s.<br />

4


References<br />

[1] T. R. Fewell and R. E. Shuping, \Phot<strong>on</strong> energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some typical diagnostic x-ray<br />

beams", Med. Phys. 4(3)(1977)187-197.<br />

[2] Y. Namito and H. Hirayama, \LSCAT: Low-Energy Phot<strong>on</strong>-Scattering Expansi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4<br />

code (Inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> Impact I<strong>on</strong>izati<strong>on</strong>)", <strong>KEK</strong> Internal, 2000-4, 2000.<br />

[3] H. Hirayama and Y. Namito, \Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a General Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Photoelectric-Related<br />

Phenomena for Compounds or Mixtures in <strong>EGS</strong>4", <strong>KEK</strong> Internal, 2000-3, 2000.<br />

[4] W. W. Seelentag and W. Panzer, \Stripping <str<strong>on</strong>g>of</str<strong>on</strong>g> x-ray bremsstrahlung spectra up to 300kVp <strong>on</strong> a<br />

desk type computer", Phys. Med. Biol. 24(4) (1979)767-780.<br />

[5] E. D. Castro et al., \The use <str<strong>on</strong>g>of</str<strong>on</strong>g> cadmium telluride detectors for <str<strong>on</strong>g>the</str<strong>on</strong>g> qualitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> diagnostic<br />

x-ray spectra", Phys. Med. Biol. 29(9)(1984)1117-1131.<br />

[6] P. Pani, R. F. Laitano and R. Pellegrini, \Diagnostic x-ray spectra measurements using a silic<strong>on</strong><br />

surface barrier detector", Phys. Med. Biol. 32(9)(1987)1135-1149.<br />

Relative Intensity<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

40keV<br />

80keV<br />

120keV<br />

0<br />

0 20 40 60 80 100 120<br />

Energy [keV]<br />

Figure 1: Resp<strong>on</strong>se functi<strong>on</strong>s calculated with <strong>EGS</strong>4. Incident energy <str<strong>on</strong>g>of</str<strong>on</strong>g> x-rays are 40keV, 80keV and 120keV<br />

respectively.<br />

5


Relative Intensity<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CZT corrected<br />

CZT measured<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

0 10 20 30 40 50 60<br />

Energy [keV]<br />

Figure 2: A corrected gamma-ray spectrum compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>e. Source was 241 Am. Tails <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks<br />

disapeared and relative intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks (26.3/59.5keV) agree well with gamma-ray emissi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> source.<br />

6


Relative Intensity<br />

Relative Intensity<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

CZT corrected<br />

CZT measured<br />

0 10 20 30 40 50 60 70 80<br />

Energy [keV]<br />

<br />

CZT corrected<br />

HPGe corrected<br />

0 10 20 30 40 50 60 70 80<br />

Energy [keV]<br />

<br />

Figure 3: (a) A corrected x-ray spectrum compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>e. Tube voltage was 80kV. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corrected spectrum, low energy comp<strong>on</strong>ents are less than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum.<br />

(b) A corrected x-ray spectrum compared with a HPGe detectore. Tube voltage was 80kV.<br />

7


Relative Intensity<br />

Relative Intensity<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Calculated<br />

Measured<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

Energy [keV]<br />

Figure 4: Di erence in tails between measured and calculated data.<br />

0<br />

0 20 40 60 80 100 120<br />

Energy [keV]<br />

CZT<br />

HPGe<br />

Figure 5: A corrected x-ray spectrum. Tube voltage was 120kV.<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.250-254<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Resp<strong>on</strong>se Functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

16"x16"x4" Large-sized NaI Scintillati<strong>on</strong> Detector<br />

for Envir<strong>on</strong>mental Gamma-ray Survey<br />

H. Itadzu, T. Iguchi, A. Uritani and J. Kawarabayashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Engineering, Nagoya University<br />

Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN<br />

Abstract<br />

Resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 16"x16"x4" - large sized NaI detector, which is mainly used for high<br />

sensitive gamma-ray survey in outdoor envir<strong>on</strong>ment, have been calculated by using <strong>EGS</strong>4 code.<br />

The calculated results are compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured data for standard gamma-ray sources to<br />

check <str<strong>on</strong>g>the</str<strong>on</strong>g>ir accuracy. Through <str<strong>on</strong>g>the</str<strong>on</strong>g> precise modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector structure in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

agreement between both results has been improved up to around 15% relative deviati<strong>on</strong> in 137 Cs<br />

source spectrum. Based <strong>on</strong> this calculati<strong>on</strong> model, <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>al resp<strong>on</strong>se matrix c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

24 energy groups x256 pulse height bins has been prepared to unfold gamma ray spectra from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured data. The unfolding results seem to be reas<strong>on</strong>able in a preliminary analysis <strong>on</strong> natural<br />

background gamma-ray spectra.<br />

1 Introducti<strong>on</strong><br />

Wide area and rapid survey for envir<strong>on</strong>mental nuclear radiati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten needed in health physics<br />

study[1], in <str<strong>on</strong>g>the</str<strong>on</strong>g> mineral resource search applicati<strong>on</strong>[2] and/or sometimes in nuclear facility accidents[3].<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g>se purposes, a mobile radiati<strong>on</strong> survey system based <strong>on</strong> a large volume NaI scintillati<strong>on</strong> detector<br />

has already been developed and put to practical use. We have calculated resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

16"x16"x4" large-sized NaI scintillati<strong>on</strong> detector, which have not been established well, especially<br />

directi<strong>on</strong>al resp<strong>on</strong>se functi<strong>on</strong>s, by using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code and veri ed an accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated<br />

resp<strong>on</strong>ses through comparis<strong>on</strong> with experiments from <str<strong>on</strong>g>the</str<strong>on</strong>g> viewpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> to gamma-ray<br />

spectrum unfolding.<br />

2 Detector Speci cati<strong>on</strong> and Calculati<strong>on</strong> Model<br />

The NaI detector used, is commercially available type GPX-1024 (Exploranium G.S. Ltd.). As<br />

shown in Fig.1, it c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> four 4"x4"x16" NaI detector units arranged in parallel. Each NaI crystal<br />

is hermetically sealed in a 0.5mm thick stainless steel c<strong>on</strong>tainer and attached with a photomultiplier<br />

through an optical window (Fig. 2). The four comp<strong>on</strong>ents are packed into a ruggedized aluminum<br />

case with an e ective thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.6mm, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with some <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal insulator and cushi<strong>on</strong> materials.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 calculati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> detector structure was modeled as precisely as possible, except for<br />

photomultipliers, that is, in a combinatorial geometry c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> four kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>s, NaI crystal,<br />

stainless steel cover, Aluminum case and air gap, as shown in Fig.3.<br />

Twenty ve points <str<strong>on</strong>g>of</str<strong>on</strong>g> incident gamma-ray energy were selected between 0.005 MeV and 3.0 MeV<br />

corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> output signal gain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector system, while <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height distributi<strong>on</strong> (or<br />

deposited energy distributi<strong>on</strong> inside <str<strong>on</strong>g>the</str<strong>on</strong>g> detector) obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> was divided into 256<br />

1


Figure 1: Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> GPX-1024.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 2: Cross secti<strong>on</strong>al view <str<strong>on</strong>g>of</str<strong>on</strong>g> each NaI scintillator<br />

unit.<br />

channels adjusting to <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Multi-channel analyzer. The above energy range includes<br />

major gamma-rays produced from natural radioactive isotopes. This 25x256 resp<strong>on</strong>se matrix was<br />

prepared for a uniform parallel-beam gamma-ray incidence perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> 16"x16" detector<br />

surface as a reference and also checked <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray beam incident angle to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> detector surface. In additi<strong>on</strong>, some resp<strong>on</strong>se functi<strong>on</strong>s for an isotropic point source were calculated<br />

to compare with an experiment for standard gamma-ray sources, which were broadened to reproduce<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured results <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectric peaks, according to an energy resoluti<strong>on</strong> (Gaussian) functi<strong>on</strong><br />

with an energy dependent relative FWHM (Full Width at Half Maximum),<br />

p<br />

+ E<br />

R =<br />

(1)<br />

E<br />

where E is <str<strong>on</strong>g>the</str<strong>on</strong>g> gamma-ray energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters and are experimentally determined.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 3: Geometry for <strong>EGS</strong>4 calculati<strong>on</strong>.<br />

2


3 Results and Discussi<strong>on</strong><br />

For standard gamma-ray sources such as 137 Cs and 60 Co, <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>al resp<strong>on</strong>se functi<strong>on</strong>s were<br />

measured and compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated results. Fig. 4 shows an experimental arrangement to<br />

measure <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong> for a point source placed just above <str<strong>on</strong>g>the</str<strong>on</strong>g> 16"x16" detector surface, that<br />

is, in <str<strong>on</strong>g>the</str<strong>on</strong>g> 0 degree incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-rays. Fig. 5 gives an example <str<strong>on</strong>g>of</str<strong>on</strong>g> comparis<strong>on</strong> results between<br />

experiment and calculati<strong>on</strong> for a 137 Cs(662 keV) gamma-ray source in <str<strong>on</strong>g>the</str<strong>on</strong>g> arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4.<br />

By making <str<strong>on</strong>g>the</str<strong>on</strong>g> detector modeling more precise step by step, an agreement between both results has<br />

reached up to within 15% relative deviati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> whole energy range. Fig. 6 illustrates ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental arrangements to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se functi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> just side ( or 90 degree)<br />

incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-rays. For this arrangement, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated resp<strong>on</strong>se was also compared with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured <strong>on</strong>e, as shown in Fig. 7, where good agreement is found in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range <str<strong>on</strong>g>of</str<strong>on</strong>g> a photoelectric<br />

peak and compt<strong>on</strong> c<strong>on</strong>tinuum for <str<strong>on</strong>g>the</str<strong>on</strong>g> 137 Cs gamma-ray spectrum, while <str<strong>on</strong>g>the</str<strong>on</strong>g> discrepancy in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower<br />

energy regi<strong>on</strong> would be mainly due to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-rays scattered from <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

room oor.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 4: Experimental arrangement for <str<strong>on</strong>g>the</str<strong>on</strong>g> 0 degree<br />

gamma-ray incidence.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 6: Experimental arrangement for <str<strong>on</strong>g>the</str<strong>on</strong>g> 90 degree<br />

gamma-ray incidence.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 5: Comparis<strong>on</strong> between experiment and calculati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> 0 degree incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Cs gamma-ray.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 7: Comparis<strong>on</strong> between experiment and calculati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> 90 degree incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> 137 Cs gamma-ray.<br />

3


Figure 8: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calculated directi<strong>on</strong>al resp<strong>on</strong>se<br />

functi<strong>on</strong>s.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 9: Preliminary unfolding result <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

background gamma-ray spectrum.<br />

Fig. 8shows a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calculated directi<strong>on</strong>al resp<strong>on</strong>ses corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> incident angle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> uniform parallel-beam gamma-rays from 0 to 90 degrees. It is found that <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resp<strong>on</strong>se functi<strong>on</strong>s is clearly appeared in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower energy parts <str<strong>on</strong>g>of</str<strong>on</strong>g> pulse height distributi<strong>on</strong>. This<br />

means that <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>al resp<strong>on</strong>se functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present system should be precisely evaluated<br />

and adequately applied to derive (or unfold) gamma-ray spectrum from measured data by c<strong>on</strong>sidering<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray elds <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. Fig. 9 dem<strong>on</strong>strates a preliminary result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural background gamma-ray spectrum, which was derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured data <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

gamma-rays through an analysis combining <str<strong>on</strong>g>the</str<strong>on</strong>g> present resp<strong>on</strong>se matrix with a simple unfolding<br />

method 'SAND-II'. The unfolded spectrum seems to be reas<strong>on</strong>able, where natural radioactive isotope<br />

sources such as 40 K (1.461MeV), 214 Bi (1.765MeV), 208 Tl (2.615MeV) are clearly observed and<br />

separated as gamma-ray peaks[4, 5].<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

We have calculated directi<strong>on</strong>al resp<strong>on</strong>se functi<strong>on</strong>s and/or resp<strong>on</strong>se matrices for a 16"x16"x4" -<br />

large sized NaI detector by using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code and checked <str<strong>on</strong>g>the</str<strong>on</strong>g>ir accuracy by comparing with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured resp<strong>on</strong>ses for standard gamma-ray sources. The comparis<strong>on</strong> results have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated<br />

resp<strong>on</strong>ses could agree with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>es within 15% relative deviati<strong>on</strong>( corresp<strong>on</strong>ding<br />

to 3 )in 137 Cs source spectrum through <str<strong>on</strong>g>the</str<strong>on</strong>g> precise detector modeling in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>.<br />

It has been also pointed out that <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>al resp<strong>on</strong>se functi<strong>on</strong>s should be precisely evaluated<br />

and adequately applied to derive accurate gamma-ray spectra from measured data. For this purpose,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code is a powerful tool and will be used to make more detailed resp<strong>on</strong>se matrices for our<br />

NaI system.<br />

References<br />

[1] L. Travis et al., Nucl. Instr. and Meth. in Physics Research A 422(1999)144-147.<br />

[2] M. Cruz et al, Fuel 77, No.13(1998)1427-1430.<br />

4


[3] ICRU Report 53 1994.<br />

[4] K. Saito, S. Moriuchi, JAERI 1306pp.6-7(1987).<br />

[5] S. Minato, JCAC 32(1998)5.<br />

5


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.255-263<br />

Beam Dump for High Current Electr<strong>on</strong> Beam at JNC<br />

H. Takei and Y. Takeda 1<br />

Japan Nuclear Cycle Development Institute (JNC)<br />

4002 Narita, Oarai-machi, Ibaraki-ken 311-1393 Japan<br />

Abstract<br />

High current electr<strong>on</strong> beams are required for transforming ssi<strong>on</strong> products with gamma-rays.<br />

Elemental technology to build a linac that can accelerate a high current beam in an e cient and<br />

stable manner, is being developed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Japan Nuclear Cycle development institute (JNC).<br />

This paper presents <str<strong>on</strong>g>the</str<strong>on</strong>g> design and performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a beam dump for a high current, low energy<br />

beam (20 mA <str<strong>on</strong>g>of</str<strong>on</strong>g> a 10 MeV electr<strong>on</strong> beam). A ring and disk (RD) structure was adopted to analyze<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam in real-time, as well as to absorb <str<strong>on</strong>g>the</str<strong>on</strong>g> beam safely. The absorbed dose<br />

rate for phot<strong>on</strong>s averaged over all directi<strong>on</strong>s is found to be 12.2 0.07 Gy/h using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> beam with average beam current <str<strong>on</strong>g>of</str<strong>on</strong>g>20mAenters into <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump.<br />

The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump was evaluated using a beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 MeV and an average<br />

current <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.84 mA. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm dose equivalent rate from <str<strong>on</strong>g>the</str<strong>on</strong>g> dose meter with that from<br />

<strong>EGS</strong>4 code shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> values from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code at <str<strong>on</strong>g>the</str<strong>on</strong>g> beam energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 MeV well reproduce<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data.<br />

1 Introducti<strong>on</strong><br />

High current electr<strong>on</strong> beams are required for transforming ssi<strong>on</strong> products with gamma-rays.<br />

Elemental technology to build a linac that can accelerate a high current beam in an e cient and<br />

stable manner, is being developed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Japan Nuclear Cycle development institute (JNC)[1].<br />

The c<strong>on</strong>ceptual design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerator was started in 1989. The test operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linac was<br />

started aiming at <str<strong>on</strong>g>the</str<strong>on</strong>g> permitted average current <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.5 mA, in October 1999, after many research<br />

e orts. Main speci cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerator is shown in Table 1.<br />

Table 1 Main speci cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC linac<br />

Parameters Design values<br />

Energy 10 MeV<br />

Maximum Beam Current 100 mA<br />

Average Beam Current 20 mA<br />

Pulse Length 0.1 4 msec<br />

Pulse Repetiti<strong>on</strong> 0.1 50 Hz<br />

Duty Factor 0.001 20 %<br />

Norm. Emittance 50 mm mrad<br />

Energy Spread 0.5 %<br />

estimated value by simulati<strong>on</strong><br />

1 Guest Scientist from Paul Scherrer Institut (PSI), Switzerland<br />

1


Since <str<strong>on</strong>g>the</str<strong>on</strong>g> beam from <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC linac is a very high current, low energy beam, energy loss induced in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material irradiated by <str<strong>on</strong>g>the</str<strong>on</strong>g> beam becomes very large, and resulting power density <str<strong>on</strong>g>of</str<strong>on</strong>g> heat generati<strong>on</strong><br />

is also quite high.<br />

Therefore, it is <str<strong>on</strong>g>of</str<strong>on</strong>g> utmost importance from <str<strong>on</strong>g>the</str<strong>on</strong>g> viewpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> safety for <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC beam dump to<br />

be secured to dissipate and remove <str<strong>on</strong>g>the</str<strong>on</strong>g> generated heat e ciently. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, shielding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> generated from <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump is also <str<strong>on</strong>g>of</str<strong>on</strong>g> major c<strong>on</strong>cern in order to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

possible inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactivity. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump is installed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam line at about 10 m<br />

downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerator tube, it is also possible to utilize it as a beam m<strong>on</strong>itor for<br />

directly m<strong>on</strong>itoring <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam.<br />

2 Design<br />

2.1 C<strong>on</strong>ceptual Design<br />

The c<strong>on</strong>ceptual design [2] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC beam dump is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following four criteria:<br />

(1) to disperse <str<strong>on</strong>g>the</str<strong>on</strong>g> beam by electromagnets disposed in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam entry<br />

(2) to stop <str<strong>on</strong>g>the</str<strong>on</strong>g> beam by absorbing it in spatially separated target blocks<br />

(3) to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactivity<br />

(4) to add <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a beam m<strong>on</strong>itor for <str<strong>on</strong>g>the</str<strong>on</strong>g> high current beam.<br />

The rst criteri<strong>on</strong> is for making <str<strong>on</strong>g>the</str<strong>on</strong>g> current density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam smaller by spreading <str<strong>on</strong>g>the</str<strong>on</strong>g> beam<br />

with quadrupole electromagnets. It is also assuring to avoid mishaps <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pin point beam hitting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> target and destroying it. The sec<strong>on</strong>d criteri<strong>on</strong> is for making <str<strong>on</strong>g>the</str<strong>on</strong>g> energy loss per unit volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

target smaller by absorbing <str<strong>on</strong>g>the</str<strong>on</strong>g> power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread beam in spatially distributed target. The third<br />

criteri<strong>on</strong> reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> material that is directly in <str<strong>on</strong>g>the</str<strong>on</strong>g> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam or near <str<strong>on</strong>g>the</str<strong>on</strong>g> beam<br />

in order to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> possible inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactivity. In particular, since <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> cooling<br />

water circulating to <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger tends to be large, care should be taken so that <str<strong>on</strong>g>the</str<strong>on</strong>g> cooling<br />

water is not irradiated directly with <str<strong>on</strong>g>the</str<strong>on</strong>g> beam. The last criteri<strong>on</strong> is to enable <str<strong>on</strong>g>the</str<strong>on</strong>g> direct m<strong>on</strong>itoring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam with average beam current <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mA. This is di cult with a c<strong>on</strong>venti<strong>on</strong>al beam m<strong>on</strong>itor.<br />

It is especially important to grasp <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> immediately when <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong> such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam changes.<br />

2.2 Target<br />

It is a major feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC beam dump that <str<strong>on</strong>g>the</str<strong>on</strong>g> target for absorbing <str<strong>on</strong>g>the</str<strong>on</strong>g> beam is separated<br />

into 22 plates. Each plate is made from Oxygen Free High-purity Copper (OFHC), and has thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 5 cm. Fig. 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump including <str<strong>on</strong>g>the</str<strong>on</strong>g> plates.<br />

The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plates is such that 18 rings with each having slightly di erent inside diameter<br />

are arranged <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> upstream side and 4 disks having no hole are arranged <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> downstream side.<br />

This structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC beam dump will be hereafter referred to as Ring and Disk (RD) structure.<br />

As described before, all <str<strong>on</strong>g>the</str<strong>on</strong>g> rings have di erent inside diameters which gradually decrease from<br />

upstream to downstream. (The spread beam passes through inside this ring.) The fr<strong>on</strong>tmost ring has<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inside diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 19.6 cm and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r rings have smaller diameters which successively decrease by<br />

1.0 cm or 1.2 cm. The 18 rings are divided into two types according to <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong><br />

in a plane parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> beam axis directi<strong>on</strong> (hereinafter referred to as Z-axis directi<strong>on</strong>) in which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

beam travels. From No. 1toNo.10 ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring is a rectangular shape, that is,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring has equal thickness at <str<strong>on</strong>g>the</str<strong>on</strong>g> inside diameter and at <str<strong>on</strong>g>the</str<strong>on</strong>g> outside diameter. The cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> remaining 8 rings is a wedge <str<strong>on</strong>g>of</str<strong>on</strong>g> shape having stepwisely smaller thickness at <str<strong>on</strong>g>the</str<strong>on</strong>g> inside diameter<br />

compared to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r porti<strong>on</strong>. Fig. 2shows <str<strong>on</strong>g>the</str<strong>on</strong>g> typical cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings. The two types <str<strong>on</strong>g>of</str<strong>on</strong>g> cross<br />

2


enter into <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump. In Fig. 4, (1) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between energy and scattering angle, and<br />

(2) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between energy and azimuth angle. As seen in Fig. 4, phot<strong>on</strong>s are localized in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two regi<strong>on</strong>s, upper left and lower right regi<strong>on</strong>s. However, distributi<strong>on</strong> is uniform with respect to<br />

azimuth angle. Reas<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s in speci ed scattering angle lies in <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> process. The upper regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4 (1) represents <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>s produced by electr<strong>on</strong>s<br />

incident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plates in <str<strong>on</strong>g>the</str<strong>on</strong>g> back scattering from <str<strong>on</strong>g>the</str<strong>on</strong>g> atomic nucleus. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, lower right<br />

regi<strong>on</strong> represents phot<strong>on</strong>s which are produced by electr<strong>on</strong>s traveling in <str<strong>on</strong>g>the</str<strong>on</strong>g> plates and which have<br />

passed <str<strong>on</strong>g>the</str<strong>on</strong>g> lead shield. Therefore, energy <str<strong>on</strong>g>of</str<strong>on</strong>g> former phot<strong>on</strong>s is about 0.6 MeV, while energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

latter phot<strong>on</strong>s is about 2 MeV.<br />

Fig. 5 shows energy spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s falling in a speci ed range <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering angle. In Fig. 5,<br />

vertical axis represents phot<strong>on</strong> uence, and solid angle is taken into account in (2). The scattering<br />

angles set in <str<strong>on</strong>g>the</str<strong>on</strong>g> gure are 0 180 , 0 120 , 177.5 180 . Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>m, phot<strong>on</strong>s having <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scattering angle in 0 120 corresp<strong>on</strong>d to those phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower right regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4(1), and<br />

phot<strong>on</strong>s having scattering angles in 177.5 180 corresp<strong>on</strong>d to those phot<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper regi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same gure. As can be seen from Fig. 5 (2), <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s per unit solid angle is<br />

asymmetric with respect to scattering angle. The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s scattered in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> devoid<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lead shield, that is, in <str<strong>on</strong>g>the</str<strong>on</strong>g> backward directi<strong>on</strong>, is higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s scattered<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> forward directi<strong>on</strong>. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s having scattering angle in 177.5<br />

180 is as much as10 2 times higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity averaged over all directi<strong>on</strong>s.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> above described result, when <str<strong>on</strong>g>the</str<strong>on</strong>g> beam with beam energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.51 MeV and average<br />

beam current <str<strong>on</strong>g>of</str<strong>on</strong>g>20mAenters into <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose rate for phot<strong>on</strong>s averaged over<br />

all directi<strong>on</strong>s is found to be 12.2 0.07 Gy/h. Fig. 6 shows absorbed dose rate averaged over a<br />

speci ed range <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering angles. These values represent <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose rate at a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1<br />

m from <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump, and were obtained by multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> value <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluating<br />

sphere by 9.<br />

When average beam current <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerator is low, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose rate in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 180<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump may be substituted by <str<strong>on</strong>g>the</str<strong>on</strong>g> value for <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 , and evaluati<strong>on</strong><br />

performed accordingly. However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> JNC accelerator where <str<strong>on</strong>g>the</str<strong>on</strong>g> average beam current is<br />

high, it is important from <str<strong>on</strong>g>the</str<strong>on</strong>g> viewpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> protecti<strong>on</strong> to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> dose rate for arbitrary<br />

scattering angle. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>s scattered backward from <str<strong>on</strong>g>the</str<strong>on</strong>g> JNC beam dump<br />

were evaluated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code, and <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 3100 Gy/h was obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose<br />

rate.<br />

4 Experimental Results and Discussi<strong>on</strong><br />

4.1 General<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> test operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linac started in January 1999, beam current was increased aiming at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> permitted average current <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.5 mA. In December <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same year, <str<strong>on</strong>g>the</str<strong>on</strong>g> linac was operated for<br />

about 60 minutes with <str<strong>on</strong>g>the</str<strong>on</strong>g> average beam current <str<strong>on</strong>g>of</str<strong>on</strong>g>3.5mA (maximum beam current 100mA, pulse<br />

width 1 msec, repetiti<strong>on</strong> frequency 35Hz). The nominal energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam was 7.0 MeV as calculated<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high frequency energy.<br />

During this test operati<strong>on</strong>, a test was performed to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump<br />

for low current beam (<str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump test). The average beam current in <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump test was<br />

set to 0.84 mA (maximum beam current 100 mA, beam width 0.24 msec, repetiti<strong>on</strong> frequency 35Hz)<br />

that allows electr<strong>on</strong>s to be accelerated stably, since temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plates need to be examined for<br />

a l<strong>on</strong>g period.<br />

4.2 Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Dose Equivalent Rate<br />

In order to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 cm dose equivalent rate during <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump test for comparis<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code, lm badges (FB) and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoluminescence dosimeters (TLD) were<br />

4


installed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (at <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> six black circles in Fig. 3) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shield <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present test, <strong>on</strong>e FB and a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> two TLD was installed at each measuring point, and<br />

irradiated by <str<strong>on</strong>g>the</str<strong>on</strong>g> beam for 172 minutes. As a result, two ndings were obtained. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s at each measuring point is equal to or greater than 80 keV. And sec<strong>on</strong>d,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> three dose equivalents obtained at each measuring point were averaged, and shown in Fig. 7 as<br />

1 cm dose equivalent rate. The error <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent rate was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> error <str<strong>on</strong>g>of</str<strong>on</strong>g> FB<br />

50 %, <str<strong>on</strong>g>the</str<strong>on</strong>g> error <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD 5 %, and <str<strong>on</strong>g>the</str<strong>on</strong>g> uctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three measured values. When <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

value exceeded <str<strong>on</strong>g>the</str<strong>on</strong>g> measuring range <str<strong>on</strong>g>of</str<strong>on</strong>g> TLD, <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> FB was used. Especially, since<str<strong>on</strong>g>the</str<strong>on</strong>g>value for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> scattering angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 176 exceeded <str<strong>on</strong>g>the</str<strong>on</strong>g> measuring range <str<strong>on</strong>g>of</str<strong>on</strong>g> FB, <str<strong>on</strong>g>the</str<strong>on</strong>g> upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> FB (2 Sv) was<br />

used. In additi<strong>on</strong>, 1 cm dose equivalent rate was calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code for each measuring<br />

point for average beam current <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.84 mA, and shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> same gure. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al<br />

c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code are as follows.<br />

(1) The beam energies are 7.0 MeV and 10.51 MeV.<br />

(2) In order to adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum beam current for each module obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code so<br />

as to coincide with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured value, two cases for <str<strong>on</strong>g>the</str<strong>on</strong>g> density distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current are<br />

c<strong>on</strong>sidered, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> \3 ", and <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaussian distributi<strong>on</strong> with 1/5 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam<br />

radius adopted as <str<strong>on</strong>g>the</str<strong>on</strong>g> standard deviati<strong>on</strong> (hereafter, this distributi<strong>on</strong> is referred to as \5 ").<br />

(3) The phot<strong>on</strong>s at each measuring point are, c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pair <str<strong>on</strong>g>of</str<strong>on</strong>g> dosimeter, those<br />

falling in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 cm <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shield centered at <str<strong>on</strong>g>the</str<strong>on</strong>g> dosimeter, except in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 ,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> range 15 cm is used.<br />

(4) The phot<strong>on</strong> detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> each dosimeter is set to 1, since <str<strong>on</strong>g>the</str<strong>on</strong>g> measured dose equivalent<br />

rate includes error <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 50 % and <str<strong>on</strong>g>the</str<strong>on</strong>g> object <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present measurement istoevaluate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump.<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm dose equivalent rate from <str<strong>on</strong>g>the</str<strong>on</strong>g> dose meter with that from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code shows<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> values from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code at <str<strong>on</strong>g>the</str<strong>on</strong>g> beam energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 MeV well reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

data. Especially, under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> \7.0 MeV, 5 ", <str<strong>on</strong>g>the</str<strong>on</strong>g> two seem to be in agreement within a<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2. For more detailed comparis<strong>on</strong>, energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s needs to be obtained.<br />

5 C<strong>on</strong>clusi<strong>on</strong><br />

A beam dump at JNC, employing <str<strong>on</strong>g>the</str<strong>on</strong>g> Ring and Disk structure, has been designed to absorb <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

beam (200 kW <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV electr<strong>on</strong>) safely and to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> beam c<strong>on</strong>diti<strong>on</strong> in real-time. The beam<br />

could be stopped at <str<strong>on</strong>g>the</str<strong>on</strong>g> inner edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings which are cooled by water. The absorbed dose rate<br />

for phot<strong>on</strong>s averaged over all directi<strong>on</strong>s is found to be 12.2 0.07 Gy/h using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> beam with average beam current <str<strong>on</strong>g>of</str<strong>on</strong>g>20mAenters into <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump.<br />

The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump was evaluated using a beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 MeV and an average current<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.84 mA. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm dose equivalent rate from <str<strong>on</strong>g>the</str<strong>on</strong>g> dosimeter with that from <strong>EGS</strong>4 code shows<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> values from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code at <str<strong>on</strong>g>the</str<strong>on</strong>g> beam energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 MeV well reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

data. Especially, under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> \7.0 MeV, 5 ", <str<strong>on</strong>g>the</str<strong>on</strong>g> two seem to be in agreement within a<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2.<br />

References<br />

[1] S. Toyama et al., \Transmutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-lived Fissi<strong>on</strong> Product ( 137 Cs, 90 Sr) by a Reactor-<br />

Accelerator System", Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> 2nd <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Symposium <strong>on</strong> Advanced Energy Research<br />

(1990).<br />

5


[2] H. Takei and Y. Takeda, \C<strong>on</strong>ceptual Design <str<strong>on</strong>g>of</str<strong>on</strong>g> Beam Dump for High Power Electr<strong>on</strong> Beam",<br />

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sixth <strong>EGS</strong>4 Users' Meeting in Japan, <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 96-10, November<br />

1996.<br />

[3] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. .O Rogers, \The <strong>EGS</strong>4 Code System", SLAC-Report-265,<br />

December 1985.<br />

[4] A. F. Bielajew and D. W. O. Rogers, \PRESTA: The Parameter Reduced Electr<strong>on</strong>-Step Transport<br />

Algorithm for electr<strong>on</strong> m<strong>on</strong>te carlo transport", Nucl. Instr. and Meth. B18(1987)165.<br />

Figure 1: JNC beam dump in cross-secti<strong>on</strong>.<br />

6


Figure 4: The relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy, scattering angle, and azimuth angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.4*10 4 phot<strong>on</strong>s that pass through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> evaluating sphere.<br />

Figure 5: Energy spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s falling in a speci ed range <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering angle.<br />

8


Figure 6: Absorbed dose rate at a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam dump.<br />

Figure 7: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm dose equivalent rate from <str<strong>on</strong>g>the</str<strong>on</strong>g> dose meter with that from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code.<br />

9


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.264-271<br />

Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dose Distributi<strong>on</strong> by Detectors for Narrow Beam<br />

T. Fujisaki, H. Saitoh 1 , T. Inada, S. Abe, M. Fukushi 1 and K. Fukuda 1<br />

Ibaraki Prefectural University <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

4669-2, Ami, Ami-Machi, Ibaraki 300-0394 Japan<br />

1 Tokyo Metropolitan University <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

7-2-10, Higashi-Ogu, Arakawa-Ku, Tokyo 116-8551 Japan<br />

Abstract<br />

Percentage depth dose (PDD) is <str<strong>on</strong>g>the</str<strong>on</strong>g> essential parameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose determinati<strong>on</strong>.<br />

Since precise measurement is required for <str<strong>on</strong>g>the</str<strong>on</strong>g> narrow beam especially, several kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> detectors are<br />

comm<strong>on</strong>ly used to measure dose distributi<strong>on</strong> for narrow beam. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se<br />

caused by kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detectors has not been investigated precisely.<br />

In this study, PDDswere measured using several kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> detectors, such as i<strong>on</strong>izati<strong>on</strong> chambers,<br />

silic<strong>on</strong> diode detectors and lms. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se detecti<strong>on</strong> materials in<br />

water was calculated using M<strong>on</strong>te Carlo simulati<strong>on</strong>.<br />

As a result, it was shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> chambers (air-gas) was higher than<br />

diode detectors (silic<strong>on</strong>) and a lm (photoemulsi<strong>on</strong>). Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> depth dose curves changed by<br />

kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector (materials).<br />

1 Introducti<strong>on</strong><br />

Percentage depth dose (PDD) is <str<strong>on</strong>g>the</str<strong>on</strong>g> essential parameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose determinati<strong>on</strong>.<br />

Since precise measurement is required for <str<strong>on</strong>g>the</str<strong>on</strong>g> narrow beam especially, several kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> detectors,<br />

such as i<strong>on</strong>izati<strong>on</strong> chambers, silic<strong>on</strong> diode detectors and lms, are comm<strong>on</strong>ly used to measure dose<br />

distributi<strong>on</strong>[1, 2,3,4].<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed dose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se detecti<strong>on</strong> materials in water was calculated using M<strong>on</strong>te<br />

Carlo simulati<strong>on</strong>. The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se caused by kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detectors was investigated.<br />

2 Methods<br />

2.1 Measurements<br />

The experiments were carried out at <str<strong>on</strong>g>the</str<strong>on</strong>g> IPU in Ibaraki, using <str<strong>on</strong>g>the</str<strong>on</strong>g> 10 MV X-ray beam from a<br />

linear accelerator (Mitsubishi Electric, EXL-15SP). Four di erent i<strong>on</strong>izati<strong>on</strong> chambers, two di erent<br />

silic<strong>on</strong> diode detectors and a photographic lm detector were used<br />

1. a 30001 standard chamber (PTW-Freiburg),<br />

2. a IC-10 standard waterpro<str<strong>on</strong>g>of</str<strong>on</strong>g> chamber (Wellho er Dosimetrie),<br />

3. a IC-04 small volume waterpro<str<strong>on</strong>g>of</str<strong>on</strong>g> chamber (Wellho er Dosimetrie),<br />

4. a PPC-05 markus shape waterpro<str<strong>on</strong>g>of</str<strong>on</strong>g> chamber (Wellho er Dosimetrie),<br />

5. a EDD-5 entrance and exit dose p-Si phot<strong>on</strong> detector (Scanditr<strong>on</strong>ix Medical),<br />

6. a EDD-2 risk organ m<strong>on</strong>itoring p-Si phot<strong>on</strong> detector (Scanditr<strong>on</strong>ix Medical)<br />

1


References<br />

[1] C. F. Serago, P. V. Houdek, G. H. Hartmann, D. S. Saini, M. E. Serago and A. Kaydee, \Tissue<br />

maximum ratios (and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters) <str<strong>on</strong>g>of</str<strong>on</strong>g> small circular 4, 6, 10, 15 and 24 MV x-ray beams for<br />

radiosurgery", Phys Med Biol 37(1992)1943-1956.<br />

[2] P. Francesc<strong>on</strong>, S. Cora, C. Caved<strong>on</strong>, P. Scalchi, and S. Reccanello, \Use <str<strong>on</strong>g>of</str<strong>on</strong>g> a new type <str<strong>on</strong>g>of</str<strong>on</strong>g> radiochromic<br />

lm, a new parallel-plate micro-chamber, MOSFETs, and TLD 800 microcubes in dosimetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small beams", Med Phys 25(1998)503-511.<br />

[3] C. McKerracher and D. I. Thwaites, \Assesment <str<strong>on</strong>g>of</str<strong>on</strong>g> new small- eld detectors against standard- eld<br />

detectors for practical stereotactic beam data acquisiti<strong>on</strong>", Phys Med Biol 44(1999)2143-2160.<br />

[4] IAEA: The use <str<strong>on</strong>g>of</str<strong>on</strong>g> plane parallel i<strong>on</strong>izati<strong>on</strong> chambers in high energy electr<strong>on</strong> and phot<strong>on</strong> beams<br />

An internati<strong>on</strong>al code <str<strong>on</strong>g>of</str<strong>on</strong>g> practice for dosimetry, IAEA, No. 381, 1997.<br />

[5] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 code system", , SLAC report-265,<br />

1985.<br />

[6] A. F. Bielajew and D. W. O. Rogers, \PRESTA, The \Parameter Reduced Electr<strong>on</strong> Transport<br />

Algo-rithm" for electr<strong>on</strong> M<strong>on</strong>te Carlo transport", Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada report<br />

PIRS-0042, 1987.<br />

[7] <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Commissi<strong>on</strong> <strong>on</strong> Radiati<strong>on</strong> Units and Measurements (ICRU): Tissue Substitutes in<br />

Radiati<strong>on</strong> Dosimetry and Measurement, Report 44 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ICRU, 1989.<br />

[8] R. Mohan, C. Chui, and L. Lid<str<strong>on</strong>g>of</str<strong>on</strong>g>sky, \Energy and angular distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s from medical<br />

linear accelerators", Med Phys 12(1985)592-597.<br />

3


Table 1 Physical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> chambers and silic<strong>on</strong> detectors<br />

(courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturers).<br />

i<strong>on</strong>izati<strong>on</strong> chamber<br />

Type Active Outer electorode Inner electorode<br />

volume Material Thick Inner Material Radius Length<br />

(cm 3 ) (mm) radius (mm) (mm)<br />

(mm)<br />

30001 0.6 PMMA 0.45 3.05 Al 0.5 21.2<br />

IC 10 0.14 C-552 0.4 3.0 C-552 0.5 3.8<br />

IC 04 0.03 C-552 0.4 2.0 C-552 0.5 2.1<br />

PPC 05 0.04 Fr<strong>on</strong>t window: C-552<br />

Collecting electrode: diameter 10 mm, PPE, graphite<br />

diode detector<br />

Active volume Build-up cap Detector<br />

Type (mm) Material Thick Material Thick <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g><br />

(mm) Si chip(mm)<br />

EDD-5 2.5x2.5x0.06 t Polystyrene 2.5 p-type Si 0.50 0.02<br />

EDD-2 1.5 0:06 t Polyuretan 0.1 p-type Si 0.50 0.02<br />

Epoxy plastic 0.3<br />

4


φ<br />

Figure 1: Geometrical arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong> for deposit energy sampling. The incident<br />

phot<strong>on</strong>s impinged vertically <strong>on</strong> a c<strong>on</strong>centric circular cylindrical water phantom model (element and relative<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms in <str<strong>on</strong>g>the</str<strong>on</strong>g> compound by weight H 11.2 % O 88.8 %, density 1.0 g/cm 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 cm diameter and<br />

50 cm thickness.<br />

5


Mdepth/Mrefdepth=10<br />

Mdetector/MIC-10<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

1.050<br />

1.025<br />

1.000<br />

0.975<br />

0.950<br />

5×5cm2<br />

IC-10<br />

EDD-5<br />

EDD-2<br />

0 5 10 15 20<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

Depthinwater(cm)<br />

(A) (B)<br />

5×5cm2<br />

0 5 10 15 20<br />

Depthinwater(cm)<br />

EDD-5<br />

EDD-2<br />

Mdepth/Mrefdepth=10<br />

1.050<br />

1.025<br />

1.000<br />

0.975<br />

0.950<br />

(C) (D)<br />

Mdetector/MIC-10<br />

1×1cm2<br />

0 5 10 15 20<br />

Depthinwater(cm)<br />

IC-10<br />

EDD-5<br />

EDD-2<br />

1×1cm2<br />

0 5 10 15 20<br />

Depthinwater(cm)<br />

EDD-5<br />

EDD-2<br />

Figure 3: Relative depth dose curves normalized at 10 cm depth using diode detectors and IC-10 i<strong>on</strong>izati<strong>on</strong><br />

chamber. Lower column shows <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> diode detectors to i<strong>on</strong>izati<strong>on</strong> chamber.<br />

Mdepth/Mrefdepth=10<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

5×5cm2<br />

30001<br />

XV-2<br />

0 5 10 15 20<br />

Depthintoughwaterphantom(cm)<br />

Mdetector/M30001<br />

1.100<br />

1.075<br />

1.050<br />

1.025<br />

1.000<br />

0.975<br />

0.950<br />

0.925<br />

0.900<br />

(A) (B)<br />

5×5cm2<br />

0 5 10 15 20<br />

Depthintoughwaterphantom(cm)<br />

Figure 4: Relative depth dose curves normalized at 10 cm depth using XV-2 lm and 30001 i<strong>on</strong>izati<strong>on</strong> chamber.<br />

(B) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> lm to i<strong>on</strong>izati<strong>on</strong> chamber.<br />

7


Cdepth/Crefdepth=10<br />

Cmed/Cair<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

1.100<br />

1.050<br />

1.000<br />

0.950<br />

0.900<br />

5×5cm2<br />

air<br />

si<br />

photoemul<br />

Cdepth/Crefdepth=10<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

1×1cm2<br />

air<br />

si<br />

photoemul<br />

0.50<br />

0 5 10 15 20<br />

0 5 10 15 20<br />

(A)<br />

Depthinwater(cm)<br />

(B)<br />

Depthinwater(cm)<br />

5×5cm2<br />

si<br />

photoemul<br />

Cmed/Cair<br />

1.100<br />

1.050<br />

1.000<br />

0.950<br />

1×1cm2<br />

si<br />

photoemul<br />

0.900<br />

0 5 10 15 20<br />

0 5 10 15 20<br />

Depthinwater(cm)<br />

(C) (D)<br />

Depthinwater(cm)<br />

Figure 5: The calculated depth dose curves normalized at 10 cm depth using air-gas, silic<strong>on</strong> and photoemulsi<strong>on</strong>.<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.272-279<br />

Returning Electr<strong>on</strong> Simulati<strong>on</strong><br />

for a Klystr<strong>on</strong> Collector Using <strong>EGS</strong>4<br />

Z. Fang, S. Fukuda 1 , S. Yamaguchi 1 , and S. Anami 1<br />

The graduate university for advanced studies (Soken-Dai)<br />

1 High energy accelerator research organizati<strong>on</strong> (<strong>KEK</strong>)<br />

1-1, Oho, Tsukuba-shi, Ibaraki, 305-0801, Japan<br />

Abstract<br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> backscattering in a klystr<strong>on</strong> collector has been calculated using <strong>EGS</strong>4.<br />

A program to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> collector has been developed<br />

and its evaluati<strong>on</strong> achieved. The e ects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector shape, i.e. its diameter and length, are<br />

discussed and physical phenomena are clari ed. The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s <strong>on</strong><br />

various materials is also discussed in this paper.<br />

1 Introducti<strong>on</strong><br />

For a klystr<strong>on</strong> collector, various e orts were made to understand power dissipati<strong>on</strong>, cooling<br />

method, collector potential depressi<strong>on</strong> and so <strong>on</strong>. Though <str<strong>on</strong>g>the</str<strong>on</strong>g> roles <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary electr<strong>on</strong>s and<br />

backscattered electr<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector surface were suggested regarding abnormal collector heating,<br />

less attenti<strong>on</strong> had been paid to <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s from a collector. Recently, UHF klystr<strong>on</strong>s<br />

at <strong>KEK</strong> have shown a str<strong>on</strong>g oscillati<strong>on</strong> without any driving power in <str<strong>on</strong>g>the</str<strong>on</strong>g> input cavity, and it was found<br />

that this oscillati<strong>on</strong> was caused by returning electr<strong>on</strong>s. Recently, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te Carlo method[1,2]<br />

has enabled us to simulate electr<strong>on</strong>s interacting with <str<strong>on</strong>g>the</str<strong>on</strong>g> collector material in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range from<br />

a few keV to several hundred keV this energy range corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> applied voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> a klystr<strong>on</strong>.<br />

Thus, a simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> collector has been attempted by designing<br />

a program using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4.<br />

In this paper, prior to klystr<strong>on</strong> applicati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 results are compared with experimental data<br />

to check <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy in chapter 2. We have successfully performed a simulati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning<br />

electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> collector. Descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> method and <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong><br />

results to <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> collector are given in chapter 3.<br />

2 Comparis<strong>on</strong> Between Backscattering Simulati<strong>on</strong>s and Experiments<br />

C<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> collector, we are interested in electr<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range from a few<br />

keV to several hundred keV. Many scientists, such as E. J. Sternglass[3] and G. Neubert[4], had<br />

measured backscattered electr<strong>on</strong>s in this energy range. The experimental c<strong>on</strong>cept for backscattered<br />

electr<strong>on</strong>s is shown in Fig.1. Generally, a backscattering coe cient is de ned as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> backscattered electr<strong>on</strong>s to that <str<strong>on</strong>g>of</str<strong>on</strong>g> incident electr<strong>on</strong>s. The angle dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattering<br />

coe cient for copper[4] is shown in Fig.2. The energy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> backscattered electr<strong>on</strong>s[3] is<br />

shown in Fig.3.<br />

For this decade, an electr<strong>on</strong> backscattering process could be simulated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code. Before<br />

applying <strong>EGS</strong>4 to a klystr<strong>on</strong>, it is necessary to c<strong>on</strong> rm <str<strong>on</strong>g>the</str<strong>on</strong>g> code validity by comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

1


with experiments for <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental process. This was applied for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a copper plate thicker<br />

than 1mm.<br />

It is well-known experimentally that <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattering coe cients are essentially independent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> primary energy[3] a simulati<strong>on</strong> reproduced this successfully. For normal incidence <strong>on</strong> copper,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> backscattering coe cient is known to be about 0.3, and a simulati<strong>on</strong> gave <str<strong>on</strong>g>the</str<strong>on</strong>g> same value. Fig.2<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattering coe cient as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident angle. The<br />

calculated energy distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> backscattered electr<strong>on</strong>s are shown in Fig.3. The simulati<strong>on</strong> results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> backscattered electr<strong>on</strong>s agree well with <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment results. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies, it is c<strong>on</strong>cluded<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code is su ciently reliable to be applied to backscattered electr<strong>on</strong>s from a klystr<strong>on</strong><br />

collector.<br />

3 Returning Electr<strong>on</strong>s From a Klystr<strong>on</strong> Collector<br />

3.1 Simulati<strong>on</strong> method<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> beam emitted from a gun is focused by external magnetic elds<br />

are transported in <str<strong>on</strong>g>the</str<strong>on</strong>g> drift tube. The focusing magnetic eld decreases rapidly at <str<strong>on</strong>g>the</str<strong>on</strong>g> entrance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> collector and <str<strong>on</strong>g>the</str<strong>on</strong>g> beam diverges in <str<strong>on</strong>g>the</str<strong>on</strong>g> collector due to <str<strong>on</strong>g>the</str<strong>on</strong>g> space-charge force. After <str<strong>on</strong>g>the</str<strong>on</strong>g> beam<br />

bombards <str<strong>on</strong>g>the</str<strong>on</strong>g> collector surface, some <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s are backscattered, and sec<strong>on</strong>dary electr<strong>on</strong>s are also<br />

created. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary electr<strong>on</strong>s is less than 50eV, we could neglect <str<strong>on</strong>g>the</str<strong>on</strong>g>se e ects.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattered electr<strong>on</strong>s have a chance to go back to <str<strong>on</strong>g>the</str<strong>on</strong>g> drift tube directly, or undergo<br />

a few successive collisi<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> collector wall. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are re ected by <str<strong>on</strong>g>the</str<strong>on</strong>g>rapidly varying<br />

magnetic eld due to its mirror e ect, and electr<strong>on</strong>s which are not re ected can be focused again by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic eld in <str<strong>on</strong>g>the</str<strong>on</strong>g> drift tube and transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> gun directi<strong>on</strong>. These are called returning<br />

electr<strong>on</strong>s, and are c<strong>on</strong>sidered to be harmful since <str<strong>on</strong>g>the</str<strong>on</strong>g>y can cause instabilities. Here, we de ne <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

returning electr<strong>on</strong> coe cient as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incident electr<strong>on</strong>s.<br />

The simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s from a klystr<strong>on</strong> collector is divided into three steps:<br />

1. a beam trajectory calculati<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> space-charge force in <str<strong>on</strong>g>the</str<strong>on</strong>g> collector up to <str<strong>on</strong>g>the</str<strong>on</strong>g> collector<br />

wall,<br />

2. a calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> backscattered electr<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector surface using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 M<strong>on</strong>te-Carlo<br />

method and associated track calculati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> collector, and<br />

3. a plotting routine <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trajectories after <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

The programs <str<strong>on</strong>g>of</str<strong>on</strong>g> step (1) and step (3) have been written by FORTRAN 90.<br />

In step (1), <str<strong>on</strong>g>the</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam at <str<strong>on</strong>g>the</str<strong>on</strong>g> entrance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector are calculated rst.<br />

Here, because we assume <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> no driving rf power in an input cavity, <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s have a<br />

c<strong>on</strong>stant kinetic energy corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> applied voltage. A uniform-density beam is assumed<br />

and beam rotati<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> focusing magnetic eld is derived by <str<strong>on</strong>g>the</str<strong>on</strong>g> Bush <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, <str<strong>on</strong>g>the</str<strong>on</strong>g> angularmomentum<br />

c<strong>on</strong>servati<strong>on</strong> law in <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic eld. The beam is divided into a large number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rays, each trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> which was calculated by solving <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> numerically. In<br />

this calculati<strong>on</strong>, space-charge forces, relativistic e ects, self- eld and external magnetic eld e ects<br />

were included. The nal data in this step were saved in memory to be made use <str<strong>on</strong>g>of</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> next<br />

<strong>EGS</strong>4 applicati<strong>on</strong>. The sec<strong>on</strong>d step program was made by c<strong>on</strong>structing a so-called \user code" using<br />

MORTRAN. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> data calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous step, backscattered processes are calculated<br />

for each ray. Some electr<strong>on</strong>s are absorbed in <str<strong>on</strong>g>the</str<strong>on</strong>g> collector material and some are backscattered after<br />

bombarding <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. The tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattered electr<strong>on</strong>s are traced by solving an equati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> including a magnetic eld until <str<strong>on</strong>g>the</str<strong>on</strong>g>y hit <str<strong>on</strong>g>the</str<strong>on</strong>g> wall again or until <str<strong>on</strong>g>the</str<strong>on</strong>g>y go back to <str<strong>on</strong>g>the</str<strong>on</strong>g> drift<br />

tube. Parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m might bebackscattered or absorbed in <str<strong>on</strong>g>the</str<strong>on</strong>g> next collisi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se are repeated until<br />

returning electr<strong>on</strong>s are completed to be calculated. In sec<strong>on</strong>d step, <str<strong>on</strong>g>the</str<strong>on</strong>g> space-charge force is neglected.<br />

2


Usually 1,000,000 electr<strong>on</strong>s are employed for a calculati<strong>on</strong> to obtain good statistics. After carrying<br />

out simulati<strong>on</strong>s for all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se incident electr<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s<br />

is saved in memory, including <str<strong>on</strong>g>the</str<strong>on</strong>g>ir coe cient and energy distributi<strong>on</strong>, and is used to plot trajectories<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> nal step. This program is executed using a pers<strong>on</strong>al computer with a clock <str<strong>on</strong>g>of</str<strong>on</strong>g> 333MHz it<br />

takes 2 hours for a simulati<strong>on</strong>.<br />

3.2 Simulati<strong>on</strong> results<br />

A typical collector shape used in this simulati<strong>on</strong> is shown in Fig.4 D t is <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

drift tube: D c and L c are <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter and length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector, respectively. Returning electr<strong>on</strong>s<br />

have been calculated based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> various shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> a collector made <str<strong>on</strong>g>of</str<strong>on</strong>g> a copper material. The<br />

results, including <str<strong>on</strong>g>the</str<strong>on</strong>g> actual klystr<strong>on</strong> dimensi<strong>on</strong>s, are given in table 1 <str<strong>on</strong>g>the</str<strong>on</strong>g> relative error in this table is<br />

reduced from <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical error <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s. The energy distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

returning electr<strong>on</strong>s corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> actual collector shapes are shown in Fig.5. In this gure, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s is normalized by <str<strong>on</strong>g>the</str<strong>on</strong>g> incident-beam energy at <str<strong>on</strong>g>the</str<strong>on</strong>g> collector entrance,<br />

and a few <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s have a higher energy than <str<strong>on</strong>g>the</str<strong>on</strong>g> incident beam, since some are<br />

accelerated by <str<strong>on</strong>g>the</str<strong>on</strong>g> space-charge force. It has been clari ed that <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s<br />

str<strong>on</strong>gly depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drift-tube diameter to <str<strong>on</strong>g>the</str<strong>on</strong>g> collector diameter. It has also been<br />

clari ed that <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector has a large e ect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s. These tendencies<br />

are given in Fig.6 (a) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong> coe cient as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector length, L c<br />

(b) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong> coe cient as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector diameter, D c.<br />

In order to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> features <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> collector, a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> three di erent<br />

typical collector shapes is shown in Fig.7, where <str<strong>on</strong>g>the</str<strong>on</strong>g> shaded line <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector boundary indicates<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> collector surface bombarded by <str<strong>on</strong>g>the</str<strong>on</strong>g> incident beam. From Fig.6 <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> returning<br />

coe cient can be divided into two parts: <strong>on</strong>e from <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>e shaped surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector. The former c<strong>on</strong>tributi<strong>on</strong> seems to come mainly from<br />

backscattering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam edge parts, since <str<strong>on</strong>g>the</str<strong>on</strong>g> coe cients remain c<strong>on</strong>stant for large Lc. This also<br />

means that <strong>on</strong>e collisi<strong>on</strong> is predominant for <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s. This may be directly shown by<br />

some arti cial setting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EGS</strong>4, which we are planning to do. It is natural that<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>e-shaped part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector is located near to <str<strong>on</strong>g>the</str<strong>on</strong>g> drift tube, a fairly large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

direct backscattering electr<strong>on</strong>s c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> returning electr<strong>on</strong>s. For designing a suitable collector<br />

with small returning electr<strong>on</strong> coe cients, a suitable ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drift-tube diameter to <str<strong>on</strong>g>the</str<strong>on</strong>g> collector<br />

diameter should be determined for an acceptable backscattering coe cient. If a l<strong>on</strong>ger collector shape<br />

can be chosen, <strong>on</strong>ly this diameter ratio determines <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s. When a l<strong>on</strong>ger<br />

collector size is not allowed for some manufacturing reas<strong>on</strong>, compromising between <str<strong>on</strong>g>the</str<strong>on</strong>g> two factors<br />

menti<strong>on</strong>ed above is necessary by investigating <str<strong>on</strong>g>the</str<strong>on</strong>g> tendency, like Fig.6. A similar analysis is applicable<br />

to a collector <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r microwave tube devices, a beam dump <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerator, a sec<strong>on</strong>dary electr<strong>on</strong><br />

m<strong>on</strong>itor (SEM) and a Farad cup, if unwanted returning electr<strong>on</strong>s are desired to be eliminated.<br />

Interesting features can be obtained by changing <str<strong>on</strong>g>the</str<strong>on</strong>g> collector material. Figure 8 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> returning<br />

electr<strong>on</strong> coe cient from a collector made <str<strong>on</strong>g>of</str<strong>on</strong>g> various materials, and Fig.9 gives <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s from a collector made <str<strong>on</strong>g>of</str<strong>on</strong>g> various materials. Obviously, a smaller<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s is expected from low atomic-number materials. Using an aluminum or<br />

its alloy is possible for <str<strong>on</strong>g>the</str<strong>on</strong>g> collector material. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong> is, for example, to use SiC as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

collector material. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> range in material for this electr<strong>on</strong> energy regi<strong>on</strong> is very small, making<br />

a coating <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector surface using <str<strong>on</strong>g>the</str<strong>on</strong>g> sputtering technique is also possible. If a manufacturing<br />

limitati<strong>on</strong> prevents a suitable size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collector, <str<strong>on</strong>g>the</str<strong>on</strong>g> material choice may be important.<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

Asimulati<strong>on</strong> code for applying <strong>EGS</strong>4 to calculate returning electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> klystr<strong>on</strong> collector<br />

has been developed after an evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> backscattering process returning electr<strong>on</strong>s<br />

3


were successfully calculated. The returning electr<strong>on</strong> coe cient and energy distributi<strong>on</strong>s are shown<br />

with various collector shapes. It is shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drift-tube diameter to <str<strong>on</strong>g>the</str<strong>on</strong>g> collector<br />

diameter plays an important role c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s. The procedure used<br />

to design a collector with small returning electr<strong>on</strong> coe cients is also presented. Interesting features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s c<strong>on</strong>cerning various materials have been investigated, and <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility to use<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r materials instead <str<strong>on</strong>g>of</str<strong>on</strong>g> well-used copper material is also presented. These simulati<strong>on</strong> results had<br />

been applied to a study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oscillati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a UHF klystr<strong>on</strong> caused by returning electr<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

agreed with <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment [5].<br />

References<br />

[1] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 code system", SLAC-report-265,<br />

1985.<br />

[2] W. R. Nels<strong>on</strong> and Y. Namito, \The <strong>EGS</strong>4 code system: soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray and electr<strong>on</strong><br />

transport problems", SLAC-PUB-5193, February, 1990.<br />

[3] E. J. Sternglass, \Backscattering <str<strong>on</strong>g>of</str<strong>on</strong>g> kilovolt electr<strong>on</strong>s from solids", Phy. Rev. Vol. 95, No.<br />

2(1954)345-358.<br />

[4] G. Neubert and S. Rogaschewski, \Backscattering coe cient measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 to 60 keV<br />

electr<strong>on</strong>s for solids at various angles <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence", Phys. Stat. Sol. (a) 59(1980)35-41.<br />

[5] Z. Fang et al., \Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> returning electr<strong>on</strong>s from a klystr<strong>on</strong> collector", to be presented in<br />

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th internati<strong>on</strong>al linac c<strong>on</strong>ference, California, USA, August 2000.<br />

4


Figure1:Sketch<str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>backscattering<strong>on</strong>aplate<br />

<br />

Figure2:Back-scatteringcoefficientasfuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>incidentangle<strong>on</strong>acoppersurface. <br />

RelativeNo.<br />

(Incidentenergy<str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>s,60keV;Experimentdata,reference4)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Incidentelectr<strong>on</strong>s<br />

θ<br />

Material<br />

Back-scatteringCoefficient<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

<strong>EGS</strong>4<br />

experiment<br />

experiment<br />

<strong>EGS</strong>4<br />

<br />

<br />

Angledistributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><br />

back-scatteredelectr<strong>on</strong>s<br />

0 30 60 90<br />

Incident degrees<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

E/Eo<br />

Figure3:Energydistributi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>back-scatteredelectr<strong>on</strong>sfromacoppersurface.<br />

(Incidentenergy<str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>s,32keV;Experimentdata,reference3)<br />

5


Electr<strong>on</strong><br />

beam<br />

Figure4:Typicalcollectorshape <br />

Table1:Returningelectr<strong>on</strong>coefficientfordifferentdimensi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>acoppercollector.<br />

Dt(cm) Dc(cm) Lc(cm) Returningelectr<strong>on</strong>coefficient Relativeerror<br />

<br />

10<br />

13 62.4 0.00665 1.2%<br />

23 92.4 0.00174 2.4%<br />

23 122.4 0.00136 2.7%<br />

7 23 122.4<br />

0.00081 3.5%<br />

5<br />

Fracti<strong>on</strong>(%)<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

Dt<br />

Dc<br />

EnergyDistributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>ReturningElectr<strong>on</strong>s<br />

<br />

0.00023 6.6%<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1<br />

E/E0<br />

Figure5:Energydistributi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>returningelectr<strong>on</strong>sfordifferentdimensi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>acoppercollector.<br />

<br />

<br />

6<br />

Lc<br />

<br />

#1<br />

#1A<br />

#2


Returningcoefficient(%)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 50 100 150 200 250 300<br />

Lc(cm)<br />

(a) (b)<br />

<br />

Figure6:Returningelectr<strong>on</strong>coefficientasfuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>collectorlength(Lc)anddiameter(Dc).<br />

Collector(a)<br />

Dc(13cm)<br />

Dc(23cm)<br />

Dc(30cm)<br />

Dc(40cm)<br />

Collector(b)<br />

<br />

<br />

<br />

<br />

Figure7:Sketch<str<strong>on</strong>g>of</str<strong>on</strong>g>threedifferenttypicalcollectorshapes.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Returningcoefficient(%)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Incident<br />

electr<strong>on</strong>beam<br />

7<br />

Lc(122.4cm)<br />

Lc(182.4cm)<br />

Lc(262.4cm)<br />

0 10 20 30 40 50<br />

Dc(cm)<br />

Collector(c)


Returningelectr<strong>on</strong>coefficient(%)<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

ReturningCoefficient(%)<br />

Carb<strong>on</strong> Aluminum Ir<strong>on</strong> Copper Tungsten Lead<br />

<br />

<br />

<br />

Figure8:Returningelectr<strong>on</strong>coefficientasafuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>collectormaterial.<br />

Fracti<strong>on</strong>(%)<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

<br />

<br />

<br />

EnergyDistributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>ReturningElectr<strong>on</strong>s<br />

Carb<strong>on</strong><br />

Aluminum<br />

Ir<strong>on</strong><br />

Copper<br />

Tungsten<br />

Lead<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1<br />

E/E0<br />

<br />

Figure9:Returningelectr<strong>on</strong>energydistributi<strong>on</strong>asfuncti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>collectormaterial.<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.280-285<br />

Direct Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>-Tracks<br />

Using a Charge Coupled Device<br />

S. Kitamoto 12 , M. Ohta 1 , T. Okada 1 , T. Kohmura 1 ,<br />

K. Mori 1 , H. Awaki 23 , K. Tachibana 3<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Earth and Space Science, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Osaka University<br />

1-1, Machikaneyama, Toy<strong>on</strong>aka, Osaka, 560-0043, Japan<br />

2<br />

CREST Japan Science and Technology Corporati<strong>on</strong> (JST)<br />

4-1-8 H<strong>on</strong>machi, Kawaguchi, Saitama 332, Japan<br />

3<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Ehime University, Matsuyama, 790-8577, Japan<br />

Abstract<br />

We present two-dimensi<strong>on</strong>al projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various electr<strong>on</strong> tracks in silic<strong>on</strong>. Acharge-coupleddevice<br />

(CCD) was exposed to -rays (976 keV and 1048 keV) from 207 Bi radio isotope. The incident<br />

angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -rays was set to be a grazing incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 deg. The -rays deposit charge in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pixels according to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir tracks. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained images show two-dimensi<strong>on</strong>al projecti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray tracks. This experiment isuseful for diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> CCDs. We also show a thickness<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> a CCD.<br />

1 Introducti<strong>on</strong><br />

Charge coupled devices (CCDs) as a X-ray detector are now widely used. As well as its imaging<br />

capability, aCCD has many advantages as a X-ray detector. If a CCD is used as a phot<strong>on</strong> counting<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> incident X-ray intensity is enough low soastoavoidamultiple phot<strong>on</strong> detecti<strong>on</strong>, a CCD has<br />

a good energy resoluti<strong>on</strong> [1,2]. A CCD also can measure polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray phot<strong>on</strong>s by analyzing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> charge cloud distributi<strong>on</strong> produced by a single X-ray[3]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray astr<strong>on</strong>omy, now a CCD is<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a standard focal plane detector <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray telescopes[1,4,5].<br />

2 Motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this work<br />

In order to deduce <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum capability <str<strong>on</strong>g>of</str<strong>on</strong>g> CCDs, <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>internal structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> layer, is important. Also understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s in a CCD is required. In gure 1, a schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

fr<strong>on</strong>t illuminated CCD and a behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s are shown.<br />

A fr<strong>on</strong>t illuminated CCD has various gate structures <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD, which acts as a<br />

dead layer for X-ray detecti<strong>on</strong>. X-rays, which penetrate <str<strong>on</strong>g>the</str<strong>on</strong>g> dead layer, are absorbed by Si due to a<br />

photo-electric interacti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>n a photo-electr<strong>on</strong> is created. The photo-electr<strong>on</strong> i<strong>on</strong>izes surrounding<br />

atoms and produces a number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-hole pairs. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> has an informati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident X-ray. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s is complicated, because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

internal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a CCD is complicated. The electr<strong>on</strong>s created near <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pixels are<br />

divided into two or more number <str<strong>on</strong>g>of</str<strong>on</strong>g> pixels. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if electr<strong>on</strong>s are created in <str<strong>on</strong>g>the</str<strong>on</strong>g> channel-stop,<br />

<strong>on</strong>ly a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s will be detected as a signal[6,7]. Although electric eld is str<strong>on</strong>g in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

depleti<strong>on</strong> layer and <str<strong>on</strong>g>the</str<strong>on</strong>g> di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s is small, <str<strong>on</strong>g>the</str<strong>on</strong>g> electric eld is weak below <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong><br />

1


3 Experiments<br />

For a -ray source, 207 Bi radio isotope is selected. 207 Bi is a c<strong>on</strong>versi<strong>on</strong> electr<strong>on</strong> source and emits<br />

m<strong>on</strong>o-energetic -rays. The measured spectrum with a windowless Si(Li) detector is shown in gure<br />

3. Two peaks by -rays (976 keV and 1048 keV) are clearly seen. Some -rays are also emitted. Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -rays are roughly 2mm, signi cant fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -rays will run straightly in Si<br />

while it has enough energy.<br />

Figure 3: The energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> 207 Bi obtained by a windowless Si(Li) detector. Two peaks at 976 keV and<br />

1048 keV are by m<strong>on</strong>o-energetic electr<strong>on</strong>s.<br />

The used CCD is a fr<strong>on</strong>t illuminated CCD produced by HAMAMATSU K.K . The pixel size is 12<br />

m square and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pixels are 512 512. The CCD is cooled down to ;100 o C using LN2.<br />

Ashutter is installed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 207 Bi source. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray source is less than 0.5mm.<br />

Aschematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental setup is shown in gure 4 and <str<strong>on</strong>g>the</str<strong>on</strong>g> pictures are shown in<br />

gure 5 and gure 6. The incident angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray is ranging from 12 deg to 14 deg according to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> imaging area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD. 300 images with an exposure time <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 sec are obtained.<br />

4 Electr<strong>on</strong> Tracks<br />

One example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD image is shown in gure 7. -rays were exposed from right side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gure. Many tracks can be seen. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> 207 Bi emits -rays as well as -rays, we extracted<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> candidates <str<strong>on</strong>g>of</str<strong>on</strong>g> -ray events. The horiz<strong>on</strong>tal straight lines with di use image at <str<strong>on</strong>g>the</str<strong>on</strong>g> left end were<br />

picked up. Six examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracted images are shown in gure 8. The straight and thin tracks<br />

corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> layer and <str<strong>on</strong>g>the</str<strong>on</strong>g> di use image corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> eld free<br />

regi<strong>on</strong> below <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> layer.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g>se data we can deduce <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> layer and also measure <str<strong>on</strong>g>the</str<strong>on</strong>g> di usi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depth from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Here we show <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> depleti<strong>on</strong> layer thickness. First we extracted an favorable events straight thin track events with<br />

3


[9] A. Owens et al., X-ray Spectrometry 476(1997)924.<br />

[10] M. W. Bautz, S. Kissel, G. Prigozhin, S. J<strong>on</strong>es, T. Isobe, H. Manning, M. Pivovaro , G. Ricker,<br />

and J. Woo, SPIE <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 2808(1996)170.<br />

[11] R. Hartmann., et al., Nucl. Instrum. Meth. A 377(1996)191.<br />

[12] K. Mori, M. Shouh, H. Katayama, S. Kitamoto S., et al., Nucl. Instrum. Meth. A. (2000)in press.<br />

Figure 6: A picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental setup. The CCD and <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray source are installed in a vacuum<br />

chamber.<br />

Figure 7: One example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD image. The -ray was exposed from right side.<br />

5


Figure 8: Six examples <str<strong>on</strong>g>of</str<strong>on</strong>g> images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray events. The pixel size is 12 m.<br />

Figure 9: Average length <str<strong>on</strong>g>of</str<strong>on</strong>g> straight-thin regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> -ray tracks as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> imaging<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD. Best t expected curve is also plotted.<br />

6


Table 1 List <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s and its parameters for gas bremsstrahlung producti<strong>on</strong>.<br />

Author Organizati<strong>on</strong> code maximum target AE AP pressure gas<br />

(date) electr<strong>on</strong> length (MeV) (MeV) (atm) material<br />

energy<br />

G.Tromba Sincrotr<strong>on</strong>e<br />

& A.Rindi[3] Trieste <strong>EGS</strong>4 10GeV 1m 1.0 0.01 1.0 air<br />

(1990)<br />

J.C.Liu[4] SLAC <strong>EGS</strong>4 10GeV 1m 1.511 0.1 1.0 air<br />

(1994)<br />

Ferrari<br />

et.al [1] INFN FLUKA 1GeV 1,10m 10.0 0.01 1.0, 0.1 air<br />

(1993)<br />

N.E.Ipe &<br />

A.Fasso[5] SLAC FLUKA 7GeV 15m 10.0 0.01 1.0, 0.1 air<br />

(1994)<br />

2 Calculati<strong>on</strong>s<br />

Sensitivity analyses were carried out at<br />

1. <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s,<br />

2. several AE values ranging from 0.521 to 10 MeV under 1.0 and 0.1 atm,<br />

3. several gas pressure values ranging from 1 to 10 ;3 atm under <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong> lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> 1m,<br />

19m, and 40m, and<br />

4. several stored electr<strong>on</strong> energy, to investigate its dependence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spectrum and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

emissi<strong>on</strong> angle distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas bremsstrahlung.<br />

The opti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> true angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitted phot<strong>on</strong>s[6] is employed in all calculati<strong>on</strong>s<br />

with double precisi<strong>on</strong>. The calculated phot<strong>on</strong> energy spectra and phot<strong>on</strong> emissi<strong>on</strong> angle distributi<strong>on</strong>s<br />

are given in<br />

1. Fig.1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s,<br />

2. Fig.2 and Fig.3 for several AE values ranging from 0.521 to 10 MeV under 1.0 and 0.1 atm,<br />

3. Figs.4 to 9 for several gas pressure values ranging from 1 to 10 ;3 atm under <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong><br />

lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> 1m, 19m, and 40m, and<br />

4. Fig.10 for several stored electr<strong>on</strong> energy, respectively.<br />

As shown in Fig.1, <str<strong>on</strong>g>the</str<strong>on</strong>g> gas bremsstrahlung generated within single interacti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s<br />

and 0.1205 g/cm 2 air molecules is about 60 % <str<strong>on</strong>g>of</str<strong>on</strong>g> that generated within multi-interacti<strong>on</strong>s. The<br />

gas bremsstrahlung is nearly saturated within triple or more interacti<strong>on</strong>s. As shown in Figs.2, 3, AE<br />

value dependence is apparent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> gas bremsstrahlung generati<strong>on</strong>, while <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

spectrum and <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> angle distributi<strong>on</strong> are independent <str<strong>on</strong>g>of</str<strong>on</strong>g>AEvalues under 0.01205 g/cm 2 (0.1<br />

atm). Figure 4 shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spectrum is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> gas pressure under <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

straight secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m, while as shown in Fig.5, although gas pressure dependence is apparent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

emissi<strong>on</strong> angle distributi<strong>on</strong>, its dependence becomes less for a gas pressure below 0.01205 g/cm 2 (0.1<br />

atm). However, as shown in Figs. 6, 7, 8, and 9, gas pressure dependence is apparent <strong>on</strong> both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> energy spectrum and <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> angle distributi<strong>on</strong> under <str<strong>on</strong>g>the</str<strong>on</strong>g> lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> straight secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 19 mand40 m. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>ger <str<strong>on</strong>g>of</str<strong>on</strong>g> straight secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dependence is more<br />

apparent. The calculati<strong>on</strong> with su cient accuracy is no l<strong>on</strong>ger expected under <str<strong>on</strong>g>the</str<strong>on</strong>g> gas pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1<br />

atm with <str<strong>on</strong>g>the</str<strong>on</strong>g> AE value <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV for SPring-8. Figure 10 shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> angle distributi<strong>on</strong><br />

2


str<strong>on</strong>gly depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stored electr<strong>on</strong> energy, especially <str<strong>on</strong>g>the</str<strong>on</strong>g> extreme directivity is recognized in stored<br />

electr<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 GeV.<br />

The e ective doses <str<strong>on</strong>g>of</str<strong>on</strong>g> anterior-posterior irradiati<strong>on</strong> geometry as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> uence crossing are shown in Fig. 11 with depending <strong>on</strong> gas pressure with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

path length <str<strong>on</strong>g>of</str<strong>on</strong>g> 16.54m at 40 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong>s, allowing multi interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>. Figure 12 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas bremsstrahlung as a functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s. As shown in both gures, <str<strong>on</strong>g>the</str<strong>on</strong>g> e ective dose str<strong>on</strong>gly depends <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>al gas pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g> e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multi interacti<strong>on</strong> is negligible small in angular<br />

distributi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.001 atm.<br />

Figure 13 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong>s and electr<strong>on</strong> path length that<br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas pressure, indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong>s within 0.1 mradian to total emissi<strong>on</strong>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical axis. As shown in this gure, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio can be <strong>on</strong> <strong>on</strong>e curve. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> curve indicates<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio is focused to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant value below <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> path length <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 ;2 g/cm 2 .<br />

3 C<strong>on</strong>clusi<strong>on</strong>s<br />

The simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gas bremsstrahlung at SPring-8 beamlines were performed as <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>s, AE values, and residual gas pressures to get su cient accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity<br />

and angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong>. As <str<strong>on</strong>g>the</str<strong>on</strong>g> results, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s under <str<strong>on</strong>g>the</str<strong>on</strong>g> recommendati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ferrari et al. have some problems for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> SPring-8 beamlines. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> gas<br />

bremsstrahlung is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas pressure, however <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> emissi<strong>on</strong><br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure str<strong>on</strong>gly. In order to correct <str<strong>on</strong>g>the</str<strong>on</strong>g> defect, it is clari ed that <str<strong>on</strong>g>the</str<strong>on</strong>g> path length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stored electr<strong>on</strong> must be set to be less than 10 ;2 g/cm 2 . This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

must be set to be less than 0.1 atm <str<strong>on</strong>g>of</str<strong>on</strong>g> air in case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m and 0.0025 atm for 40<br />

m. Moreover, it is clari ed that <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gas bremsstrahlung with su cient accuracy can be<br />

performed under <str<strong>on</strong>g>the</str<strong>on</strong>g> path length <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 10 ;2 g/cm 2 without c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> AE (lower cut o<br />

energy for electr<strong>on</strong> and threshold energy <str<strong>on</strong>g>of</str<strong>on</strong>g> M ller scattering to minimize any angular de ecti<strong>on</strong>) and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stored electr<strong>on</strong> with residual gas molecules.<br />

References<br />

[1] A. Ferrari, M. Pellici<strong>on</strong>i, and P. R. Sala, \Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uence rate and absorbed dose rate due<br />

to gas bremsstrahlung from electr<strong>on</strong> storage rings", Nucl. Instrum. Methods B83(1993)518-524.<br />

[2] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \The <strong>EGS</strong>4 CODE system", SLAC-265 (1985).<br />

[3] G. Tompa and A. Rindi, \Gas Bremsstrahlung from Electr<strong>on</strong> Storage rings: A M<strong>on</strong>te Carlo<br />

Evaluati<strong>on</strong> and Some Useful Formula", Nucl.Instum. Methods A292(1990)700-705.<br />

[4] J. C. Liu et al., \Gas Bremsstrahlung and Associated Phot<strong>on</strong>-Neutr<strong>on</strong> Shielding Calculati<strong>on</strong>s for<br />

Electr<strong>on</strong> Storage Rings", SLAC-Pub-6532 (1994).<br />

[5] N. E. Ipe and A. Fasso, \Gas bremsstrahlung c<strong>on</strong>siderati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Advanced<br />

Phot<strong>on</strong> Source synchrotr<strong>on</strong> radiati<strong>on</strong>", Nucl. Instrum. Methods A351(1994)534-544.<br />

[6] A. F. Bielajew et al., Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Internal Report PIRS-0203 (1989).<br />

3


x10 –15<br />

Phot<strong>on</strong>s(Ep*dN/dEp)[e –1 m –1 at10 –9 Torr]<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

10 0<br />

<br />

INT3–INT5<br />

INT2<br />

INT1<br />

10 1<br />

10 2<br />

10 3<br />

Phot<strong>on</strong>Energy(MeV)<br />

10 4<br />

Fig.1 Gas bremsstrahlung spectra depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>interacti<strong>on</strong>sgeneratedby<strong>EGS</strong>4resulting<br />

from8GeVelectr<strong>on</strong>andinteractingwith0.1205g/cm 2 air.<br />

(INT1; single interacti<strong>on</strong>s, INT2; double interacti<strong>on</strong>s,<br />

INT3,4,5;tripleormoreinteracti<strong>on</strong>s.)<br />

Phot<strong>on</strong>(Ep*dN/dEp)[e –1 m –1 at10 –9 Torr]<br />

<br />

10 –14<br />

10 –15<br />

10 –2.0<br />

–16<br />

10<br />

<br />

<br />

AP;0.1MeV<br />

AE(0.521–10MeV)<br />

AP;0.01MeV<br />

AE(0.521MeV)<br />

0.0<br />

10<br />

2.0<br />

10<br />

Phot<strong>on</strong>Energy(MeV)<br />

0.1atm<br />

Fig.3 Gas bremsstrahlung spectra depending <strong>on</strong> lower<br />

cut<str<strong>on</strong>g>of</str<strong>on</strong>g>fenergyforelectr<strong>on</strong>,AE,andlowercut<str<strong>on</strong>g>of</str<strong>on</strong>g>fenergyfor<br />

phot<strong>on</strong>,AP,allowing<strong>on</strong>lysingleinteracti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>with<br />

residualgas<str<strong>on</strong>g>of</str<strong>on</strong>g>0.01205g/cm 2 air. <br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

<br />

Phot<strong>on</strong>(Ep*dN/dEp)[e –1 m –1 at10 –9 Torr]<br />

[x10 –15 ]<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

0.0<br />

10<br />

0.621MeV<br />

1.0<br />

10<br />

1.511MeV<br />

0.561MeV<br />

0.521MeV<br />

2.0<br />

10<br />

Phot<strong>on</strong>Energy(MeV)<br />

1atm,AE<br />

10.0MeV<br />

3.0<br />

10<br />

Fig.2 Gasbremsstrahlungspectradepending<strong>on</strong>lower<br />

cut <str<strong>on</strong>g>of</str<strong>on</strong>g>f energy for electr<strong>on</strong>, AE, allowing <strong>on</strong>ly single<br />

interacti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>withresidualgas<str<strong>on</strong>g>of</str<strong>on</strong>g>0.1205g/cm 2 <br />

air. <br />

<br />

Phot<strong>on</strong>(Ep*dN/dEp)[e –1 m –1 at10 –9 Torr]<br />

10 –14<br />

10 –15<br />

10 –2 10 –16<br />

single–interacti<strong>on</strong><br />

10 0<br />

10 2<br />

Energy(MeV)<br />

:1atm<br />

:0.1atm<br />

:0.01atm<br />

:0.001atm<br />

Fig.4 Gas bremsstrahlung spectra depending <strong>on</strong> gas<br />

pressurewith<str<strong>on</strong>g>the</str<strong>on</strong>g>pathlength<str<strong>on</strong>g>of</str<strong>on</strong>g>1mandAE<str<strong>on</strong>g>of</str<strong>on</strong>g>10MeV,<br />

allowing<strong>on</strong>lysingleinteracti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>.


Phot<strong>on</strong>(sr –1 e –1 m –1 at10 –9 Torr)<br />

10 –5<br />

10 –6<br />

single–interacti<strong>on</strong><br />

:1atm<br />

:0.1atm<br />

:0.01atm<br />

:0.001atm<br />

10<br />

0 0.1 0.2<br />

–7<br />

Emissi<strong>on</strong>Angle(mradian) <br />

<br />

Fig.5 Angular distributi<strong>on</strong>s depending <strong>on</strong> gas pressure<br />

with<str<strong>on</strong>g>the</str<strong>on</strong>g>pathlength<str<strong>on</strong>g>of</str<strong>on</strong>g>1mandAE<str<strong>on</strong>g>of</str<strong>on</strong>g>10MeV,allowing<br />

<strong>on</strong>lysingleinteracti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>electr<strong>on</strong>.<br />

<br />

<br />

<br />

<br />

Phot<strong>on</strong>(sr –1 e –1 m –1 at10 –9 Torr)<br />

10 –5<br />

10 –6<br />

10 –7<br />

multiinteracti<strong>on</strong><br />

singleinteracti<strong>on</strong><br />

:1atm<br />

:0.1atm<br />

:0.01atm<br />

:0.001atm<br />

0 0.1 0.2<br />

Emissi<strong>on</strong>angle(mrad.) <br />

Fig.7 Angular distributi<strong>on</strong>s depending <strong>on</strong> gas pressure<br />

with<str<strong>on</strong>g>the</str<strong>on</strong>g>pathlength<str<strong>on</strong>g>of</str<strong>on</strong>g>19mandAE<str<strong>on</strong>g>of</str<strong>on</strong>g>10MeV,allowing<br />

<strong>on</strong>ly single interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and multi interacti<strong>on</strong><br />

within1atm.<br />

<br />

<br />

5<br />

Phot<strong>on</strong>(Ep*dN/dEp)[e –1 m –1 at10 –9 Torr]<br />

10 –14<br />

10 –2<br />

10 –15<br />

10 0<br />

singleinteracti<strong>on</strong><br />

multiinteracti<strong>on</strong><br />

10 2<br />

:1atm<br />

:0.1atm<br />

:0.01atm<br />

:1atm<br />

Energy(MeV)<br />

<br />

<br />

Fig.6 Gas bremsstrahlung spectra depending <strong>on</strong> gas<br />

pressurewith<str<strong>on</strong>g>the</str<strong>on</strong>g>pathlength<str<strong>on</strong>g>of</str<strong>on</strong>g>19mandAE<str<strong>on</strong>g>of</str<strong>on</strong>g>10MeV,<br />

allowing <strong>on</strong>ly single interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and multi<br />

interacti<strong>on</strong>.<br />

<br />

<br />

<br />

<br />

<br />

Phot<strong>on</strong>(Ep*dN/dEp)[e –1 m –1 at10 –9 Torr]<br />

10 –14<br />

10 –2<br />

10 –15<br />

singleinteracti<strong>on</strong><br />

multiinteracti<strong>on</strong><br />

10 0<br />

10 2<br />

:1atm<br />

:0.1atm<br />

:0.01atm<br />

:0.001atm<br />

:1atm<br />

Energy(MeV)<br />

<br />

Fig.8 Gas bremsstrahlung spectra depending <strong>on</strong> gas<br />

pressurewith<str<strong>on</strong>g>the</str<strong>on</strong>g>pathlength<str<strong>on</strong>g>of</str<strong>on</strong>g>40mandAE<str<strong>on</strong>g>of</str<strong>on</strong>g>10MeV,<br />

allowing <strong>on</strong>ly single interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and multi<br />

interacti<strong>on</strong>.


Figure 9: Angular distributi<strong>on</strong>s depending <strong>on</strong> gas<br />

pressure with <str<strong>on</strong>g>the</str<strong>on</strong>g> path length <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 m and AE <str<strong>on</strong>g>of</str<strong>on</strong>g> 10<br />

MeV, allowing <strong>on</strong>ly single interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and<br />

multi interacti<strong>on</strong> within 1 atm.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 11: The e ective dose distributi<strong>on</strong>s as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radial scoring area due to gas bremsstrahlung<br />

in anterior-posterior irradiati<strong>on</strong> geometry at 40 m<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong>, allowing multiinteracti<strong>on</strong>s<br />

and AE <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 MeV. (The full circles indicate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> gas pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.001<br />

atm, open circles 0.01 atm, open triangle 0.1 atm,<br />

and Open squares 1 atm)<br />

6<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 10: Angular distributi<strong>on</strong> depending <strong>on</strong> stored<br />

electr<strong>on</strong> energy with <str<strong>on</strong>g>the</str<strong>on</strong>g> path length <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m and gas<br />

pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 atm, allowing <strong>on</strong>ly single interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 12: Angular distributi<strong>on</strong>s depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

allowing number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s generated by <strong>EGS</strong>4<br />

resulting from 8 GeV electr<strong>on</strong> and interacting with<br />

0.00482 g/cm 2 air. (INT1: single interacti<strong>on</strong>s, INT2<br />

double interacti<strong>on</strong>s, INT3,4 triple or more interacti<strong>on</strong>s)


Phot<strong>on</strong>emitti<strong>on</strong>ratio(


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.293-298<br />

Study <strong>on</strong> Spatial Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Electromagnetic Shower<br />

Around a Lead Block Irradiated by 700-MeV Bremsstrahlung<br />

S. Oki, Y. Takashima 1 , M. Yamakage, H. Kobayakawa<br />

K. Yoshida 2 , K. Goto 2<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Processing Eng., Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering,<br />

Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan<br />

1 Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan<br />

2 Hiroshima Synchrotr<strong>on</strong> Radiati<strong>on</strong> Center, Hiroshima University,<br />

2-313 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan<br />

Abstract<br />

We measured electromagnetic showers around a Pb block set <strong>on</strong> a phot<strong>on</strong> beam line extended<br />

from a straight secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a storage ring by using thin NaI(Tl) scintillati<strong>on</strong> counter. We also<br />

performed simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment by using <strong>EGS</strong>4 M<strong>on</strong>te Carlo code and compared with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experimental results. We apply <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic<br />

shower and neutr<strong>on</strong>s generated in a Pb shielding block irradiated by 1-GeV bremsstrahlung.<br />

1 Introducti<strong>on</strong><br />

Electr<strong>on</strong> storage rings c<strong>on</strong>structed for sources <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> usually have some straight<br />

secti<strong>on</strong>s in which inserti<strong>on</strong> devices are installed to generate intense light. Gas bremsstrahlung, whichis<br />

produced by interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> circulating electr<strong>on</strong>s with residual gas in <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong> passes through<br />

a beam line and <str<strong>on</strong>g>the</str<strong>on</strong>g>n cause electromagnetic shower in a shielding block. There are many studies for<br />

shielding <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung by measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic shower behind shielding blocks. In a<br />

facility <str<strong>on</strong>g>of</str<strong>on</strong>g> small storage ring, we usually work near <str<strong>on</strong>g>the</str<strong>on</strong>g> ring or beamlines in which <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding blocks<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung are c<strong>on</strong>structed so that it is needed to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>s<br />

all around <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding blocks.<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic shower around <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding block is<br />

necessary to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> dose in order to make e ective shields for radiati<strong>on</strong>s. We measured<br />

energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower in a thin NaI(Tl) scintillati<strong>on</strong> counter positi<strong>on</strong>ed around<br />

a small Pb block and compare <str<strong>on</strong>g>the</str<strong>on</strong>g> results with calculati<strong>on</strong>s performed by using <strong>EGS</strong>4 M<strong>on</strong>te Carlo<br />

code.<br />

2 Experiment<br />

The measurementwas performed at Hiroshima Synchrotr<strong>on</strong> Radiati<strong>on</strong> Center (HiSOR), Hiroshima<br />

University. The storage ring is <str<strong>on</strong>g>of</str<strong>on</strong>g> a racetrack type and c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two l<strong>on</strong>g straight secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.24<br />

mandtwo bending magnets <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.7 tesla. The electr<strong>on</strong> energy is 700 MeV and <str<strong>on</strong>g>the</str<strong>on</strong>g> stored current just<br />

after injecti<strong>on</strong> was about 100 mA.<br />

Experimental set up is shown in Figure 1. Gas bremsstrahlung produced in a vacuum duct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

straight secti<strong>on</strong> passed through a sapphire exit window and injected intoa5cm 5cm 2cmlead<br />

block which was set in <str<strong>on</strong>g>the</str<strong>on</strong>g> air. NaI(Tl) scintillati<strong>on</strong> counter was used to detect <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic<br />

shower from <str<strong>on</strong>g>the</str<strong>on</strong>g> lead block. The diameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) was 2.45 cm and 1.8 mm,<br />

respectively. We calibrated <str<strong>on</strong>g>the</str<strong>on</strong>g> counter by using a 137 Cs standard radiati<strong>on</strong> source. The detecti<strong>on</strong><br />

1


Figure 1: Experimental set up is schematically shown.<br />

Figure 2: Geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb block and NaI(Tl) counter used in <strong>EGS</strong>4 calculati<strong>on</strong>.<br />

angles were 60 ,75,90, 105 ,120 and <str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> lead block to <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) counter was<br />

23 cm. A lead collimater <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0 cm diameter was set in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) detector.<br />

The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas bremsstrahlung is normalized by <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbed energy in <str<strong>on</strong>g>the</str<strong>on</strong>g> grass dosimeter,<br />

1.6 cm 1.6 cm 0.15 cm, set behind <str<strong>on</strong>g>the</str<strong>on</strong>g> sapphire window in order to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiment and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

3 Simulati<strong>on</strong> using <strong>EGS</strong>4<br />

We performed simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our experiment by using <strong>EGS</strong>4 M<strong>on</strong>te Carlo code. Figure 2 shows<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geometry used in our calculati<strong>on</strong>.<br />

We sampled phot<strong>on</strong> energy uniformly between 0.1 MeV to 700 MeV. A weight for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electromagnetic cascade caused by a phot<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each energy is decided by <str<strong>on</strong>g>the</str<strong>on</strong>g> following bremsstrahlung<br />

cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complete screening [1, 2].<br />

kdk =4 r 0Z(Z +1) dk<br />

k<br />

1+( E<br />

E 0<br />

) 2 ; 2<br />

3<br />

E<br />

E 0<br />

1<br />

; ln (183Z 3 )+ 1<br />

9<br />

E<br />

E 0<br />

(1)<br />

where is ne structure c<strong>on</strong>stant, r 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> classical electr<strong>on</strong> radius, Z is e ective atomic number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

residual gas, k is phot<strong>on</strong> energy and E 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> energy circulating in <str<strong>on</strong>g>the</str<strong>on</strong>g> storage ring. The<br />

radius <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung was assumed to be 1cm.<br />

Figure 3(a)-(e) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> measured and <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated pulse hight distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy depositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s, positr<strong>on</strong>s and phot<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) counter at <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 ,75 ,90 , 105 ,<br />

2


120 , respectively. One incident phot<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung causes electromagnetic shower in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb<br />

target and a number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s, positr<strong>on</strong>s and phot<strong>on</strong>s are generated. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se particles enter<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) counter and deposit <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energy.<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

107<br />

106<br />

105<br />

104<br />

103<br />

(a)<br />

Experiment<br />

<strong>EGS</strong>4<br />

0 1 2 3 4 5<br />

102<br />

0 1 2 3 4 5<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

(e)<br />

0 1 2 3 4 5<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

(b)<br />

Experiment<br />

EG S4<br />

0 1 2 3 4 5<br />

(d)<br />

0 1 2 3 4 5<br />

Figure 3: Energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower in <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) counter. The detecti<strong>on</strong> angle are (a)60 ,<br />

(b)75 , (c)90 , (d)105 and (e)120 . Closed circles and open squares show <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental and calculated<br />

results, respectively.<br />

The peaks near 0.8 keV in Figure 3(a),(b),(c) agree with <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum i<strong>on</strong>izati<strong>on</strong><br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s in NaI(Tl) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.8 mm thick. The data <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s give good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiment.<br />

4 Radiati<strong>on</strong> shielding for 1-GeV bremsstrahlung<br />

There is a plan to c<strong>on</strong>struct a small synchrotr<strong>on</strong> radiati<strong>on</strong> facility inNagoya University. The electr<strong>on</strong><br />

energy, current and circumference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> storage ring are 1 GeV, 300 mA and 36 m, respectively.<br />

The storage ring is planed to have 6.40 m straight secti<strong>on</strong>s.<br />

3


We calculated energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower in water placed around a Pb shielding<br />

block irradiated by 1-GeV bremsstrahlung generated in <str<strong>on</strong>g>the</str<strong>on</strong>g> straight secti<strong>on</strong> in order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dose equivalent for various thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb shielding block. In <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>, we sampled <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> bremsstrahlung between 100 MeV to 1 GeV. The atomic number <str<strong>on</strong>g>of</str<strong>on</strong>g> residual gas in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

storage ring was assumed to be 10.<br />

The dose equivalent H is expressed as<br />

H = DQ: (2)<br />

D is <str<strong>on</strong>g>the</str<strong>on</strong>g> average energy depositi<strong>on</strong> in water with unit mass. D was evaluated at <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water. Q is quality factor and equal to 1 for phot<strong>on</strong>s, electr<strong>on</strong>s and positr<strong>on</strong>s[3].<br />

Figure 4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower in water which was placed at 1 m<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb block for <strong>on</strong>e incident phot<strong>on</strong>. The cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb blocks was 10 cm 10cm.<br />

The calculati<strong>on</strong> was performed for three thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb blocks. Open diam<strong>on</strong>ds, open squares and<br />

crosses are <str<strong>on</strong>g>the</str<strong>on</strong>g> results for <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 cm, 10 cm and 15 cm, respectively.<br />

Figure 5(a)-(c) show spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower for <strong>on</strong>e<br />

week <str<strong>on</strong>g>of</str<strong>on</strong>g> running time. In this calculati<strong>on</strong>, we assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> current was c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> 300<br />

mA and <str<strong>on</strong>g>the</str<strong>on</strong>g> storage ring worked 40 hours in a week.<br />

High energy phot<strong>on</strong>s generate neutr<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> shielding block by photo-nuclear reacti<strong>on</strong>s[3]. We<br />

calculated neutr<strong>on</strong> yield caused by giant res<strong>on</strong>ance in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb shielding block. The neutr<strong>on</strong> yield Y is<br />

expressed by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>[4],<br />

Y = N 0<br />

A<br />

(k) =<br />

Z Emax<br />

Eth<br />

dl<br />

dk<br />

m<br />

1+ (k2 ;k 2 m )2<br />

k 2 ; 2<br />

(k)dk (3)<br />

(4)<br />

where N 0 is Avogadro c<strong>on</strong>stant, is <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb block, A is <str<strong>on</strong>g>the</str<strong>on</strong>g> mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb, Emax =40<br />

MeV is maximum phot<strong>on</strong> energy for giant res<strong>on</strong>ance and Eth = 6:7 MeV is <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold energy<br />

dl<br />

for giant res<strong>on</strong>ance. is di erential track length calculated by <strong>EGS</strong>4. (k) is <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dk<br />

<strong>on</strong>e neutr<strong>on</strong> producti<strong>on</strong> by giant res<strong>on</strong>ance. m, km and ; are <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> giant<br />

res<strong>on</strong>ance ( 639 mb), <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy for m ( 13.4 MeV) and half width <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> ( 4.07<br />

MeV), respectively. The dose equivalent D is<br />

D = YH<br />

(5)<br />

2 4 r<br />

where r is <str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb block.<br />

Figure 6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> our calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s caused by giant<br />

res<strong>on</strong>ance at 1 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb block. Open squares and open diam<strong>on</strong>ds show <str<strong>on</strong>g>the</str<strong>on</strong>g> results for 1 GeVand<br />

0.7-GeV bremsstrahlung, respectively. The dose equivalent increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb<br />

block and saturate at 10 cm.<br />

In this calculati<strong>on</strong>, we do not c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb block so that <str<strong>on</strong>g>the</str<strong>on</strong>g> dose<br />

equivalent is c<strong>on</strong>stant for <str<strong>on</strong>g>the</str<strong>on</strong>g> thicknesses over 10 cm.<br />

5 C<strong>on</strong>clusi<strong>on</strong><br />

We measured electromagnetic shower using NaI(Tl) scintillati<strong>on</strong> counter placed around a Pb block<br />

irradiated by 700-MeV gas bremsstrahlung at HiSOR. We performed simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment by<br />

using <strong>EGS</strong>4 M<strong>on</strong>te Carlo code. The simulati<strong>on</strong> gave good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment.<br />

We evaluated <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower and neutr<strong>on</strong>s caused by 1-GeV bremsstrahlung<br />

in order to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> a shielding Pb block. Pb block <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cm 10 cm<br />

15 cm is needed to restrict dose equivalent under 1mSv/w. The dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same order as that <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower for <str<strong>on</strong>g>the</str<strong>on</strong>g> 15 cm thick Pb block.<br />

4


Figure 4: Calculated results <str<strong>on</strong>g>of</str<strong>on</strong>g> dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electromagnetic shower at 1 m from Pb block irradiated<br />

by 1-GeV bremsstrahlung. The cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> blocks is 10 cm 10 cm and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness is 5<br />

cm (open diam<strong>on</strong>ds), 10 cm (open squares) and 15<br />

cm (crosses).<br />

Figure 5: Spatial distributi<strong>on</strong> in horiz<strong>on</strong>tal plane <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dose equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic shower around a<br />

Pb block irradiated by 1-GeV bremsstrahlung calculated<br />

by using <strong>EGS</strong>4. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb blocks are<br />

(a)10 cm 10 cm 5 cm, (b)10 cm 10 cm 10<br />

cm and (c)10 cm 10 cm 15 cm.<br />

5


Figure 6: Calculated results <str<strong>on</strong>g>of</str<strong>on</strong>g> dose equivalent by neutr<strong>on</strong>s generated in Pb block caused by giant res<strong>on</strong>ance.<br />

The cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pb block is10cm 10 cm. Open squares and open diam<strong>on</strong>ds show <str<strong>on</strong>g>the</str<strong>on</strong>g> data for 1-GeV<br />

and 0.7-GeV bremsstrahlung.<br />

References<br />

[1] A. Rindi, "Gas bremsstrahlung from electr<strong>on</strong> storage rings", Health Physics 42(1982)187.<br />

[2] H. Hirayama, S. Ban, and S. Miura, "Investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic cascades produced in<br />

lead by 2.5-GeV bremsstrahlung", Nucl. Sci. Eng. 96(1987)66.<br />

[3] T. Nakamura, "Radiati<strong>on</strong> Physics and Accelerator Safety Engineering" (in Japanese), (Chijinshokan,<br />

Tokyo, 1995)<br />

[4] S. S. Dietrich and B. L. Berman, "Atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>eutr<strong>on</strong> cross secti<strong>on</strong> obtained with m<strong>on</strong>oenergetic<br />

phot<strong>on</strong>s", Atomic Data and Nuclear Table 38(1988)199.<br />

6


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.299-307<br />

Support <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Energy X-ray Polarizati<strong>on</strong> with <strong>EGS</strong>4<br />

K. Asamura, S. Gunji, Y. Inoue, T. Suzuki, T. Maeda, and H. Sakurai<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Yamagata University,<br />

Yamagata 990-8560, Japan<br />

Abstract<br />

In X-ray astr<strong>on</strong>omy, itisvery important to detect polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X rays from stellar objects.<br />

There is, however, no e ective polarimeter with high sensitivity for polarizati<strong>on</strong>. So we have been<br />

developing some types <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray polarimeters. For <str<strong>on</strong>g>the</str<strong>on</strong>g> design, computer simulati<strong>on</strong> program is necessary,<br />

which is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating interacti<strong>on</strong> between polarized low energy X rays and material.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> thirst, we have improved <strong>EGS</strong>4 (Electr<strong>on</strong> Gamma-ray Simulati<strong>on</strong> Versi<strong>on</strong>.4)[1][2][3] program<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> polarized X rays lower than few hundred keV.<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 program, we investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> manner <str<strong>on</strong>g>of</str<strong>on</strong>g> polarized X rays for gas detector. As <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> program, we recognized that <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> cloud depends<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident Xray.<br />

1 Introducti<strong>on</strong><br />

X-ray astr<strong>on</strong>omy has progressed through <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stellar objects by <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spectrum,<br />

time variability, and <str<strong>on</strong>g>the</str<strong>on</strong>g> image. Detectors capable <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> three informati<strong>on</strong> have been<br />

c<strong>on</strong>tinuously developed. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> has been rarely<br />

carried out or <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> polarimeter has not been much advanced in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance.<br />

So we have been developing some types <str<strong>on</strong>g>of</str<strong>on</strong>g> polarimeters sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range from 10 keV to a<br />

few hundred KeV[4][5][6]. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> polarimeters is expressed by <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> Minimum<br />

Detectable Polarizati<strong>on</strong> (MDP) as shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> below equati<strong>on</strong>.<br />

MDP = 429<br />

S AF<br />

s S A + B<br />

MDP : Minimum Detectable Polarizati<strong>on</strong> [%]<br />

B : Background Count<br />

S : Signal Counting Rate [cm ;2 sec ;1 ]<br />

: Detecti<strong>on</strong> E ciency<br />

A : Geometrical Area [cm 2 ]<br />

F : Modulati<strong>on</strong> Factor<br />

T : Observati<strong>on</strong> Time [sec]<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> modulati<strong>on</strong> factor represents <str<strong>on</strong>g>the</str<strong>on</strong>g> ability for <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident Xrays. Though it can be recognized from this equati<strong>on</strong> that it is important to improve<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> modulati<strong>on</strong> factor and <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency simultaneously, it is in general very di cult. So <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance by computer simulati<strong>on</strong> is necessary for <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polarimeter.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> three interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> photoabsorpti<strong>on</strong>, Rayleigh scattering, and Compt<strong>on</strong> scattering are<br />

dominant for low energy X rays, we have developed <strong>EGS</strong>4 (Electr<strong>on</strong> Gamma-ray Simulati<strong>on</strong> versi<strong>on</strong>.4)<br />

program capable <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> three interacti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> polarized X rays lower than few hundred<br />

keV. In this paper, we will describe <str<strong>on</strong>g>the</str<strong>on</strong>g> detail <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 program and <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 program for a gas detector.<br />

1<br />

T<br />

(1)


2 Improvement for <strong>EGS</strong>4<br />

2.1 Support <str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong><br />

Applying new formulae for photoabsorpti<strong>on</strong>, Rayleigh scattering, and Compt<strong>on</strong> scattering to<br />

support polarized X rays, we have developed <strong>EGS</strong>4 program.<br />

2.1.1 Compt<strong>on</strong> scattering<br />

We used <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> for Compt<strong>on</strong> scattering cross secti<strong>on</strong>.<br />

d<br />

d<br />

/ [ k<br />

k0<br />

+ k0<br />

k ; 2sin2 cos 2 ] (2)<br />

where k0, k, , and are incident X-ray energy, scattered X-ray energy, zenith angle, and azimuthal<br />

angle, respectively. As <str<strong>on</strong>g>the</str<strong>on</strong>g> k and are calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code <str<strong>on</strong>g>of</str<strong>on</strong>g> subroutine COMPT, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

azimuthal angle is determined according to <str<strong>on</strong>g>the</str<strong>on</strong>g> above equati<strong>on</strong> by M<strong>on</strong>te Carlo method. Moreover<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering X ray is determined according to <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> by M<strong>on</strong>te<br />

Carlo method.<br />

d<br />

d k<br />

d<br />

d ?<br />

/ kc<br />

k0<br />

/ kc<br />

k0<br />

+ k0<br />

; 2 + 4(1 ; sin<br />

kc<br />

2 cos 2 ) (3)<br />

+ k0<br />

; 2 (4)<br />

kc<br />

The polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered Xray has "parallel" vector or "vertical" vector. The vertical<br />

vector is perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> incident Xray and <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered<br />

Xray. The parallel vector is perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical vector and <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered X<br />

ray. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two vectors is shown in Fig.1. As <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> vector for <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered X<br />

vertical<br />

polarizati<strong>on</strong><br />

vector<br />

x<br />

polarizati<strong>on</strong> vector<br />

z<br />

θ<br />

ϕ<br />

scattered X ray<br />

parallel<br />

polarizati<strong>on</strong><br />

vector<br />

y<br />

incident X ray<br />

Figure 1: The two polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered X rays.<br />

ray is determined in <str<strong>on</strong>g>the</str<strong>on</strong>g> above method, multiple Compt<strong>on</strong> scattering for polarized X rays is supported<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 program.<br />

2.1.2 Rayleigh scattering<br />

We used following equati<strong>on</strong> for Rayleigh Scattering cross secti<strong>on</strong>. As <str<strong>on</strong>g>the</str<strong>on</strong>g> zenith angle is determined<br />

by subroutine PHOTON in <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code, <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthal angle is determined by M<strong>on</strong>te Carlo<br />

method according to this equati<strong>on</strong>.<br />

d<br />

d / 1 ; 2sin2 cos 2<br />

As shown in Fig.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered X ray has<strong>on</strong>ly"parallel" vector.<br />

2


2.1.3 Photoabsorpti<strong>on</strong><br />

x<br />

z<br />

ϕ<br />

incident X ray<br />

scattered X ray<br />

parallel<br />

polarizati<strong>on</strong><br />

vector<br />

y<br />

polarizati<strong>on</strong> vector<br />

Figure 2: The manner <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh scattering.<br />

We used <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoabsorpti<strong>on</strong>.<br />

d<br />

d<br />

/ 2 sin 2 (1 ; 2 ) 0:5 cos 2<br />

(1 ; cos ) 4 ; (1 ; (1 ; 2 ) 0:5 )cos 2<br />

2(1 ; 2 ) 0:5 (1 ; cos ) 3<br />

+ (1 ; (1 ; 2 ) 0:5 ) 2<br />

4(1 ; 2 )(1 ; cos<br />

where is <str<strong>on</strong>g>the</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> divided by light speed. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> zenith angle and<br />

are determined by in subroutine PHOTO <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code. According to this equati<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthal angle is determined by M<strong>on</strong>te Carlo method. After photoabsorpti<strong>on</strong> with K-shell<br />

electr<strong>on</strong> occurs, characteristic X ray or Auger electr<strong>on</strong> is emitted. The probability is determined<br />

with uorescence yield. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> following semi-empirical equati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> uorescence yield was<br />

determined by M<strong>on</strong>te Carlo method.<br />

!k<br />

1 ; !k<br />

1<br />

4<br />

3 <br />

=0:015 + 0:0327Z ; 0:64 10 ;6 Z 3 <br />

where !k and Z are <str<strong>on</strong>g>the</str<strong>on</strong>g> uorescence yield and atomic number <str<strong>on</strong>g>of</str<strong>on</strong>g> material, respectively. The emitted<br />

directi<strong>on</strong> for Auger electr<strong>on</strong> and uorescence phot<strong>on</strong> was assumed to be isotropical. The polarizati<strong>on</strong><br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uorescence phot<strong>on</strong> is determined at random.<br />

2.2 Algorithm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 program<br />

The developed <strong>EGS</strong>4 programming codes written with Fortran c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 codes in which<br />

polarizati<strong>on</strong> is supported, user codes, interface subroutines, CERN Library developed in CERN, and<br />

CLICOM Library developed in Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo[10]. They are as follows.<br />

original <strong>EGS</strong>4 codes<br />

ANNIH, BHABHA , COMPT , EDGSET , ELECTR , HATCH , MOLLER , MSCAT,PAIR,<br />

PHOTO , PHOTON , SHOWER , and UPHI<br />

User code<br />

egs4main (This is <str<strong>on</strong>g>the</str<strong>on</strong>g> main program) , usr ana , ure ausgab , and usr howfar<br />

interface subroutines<br />

usr where, usr dnear, usr step, usr geomread, usr hatchsetup, usr prehatch,<br />

usr iausfl, usr incident, and hbook read<br />

Libraries<br />

CERN Library and CLICOM Library<br />

3


egs4main.f<br />

<strong>EGS</strong>4<br />

setup<br />

PRESTA<br />

setup<br />

Do loop<br />

histograms<br />

save<br />

hbook_end<br />

to CERN<br />

lib<br />

usr_geomread<br />

input geometry<br />

file<br />

usr_hatchsetup usr_prehatch<br />

hatch P<strong>EGS</strong>4 data<br />

edgset<br />

init_usr_incident<br />

usr_IAUSFL<br />

hbook_read<br />

usr_incident<br />

usr_ana<br />

PRESTA<br />

_dnear<br />

MSCAT<br />

annih<br />

bhabha<br />

moller<br />

brems<br />

from user<br />

to CERN<br />

lib<br />

shower<br />

electr phot<strong>on</strong><br />

compt<br />

pair<br />

photo<br />

UPHI<br />

Original <strong>EGS</strong>4 Codes<br />

getene<br />

_info<br />

etc<br />

<strong>EGS</strong>4 Comm<strong>on</strong><br />

Block<br />

howfar<br />

usr_dnear<br />

usr_step<br />

where<br />

ausgab<br />

Figure 3: Algorithm for <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 program.<br />

The developed <strong>EGS</strong>4 program runs according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Algorithm chart shown in Fig.3. This <strong>EGS</strong>4<br />

program is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> main program egs4main. Through <str<strong>on</strong>g>the</str<strong>on</strong>g> main program, <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

initializati<strong>on</strong> is carried out.<br />

1. The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated detector is handed to <strong>EGS</strong>4 Comm<strong>on</strong> Block through usr geomread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interface subroutine.<br />

2. The used material in detector is handed to <strong>EGS</strong>4 Comm<strong>on</strong> Block through usr hatchsetup and<br />

usr prehatch <str<strong>on</strong>g>of</str<strong>on</strong>g> interface subroutines.<br />

3. The informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy for incident Xrays is handed to<br />

<strong>EGS</strong>4 Comm<strong>on</strong> Block through ini usr incident <str<strong>on</strong>g>of</str<strong>on</strong>g> interface subroutine.<br />

4. The histograms <str<strong>on</strong>g>of</str<strong>on</strong>g> energy spectrum for each parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector are de ned through hbook read<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interface subroutine.<br />

5. The setup <str<strong>on</strong>g>of</str<strong>on</strong>g> PRESTA is carried out to simulate tracks for low energy electr<strong>on</strong> in accuracy.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g>m, actual simulati<strong>on</strong>s are carried out through usr incident <str<strong>on</strong>g>of</str<strong>on</strong>g> interface subroutine and<br />

shower <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code. The usr ana <str<strong>on</strong>g>of</str<strong>on</strong>g> user program makes histograms <str<strong>on</strong>g>of</str<strong>on</strong>g> energy spectrum<br />

for each part <str<strong>on</strong>g>of</str<strong>on</strong>g> detector, using <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposited energy calculated in <strong>EGS</strong>4 code. The<br />

energy spectrum for each parts are saved in <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

4


2.3 How to run <str<strong>on</strong>g>the</str<strong>on</strong>g> program<br />

Before running <str<strong>on</strong>g>the</str<strong>on</strong>g> program, you must prepare for two les called geometry le and histogram<br />

le. Fig.4 (a) and (b) are examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry le and <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry. Each row corresp<strong>on</strong>ds<br />

a)<br />

1 23 0.0 0.0 2.0 7.0 3.0 4.0 0.514 0.001<br />

1 18 0.0 0.0 5.0 7.0 3.0 2.0 0.514 0.001<br />

shape<br />

Material No.<br />

center positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong><br />

lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> x,y,and z<br />

ECUT<br />

PCUT<br />

b)<br />

central positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong> 2<br />

(0.0 , 0.0 , 5.0)<br />

regi<strong>on</strong> 2<br />

material No.18<br />

regi<strong>on</strong> 1<br />

material No.23<br />

x<br />

z<br />

3cm<br />

7cm<br />

central positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong> 1<br />

(0.0 , 0.0 , 2.0)<br />

Figure 4: Fig(a) shows an example <str<strong>on</strong>g>of</str<strong>on</strong>g> geometry le. Fig(b) shows geometry that is represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> example<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> geometry le.<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> for <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. The number in <str<strong>on</strong>g>the</str<strong>on</strong>g> rst column shows <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> part. For instance, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 corresp<strong>on</strong>ds to a rectangular parallelepiped. The shapes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sphere and column are also supported with <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 and 3. The number in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d column<br />

corresp<strong>on</strong>ds to kind <str<strong>on</strong>g>of</str<strong>on</strong>g> material. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 is a plastic scintillator. The numbers<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> third column to <str<strong>on</strong>g>the</str<strong>on</strong>g> fth column corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> center positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> part. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> shape is rectangular parallelepiped, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers from <str<strong>on</strong>g>the</str<strong>on</strong>g> sixth number to <str<strong>on</strong>g>the</str<strong>on</strong>g> eighth number<br />

corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> three sides. The ninth number and <str<strong>on</strong>g>the</str<strong>on</strong>g> tenth number corresp<strong>on</strong>d to cut<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energies for electr<strong>on</strong> and phot<strong>on</strong>, respectively. The following is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> histogram le. With<br />

this le, <str<strong>on</strong>g>the</str<strong>on</strong>g> histogram for each part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector is de ned.<br />

a)<br />

1 100 100 0.0 0.1 Plastic<br />

1 200 100 0.0 0.1 Arg<strong>on</strong> 1 atm<br />

0<br />

Comments<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> bins<br />

histogram ID No.<br />

histogram dimensi<strong>on</strong><br />

maximum and minimum energy<br />

0.001<br />

2cm<br />

4cm<br />

0.0<br />

0.1 0.0<br />

0.1<br />

ID:100 Plastic ID:200 Arg<strong>on</strong> 1 atm<br />

Figure 5: Fig(a) shows an example <str<strong>on</strong>g>of</str<strong>on</strong>g> histogram le. Fig(b) shows histograms corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> example <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

histogram le.<br />

One row corresp<strong>on</strong>ds to a histogram for <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. The rst column shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> histogram. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> histogram for energy spectrum, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 should<br />

be written. The number in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d column is identi cati<strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> histogram. The number<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> third column shows <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> bins in x axis. The fourth and fth numbers corresp<strong>on</strong>d<br />

to minimum value and maximum value in x axis. In <str<strong>on</strong>g>the</str<strong>on</strong>g> sixth column, <str<strong>on</strong>g>the</str<strong>on</strong>g> comment is written. The<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 in <str<strong>on</strong>g>the</str<strong>on</strong>g> third row is a mark which shows <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> de niti<strong>on</strong>. If users want to <strong>on</strong>ly<br />

obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> about energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> each parts in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector, you do not have to rewrite<br />

any program or recompile it. It is <strong>on</strong>ly required for users to carry out <str<strong>on</strong>g>the</str<strong>on</strong>g> below procedure.<br />

%egsanl<br />

Input geometry file: ?test.geo<br />

5<br />

b)<br />

y


Input P<strong>EGS</strong> data file: ? material.dat<br />

kind <str<strong>on</strong>g>of</str<strong>on</strong>g> particle e:-1 gamma:0 e:1 ? 0 ! 0 means X ray.@<br />

x center:? 0.0<br />

y center: ? 0.0 ! positi<strong>on</strong> to injecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles<br />

z center: ? 0.85<br />

x range: ? 0.0<br />

y range: ? 0.0 ! range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident particles<br />

z range: ? 0.0<br />

x directi<strong>on</strong>: ? 0.0<br />

y directi<strong>on</strong>: ? 0.0 ! vector <str<strong>on</strong>g>of</str<strong>on</strong>g> incident directi<strong>on</strong><br />

z directi<strong>on</strong>: ?-1.0<br />

Polarizati<strong>on</strong> vector x: ? 1.0<br />

Polarizati<strong>on</strong> vector y: ? 0.0 ! polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> incident X ray<br />

Polarizati<strong>on</strong> vector z: ? 0.0<br />

incident energy [MeV]: ? 0.1<br />

Do you make histogram (Y/N): ?Y<br />

idim: 1 ? @temp.his ! temp.his is histogram filename.<br />

Input initial random number: ? 12345679<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> particle: ? 10000 ! number <str<strong>on</strong>g>of</str<strong>on</strong>g> injected particles<br />

----Simulati<strong>on</strong> is started---input<br />

HBK filename: ? temp.hbk ! histogram data is saved in temp.hbk file<br />

By this procedure, <str<strong>on</strong>g>the</str<strong>on</strong>g> histograms are saved in <str<strong>on</strong>g>the</str<strong>on</strong>g> le <str<strong>on</strong>g>of</str<strong>on</strong>g> temp.hbk. Users can check <str<strong>on</strong>g>the</str<strong>on</strong>g> results with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> program <str<strong>on</strong>g>of</str<strong>on</strong>g> dis45[10].<br />

2.4 Tests <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program<br />

By obtaining several histograms, we checked <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 program. Preparing for a<br />

geometry le for plastic scintillator, we had simulati<strong>on</strong>s by injecting 30 keV X rays polarized parallel<br />

to x axis from <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> -z axis. Fig.6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> for directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered X<br />

rays by Compt<strong>on</strong> scattering for <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code and <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 code. In this Figure,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> x axis and y axis corresp<strong>on</strong>d to <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthal angle and number <str<strong>on</strong>g>of</str<strong>on</strong>g> events, respectively. As<br />

shown in this gure, <str<strong>on</strong>g>the</str<strong>on</strong>g> maxima for number <str<strong>on</strong>g>of</str<strong>on</strong>g> events are observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthal angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 90<br />

and 270 . The results are c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> scattering.<br />

We also had similar simulati<strong>on</strong> for Rayleigh scattering, and obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> similar results to Compt<strong>on</strong><br />

counts counts<br />

azimuthal angle azimuthal angle<br />

< in original <strong>EGS</strong>4 case > < in new <strong>EGS</strong>4 case><br />

Figure 6: The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> azimuthal angle for scattered X rays by Compt<strong>on</strong> scattering. The left and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

right gures corresp<strong>on</strong>d to simulati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code and <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 code.<br />

scattering. At sec<strong>on</strong>d, using <str<strong>on</strong>g>the</str<strong>on</strong>g> same geometry le, we investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthal<br />

angle for emitted photoelectr<strong>on</strong>s by photoabsorpti<strong>on</strong>. The results for <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

developed <strong>EGS</strong>4 code are shown in Fig.7. From <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> for photoabsorpti<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> maxima <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> events are expected to be at 0 and 180 . So <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> in this gure is<br />

c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> for photoabsorpti<strong>on</strong>. Finally, we had two simulati<strong>on</strong>s<br />

6


counts<br />

counts<br />

azimuthal angle<br />

azimuthal angle<br />

< in original <strong>EGS</strong>4 case > < in new <strong>EGS</strong>4 case><br />

Figure 7: The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> azimuthal angle for emitted photoelectr<strong>on</strong>s by photoabsorpti<strong>on</strong>. The left and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

right gures corresp<strong>on</strong>d to simulati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>EGS</strong>4 code and <str<strong>on</strong>g>the</str<strong>on</strong>g> developed <strong>EGS</strong>4 code.<br />

to check <str<strong>on</strong>g>the</str<strong>on</strong>g> program for uorescence yield. For <strong>on</strong>e simulati<strong>on</strong>, preparing for a geometry le <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

detector made <str<strong>on</strong>g>of</str<strong>on</strong>g> lead (Z=82), X rays with <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 keV were injected to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. For<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e, preparing for a geometry le <str<strong>on</strong>g>of</str<strong>on</strong>g> a detector made <str<strong>on</strong>g>of</str<strong>on</strong>g> arg<strong>on</strong> gas (Z=18) at 2 atm, X rays<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 keV were injected to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. For each case, <str<strong>on</strong>g>the</str<strong>on</strong>g> uorescence yields were<br />

calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s. In table.1, <str<strong>on</strong>g>the</str<strong>on</strong>g> uorescence yields for each case are<br />

summarized. As shown in this table, <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s have good agreements with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data for <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment.<br />

Table 1: The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uorescence yields obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g>m from <str<strong>on</strong>g>the</str<strong>on</strong>g> data for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiment.<br />

lead arg<strong>on</strong> gas<br />

Simulati<strong>on</strong> 97% 11%<br />

Experiment 95% 8 10%<br />

3 Applicati<strong>on</strong> to Gas Counter<br />

Wehave been developing an X-ray polarimeter in use <str<strong>on</strong>g>of</str<strong>on</strong>g> Gas Proporti<strong>on</strong>al Counter with MicroStrip,<br />

sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range from 20 keV to 40 keV[7][8][9]. Fig.8 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MSGC as X-ray polarimeter. As incidentXrays come to <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber, <str<strong>on</strong>g>the</str<strong>on</strong>g> X ray is photoabsorbed and<br />

Figure 8: Schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC as X-ray polarimeter.<br />

7


8<br />

We would like to thank Dr. Y.Namito in <strong>KEK</strong> for o ering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> valuable references.<br />

Acknowledgements<br />

We haveimproved <strong>EGS</strong>4 code to simulate polarized X rays with low energies by applying formulae<br />

for cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> photoabsorpti<strong>on</strong>, Compt<strong>on</strong> scattering, and Rayleigh scattering in c<strong>on</strong>siderati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray polarizati<strong>on</strong>. Moreover, uorescence yields for K-shell were also supported in <str<strong>on</strong>g>the</str<strong>on</strong>g> code. The<br />

code is written with Fortran and users do not have to recompile <str<strong>on</strong>g>the</str<strong>on</strong>g> code even if geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detector is changed. We had computer simulati<strong>on</strong> with this code to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MSGC polarimeter developed by us. C<strong>on</strong>sequently, we c<strong>on</strong> rmed that <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

cloud depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident Xray. Therefore it is possible to detect <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polarizati<strong>on</strong> by using MSGC. In <str<strong>on</strong>g>the</str<strong>on</strong>g> future we will use <strong>EGS</strong>4 to develop a X-ray polarimeter.<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

Figure 9: The x axis and y axis corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> cloud for 22keV polarized X rays and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> events, respectively. The solid line and <str<strong>on</strong>g>the</str<strong>on</strong>g> dashed line corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> x axis and y axis, respectively.<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

[cm]<br />

0<br />

50<br />

100<br />

150<br />

counts<br />

200<br />

250<br />

300<br />

350<br />

400<br />

450<br />

500<br />

photoelectr<strong>on</strong> is emitted. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> i<strong>on</strong>izes gas molecule and electr<strong>on</strong> cloud is created.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> photoelectr<strong>on</strong> tends to be emitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> same directi<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

incident Xray, <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> cloud extends to <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident Xray<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> average. Then it is drifted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> several anode strips, keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> cloud.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case that <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident Xrayis perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> anode strips, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> anode strips with charge signal is more than that in <str<strong>on</strong>g>the</str<strong>on</strong>g> case that it is parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

Thus it is in principle possible to detect <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizati<strong>on</strong> by counting anode strips with charge signal.<br />

To check <str<strong>on</strong>g>the</str<strong>on</strong>g> principle, injecting 22keV polarized X rays parallel to x axis to arg<strong>on</strong> gas at 1 atm, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> cloud for <str<strong>on</strong>g>the</str<strong>on</strong>g> two directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> x and y is simulated. Fig.9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> cloud.


References<br />

[1] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \The <strong>EGS</strong>4 code system", SLAC-265, Stanford<br />

Linear Accelerator Center, 1985.<br />

[2] Y. Namito, S. Ban, and H. Hirayama,\Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lineary-polarized phot<strong>on</strong> scattering into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code", Nucl. Instruum. and Meth. A 332(1994)489-494.<br />

[3] Y. Namito, S. Ban, and H. Hiramaya, \LSCAT: Low-Energy Phot<strong>on</strong>-Scattering Expansi<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>EGS</strong>4 code (Inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> Impact I<strong>on</strong>izati<strong>on</strong>)", <strong>KEK</strong> Internal 2000-4(2000).<br />

[4] H. Tomita, S. Sano, H. Sakurai, M. Noma, S. Gunji, and E. Takase, \Basic Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Unitized<br />

Compt<strong>on</strong> Scattering Type Polarimeter" IEEE Trans. Nucl. Sci. Vol.43 No.3(1996)1527-<br />

1532.<br />

[5] H. Sakurai, S. Saito, M. Noma, S. Gunji, M. Tsukahara, and T. Tamura, \New Type <str<strong>on</strong>g>of</str<strong>on</strong>g> Imaging<br />

X{ray Detector Using a Capillary Plate" <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> SPIE(San Diego) Vol.3114 (1997) pp481-<br />

487.<br />

[6] T. Tamura, H. Sugeno, H. Sakurai, M. Noma, S. Gunji, and P. Gertenbort, \An applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microstrip gas proporti<strong>on</strong>al counter for a X-ray polarimeter" IEEE C<strong>on</strong>f. Rec. 1(1995)234-237.<br />

[7] A. Oed, \Positi<strong>on</strong>-Sensitive Detector with Microstrip Anode for Electr<strong>on</strong> Multiplicati<strong>on</strong> with<br />

Gases", Nucl. Inst. and Meth. A263(1988)351-359.<br />

[8] H. Sugeno, Y. Takamura, H. Sakurai, M. Noma, S. Gunji, and P. Gertenbort, \A Study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rise<br />

Time in a MicroStrip Gas Proporti<strong>on</strong>al Counter for <str<strong>on</strong>g>the</str<strong>on</strong>g> Development <str<strong>on</strong>g>of</str<strong>on</strong>g>anX{rayPolarimeter",<br />

IEEE Trans. Nucl. Sci. Vol.44 No.3(1997)979-984.<br />

[9] T. Tanimori et al., \Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Imaging Microstrip Gas Chamber with 5cm 5cm area based<br />

<strong>on</strong> Multi-Chip Module Technology", INS-Rep., pp1143 May 1996.<br />

[10] Private communicati<strong>on</strong> with Dr.T. Takahashi in ISAS.<br />

9


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.308-315<br />

Unfolding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Measured Spectra and Determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Correcti<strong>on</strong> Factors <str<strong>on</strong>g>of</str<strong>on</strong>g> a Free Air I<strong>on</strong>izati<strong>on</strong> Chamber<br />

Using <strong>EGS</strong>4 Simulati<strong>on</strong>s<br />

G. H. Yoo 1 , K. J. Chun 2 and S. H. Ha 2<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical Engineering, Daebul University,<br />

Young-Arm Kun, Ch<strong>on</strong>nam, S.Korea<br />

2<br />

I<strong>on</strong>izing Radiati<strong>on</strong> Group, Divis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Metrology and Materials Evaluati<strong>on</strong><br />

Korea Research Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards and Science, S. Korea<br />

Abstract<br />

The resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> NaI detector and HPGe detector for incident phot<strong>on</strong>s up to 662 keV were<br />

calculated using <strong>EGS</strong>4 simulati<strong>on</strong>s. The calculated spectra were normalized to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectra<br />

after being smoo<str<strong>on</strong>g>the</str<strong>on</strong>g>d using cubic spline t at highest energies, and were unfolded. The unfolded<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a measured spectrum with NaI detector at a distance 100 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> Cs-137 source<br />

shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>e was c<strong>on</strong>tributed remarkably from <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding materials at low<br />

energy regi<strong>on</strong>. The measured spectra obtained by HPGe detector with a maximum energies 63 keV<br />

and 83 keV were also unfolded. No signi cant di erence is seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> spectra between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured and <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolded <strong>on</strong>es. In a free air i<strong>on</strong>izati<strong>on</strong> chamber <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 cm 24 cm 46<br />

cm, a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s and a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary i<strong>on</strong>izati<strong>on</strong>s were calculated at incident<br />

phot<strong>on</strong> energy from 10 keV to 300 keV in 10 keV steps using <strong>EGS</strong>4 simulati<strong>on</strong>s. The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> total i<strong>on</strong>izati<strong>on</strong> which shows no applicable value up to 130 keV <str<strong>on</strong>g>of</str<strong>on</strong>g> incident<br />

phot<strong>on</strong> energy, rises up from 130 keV to 220 keV and slightly decreases between 220 keV and 260<br />

keV and <str<strong>on</strong>g>the</str<strong>on</strong>g>n increases again up to 300 keV. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hands, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary i<strong>on</strong>izati<strong>on</strong>s<br />

decreases m<strong>on</strong>ot<strong>on</strong>ously with <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> energy.<br />

1 Introducti<strong>on</strong><br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> spectrum that we measure from <str<strong>on</strong>g>the</str<strong>on</strong>g> detector is much di erent from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e that arrives at <str<strong>on</strong>g>the</str<strong>on</strong>g> detector from <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> source. We call <str<strong>on</strong>g>the</str<strong>on</strong>g> former <strong>on</strong>e a measured spectrum<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> latter <strong>on</strong>e a real spectrum. Phot<strong>on</strong> beam radiated from <str<strong>on</strong>g>the</str<strong>on</strong>g> source interact with <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials while <str<strong>on</strong>g>the</str<strong>on</strong>g>y are traveling through <str<strong>on</strong>g>the</str<strong>on</strong>g> medium to <str<strong>on</strong>g>the</str<strong>on</strong>g> detector, and inside <str<strong>on</strong>g>the</str<strong>on</strong>g> detector<br />

before <str<strong>on</strong>g>the</str<strong>on</strong>g>y are measured. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> measured energy spectrum can be signi cantly di erent from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e radiated from <str<strong>on</strong>g>the</str<strong>on</strong>g> source due to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered phot<strong>on</strong>. While <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics<br />

and limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> measurement system make itvery di cult to measure a real spectrum,<br />

it is also possible to obtain a spectrum very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> real <strong>on</strong>e by using a s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware in which all <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement system are c<strong>on</strong>sidered.[1,2,3,4] One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most powerful tools currently<br />

known so far is a computer simulati<strong>on</strong> using <strong>EGS</strong>4 code.[5] Using this code, we can calculate an energy<br />

absorpti<strong>on</strong> spectrum for <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI or HPGe detectors for <str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong> beam with <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

ranging from a few keV to hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> GeV. The energy spectrum thus calculated at many di erent<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> energy can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum through an interpolati<strong>on</strong> in order<br />

to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> real spectrum, which is called unfolding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum.<br />

In this paper, <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> unfolding procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum measured by 3 in. 3 in. NaI<br />

detector at 100 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> Cs-137 source and that by 9 mm 5 mm HPGe detector at 100<br />

cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray generator are presented.[4,6] The result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss<br />

1


<str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s and a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary i<strong>on</strong>izati<strong>on</strong>s for a free air i<strong>on</strong>izati<strong>on</strong> chamber when <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

phot<strong>on</strong> beam is applied is also presented.[7,8,9] The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inner volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> free air<br />

chamber used in this calculati<strong>on</strong> is 24 cm 24 cm 46 cm and <str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong> energy ranges<br />

from 10 keV to 300 keV.<br />

2 Unfolding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Measured Spectrum<br />

2.1 Unfolding <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrum measured with NaI detector<br />

A gamma-ray spectrum was measured by 3 in. 3 in. NaI detector at 100 cm away from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Cs-137 source and analyzed. [Fig.1] The phot<strong>on</strong> beam emitted from Cs-137 are mostly 662 keV<br />

gamma-rays with small porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 32 keV X-ray, but <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum shows a str<strong>on</strong>g peak at<br />

662 keV with a broad background at low energy regi<strong>on</strong>.[4] The str<strong>on</strong>g peak around 662keV appears to<br />

be c<strong>on</strong>tributed by 662 keV phot<strong>on</strong>s. A pulse height distributi<strong>on</strong>s which were calculated using <strong>EGS</strong>4<br />

code with incident phot<strong>on</strong> energy 662 keV are redistributed using a Gaussian distributi<strong>on</strong> functi<strong>on</strong> with<br />

a FWHM (full wave half maximum) 7 %. [Fig.1.(A)] After <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy peak was normalized<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured peak, <str<strong>on</strong>g>the</str<strong>on</strong>g> normalizati<strong>on</strong> result is compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum. The result<br />

shows an excellent agreement in shape for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated and measured <strong>on</strong>e at <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energies<br />

above 450 keV. This explains that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r incident phot<strong>on</strong>s with energy above 450 keV<br />

except 662 keV phot<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> Cs-137. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, in low energy regi<strong>on</strong>s below 450 keV, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spectrum does not match well with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>e. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> measured strength subtracted by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculated <strong>on</strong>e using <strong>EGS</strong>4 code at 662 keV is shown in Fig.1(B). The remaining part is c<strong>on</strong>sidered<br />

to be c<strong>on</strong>tributed by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary scattered phot<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding materials. Divided <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

normalized intensity by <str<strong>on</strong>g>the</str<strong>on</strong>g> detecting ratio at 662 keV, <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolded intensity at 662 keV could be<br />

obtained. This unfolded strength at 662 keV is c<strong>on</strong>sidered as an intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>s which arrived<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> detector with that energy.<br />

To unfold <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining strength, pulse height distributi<strong>on</strong>s at 11 energies were calculated at<br />

incident phot<strong>on</strong> energies from 50 keV to 500 keV. [Fig.1.(C)] The simulated spectra for <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

energies were obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> method. The calculated spectra were redistributed using a<br />

Gaussian distributi<strong>on</strong> functi<strong>on</strong> with a FWHM 7% except <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy peaks. The highest energy<br />

peaks were not redistributed because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venience <str<strong>on</strong>g>of</str<strong>on</strong>g> normalizing <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks to <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining<br />

spectrum. With <str<strong>on</strong>g>the</str<strong>on</strong>g> same method as was applied at 662keV peak, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a calculated spectrum at next energy was normalized to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a remaining<br />

spectrum. Starting from <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a calculated <strong>on</strong>e was multiplied by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same normalizati<strong>on</strong> factor and was subtracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining spectrum. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolded<br />

intensity at<str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy can be obtained by dividing <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> a measured peak at that<br />

energy by a peak detecting ratio. This process was repeated in a descending order down to zero energy.<br />

The unfolded spectrum is shown in Fig.1.(D). The results show that 68% <str<strong>on</strong>g>of</str<strong>on</strong>g> whole strength are from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Cs-137 source, and 32% are c<strong>on</strong>tributed by <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding materials.<br />

2.2 Unfolding <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrum measured with HPGe detector<br />

The c<strong>on</strong>tinuous energy X-rays produced by a X-ray generator with maximum energies 63 keV<br />

and 82 keV, were measured by using a HPGe detector (9 mm diameter, 5 mm thickness and 5.23<br />

g/cm 3 density for Ge crystal, 0.5 mm thick Be window, and 1 cm thick Al case), and was analyzed<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> same unfolding method as that <str<strong>on</strong>g>of</str<strong>on</strong>g> Cs-137 gamma-ray. However, in this procedure <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gaussian distributi<strong>on</strong> functi<strong>on</strong> was not applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated spectrum because <str<strong>on</strong>g>of</str<strong>on</strong>g> a very good<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.5 keV, which is less than <str<strong>on</strong>g>the</str<strong>on</strong>g> energy bin used in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>.[Fig.2] Due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary scattered phot<strong>on</strong>s coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding materials, <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum has<br />

di erent energy distributi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> source. The spectra measured by HPGe<br />

detector with maximum energies at 63 keV and 82 keV are shown in Fig.3. The unfolding procedure<br />

has been performed to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated spectra using <strong>EGS</strong>4 code with <str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong> energies<br />

2


from 5 keV to 85 keV in 5 keV step and several <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are given in Fig.2. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no signi cant<br />

peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectra at <str<strong>on</strong>g>the</str<strong>on</strong>g> high energy regi<strong>on</strong>, like 662 keV peak in a spectrum by NaI<br />

detector, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a calculated spectrum was normalized to <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highest energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a measured spectrum, and was subtracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum. The<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r steps are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as in NaI detector. The unfolded spectra which were arrived at <str<strong>on</strong>g>the</str<strong>on</strong>g> detector<br />

are given in Fig.3.(C) and Fig.3.(D).<br />

3 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> correcti<strong>on</strong> factors <str<strong>on</strong>g>of</str<strong>on</strong>g> a Free Air I<strong>on</strong>izati<strong>on</strong> Chamber<br />

using <strong>EGS</strong>4 Simulati<strong>on</strong>s<br />

Free air i<strong>on</strong>izati<strong>on</strong> chamber plays an important role in a measurement <str<strong>on</strong>g>of</str<strong>on</strong>g>gammaray exposure. An<br />

air lled i<strong>on</strong>izati<strong>on</strong> chamber is well matched to this applicati<strong>on</strong> because an exposure is expressed in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> charge created in air. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quantities to describe an exposure<br />

is kerma (kinetic energy released in material). [6,7,8,9] [Fig.4.(A)] Kerma is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> transferred<br />

kinetic energy to <str<strong>on</strong>g>the</str<strong>on</strong>g> charged particles per unit mass at a point <str<strong>on</strong>g>of</str<strong>on</strong>g>interest by radiati<strong>on</strong>. It is expressed<br />

as<br />

K = dEtr <br />

dm<br />

where unit is 1Gy=1J=kg<br />

=<br />

I<br />

v o<br />

W<br />

e<br />

1<br />

1 ; g<br />

Ki where I : i<strong>on</strong>izati<strong>on</strong> current (A)<br />

W<br />

e<br />

v : sensitive volume (cm 3 )<br />

: required energy to make an i<strong>on</strong> pair (33:97 eV=pair)<br />

o : speci c gravity <str<strong>on</strong>g>of</str<strong>on</strong>g> dried air at STP (1:293 10 ;3 )<br />

K i = K sc K e K a K s K p K l K h<br />

where K sc = sec<strong>on</strong>dary scattered photo inizati<strong>on</strong> factor(e4)<br />

K e = loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> correcti<strong>on</strong> factor(e5)<br />

K a = diminishing factor due to air between <str<strong>on</strong>g>the</str<strong>on</strong>g> de ning plane<br />

and collector<br />

K s = i<strong>on</strong> recombinati<strong>on</strong> correcti<strong>on</strong> factor<br />

K p = polarity e ect <str<strong>on</strong>g>of</str<strong>on</strong>g> collecting electr<strong>on</strong>s<br />

K l = diaphragm penetrati<strong>on</strong> correcti<strong>on</strong> factor<br />

K h = humidity correcti<strong>on</strong> factor:<br />

As we see from <str<strong>on</strong>g>the</str<strong>on</strong>g> above equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several parameters to be determined to calculate kerma.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters, we calculated a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s (K e) and a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

i<strong>on</strong>izati<strong>on</strong>s (K sc) for a free air i<strong>on</strong> chamber composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 cm 24 cm 46 cm, at phot<strong>on</strong>'s incident<br />

energies from 10 keV to 300 keV with 10 keV steps for <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.1 mm diameter beam using <strong>EGS</strong>4<br />

simulati<strong>on</strong>s.<br />

3.1 1 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s<br />

As X-ray beam passes through <str<strong>on</strong>g>the</str<strong>on</strong>g> inner volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a free air chamber occupied by air, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

collide with air particles and make various kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m i<strong>on</strong>ize air particles<br />

by photo-absorpti<strong>on</strong> or Compt<strong>on</strong> scattering and produce pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> free electr<strong>on</strong> (recoiled electr<strong>on</strong>) and<br />

positive i<strong>on</strong>. The recoiled electr<strong>on</strong> has kinetic energy almost equivalent to <strong>on</strong>e which X-ray loses<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> rst interacti<strong>on</strong> subtracted by <str<strong>on</strong>g>the</str<strong>on</strong>g> binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recoiled electr<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> atom. These<br />

recoiled electr<strong>on</strong>s interact with air particles and i<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g>m until <str<strong>on</strong>g>the</str<strong>on</strong>g>y lose all <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>the</str<strong>on</strong>g>y possess.<br />

3


Theoretically, all <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> volume can be collected by applying a high voltage<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> top and bottom plates surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g> volume. However, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recoiled electr<strong>on</strong>s<br />

happen to hit <str<strong>on</strong>g>the</str<strong>on</strong>g> plates <str<strong>on</strong>g>of</str<strong>on</strong>g> a chamber before losing all <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energies. This phenomen<strong>on</strong> causes a<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> current and should be corrected by <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical calculati<strong>on</strong>. In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> incident<br />

phot<strong>on</strong>s with energy from 10 keV to 300 keV have been used in this simulati<strong>on</strong> in 10 keV step. The<br />

phot<strong>on</strong>s entered into <str<strong>on</strong>g>the</str<strong>on</strong>g> volume through a 0.1 mm diameter hole and passed 46 cm distance before<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y reach <str<strong>on</strong>g>the</str<strong>on</strong>g> guard strips in <str<strong>on</strong>g>the</str<strong>on</strong>g> backside. The sensitive volume (0.1 mm diameter, 10 cm l<strong>on</strong>g)<br />

locates in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber, 18 cm away from fr<strong>on</strong>t wall and 12 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> side walls.<br />

[Fig.4.(A)] We tried to trace all <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s and phot<strong>on</strong>s that were produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> volume until <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

lose all <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energies or go out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> volume completely. The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> energy absorbed from i<strong>on</strong>ized<br />

electr<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> plates <str<strong>on</strong>g>of</str<strong>on</strong>g> a chamber to <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy absorbed in <str<strong>on</strong>g>the</str<strong>on</strong>g> air inside <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber, which<br />

is de ned as a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> was obtained and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are given in Fig.4.(B). In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

incident phot<strong>on</strong> energy below 130 keV, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio is negligible, in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, no electr<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy less than 130 keV produced by primary scattering process could reach <str<strong>on</strong>g>the</str<strong>on</strong>g> plates. The ratio<br />

exhibits increase starting from 130 keV up to 220 keV, slight decrease up to 260 keV and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

increase up to 300 keV.<br />

3.2 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary i<strong>on</strong>izati<strong>on</strong><br />

Besides <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>s described in secti<strong>on</strong> 3.1, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primarily scattered phot<strong>on</strong>s collide<br />

with air particles again and i<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g>m outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivevolume. This process is called sec<strong>on</strong>dary<br />

i<strong>on</strong>izati<strong>on</strong>, and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>s produced in this process should not be taken into count and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tributi<strong>on</strong> due to it should be corrected. To do this, we followed <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong>'s track in <strong>EGS</strong>4<br />

simulati<strong>on</strong>s and summed <str<strong>on</strong>g>the</str<strong>on</strong>g> energies transferred from <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> air particles when it occurred<br />

outside <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitive volume. The relative ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> this energy to <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy absorbed by air<br />

particles inside <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber was calculated for <str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong> energies from 20 keV to 300 keV<br />

in 10 keV steps. The results are given in Fig.4.(C). In <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy below around 20 keV, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ratio is about 0.8% and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio decreases m<strong>on</strong>ot<strong>on</strong>ously as <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energies goes up to 300 keV,<br />

yielding <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2% at 300 keV.<br />

4 Summaries<br />

M<strong>on</strong>te Carlo simulati<strong>on</strong> using <strong>EGS</strong>4 was used in unfolding process and in determining <str<strong>on</strong>g>the</str<strong>on</strong>g> correcti<strong>on</strong><br />

factors <str<strong>on</strong>g>of</str<strong>on</strong>g> free air i<strong>on</strong>izati<strong>on</strong> chamber. For <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum measured by NaI detector at 100 cm away<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> Cs-137, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s smoo<str<strong>on</strong>g>the</str<strong>on</strong>g>d with Gaussian distributi<strong>on</strong> and cubic spline show that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectrum was c<strong>on</strong>tributed str<strong>on</strong>gly by <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding materials at low energies. For<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum measured by HPGe detector at 100 cm away from <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray generator, <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse height<br />

distributi<strong>on</strong>s obtained with <strong>EGS</strong>4 simulati<strong>on</strong>s were normalized to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured spectra without curve<br />

t because <str<strong>on</strong>g>of</str<strong>on</strong>g> a good energy resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray. The comparis<strong>on</strong> explains that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong>s is also c<strong>on</strong>tinuous like <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <strong>on</strong>es. In a free air i<strong>on</strong>izati<strong>on</strong> chamber composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a parallel plate with a distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> two plates, 24 cm, <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total i<strong>on</strong>izati<strong>on</strong> is negligible up to 130 keV <str<strong>on</strong>g>of</str<strong>on</strong>g> incident phot<strong>on</strong> energy. Whereas, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

i<strong>on</strong>izati<strong>on</strong>s which are dominant at low energy decreases m<strong>on</strong>ot<strong>on</strong>ously as <str<strong>on</strong>g>the</str<strong>on</strong>g> energy increases. At<br />

incident phot<strong>on</strong> energies lower than 290 keV, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary i<strong>on</strong>izati<strong>on</strong>s is larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s. At energies higher than 290 keV, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s is dominant.<br />

References<br />

[1] Radiati<strong>on</strong> Quantities and Units, ICRU Report 33 (1980).<br />

[2] <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Organizati<strong>on</strong> for Standardizati<strong>on</strong>, X and gamma reference radiati<strong>on</strong>s for calibrating<br />

dosimeters and doserate meters and for determining <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resp<strong>on</strong>se as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> energy.<br />

4


Part 1 : Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir methods <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>, Revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ISO 4037:<br />

1979,ISO/DIS 4037-1,(1994).<br />

[3] Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards Technology, Criteria for <str<strong>on</strong>g>the</str<strong>on</strong>g> Operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Federally-Owned <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g>ary<br />

Calibrati<strong>on</strong> Laboratories(I<strong>on</strong>izing Radiati<strong>on</strong>), NIST SP 812 (1991).<br />

[4] G. F. Knoll, \Raidati<strong>on</strong> detecti<strong>on</strong> and measurement", John Wiley and S<strong>on</strong>s, 1989.<br />

[5] W. R. Nels<strong>on</strong>, H. Hirayama and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System", SLACX-265,<br />

Stanford Linear Accelerator Center, 1985.<br />

[6] S. M. Seltzer, Nucl. Instr. Meth, 188(1981)133-151.<br />

[7] F. H. Attix, \Introducti<strong>on</strong> to radiological physics and radiati<strong>on</strong> dosimetry", John Wiley and S<strong>on</strong>s<br />

(1986).<br />

[8] A. R. S. Marsh and T. T. Williams, \50 kV Primary Standard <str<strong>on</strong>g>of</str<strong>on</strong>g> Exposure: Design <str<strong>on</strong>g>of</str<strong>on</strong>g> Free-Air<br />

Chamber", NPL Report RS (Ext) 54 (1982).<br />

[9] M. Boutill<strong>on</strong>, \Volume recombinati<strong>on</strong> parameter in i<strong>on</strong>izati<strong>on</strong> chambers", Phys. Med. Biol.<br />

43(1998)2061-2072.<br />

5


Figure 1: (A) A spectrum measured with a NaI(3"x3") detector at 100 cm away from a radiati<strong>on</strong> source Cs-137<br />

is compared with a spectrum obtained using <strong>EGS</strong>4 simulati<strong>on</strong>s for 662keV incident phot<strong>on</strong>s. (B) Measured<br />

strength subtracted by <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated strength. A small porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strength above 430 keV were neglected<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolding process. (C) Calculated spectra for a NaI (3 in. X 3 in.) detector using <strong>EGS</strong>4 code at di erent<br />

incident phot<strong>on</strong>'s energies. (D) Unfolded energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s that arrived at <str<strong>on</strong>g>the</str<strong>on</strong>g> detector. The number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4.5 10 5 means <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident phot<strong>on</strong>s that arrived at <str<strong>on</strong>g>the</str<strong>on</strong>g> detector with 662 keV from Cs-137<br />

and 2.14 10 5 means <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s scattered from <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding materials. The numbers in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

paren<str<strong>on</strong>g>the</str<strong>on</strong>g>sis mean <str<strong>on</strong>g>the</str<strong>on</strong>g> relative strengths.<br />

6


Figure 2: Calculated spectra using <strong>EGS</strong>4 code for <str<strong>on</strong>g>the</str<strong>on</strong>g> HPGe detector at di erent incident phot<strong>on</strong>'s energies.<br />

Totally, 17 spectra obtained at <str<strong>on</strong>g>the</str<strong>on</strong>g> energies from 5keV to 85keV in 5keV steps were used for interpolati<strong>on</strong>.<br />

Figure 3: (A) Measured spectrum with a HPGe detector for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous X-rays <str<strong>on</strong>g>of</str<strong>on</strong>g> energies upto 63 keV.<br />

(B) Measured spectrum with <str<strong>on</strong>g>the</str<strong>on</strong>g> same HPGe detector for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous X-rays <str<strong>on</strong>g>of</str<strong>on</strong>g> energies upto 82 keV. (C)<br />

Unfolded spectrum for measured spectrum (A). (D) Unfolded spectrum for measured spectrum (B).<br />

7


Figure 4: (A) Diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> free air i<strong>on</strong>izati<strong>on</strong> chamber. Incident phot<strong>on</strong> beams pass through <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.1mm<br />

diameter hole. The energies used in this simulati<strong>on</strong> are from 10 kev to 300 keV in 10 keV step. (B) A ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> total air i<strong>on</strong>izati<strong>on</strong>s inside <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. (C) A ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> air i<strong>on</strong>izati<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

scattered phot<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> total air i<strong>on</strong>izati<strong>on</strong>s.<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.316-323<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I<strong>on</strong>izati<strong>on</strong> and Scintillati<strong>on</strong> Signals<br />

in a Liquid I<strong>on</strong>izati<strong>on</strong> Drift Chamber<br />

T. Shimoyama, E. Shibamura 1 , M. Miyajima<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics, Fukui University<br />

3-9-1, Bunkyo, Fukui-shi, 910-8507, Japan<br />

1 College <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Science, Saitama Pref. University<br />

820, San-nomiya, Koshigaya-shi, Saitama-ken, 343-8540, Japan<br />

Abstract<br />

In order to search for double beta-decay events under existence <str<strong>on</strong>g>of</str<strong>on</strong>g> many background events,<br />

We have simulated double beta-decay events <str<strong>on</strong>g>of</str<strong>on</strong>g> 136 Xe in liquid xen<strong>on</strong> i<strong>on</strong>izati<strong>on</strong> drift chamber by<br />

<strong>EGS</strong>/PRESTA M<strong>on</strong>te Carlo code to c<strong>on</strong>struct data-sets for analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vertex point from i<strong>on</strong>izati<strong>on</strong> and scintillati<strong>on</strong> signals, which are observed with collecting charges<br />

and scintillati<strong>on</strong> phot<strong>on</strong>s generated by two beta-particles in liquid xen<strong>on</strong>. The i<strong>on</strong>izati<strong>on</strong> drift<br />

chamber is a single gridded i<strong>on</strong>izati<strong>on</strong> chamber with a segmented collector <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 50 42mm 3 in<br />

size.<br />

The positi<strong>on</strong> resoluti<strong>on</strong>s, which are calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> drift time and <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

swarms formed by two beta-particles, were Y0 =1:501 0:004mm and Z0 =0:1249 0:005,<br />

Y2 = 0:1231 0:003mm and Z2 = 0:0747 0:002mm, respectively. The same, which are<br />

calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s observed at each photo-multiplier, were Y0 =<br />

9:92 0:06mm and Z0 = 8:56 0:05, Y2 = 9:58 0:05mm and Z2 = 8:44 0:05mm,<br />

respectively.<br />

1 Introducti<strong>on</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two main decaychannels, (A Z) ! (A Z+2)+e1+e2+ e1+ e2<br />

(2 2 mode) and (A Z) ! (A Z +2)+e1 + e2 (2 0 mode). Two-neutrino decay (2 2 ) can be<br />

understood by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d order weak intaracti<strong>on</strong>. In neutrinoless decay (2 0 ), a neutrino emitted at<br />

single beta decay is absorbed by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r nucle<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> nucle<strong>on</strong> decays by emitting an electr<strong>on</strong>. This<br />

decay will be possible if neutrino is massive Majorana neutrino and/or right-handed current exists.[1]<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, this decay violates <str<strong>on</strong>g>the</str<strong>on</strong>g> law <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong> number coservati<strong>on</strong>. So <str<strong>on</strong>g>the</str<strong>on</strong>g>re must be physics<br />

bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> standard model.<br />

In double beta-decay searches, we can <strong>on</strong>ly observe two emitted beta rays at a decay, <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> energy is normally low. Therefore, we have to look for double beta-decay events under<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> many background events, which are due to envir<strong>on</strong>mental radiati<strong>on</strong>, cosmic rays and so<br />

<strong>on</strong>.<br />

We have proposed a liquid xen<strong>on</strong> i<strong>on</strong>izati<strong>on</strong> drift chamber equipped with a daughter identi cati<strong>on</strong><br />

system by laser uorescence to search for double beta decay events <str<strong>on</strong>g>of</str<strong>on</strong>g> 136 Xe.[2] Liquid xen<strong>on</strong> will be<br />

used for <str<strong>on</strong>g>the</str<strong>on</strong>g> following several reas<strong>on</strong>s:<br />

1. <str<strong>on</strong>g>the</str<strong>on</strong>g> W-value <str<strong>on</strong>g>of</str<strong>on</strong>g> 15:6eV [3] is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest am<strong>on</strong>g liquid inert gases, so we can expect larger signal<br />

sizes with a relatively good energy resoluti<strong>on</strong>.<br />

2. electr<strong>on</strong>s in liquid xen<strong>on</strong> moves with relatively large mobility and <str<strong>on</strong>g>the</str<strong>on</strong>g> drift velocity is almost<br />

c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g>about3mm= sec under <str<strong>on</strong>g>the</str<strong>on</strong>g> electric eld <str<strong>on</strong>g>of</str<strong>on</strong>g> 3kV=cm or higher[4, 5], so we can expect<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> chamber will be operated as an drift chamber.<br />

1


3. <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong>, whichisvery fast phenomena, can be used as <str<strong>on</strong>g>the</str<strong>on</strong>g> trigger signal <str<strong>on</strong>g>of</str<strong>on</strong>g> events because<br />

that is observable with i<strong>on</strong>izati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time.[6]<br />

4. <str<strong>on</strong>g>the</str<strong>on</strong>g> daughter i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 136 Xe are expected to be stable in liquid xen<strong>on</strong> and move slowly under an<br />

electric elds.[7]<br />

The detector previously proposed is a semi-cylindrical gridded i<strong>on</strong>izati<strong>on</strong> chamber. Segmented<br />

electrodes xed at <str<strong>on</strong>g>the</str<strong>on</strong>g> inside surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outermost cylinder collect electr<strong>on</strong>s liberated by two beta<br />

rays and determine <str<strong>on</strong>g>the</str<strong>on</strong>g> sum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> two beta rays and <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> decay from <str<strong>on</strong>g>the</str<strong>on</strong>g> drift time<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> swarm from <str<strong>on</strong>g>the</str<strong>on</strong>g> segment positi<strong>on</strong>. The daughter i<strong>on</strong> drifts toward <str<strong>on</strong>g>the</str<strong>on</strong>g> central electrode<br />

and will be observed near <str<strong>on</strong>g>the</str<strong>on</strong>g> electrode with photo-multiplier tubes xed above <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

laser uorescence.<br />

Here, we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> and scintillati<strong>on</strong> signals <strong>on</strong> a di erent<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid xen<strong>on</strong> i<strong>on</strong>izati<strong>on</strong> drift chamber for comparis<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous detector. In order<br />

to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> signal sizes which we can obtain in <str<strong>on</strong>g>the</str<strong>on</strong>g> detector, we c<strong>on</strong>struct data-sets composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two beta rays emitted at a double beta decay simulated with <strong>EGS</strong>/PRESTA<br />

code. From two data-sets <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>e is for 2 2 mode and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r is for 2 0 mode, we calculated<br />

distances between <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex point <str<strong>on</strong>g>of</str<strong>on</strong>g> a double beta decay and <str<strong>on</strong>g>the</str<strong>on</strong>g> point determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong><br />

and scintillati<strong>on</strong> signals to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> beam size for laser shot. We also calculated detecti<strong>on</strong> e ciencies<br />

and e ective volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector to <str<strong>on</strong>g>the</str<strong>on</strong>g> both mode, and energy spectra <strong>on</strong> a triggering level<br />

by observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scintillati<strong>on</strong> phot<strong>on</strong>s.<br />

2 Detector<br />

The detector used in this simulati<strong>on</strong> is a plane parallel liquid xen<strong>on</strong> single gridded i<strong>on</strong>izati<strong>on</strong> drift<br />

chamber equipped with a daughter identi cati<strong>on</strong> system by laser uorescence. The schematic drawing<br />

is shown in Fig.1 without <str<strong>on</strong>g>the</str<strong>on</strong>g> daughter identi cati<strong>on</strong> system. The laser beam to identify daughter i<strong>on</strong>s<br />

is shot to a X-directi<strong>on</strong>. The volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber is 200 50 42mm 3 . The collector electrode,<br />

which collects electr<strong>on</strong> swarms liberated by two beta rays, locates at <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom and is segmented<br />

into 20 strips <str<strong>on</strong>g>of</str<strong>on</strong>g> 2mm 200mm with a pitch <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:5mm. The Frish grid is an array <str<strong>on</strong>g>of</str<strong>on</strong>g> gold plated<br />

tungsten wires <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 m in diameter. The grid is located at 2mm above <str<strong>on</strong>g>the</str<strong>on</strong>g> collector and <str<strong>on</strong>g>the</str<strong>on</strong>g> wires<br />

are strung with a spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> 1mm parallel to Y -directi<strong>on</strong>. The cathode, which collect <str<strong>on</strong>g>the</str<strong>on</strong>g> daughter<br />

i<strong>on</strong>s, situates at 40mm above <str<strong>on</strong>g>the</str<strong>on</strong>g> grid. In order to observe <str<strong>on</strong>g>the</str<strong>on</strong>g> scintillati<strong>on</strong> (VUV) and uorescence<br />

(visible) phot<strong>on</strong>s, two di erent types <str<strong>on</strong>g>of</str<strong>on</strong>g> photo-multiplier tube (PMT), <str<strong>on</strong>g>of</str<strong>on</strong>g> which 10 PMTs <str<strong>on</strong>g>of</str<strong>on</strong>g> 12:5mm<br />

in diameter are for VUV phot<strong>on</strong>s and 4 PMTs <str<strong>on</strong>g>of</str<strong>on</strong>g> 50mm in diameter are for visible phot<strong>on</strong>s, are<br />

xed just above <str<strong>on</strong>g>the</str<strong>on</strong>g> cathode. The scintillati<strong>on</strong> signals are used to trigger <str<strong>on</strong>g>the</str<strong>on</strong>g> circuit for drift time<br />

measurements and also used to roughly estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a daughter i<strong>on</strong> in a double beta decay<br />

event. The sum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> two beta rays is measured with <str<strong>on</strong>g>the</str<strong>on</strong>g> total i<strong>on</strong>izati<strong>on</strong> yields collected at each<br />

segmented electrode. The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> daughter i<strong>on</strong> is accurately determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> yields <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> several segments and <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> drift times.<br />

3 Simulati<strong>on</strong> model<br />

The detector medium is liquid xen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% enriched 136 Xe which is <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay<br />

source. The density <str<strong>on</strong>g>of</str<strong>on</strong>g>liquidis3:06g=cm 3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> total weight 1:24kg. The chamber is divided into<br />

two volumes, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>e is active and drift space <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> swarms and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r is <str<strong>on</strong>g>the</str<strong>on</strong>g> dead<br />

volume between <str<strong>on</strong>g>the</str<strong>on</strong>g> collector and <str<strong>on</strong>g>the</str<strong>on</strong>g> grid. The whole volume <str<strong>on</strong>g>of</str<strong>on</strong>g> detector is divided into 200 50 42<br />

cells and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> due to two beta rays in each cell is simulated by <strong>EGS</strong>4code.At each<br />

event <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decays, <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex point, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in which any<br />

energy depositi<strong>on</strong> exists, and an assembly that <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cell are all memorized into a data-set. The source <str<strong>on</strong>g>of</str<strong>on</strong>g> double beta decays is uniformly distributed<br />

2


inside <str<strong>on</strong>g>the</str<strong>on</strong>g> whole volume. Then, we produced two data-sets <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>e is for 2 0 decays and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r is for 2 2 decays.<br />

3.1 2 0 decay<br />

The sum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> two betarays emitted through this mode is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> Q-value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:479MeV .<br />

Then, <strong>on</strong>e electr<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy T1 in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> mass is generated according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

distributi<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq.1[8] and <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> sum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:479MeV .<br />

The distributi<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single electr<strong>on</strong> in 2 0 decay isgiven by<br />

F (T1) =(T1 +1) 2 (T0 +1; T1) 2 (1)<br />

where T1 is kinetic energy in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> mass energy, T0 is Q-value in <str<strong>on</strong>g>the</str<strong>on</strong>g> same unit. In<br />

simulati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two electr<strong>on</strong>s are assumed to emit simply back-to-back.<br />

3.2 2 2 decay<br />

In 2 2 decay, <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single electr<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> sum energy are given by<br />

F1(T1) =(T1 +1) 2 h<br />

6<br />

(T0 ; T1) (T0 ; T1) 2 i<br />

+8(T0 ; T1)+28<br />

(2)<br />

F (T )=(T 4 +10T 3 +40T 2 +60T +30)T (T0 ; T ) 5 (3)<br />

where T1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> single electr<strong>on</strong>, T0 <str<strong>on</strong>g>the</str<strong>on</strong>g> Q-value, and T <str<strong>on</strong>g>the</str<strong>on</strong>g> sum-energy <str<strong>on</strong>g>of</str<strong>on</strong>g> emitted<br />

electr<strong>on</strong>s. T1, T0, T are all given in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> mass energy. One electr<strong>on</strong> with kinetic energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T1 is generated according to Eq.2 [8] and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r electr<strong>on</strong> is generated to satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong><br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sum energy T given by Eq.3.The two electr<strong>on</strong>s are assumed to emit back-to-back.<br />

4 I<strong>on</strong>izati<strong>on</strong> and Scintillati<strong>on</strong> Signals<br />

In order to get signal sizes from <str<strong>on</strong>g>the</str<strong>on</strong>g> data-sets menti<strong>on</strong>ed above, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy depositi<strong>on</strong> in every cell<br />

is c<strong>on</strong>verted to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and phot<strong>on</strong>s by using <str<strong>on</strong>g>the</str<strong>on</strong>g> W-value (15:6eV ) for i<strong>on</strong>izati<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ws-value (16:3eV ) for scintillati<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s emitted under <str<strong>on</strong>g>the</str<strong>on</strong>g> electric<br />

eld <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> is reduced to almost 1=3. Then, we use an estimated value <str<strong>on</strong>g>of</str<strong>on</strong>g> 50eV=phot<strong>on</strong> to get<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s.<br />

4.1 I<strong>on</strong>izati<strong>on</strong> signals<br />

In order to properly operate <str<strong>on</strong>g>the</str<strong>on</strong>g> drift chamber, <str<strong>on</strong>g>the</str<strong>on</strong>g> electric eld between <str<strong>on</strong>g>the</str<strong>on</strong>g> grid and <str<strong>on</strong>g>the</str<strong>on</strong>g> collector<br />

is so kept 2 to 3 times str<strong>on</strong>ger than <strong>on</strong>e between <str<strong>on</strong>g>the</str<strong>on</strong>g> grid and <str<strong>on</strong>g>the</str<strong>on</strong>g> cathode that <str<strong>on</strong>g>the</str<strong>on</strong>g> grid does not<br />

capture even a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> swarms. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> drift velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> grid<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> collector is slightly larger than that between <str<strong>on</strong>g>the</str<strong>on</strong>g> cathode and <str<strong>on</strong>g>the</str<strong>on</strong>g> grid. Here, we used drift<br />

velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:1mm= sec and 1:9mm= sec, respectively, to calculate rise times <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> signals at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> collector segments. The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s collected at <str<strong>on</strong>g>the</str<strong>on</strong>g> collector was calculated event<br />

by event and was again c<strong>on</strong>verted to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy. The total energy depositi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> active volume<br />

is shown in Fig.2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 0 decay mode. The spectrum in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 2 decay events<br />

is also shown in Fig.3. The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an event <strong>on</strong> Y -directi<strong>on</strong> was determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> charge distributi<strong>on</strong> spread over several collector segments. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex<br />

point and <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> events was calculated. The displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex<br />

point isshown in Fig.4 in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 0 decay mode. The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> every event <strong>on</strong> Z-directi<strong>on</strong><br />

was calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> drift time when 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s reached to <str<strong>on</strong>g>the</str<strong>on</strong>g> collector and <str<strong>on</strong>g>the</str<strong>on</strong>g> drift time<br />

was c<strong>on</strong>verted to <str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> collector. The displacement <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> determined with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> drift time from <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex point is plotted in Fig.5 in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 0 decay events. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 2 2 decay events, <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement <strong>on</strong>Y -directi<strong>on</strong> is shown in Fig.6 and <str<strong>on</strong>g>the</str<strong>on</strong>g> same <strong>on</strong> Z-directi<strong>on</strong><br />

is shown in Fig.7.<br />

3


4.2 Scintillati<strong>on</strong> signals<br />

The VUV sensitive PMT observes scintillati<strong>on</strong> phot<strong>on</strong>s. The energy depositi<strong>on</strong> in every cell is<br />

c<strong>on</strong>verted to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s at every PMT, using <str<strong>on</strong>g>the</str<strong>on</strong>g> solid angle subtended by every<br />

PMT to every cell and assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> PMT is 10%. Since this calculati<strong>on</strong><br />

generates fracti<strong>on</strong>al gures in <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s, we obtained its integral number, assuming<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong>al photoelectr<strong>on</strong> number shows an expected value in Poiss<strong>on</strong> distributi<strong>on</strong>. The histograms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> determined with <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s at every PMT from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> vertex point are shown in Fig.8 to 11 for <str<strong>on</strong>g>the</str<strong>on</strong>g> both cases <str<strong>on</strong>g>of</str<strong>on</strong>g> decay modes.<br />

5 Results and Discussi<strong>on</strong>s<br />

We can estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciencies for detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> double beta decay events in <str<strong>on</strong>g>the</str<strong>on</strong>g> both decay<br />

modes. Firstly, we blur <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum shown in Fig.1 with uctuati<strong>on</strong>s due to electr<strong>on</strong>ic noise <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> preampli er, rise time e ect in shaping circuit, shielding ine ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grid and i<strong>on</strong>izati<strong>on</strong><br />

straggling. Assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resoluti<strong>on</strong> is determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> total width due to those e ects,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency, which is de ned as a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> counts detected with <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

interval inside 2 FWHM at <str<strong>on</strong>g>the</str<strong>on</strong>g> peak to <str<strong>on</strong>g>the</str<strong>on</strong>g> total events, is plotted as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

resoluti<strong>on</strong> in Fig.12 in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 0 decay mode. We expect <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> about 84%<br />

with a plausible resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 to 4%. The e ciency in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 2 decay mode is largely depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> system and is plotted as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> threshold in Fig.13. A<br />

factor, which determines <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold energy in 2 2 decay events, is a triggering level determined<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong>s. As <str<strong>on</strong>g>the</str<strong>on</strong>g> level increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> e ciency decreases as shown in Fig.14.<br />

As our next step, <str<strong>on</strong>g>the</str<strong>on</strong>g> angular correlati<strong>on</strong> should be incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double<br />

beta decays, because we assume two beta rays emit back-to-back in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

References<br />

[1] M. Doi et al., Prog. Th. Phys. 66(1981)1739 M. Doi et al., Prog. Th. Phys. 66(1981)1765.<br />

[2] M.Miyajima et al., AIPc<strong>on</strong>f. Proc. 388, Res<strong>on</strong>ance I<strong>on</strong>izati<strong>on</strong> Spectroscopy 253(1996).<br />

[3] T. Takahashi et al., Phys. Rev. 12A(1975)1771.<br />

[4] L. S. Miller, S. Home and W. E. Spear, Phys. Rev. 116(1968)871.<br />

[5] M. Miyajima et al., IEEE Trans. Nucl. Sci. NS39(1992)536.<br />

[6] S. Kubota et al., Nucl. Instr. and Meth. 196(1982)101.<br />

[7] M. Miyajima et al., Presented at <str<strong>on</strong>g>the</str<strong>on</strong>g> 55th <str<strong>on</strong>g>the</str<strong>on</strong>g> meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Sep. 2000.<br />

[8] V. I. Tretyak and YU. G. Zdesenko, At. Data Nucl. Data Tabl. 61(1993)43.<br />

4


0<br />

42mm<br />

PMT<br />

scintillati<strong>on</strong><br />

PMT<br />

fluorescence<br />

PMT<br />

fluorescence<br />

50mm<br />

200mm<br />

PMT<br />

flourescence<br />

PMT<br />

fluorescence<br />

Figure 1: Simulati<strong>on</strong> model for <strong>EGS</strong>4. Size:200 50 42mm 3 , matter:liquid xen<strong>on</strong> enriched 136 Xe (outside:<br />

vacuum)<br />

Count<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

0 0.5 1 1.5 2 2.5 3<br />

Energy(MeV)<br />

Figure 2: Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy depositi<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> active volume in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 0 decay<br />

events<br />

Count<br />

10 3<br />

10 2<br />

10<br />

1<br />

Z<br />

X<br />

Y<br />

0 0.5 1 1.5 2 2.5 3<br />

Energy(MeV)<br />

Figure 3: Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy depositi<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> active volume in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 2 decay<br />

events<br />

5


Count<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

C<strong>on</strong>stant 4680.<br />

Mean 0.1617E-03<br />

Sigma 0.6391E-01<br />

0-1<br />

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

∆Y(cm)<br />

Figure 4: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> charge signals from strips in<br />

2 0 decay<br />

Count<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

C<strong>on</strong>stant 5697.<br />

Mean 0.2732E-04<br />

Sigma 0.5240E-01<br />

0-1<br />

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

∆Y(cm)<br />

Figure 6: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> charge signals from strips in<br />

2 2 decay<br />

Count<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

C<strong>on</strong>stant 5348.<br />

Mean 0.2398E-01<br />

Sigma 0.5317E-01<br />

0-1<br />

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

∆Z(cm)<br />

Figure 5: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> charge signals from strips in<br />

2 0 decay<br />

Count<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

C<strong>on</strong>stant 9109.<br />

Mean 0.9443E-02<br />

Sigma 0.3179E-01<br />

0-1<br />

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

∆Z(cm)<br />

Figure 7: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> charge signals from strips in<br />

2 2 decay<br />

6


Count<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

C<strong>on</strong>stant 1311.<br />

Mean -0.8838E-01<br />

Sigma 0.4220<br />

0-4<br />

-3 -2 -1 0 1 2 3 4<br />

∆Y(cm)<br />

Figure 8: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signals from PMTs in 2 0<br />

decay<br />

Count<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

C<strong>on</strong>stant 1367.<br />

Mean -0.8843E-01<br />

Sigma 0.4078<br />

0-4<br />

-3 -2 -1 0 1 2 3 4<br />

∆Y(cm)<br />

Figure 10: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signals from PMTs in 2 2<br />

decay<br />

Count<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

C<strong>on</strong>stant 1360.<br />

Mean -0.1912<br />

Sigma 0.3642<br />

0-4<br />

-3 -2 -1 0 1 2 3 4<br />

∆Z(cm)<br />

Figure 9: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signals from PMTs in 2 0<br />

decay<br />

Count<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

C<strong>on</strong>stant 1411.<br />

Mean -0.1893<br />

Sigma 0.3593<br />

0-4<br />

-3 -2 -1 0 1 2 3 4<br />

∆Z(cm)<br />

Figure 11: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> double beta decay occurs and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centroid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signals from PMTs in 2 2<br />

decay<br />

7


Detecti<strong>on</strong> efficiency(%)<br />

84.8<br />

84.6<br />

84.4<br />

84.2<br />

84<br />

83.8<br />

1 1.5 2 2.5 3 3.5 4 4.5 5<br />

energy resoluti<strong>on</strong>(%)<br />

Figure 12: Detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 0 decay<br />

events as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resoluti<strong>on</strong><br />

Detecti<strong>on</strong> efficiency(%)<br />

100<br />

99<br />

98<br />

97<br />

96<br />

95<br />

94<br />

93<br />

Detecti<strong>on</strong> efficiency(%)<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

100 200 300 400 500 600 700 800<br />

Cut energy(keV)<br />

Figure 13: Detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 2 decay<br />

events as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> threshold energy<br />

92<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> Photo-electr<strong>on</strong><br />

Figure 14: Detecti<strong>on</strong> e ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> two decay modes as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triggering level where : 2 0 decay mode,<br />

2 : 2 2 decay mode<br />

8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Sec<strong>on</strong>d</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>EGS</strong>, 8.-12. August 2000, Tsukuba, Japan<br />

<strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 200-20, pp.324-329<br />

Observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Intense Radiati<strong>on</strong> During Thunderstorm<br />

and M<strong>on</strong>te Carlo Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bremsstrahlung Generati<strong>on</strong><br />

1 Introducti<strong>on</strong><br />

T. Torii 1 , M. Takeishi 1 , T. Hos<strong>on</strong>o 1 and T. Sugita 2<br />

1 Tsuruga Head O ce, Japan Nuclear Cycle Development Institute,<br />

Shiraki 2-1, Tsuruga, Fukui-ken 919-1279, Japan<br />

2 Science and System Lab. Inc.,<br />

Sumiyoshi 1342-6, Tomobe, Ibaraki-ken 309-1716, Japan<br />

Following Wils<strong>on</strong>'s suggesti<strong>on</strong>[1] <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> accelerati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> electric elds in thunderclouds, a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments were attempted to investigate whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r or not energetic electr<strong>on</strong>s and bremsstrahlung<br />

X-rays were generated by thunderstorm electric elds or lightning discharge processes. In<br />

recent years, enhanced radiati<strong>on</strong> at high altitude has been detected in experiments using scintillati<strong>on</strong><br />

detectors <strong>on</strong> a jet[2, 3] and an arti cial satellite[4], dem<strong>on</strong>strating that radiati<strong>on</strong> is indeed associated<br />

with lightning activities. However <str<strong>on</strong>g>the</str<strong>on</strong>g>re are few experimental reports <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> ground<br />

since Whitmire's investigati<strong>on</strong>[5] using <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoluminescent dosimeters (TLDs) in 1979.<br />

In winter, many thunderstorms occur <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> west coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, and it has been suggested<br />

that gamma-ray dose may increase occasi<strong>on</strong>ally during winter thunderstorms[6]. Recently, a gammaray<br />

dose enhancement which might be caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> lightning activity was measured by TLDs and<br />

envir<strong>on</strong>mental radiati<strong>on</strong> m<strong>on</strong>itors around <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fast breeder reactor \M<strong>on</strong>ju", a nuclear power<br />

plant facing <str<strong>on</strong>g>the</str<strong>on</strong>g> Japan Sea. (see Fig. 1)<br />

2 Observati<strong>on</strong><br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> night <str<strong>on</strong>g>of</str<strong>on</strong>g> Jan. 28, 1997, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a thunderstorm lasting until dawn, during which <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

was much lightning activity in <str<strong>on</strong>g>the</str<strong>on</strong>g> area accompanied by snow. In particular, a large lightning ash<br />

occurred at 4:31 JST <strong>on</strong> Jan. 29. At that time, dose-rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental radiati<strong>on</strong> m<strong>on</strong>itors using<br />

an NaI(Tl) detector around <str<strong>on</strong>g>the</str<strong>on</strong>g> site increased transiently. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, radiati<strong>on</strong> m<strong>on</strong>itors installed<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> most upper oor in <str<strong>on</strong>g>the</str<strong>on</strong>g> buildings were a ected at that time. During that night, although 20<br />

cloud-to-ground discharges were detected by <str<strong>on</strong>g>the</str<strong>on</strong>g> LLS (Lightning Locati<strong>on</strong> System) around Tsuruga<br />

Peninsula, a dose-rate increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) detectors was recorded <strong>on</strong>ly <strong>on</strong>ce. Some radiati<strong>on</strong><br />

m<strong>on</strong>itors installed in <str<strong>on</strong>g>the</str<strong>on</strong>g> buildings were rose count-rate at that time, and all <str<strong>on</strong>g>of</str<strong>on</strong>g> those were set <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most upper oor. Dose increases were also measured by TLDs exposed during <str<strong>on</strong>g>the</str<strong>on</strong>g> periods which<br />

included <str<strong>on</strong>g>the</str<strong>on</strong>g> day when <str<strong>on</strong>g>the</str<strong>on</strong>g> lightning occurred. Absorbed doses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TLDs exceeded over 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mean values at almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measuring points outside <str<strong>on</strong>g>the</str<strong>on</strong>g> buildings <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>ju (see Fig. 2), and<br />

highest dose increase was recorded about 0.1 mGy at <str<strong>on</strong>g>the</str<strong>on</strong>g> north-east area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> site. Whereas doses<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> buildings were within <str<strong>on</strong>g>the</str<strong>on</strong>g> normal range at all measuring points.<br />

3 Energy Spectrum and Dose Estimati<strong>on</strong><br />

The NaI(Tl) detector system <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental radiati<strong>on</strong> m<strong>on</strong>itor (MP-1) is c<strong>on</strong>nected to a<br />

multi-channel analyzer (MCA) with 2,048 channels in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy range up to about 5MeV,and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1


MCA stores <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse-height distributi<strong>on</strong> at <strong>on</strong>e hour intervals. Fig. 3 shows dose rate indicated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>itor and <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse-height distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MCA around <str<strong>on</strong>g>the</str<strong>on</strong>g> time that <str<strong>on</strong>g>the</str<strong>on</strong>g> lightning<br />

occurred. From \net" pulse-height distributi<strong>on</strong>, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> pulse-height distributi<strong>on</strong> subtracted<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> background distributi<strong>on</strong>, we calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> phot<strong>on</strong> energy spectrum by <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolding method.<br />

Here, we usedaversatile code SAND II for <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum unfolding, and <strong>EGS</strong>4/PRESTA code[7, 8] for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NaI(Tl) detector system. The unfolded energy spectrum is illustrated<br />

in Fig. 4(a). This indicates a c<strong>on</strong>tinuous spectrum with energy up to several MeV, and dose increase is<br />

estimated about 36 nGy at that time. It is quite di erent from dose increase obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> TLD at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same point (TL-E1). It may be caused by dead time losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detector and <str<strong>on</strong>g>the</str<strong>on</strong>g> MCA system,<br />

and low and/or high energy comp<strong>on</strong>ent cut o by <str<strong>on</strong>g>the</str<strong>on</strong>g> MCA.<br />

4 Discussi<strong>on</strong><br />

As menti<strong>on</strong>ed above <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> measured result <str<strong>on</strong>g>of</str<strong>on</strong>g> TLDs and radiati<strong>on</strong> m<strong>on</strong>itors, it is seen that this<br />

dose enhancement is caused by external radiati<strong>on</strong>. Also, from <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolded spectrum, this phenomen<strong>on</strong><br />

may be caused by bremsstrahlung X-rays from energetic electr<strong>on</strong>s generated in <str<strong>on</strong>g>the</str<strong>on</strong>g> thunderstorm.<br />

Next, we calculated X-ray spectra <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground generated from downward electr<strong>on</strong>s emitted at 500<br />

m and 1,000 m high, which is altitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> thunderclouds. As shown <str<strong>on</strong>g>the</str<strong>on</strong>g> results in Figs. 4(a)<br />

and 4(b), <str<strong>on</strong>g>the</str<strong>on</strong>g> unfolded spectrum is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung spectra.<br />

4.1 Electr<strong>on</strong> transport in electric elds<br />

To verify <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> accelerati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> bremsstrahlung generati<strong>on</strong> in thunderstorms, we have<br />

made macros to calculate electr<strong>on</strong> behavior in air with external electric elds according as Bielajew's<br />

manner[9]. The macros<br />

$SET-TUSTEP-EM-FIELD,<br />

$SET-USTEP-EM-FIELD,<br />

$SET-ANGLES-EM-FIELD,<br />

..............................,<br />

have been located within SUBROUTINE ELECTR.<br />

Here, we have put <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>s described electr<strong>on</strong> transport in <str<strong>on</strong>g>the</str<strong>on</strong>g> macros.<br />

- Transverse force <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong> due to external elds:<br />

~uf = ~u0 + ~umsret + uex<br />

~uem =<br />

es<br />

( ~ D0 ; ~u0(~u0 ~ D0))<br />

m0 (E0) v 2<br />

0<br />

where ~uf , ~u0 are nal and original unit directi<strong>on</strong> vector, respectively. ~umsret is <str<strong>on</strong>g>the</str<strong>on</strong>g> de ecti<strong>on</strong> due<br />

to multi scattering and inelastic collisi<strong>on</strong>s, and uex is that due to <str<strong>on</strong>g>the</str<strong>on</strong>g> external electric eld.<br />

- Final positi<strong>on</strong> and energy <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s:<br />

~xf = ~x0 + ~u0 s + s<br />

2 ( ~umsret + ~uex)<br />

Ef = E0 ; Eret + e ~ D0 (~xf ; ~x0)<br />

where Eret is <str<strong>on</strong>g>the</str<strong>on</strong>g> energy loss due to inelastic collisi<strong>on</strong>s.<br />

2


4.2 Simulati<strong>on</strong> in thunderstorm<br />

After a test <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> transport in a vacuum to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior with <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong>,<br />

we modeled electric elds in thunderclouds and calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> transport using <str<strong>on</strong>g>the</str<strong>on</strong>g> above code. As<br />

shown in Fig. 5, it is obtained that <str<strong>on</strong>g>the</str<strong>on</strong>g> avalanche <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerati<strong>on</strong> and collisi<strong>on</strong>s<br />

occurred at a eld strength <str<strong>on</strong>g>of</str<strong>on</strong>g> about 3 MV/m for electr<strong>on</strong>s with energy up to 1 MeV as a original<br />

energy. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it can be seen that bremsstrahlung X-rays generated at high altitude above <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ground. Details are presented at <str<strong>on</strong>g>the</str<strong>on</strong>g> workshop.<br />

References<br />

[1] Wils<strong>on</strong>, C. T. R., Proc. Cambridge Phil. Soc., 22, 534 (1925)<br />

[2] Parks, G. K. et al., Geophys. Res. Lett., 8, 1176 (1981)<br />

[3] McCarthy, M. and Parks, G. K., Geophys. Res. Lett., 12, 393 (1985)<br />

[4] Fishman, G. J. et al., Science, 264, 1313 (1994)<br />

[5] Whitmire, D. P., Lett. al Nuovo Cimento, 26, 497 (1979)<br />

[6] Yoshioka, M. et al., Annual Rep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Fukui Pref. ERMC, 16, p129 (1993) (in Japanese)<br />

[7] Nels<strong>on</strong>, W. R., Hirayama, H., and Rogers, D. W. O., SLAC-265, (1985)<br />

[8] Bielajew, A. F. and Rogers, D. W. O., Nucl. Instr. Meth., B18, 165 (1987)<br />

[9] Bielajew, A. F., in M<strong>on</strong>te Carlo Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>s and Phot<strong>on</strong>s (Jenkins, T. M., et al., eds),<br />

421 (1988, Plenum Press, N.Y.)<br />

3


4


5


6


Predicted Angular Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fast Charged Particles with I<strong>on</strong>izati<strong>on</strong><br />

T. Nakatsuka<br />

Okayama Shoka University, Okayama 700-8601, Japan<br />

Abstract<br />

Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> angular distributi<strong>on</strong> for fast charged particles is improved to take into account<br />

i<strong>on</strong>izati<strong>on</strong> loss, by using Kamata-Nishimura formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle<br />

energy al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> passage hence increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> screening angle brings a slight di erent results from<br />

those derived by Moliere-Be<str<strong>on</strong>g>the</str<strong>on</strong>g> formulati<strong>on</strong> for xed energies. The present results are reduced to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same Moliere distributi<strong>on</strong> with modi ed values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> parameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere<br />

angle. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new distributi<strong>on</strong> and di erences from <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al <strong>on</strong>e are discussed.<br />

Angular distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles penetrating through <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed or compound substances are<br />

also investigated both under <str<strong>on</strong>g>the</str<strong>on</strong>g> relativistic and <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>relativistic c<strong>on</strong>diti<strong>on</strong>s, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Kamata-Nishimura c<strong>on</strong>stants characterizing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir formulati<strong>on</strong>.<br />

1 Introducti<strong>on</strong><br />

Highly accurate <str<strong>on</strong>g>the</str<strong>on</strong>g>ories <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple Coulomb scattering are important when we design and analyze<br />

experiments c<strong>on</strong>cerning charged particle and trace charged particles in computer simulati<strong>on</strong>. Am<strong>on</strong>g<br />

various <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple scattering process, Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [1, 2, 3] is recognized<br />

most advanced re ecting <str<strong>on</strong>g>the</str<strong>on</strong>g> single and <str<strong>on</strong>g>the</str<strong>on</strong>g> plural scatterings in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, so that it has been widely<br />

used in computer simulati<strong>on</strong> codes [4, 5, 6]. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> its excellent formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, ithad<br />

been a defect <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory that almost no <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical improvements and applicati<strong>on</strong>s to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

problems were achieved after his original c<strong>on</strong>structi<strong>on</strong>s [1, 2, 7].<br />

Kamata and Nishimura proposed ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cascade<br />

shower <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [8, 9], whichisequivalent with <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere-Be<str<strong>on</strong>g>the</str<strong>on</strong>g> formulati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong><br />

errors [10]. They described <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in a di erential form with traversed thickness, so that we can<br />

regard it as a thorough extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermi-Yang formulati<strong>on</strong> [11, 12, 13, 14], and it made applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory very easy to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r problems, for example, Kamata and Nishimura could add <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next higher term re ecting <str<strong>on</strong>g>the</str<strong>on</strong>g> single and <str<strong>on</strong>g>the</str<strong>on</strong>g> plural scatterings to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir shower <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [8, 9] and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

author could discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere e ect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual path length problem [13].<br />

Recently we have found ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r superior aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-Nishimura formulati<strong>on</strong> that we<br />

can easily take into account i<strong>on</strong>izati<strong>on</strong> loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere angular distributi<strong>on</strong> by <strong>on</strong>ly modifying<br />

parameter values in <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [15, 16, 17, 18]. It improves <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy and <str<strong>on</strong>g>the</str<strong>on</strong>g> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Moliere distributi<strong>on</strong>. It has ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r important e ect from <str<strong>on</strong>g>the</str<strong>on</strong>g> practical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view that it improves<br />

sampling e ciency in computer simulati<strong>on</strong>s. In case using <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> xed<br />

energies, <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling path length had to be restricted short so as not <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> deformed due<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> particle energy [4, 19]. By using our distributi<strong>on</strong> this restricti<strong>on</strong> will be removed.<br />

Unfortunately for us, Kamata-Nishimura formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is written for electr<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relativistic c<strong>on</strong>diti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic c<strong>on</strong>stants are indicated for <strong>on</strong>ly restricted substances [8, 9].<br />

So we have attempted to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> formulati<strong>on</strong> suitable for general energy range, and applicable<br />

to variety <str<strong>on</strong>g>of</str<strong>on</strong>g> particles irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> mass and charge. The characteristic c<strong>on</strong>stants appearing in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> formulati<strong>on</strong> are tabulated for various substances. Method to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> for particles<br />

traversing through mixed or compound substances is also discussed.<br />

1


2 The Angular Distributi<strong>on</strong> With I<strong>on</strong>izati<strong>on</strong> Under The Relativistic<br />

C<strong>on</strong>diti<strong>on</strong><br />

Kamata and Nishimura proposed a very simple formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relativistic c<strong>on</strong>diti<strong>on</strong>. Let f( t)2 d be <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s after traversing through<br />

athickness <str<strong>on</strong>g>of</str<strong>on</strong>g> t measured in radiati<strong>on</strong> unit [11], receiving multiple Coulomb scattering under <str<strong>on</strong>g>the</str<strong>on</strong>g> axially<br />

symmetric c<strong>on</strong>diti<strong>on</strong>. The di usi<strong>on</strong> equati<strong>on</strong> is described as<br />

@ ~ f<br />

@t<br />

2<br />

= ;K2<br />

4E2 ~ ff1 ; 1 2<br />

K2<br />

ln g (1)<br />

4E2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier space [8, 9]. The equati<strong>on</strong> possesses <strong>on</strong>ly two c<strong>on</strong>stants speci c to <str<strong>on</strong>g>the</str<strong>on</strong>g> substance. Under<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> xed energy c<strong>on</strong>diti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> becomes<br />

~f = 1<br />

2 expf;<br />

2<br />

G 2<br />

4 (1 ; 1 ln<br />

2<br />

G 2<br />

4t<br />

)g with<br />

2<br />

G = K2t : (2)<br />

E2 Using <str<strong>on</strong>g>the</str<strong>on</strong>g> translati<strong>on</strong> formula indicated in <str<strong>on</strong>g>the</str<strong>on</strong>g> Appendix, <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-Nishimura formulati<strong>on</strong> is reduced<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere-Be<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e and we get <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere angular distributi<strong>on</strong> characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

parameters, <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> parameter B and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere angle # = = M, determined by [13]<br />

q<br />

B= : (3)<br />

B ; ln B = ; ln +lnt and M = G<br />

If we assume i<strong>on</strong>izati<strong>on</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant rate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> di usi<strong>on</strong> equati<strong>on</strong> becomes<br />

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong><br />

where<br />

@ ~ f<br />

@t<br />

~f = 1<br />

2 expf;<br />

E = E0 ; "t: (4)<br />

2<br />

= ;K2<br />

4E2 ~ ff1 ; 1 2<br />

K2<br />

ln<br />

4E2 g + " @ ~ f<br />

: (5)<br />

@E<br />

2<br />

G 2<br />

4 (1 ; 1 ln<br />

The characteristic parameters B and M are determined by<br />

2<br />

G 2<br />

4 t )g with 2<br />

G = K2t (6)<br />

E0E<br />

= e 2 (E=E0) (E0+E)=(E0;E) : (7)<br />

B ; ln B = ; ln +ln t and M = G<br />

q B= : (8)<br />

The angular distributi<strong>on</strong>s with i<strong>on</strong>izati<strong>on</strong> are compared with those without i<strong>on</strong>izati<strong>on</strong> in Fig. 1.<br />

The width <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> increases rapidly with dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy.<br />

3 The Angular Distributi<strong>on</strong> With I<strong>on</strong>izati<strong>on</strong> Under The General<br />

Energy C<strong>on</strong>diti<strong>on</strong><br />

The di usi<strong>on</strong> equati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> in Kamata-Nishimura formulati<strong>on</strong> equivalent<br />

with that in Moliere-Be<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e is described as<br />

@ ~ f<br />

z2 2<br />

= ;<br />

@t w2 ~ ff1 ; 1 ln<br />

2<br />

02 2<br />

g (9)<br />

w2


in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier space. We de ne<br />

and<br />

02 = 1:13 + 3:76 2<br />

1:13 + 3:76 2 0<br />

w =2pv=K = 2E<br />

f1 ; (mc2<br />

K E )2g (10)<br />

2 with = zZ<br />

137<br />

K and denote Kamata-Nishimura c<strong>on</strong>stants [8, 9].<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

we get <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> as<br />

~f = 1<br />

2 expf;<br />

and 0 = Z<br />

: (11)<br />

137<br />

E = E0 ; "z 2 t (12)<br />

2<br />

G 2<br />

4 (1 ; 1 ln<br />

2<br />

G 2<br />

4 z2t= where G denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> gaussian root-mean-square angle with Es replaced by K,<br />

2<br />

G =<br />

Z t<br />

0<br />

4z 2<br />

dt =<br />

w2 K 2<br />

fmc2<br />

2"mc2 pv<br />

and denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> scale factor derived by<br />

ln 02 =ln<br />

2<br />

G<br />

4z 2 t<br />

mc2<br />

; +<br />

p0v0<br />

1<br />

; 4z2<br />

2<br />

G<br />

Z t<br />

0<br />

02 )g (13)<br />

2 ln (E0 ; mc 2 )=(E ; mc 2 )<br />

(E0 + mc2 )=(E + mc2 )<br />

1<br />

ln<br />

w2 02<br />

g (14)<br />

dt: (15)<br />

w2 So that <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> parameter B and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere<br />

angle M, derived from<br />

q<br />

B= : (16)<br />

B ; ln B = ; ln +ln( z 2 t= 02 ) and M = G<br />

In case <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 ,which is realized for e.g. light substances <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 or for singly-charged relativistic<br />

particle <str<strong>on</strong>g>of</str<strong>on</strong>g> 0, determined from Eq. (15) becomes <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E0=mc 2 and E=mc 2 . in this<br />

case is plotted against fracti<strong>on</strong>al thickness, t=(E0="), in Fig. 2 for various E0=mc 2 . B and M in this<br />

case are plotted against <str<strong>on</strong>g>the</str<strong>on</strong>g> traversed thickness in Fig. 3 and Fig. 4. Di erences <str<strong>on</strong>g>of</str<strong>on</strong>g> B and M due to<br />

di erent E0=mc 2 are small.<br />

4 Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kamata-Nishimura Formulati<strong>on</strong> and De niti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Kamata-Nishimura C<strong>on</strong>stants<br />

We take <str<strong>on</strong>g>the</str<strong>on</strong>g> single scattering formula as<br />

( )2 d = 4z2 Z(Z +1)e 4<br />

p 2 v 2<br />

;4 2 d with > p e a (17)<br />

where a is called <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic screening angle [3]. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> probability density to receive<br />

de ecti<strong>on</strong> angle after an in nitesimal passage <str<strong>on</strong>g>of</str<strong>on</strong>g> dx measured in g/cm 2 is<br />

N<br />

A<br />

( )2 d dx = 4N<br />

A<br />

=<br />

1<br />

4 L<br />

z 2 Z(Z +1)e 4<br />

3<br />

E 2 s<br />

p 2 v 2<br />

p 2 v 2<br />

;4 2 d z 2 dx<br />

;4 2 d dx<br />

X0<br />

(18)


where X0 denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> length [20] and L <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called radiati<strong>on</strong> logarithm with its correcti<strong>on</strong><br />

term [21].<br />

The di usi<strong>on</strong> equati<strong>on</strong> for Moliere angular distributi<strong>on</strong> becomes [8, 9]<br />

df = N<br />

A dx<br />

ZZ ff( ~ ; ~0 ) ; f( ~ )g ( ~0 )d ~0 : (19)<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> azimuthally symmetrical c<strong>on</strong>diti<strong>on</strong>, Hankel transforms <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (19) becomes<br />

d ~ f = ;2 N<br />

A<br />

Z 1<br />

~fdx<br />

0<br />

= ; E2 s z<br />

2L<br />

2 dt<br />

p2v2 ~ Z 1<br />

f p<br />

e a<br />

[1 ; J0( )] ( ) d<br />

where t denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> traversed thickness measured in radiati<strong>on</strong> unit:<br />

[1 ; J0( )] ;3 d (20)<br />

t x=X0: (21)<br />

Evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> formula (14) <str<strong>on</strong>g>of</str<strong>on</strong>g> Be<str<strong>on</strong>g>the</str<strong>on</strong>g> [3], we get <str<strong>on</strong>g>the</str<strong>on</strong>g> following di erential equati<strong>on</strong><br />

; d<br />

z 2 dt ln ~ f = E2 s<br />

8L<br />

= E2 s<br />

4L<br />

2<br />

p 2 v 2 [1+ln2; C ; ln(p e a )]<br />

2<br />

4p2 [1 ; 2C +ln<br />

v2 2 2<br />

Es =(4Lp 2 v 2 2 0)<br />

[ 2 a = 2 0 ]rel<br />

2 2<br />

a =<br />

; ln<br />

2 0<br />

[ 2 a = 2 0 ]rel<br />

; ln( E2 s<br />

4L<br />

where we introduced <str<strong>on</strong>g>the</str<strong>on</strong>g> angular c<strong>on</strong>stant 0 [3] called <str<strong>on</strong>g>the</str<strong>on</strong>g> Born screening angle [22],<br />

and [ 2 a = 2 0 ]rel denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 a = 2 0<br />

2<br />

4p2 )] (22)<br />

v2 0 =h=(ap) (23)<br />

for electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy limit.<br />

Now we de ne <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-Nishimura c<strong>on</strong>stants as<br />

; ln =1; 2C +ln E2 s =(4Lp2c 2 2 0)<br />

[ 2 a = 2 0 ]rel<br />

(24)<br />

K 2 = E2 s<br />

4L<br />

(25)<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n and K are c<strong>on</strong>stants speci c to <str<strong>on</strong>g>the</str<strong>on</strong>g> substance. It can be easily c<strong>on</strong> rmed that <str<strong>on</strong>g>the</str<strong>on</strong>g>se de niti<strong>on</strong>s<br />

agree with (A.3.26) and (A.3.28) <str<strong>on</strong>g>of</str<strong>on</strong>g> Nishimura de ned in <str<strong>on</strong>g>the</str<strong>on</strong>g> relativistic c<strong>on</strong>diti<strong>on</strong> [9]. We also<br />

introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> factor<br />

02 =<br />

2<br />

a = 2 0<br />

[ 2 a = 2 0 ]rel<br />

2 (26)<br />

re ecting <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrating particle and <str<strong>on</strong>g>the</str<strong>on</strong>g> di erence between <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic screening<br />

angle and <str<strong>on</strong>g>the</str<strong>on</strong>g> Born screening angle.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> di usi<strong>on</strong> equati<strong>on</strong> becomes<br />

so that we get<br />

; d<br />

z 2 dt ln ~ f =<br />

K2 2<br />

d<br />

z2dt ln ~ 2<br />

f = ;<br />

w2 [1 ; 1 ln<br />

4p2 02 2<br />

[ ; ln ; ln(K2<br />

v2 4p2 )] (27)<br />

v2 02 2<br />

] where w =2pv=K: (28)<br />

w2 Many authors evaluated a and 0 respectively in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir multiple scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ories, depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir models <str<strong>on</strong>g>of</str<strong>on</strong>g> screening potential. We listed in Table 1 some screening models adopted by<br />

representative authors <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

4


Table 1: Screening potentials adopted by representative authors. V (r), a, 0, a denote screening potential,<br />

atomic radius, Born screening angle, and <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic screening angle, respectively. Bohr radius and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Born parameter, a0 =h 2 =me 2 and = zZ=137 , are used in <str<strong>on</strong>g>the</str<strong>on</strong>g> table.<br />

Author V (r) a 0 a<br />

Goudsmit-Saunders<strong>on</strong> Ze2 Moliere<br />

exp(;r=a) r<br />

zZe<br />

;1=3<br />

a0Z h=(ap) 0<br />

2<br />

!(r=a)<br />

;1=3<br />

0:885a0Z h=(ap) p 1:13 + 3:76 2 0<br />

Snyder-Scott<br />

r<br />

Ze 2<br />

r<br />

exp(;r=a) a0Z ;1=3<br />

h=(ap) 0<br />

5 Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kamata-Nishimura C<strong>on</strong>stants for Pure Substances<br />

5.1 Moliere screening model<br />

If we adopt <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere screening model [1], we get <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s for and K as<br />

; ln =1; 2C +ln 1373 (0:885Z ;1=3 ) 2<br />

(1:13 + 3:76Z2 =1372 (29)<br />

)L<br />

K 2 = E2 s<br />

4L<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> length X0 [23] <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1<br />

X0<br />

: (30)<br />

= 4N<br />

137A Z(Z +1)r2 e L (31)<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> L, we can determine and K c<strong>on</strong>sistent with widely-used table <str<strong>on</strong>g>of</str<strong>on</strong>g> material c<strong>on</strong>stants<br />

indicated by Particle Data Group [24]:<br />

; ln =ln 6680(Z +1)Z1=3X0 (1 + 3:34Z2 =1372 (32)<br />

)A<br />

K 2 ;4 Z(Z +1)<br />

=3:49 10<br />

A<br />

In this case Kamata-Nishimura equati<strong>on</strong> becomes<br />

d<br />

z2dt ln ~ 2<br />

f = ;<br />

w2 [1 ; 1 ln<br />

02 2<br />

] where<br />

w2 Kamata-Nishimura c<strong>on</strong>stants so obtained are listed in Table 2.<br />

X0 E 2 s : (33)<br />

02 = 1+3:34z 2 Z 2 =(137 ) 2<br />

1+3:34Z 2 =137 2<br />

2 : (34)<br />

5.2 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r simple models which do not distinguish <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic screening<br />

angle from <str<strong>on</strong>g>the</str<strong>on</strong>g> Born screening angle<br />

According to Goudsmit and Saunders<strong>on</strong> [25], Snyder and Scot [26], and Rossi [20], <str<strong>on</strong>g>the</str<strong>on</strong>g>y do not<br />

distinguish <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic screening angle from <str<strong>on</strong>g>the</str<strong>on</strong>g> Born screening angle<br />

In those cases, it satis es<br />

a = 0: (35)<br />

0 = (36)<br />

5


Table 2: Kamata-Nishimura c<strong>on</strong>stants and K for pure substances derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere screening model,<br />

toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with those (embraced) from <str<strong>on</strong>g>the</str<strong>on</strong>g> simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> a = 0.<br />

Material Z A X0 K<br />

g/cm 2 MeV<br />

H 1 1.008 61.28 16.40(16.54) 17.69(17.76)<br />

He 2 4.003 94.32 16.07(16.20) 18.88(18.96)<br />

Li 3 6.941 82.76 15.80(15.93) 18.83(18.91)<br />

C 6 12.011 42.70 15.34(15.48) 18.96(19.04)<br />

N 7 14.007 37.99 15.25(15.39) 19.06(19.15)<br />

O 8 15.999 34.24 15.17(15.31) 19.15(19.24)<br />

Al 13 26.982 24.01 14.85(15.02) 19.43(19.53)<br />

Si 14 28.086 21.82 14.80(14.97) 19.47(19.58)<br />

S 16 32.066 19.50 14.71(14.89) 19.54(19.66)<br />

Ar 18 39.948 19.55 14.63(14.82) 19.60(19.73)<br />

Fe 26 55.845 13.84 14.34(14.60) 19.79(19.96)<br />

Cu 29 63.546 12.86 14.25(14.53) 19.84(20.03)<br />

Br 35 79.904 11.42 14.08(14.42) 19.94(20.19)<br />

Ag 47 107.868 8.97 13.77(14.25) 20.13(20.48)<br />

I 53 126.904 8.48 13.62(14.19) 20.22(20.63)<br />

W 74 183.840 6.76 13.15(14.02) 20.52(21.19)<br />

Pb 82 207.200 6.37 12.99(13.97) 20.65(21.42)<br />

so that we get <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-Nishimura c<strong>on</strong>stants from<br />

or by using X0 we get<br />

; ln =1; 2C +ln 1373 (0:885Z ;1=3 ) 2<br />

K 2 = E2 s<br />

4L<br />

L<br />

(37)<br />

(38)<br />

; ln =ln 1:13 6680(Z +1)Z1=3X0 (39)<br />

A<br />

K 2 ;4 Z(Z +1)<br />

=3:49 10<br />

A<br />

This time, Kamata-Nishimura equati<strong>on</strong> becomes<br />

d<br />

z2dt ln ~ 2<br />

f = ;<br />

w2 [1 ; 1 ln<br />

X0 E 2 s : (40)<br />

2 2<br />

]: (41)<br />

w2 Kamata-Nishimura c<strong>on</strong>stants obtained in this case are tabulated in Table 2, embraced by brackets.<br />

6 Angular Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Charged Particles Traversing Through<br />

Mixed or Compound Substance<br />

The di usi<strong>on</strong> equati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles is described as<br />

2<br />

d ~ f = ;<br />

w2 ~ f(1 ; 1 ln<br />

02 2<br />

w 2 )z2 dt (42)<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier space. So <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Fourier comp<strong>on</strong>ent in <str<strong>on</strong>g>the</str<strong>on</strong>g> di erential passage becomes<br />

6


;d ln ~ f = 1<br />

X0w 2 (1 ; 1 ln<br />

02<br />

w 2 ) 2 z 2 dx ;<br />

1<br />

X0w 2 ( 2 ln 2 )z 2 dx: (43)<br />

In case <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles traversing through mixed or compound substance, <str<strong>on</strong>g>the</str<strong>on</strong>g> coe cients appearing<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> right-hand side changes disc<strong>on</strong>tinuously corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms <str<strong>on</strong>g>the</str<strong>on</strong>g>y encounter. So we<br />

take <str<strong>on</strong>g>the</str<strong>on</strong>g>value <str<strong>on</strong>g>of</str<strong>on</strong>g> coe cient as <str<strong>on</strong>g>the</str<strong>on</strong>g> expectati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> it. Thus we get<br />

; ln 2 ~ f = 2<br />

Z x<br />

0<br />

1<br />

Pr[<br />

X0w2 (1 ; 1 ln<br />

02<br />

w 2 )]z2 dx ; 2 ln 2<br />

Z x<br />

0<br />

Pr[<br />

1<br />

X0 w 2 ]z2 dx (44)<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> expectati<strong>on</strong> value is taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted mean value by <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mass:<br />

Pr[Q] X<br />

piQi: (45)<br />

thus<br />

~f = 1<br />

2<br />

expf; 2<br />

Z x<br />

0<br />

1<br />

Pr[<br />

X0w2 (1 ; 1 ln<br />

i<br />

02<br />

w 2 )]z2 dx + 2 ln 2<br />

Z x<br />

0<br />

Pr[<br />

1<br />

X0 w 2 ]z2 dxg: (46)<br />

So using <str<strong>on</strong>g>the</str<strong>on</strong>g> translati<strong>on</strong> formula indicated in <str<strong>on</strong>g>the</str<strong>on</strong>g> Appendix, we get <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> characterized<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> parameter B <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

B ; ln B =<br />

Z x<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere angle<br />

0<br />

1<br />

Pr[<br />

X0w2 (1 ; 1 02<br />

ln<br />

w2 )]z2dx= M =2<br />

s<br />

B<br />

Z x<br />

0<br />

Z x<br />

0<br />

Pr[<br />

Pr[<br />

1<br />

1<br />

X0 w 2 ]z2 dx +ln<br />

Z x<br />

0<br />

Pr[<br />

1<br />

X0 w 2 ]z2 dx (47)<br />

X0 w 2 ]z2 dx: (48)<br />

If we assume homogeneous mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> substances, integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> expectati<strong>on</strong> value al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness should become<br />

Z x<br />

0<br />

Pr[f(x)]dx =Pr[ XR<br />

XR<br />

Z x=(XR=XR)<br />

where XR denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> particle measured in g/cm 2 ,<br />

XR<br />

E0= dE<br />

dx<br />

0<br />

f(x)dx] (49)<br />

and XR E0=Pr[ dE<br />

] (50)<br />

dx<br />

In case <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 , which is realized for singly charged particles <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic c<strong>on</strong>diti<strong>on</strong> or charged<br />

particles penetrating through light substances in such a c<strong>on</strong>diti<strong>on</strong> as zZ 137 ,wehave<br />

Thus<br />

; ln 2 ~ f =<br />

;d ln ~ f = f K2<br />

(1 ; 1 ln K 2 )<br />

Z x<br />

0<br />

X0<br />

Pr[ K2<br />

X0<br />

(1 ; 1 ln K 2 )]<br />

2<br />

4p2 K2<br />

;<br />

v2 X0<br />

2<br />

4p2 dx ;<br />

v2 Z x<br />

0<br />

2<br />

4p2 ln<br />

v2 Pr[ K2<br />

X0<br />

2 2<br />

4p2 gdx: (51)<br />

v2 ]<br />

2<br />

4p2 ln<br />

v2 2 2<br />

4p2 dx: (52)<br />

v2 If we introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced Kamata-Nishimura c<strong>on</strong>stants for mixed or compound substance, and<br />

K, from <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s<br />

K 2<br />

(1 ;<br />

X0<br />

1 ln K 2 ) = Pr[ K2<br />

(1 ;<br />

X0<br />

1 ln K 2 )] (53)<br />

K 2<br />

X0<br />

= Pr[ K2<br />

X0<br />

] (54)<br />

7


Table 3: The reduced Kamata-Nishimura c<strong>on</strong>stants, and K, for mixed or compound substances derived from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere screening model, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with those (embraced) from <str<strong>on</strong>g>the</str<strong>on</strong>g> simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> a = 0.<br />

Material X0 K<br />

g/cm 2 MeV<br />

Air 36.61 15.21(15.35) 19.10(19.19)<br />

SiO2 27.04 14.95(15.11) 19.34(19.44)<br />

H2O 36.02 15.23(15.37) 19.06(19.15)<br />

LiH 79.24 15.88(16.02) 18.65(18.73)<br />

Emulsi<strong>on</strong> 11.32 13.94(14.36) 20.01(20.31)<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n, taking X0 as <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> length for <str<strong>on</strong>g>the</str<strong>on</strong>g> compound substance [20], we get<br />

; ln =Pr[ K2<br />

(1 ; 1 ln K 2 )]=Pr[ K2<br />

] + ln Pr[ K2<br />

]+lnX0 (55)<br />

K =<br />

s<br />

X0<br />

X0 Pr[ K2<br />

X0<br />

X0<br />

]: (56)<br />

In this case we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere angular distributi<strong>on</strong> for mixed or compound substances by regarding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are pure materials with <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced Kamata-Nishimura c<strong>on</strong>stants, and K. So that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

distributi<strong>on</strong> is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> parameter B and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere angle M derived<br />

from<br />

q<br />

B= (57)<br />

B ; ln B = ; ln +ln( z 2 t= 2 ) and M = G<br />

where G is derived from Eq. (14) with and K replaced by and K. The reduced Kamata-Nishimura<br />

c<strong>on</strong>stants, and K, for mixed or compound substance are tabulated in Table 3. The distributi<strong>on</strong> for<br />

mixed or compound substances can also be got by <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced c<strong>on</strong>stants in case we can neglect energy<br />

loss or in case assuming simple screening model <str<strong>on</strong>g>of</str<strong>on</strong>g> a = 0.<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced c<strong>on</strong>stants, we can slightly simplify Eqs. (47) and (48) for general energy<br />

c<strong>on</strong>diti<strong>on</strong>s, as<br />

B ; ln B =<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Moliere angle<br />

Z x<br />

0<br />

X0<br />

1<br />

Pr[<br />

X0w2 (1 ; 1 02<br />

ln<br />

w2 )]z2 2<br />

G<br />

dx=<br />

4 +ln<br />

M = G<br />

2<br />

G<br />

4<br />

(58)<br />

q B= : (59)<br />

In general energy c<strong>on</strong>diti<strong>on</strong>s we should get exact B and M from <str<strong>on</strong>g>the</str<strong>on</strong>g> above equati<strong>on</strong>s. But in<br />

practical use, <str<strong>on</strong>g>the</str<strong>on</strong>g> approximati<strong>on</strong> to regard <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed or compound substance as a pure <strong>on</strong>e with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reduced Kamata-Nishimura c<strong>on</strong>stants will be available. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> exact B and M are compared<br />

with those from <str<strong>on</strong>g>the</str<strong>on</strong>g> approximate method for nuclear emulsi<strong>on</strong> in Figs. 5 and 6. We used Pr[Z] for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> charge number in <str<strong>on</strong>g>the</str<strong>on</strong>g> approximate method. We cannot observe almost any di erences.<br />

7 C<strong>on</strong>clusi<strong>on</strong>s and Discussi<strong>on</strong>s<br />

Kamata-Nishimura formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, having been described for electr<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relativistic c<strong>on</strong>diti<strong>on</strong>, is rec<strong>on</strong>structed to be valid in <str<strong>on</strong>g>the</str<strong>on</strong>g> general energy range and to wider variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charged particles irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> mass and charge. Moliere <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is simply described in <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-<br />

Nishimura formulati<strong>on</strong> by anordinary di erential equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermi-Yang type in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier space,<br />

possessing <str<strong>on</strong>g>the</str<strong>on</strong>g> two Kamata-Nishimura c<strong>on</strong>stants speci c to <str<strong>on</strong>g>the</str<strong>on</strong>g> substance. We can obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere<br />

8


distributi<strong>on</strong> much easily, moreover improve Moliere angular distributi<strong>on</strong> to take into account i<strong>on</strong>izati<strong>on</strong><br />

loss, by <str<strong>on</strong>g>the</str<strong>on</strong>g> formulati<strong>on</strong>. The Kamata-Nishimura c<strong>on</strong>stants are recalculated so that <str<strong>on</strong>g>the</str<strong>on</strong>g>y should be<br />

c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> widely-used material c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle Data Group [24] and are tabulated in<br />

Table 2.<br />

The method to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> angular distributi<strong>on</strong> for charged particles traversing through mixed or<br />

compound substance is investigated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-Nishimura formulati<strong>on</strong>. In general, Moliere distributi<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> substances can be obtained by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> expectati<strong>on</strong> values for coe cients in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted mean values by <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> e.g. xed energy approximati<strong>on</strong>,<br />

traversing through light substances, or assuming o<str<strong>on</strong>g>the</str<strong>on</strong>g>r simple screening model than Moliere,<br />

we can regard <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed or compound substance as a pure <strong>on</strong>e with <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced Kamata-Nishimura<br />

c<strong>on</strong>stants listed in Table 3. Approximated method to apply <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced c<strong>on</strong>stants even in general<br />

cases have shown good accuracies in so far from our restricted investigati<strong>on</strong>s.<br />

The present formulati<strong>on</strong> will be valuable in cross check for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical works or simulati<strong>on</strong><br />

results as a scarce multiple scattering <str<strong>on</strong>g>the</str<strong>on</strong>g>ory with i<strong>on</strong>izati<strong>on</strong>. Examinati<strong>on</strong>s by and applicati<strong>on</strong>s to<br />

experiments will also be followed using <str<strong>on</strong>g>the</str<strong>on</strong>g> Particle Telescope <str<strong>on</strong>g>of</str<strong>on</strong>g> Okayama University [28].<br />

Aknowledgments<br />

The author is very much indebted to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. J. Nishimura for his hearty encouragements and valuable<br />

advises through <str<strong>on</strong>g>the</str<strong>on</strong>g> work.<br />

Appendix<br />

We show a translati<strong>on</strong> formula between <str<strong>on</strong>g>the</str<strong>on</strong>g> Kamata-Nishimura formulati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere-Be<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e. Let <str<strong>on</strong>g>the</str<strong>on</strong>g> image functi<strong>on</strong> by Kamata-Nishimura be <str<strong>on</strong>g>of</str<strong>on</strong>g> a form [27]<br />

~f = 1<br />

2 expf;a 2 + b 2 ln(c 2 )g: (60)<br />

If we new de ne <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> parameter B and <str<strong>on</strong>g>the</str<strong>on</strong>g> composite transform-variable u, as<br />

B ; ln B = a c<br />

; ln<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n we get <str<strong>on</strong>g>the</str<strong>on</strong>g> well known Moliere form<br />

b<br />

~f = 1<br />

2<br />

b<br />

and u =2 p<br />

bB (61)<br />

u2 1<br />

expf; (1 ;<br />

4 B<br />

So that <str<strong>on</strong>g>the</str<strong>on</strong>g> probability density can be represented in <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

u2<br />

ln )g: (62)<br />

4<br />

f(#) =f (0) (#)+B ;1 f (1) (#)+B ;2 f (2) (#)+::: (63)<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> Moliere angle is de ned by <str<strong>on</strong>g>the</str<strong>on</strong>g> new unit,<br />

References<br />

[1] G. Moliere, Z. Naturforsch. 2a(1947)133.<br />

[2] G. Moliere, Z. Naturforsch. 3a(1948)78.<br />

[3] H. A. Be<str<strong>on</strong>g>the</str<strong>on</strong>g>, Phys. Rev. 89(1953)1256.<br />

# = = M with M =(2 p<br />

bB): (64)<br />

9


[4] M. Messel and D. F. Crawford, Electr<strong>on</strong>-Phot<strong>on</strong> Shower Distributi<strong>on</strong> Functi<strong>on</strong> Tables for Lead<br />

Copper and Air Absorbers (Pergam<strong>on</strong>, Oxford, 1970).<br />

[5] W. R. Nels<strong>on</strong>, H. Hirayama, and D. W. O. Rogers, \The <strong>EGS</strong>4 Code System," SLAC-265,<br />

Stanford Linear Accelerator Center (Dec. 1985).<br />

[6] D. Heck, J. Knapp, J. N. Capdevielle, G. Shatz, and T. Thouw, Forschungszentrum Karlsruhe<br />

Report FZKA6019(1998).<br />

[7] G. Moliere, Z. Naturforsch. 10a(1955)177.<br />

[8] K. Kamata and J. Nishimura, Prog. Theor. Phys. Suppl. 6(1958)93.<br />

[9] J. Nishimura, in Handbuch der Physik, Band 46, edited by S. Flugge (Springer, Berlin, 1967),<br />

Teil 2, p.1.<br />

[10] T. Nakatsuka, "<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 26th <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Cosmic Ray C<strong>on</strong>ference," HE2.5.36, Salt<br />

Lake City, 1999.<br />

[11] B. Rossi and K. Greisen, Rev. Mod. Phys. 27 (1941)240.<br />

[12] C. N. Yang, Phys. Rev. 84(1951)599.<br />

[13] T. Nakatsuka, Phys. Rev. D35(1987)210.<br />

[14] T. Nakatsuka, Phys. Rev. D35(1987)210 D58(1998)056002.<br />

[15] T. Nakatsuka, \<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Seventh <strong>EGS</strong>4 User's Meeting in Japan," <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

98-7, 13(1998).<br />

[16] T. Nakatsuka, \<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Eighth <strong>EGS</strong>4 User's Meeting in Japan," <strong>KEK</strong> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

99-15, 12(1999).<br />

[17] T. Nakatsuka, \<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 26th <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Cosmic Ray C<strong>on</strong>ference," HE2.5.25, Salt<br />

Lake City, 1999.<br />

[18] T. Nakatsuka, Submitted to \<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8th Asia Paci c Physics C<strong>on</strong>ference," BH4,<br />

Taipei, 2000.<br />

[19] A. F. Bielajew and D. W. O. Rogers, Nucl. Instrum. Methods Phys. Res. B18(1987)165.<br />

[20] B. Rossi, High Energy Particles (Prentice-Hall, Englewood Cli s, NJ, 1952).<br />

[21] O. I. Dovzhenko and A. A. Pomanskii, Soviet Physics (JETP) 35(1964)187.<br />

[22] W. T. Scott, Rev. Mod. Phys. 35(1963)231.<br />

[23] Y. S. Tsai, Rev. Mod. Phys. 46(1974)815.<br />

[24] Particle Data Group, Eur. Phys. J. C3(1998)1.<br />

[25] S. A. Goudsmit and J. L. Saunders<strong>on</strong>, Phys. Rev. 57(1940)24 and 58(1940)36.<br />

[26] H. Snyder and W. T. Scott, Phys. Rev. 76(1949)220.<br />

[27] Combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coe cients a and c is not unique. We can put a = 0 or c = 1 without loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

generality, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r is determined uniquely.<br />

[28] Y. Yamashita et. al., Nucl. Instrum. Methods Phys. Res. A374(1996)245.<br />

10


θ 2 × f(θ)<br />

θ 2 × f(θ)<br />

10 0<br />

10 –1<br />

10 –2<br />

10 –3<br />

10 –1<br />

10 –2<br />

10 –2 10 –3<br />

(a) fixed energy<br />

(b) with i<strong>on</strong>izati<strong>on</strong><br />

10 –1<br />

E 0/ε = 10 5 Ωe –Ω<br />

in WATER<br />

10 0<br />

DEFLECTION ANGLE (rad)<br />

Figure 1: Angular distributi<strong>on</strong>s multiplied by 2 at<br />

depth t=(E0=") <str<strong>on</strong>g>of</str<strong>on</strong>g>0.1, 0.3, 0.5, 0.7, and 0.9 from left<br />

to right. Dot lines indicate accumulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> single<br />

scatterings.<br />

SCALE FACTOR ν<br />

1<br />

0.5<br />

10 1<br />

mc<br />

0<br />

0 0.5 1<br />

2 /E0 = 1/10<br />

mc 2 /E0 = 1/20<br />

mc 2 /E0 = 1/50<br />

mc 2 /E0 = 0<br />

FRACTIONAL THICKNESS<br />

Figure 2: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scale factor against t. Abscissa<br />

means t=(E0="). The curves corresp<strong>on</strong>d to incident<br />

energies E0=(mc 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 20, 50, and 1.<br />

EXPANSION PARAMETER B<br />

10<br />

5<br />

0<br />

10 0<br />

mc 2 /E 0 = 1/10<br />

mc 2 /E 0 = 1/20<br />

mc 2 /E 0 = 1/50<br />

mc 2 = 0<br />

mc 2 = 0, Fixed E<br />

10 2<br />

10 4<br />

TRAVERSED THICKNESS t/(Ωe –Ω )<br />

Figure 3: Depth-variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B for various incident energies,<br />

E0=" <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 10 2 ,10 3 , and 10 4 in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> e ; ,<br />

from left to right. Thin line indicates traditi<strong>on</strong>al B for<br />

xed energy.<br />

11<br />

UNIT OF MOLIERE ANGLE θ M/(Ke –Ω/2 /E 0)<br />

10 3<br />

10 2<br />

10 1<br />

10 0 10 0<br />

mc 2 /E 0 = 1/10<br />

mc 2 /E 0 = 1/20<br />

mc 2 /E 0 = 1/50<br />

mc 2 = 0<br />

mc 2 = 0, Fixed E<br />

10 2<br />

10 4<br />

TRAVERSED THICKNESS t/(Ωe –Ω )<br />

Figure 4: Depth-variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M for various incident<br />

energies, E0=" <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 10 2 ,10 3 , and 10 4 in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> e ; ,<br />

from left to right. Thin line indicates traditi<strong>on</strong>al M for<br />

xed energy.<br />

EXPANSION PARAMETER B<br />

10<br />

5<br />

0<br />

10 0<br />

Emulsi<strong>on</strong><br />

mc 2 /E 0 = 1/20<br />

exact results<br />

approx. results<br />

10 2<br />

10 4<br />

TRAVERSED THICKNESS t/(Ωe –Ω )<br />

Figure 5: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B for mixed or compound<br />

substance, between exact results and approximated<br />

<strong>on</strong>es. Four curves corresp<strong>on</strong>d to E0=" <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 10 2 ,10 3 ,<br />

and 10 4 in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> e ; , from left to right.<br />

UNIT OF MOLIERE ANGLE θ M/(Ke –Ω/2 /E 0)<br />

10 3<br />

10 2<br />

10 1<br />

10 0 10 0<br />

Emulsi<strong>on</strong><br />

mc 2 /E 0 = 1/20<br />

exact results<br />

approx. results<br />

10 2<br />

10 4<br />

TRAVERSED THICKNESS t/(Ωe –Ω )<br />

Figure 6: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M for mixed or compound<br />

substance, between exact results and approximated<br />

<strong>on</strong>es. Four curves corresp<strong>on</strong>d to E0=" <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 10 2 ,10 3 ,<br />

and 10 4 in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> e ; , from left to right.


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Participants<br />

(excluded Participants <str<strong>on</strong>g>of</str<strong>on</strong>g> Short <strong>EGS</strong>4 Course <strong>on</strong>ly)<br />

Lars-Eric Adam<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g>Pennsylvania<br />

110 D<strong>on</strong>ner Bldg, 3400 Spruce Street<br />

Philadelphia, PA 19104, USA<br />

Email:lars@rad.upenn.edu<br />

Noha Aly<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Engineering and<br />

Systems Science School <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g>Tokyo<br />

7-3-1 H<strong>on</strong>go, Bunkyo-Ku<br />

Tokyo, JAPAN<br />

Email:nohapr<str<strong>on</strong>g>of</str<strong>on</strong>g>@hotmail.com<br />

Hidetoshi Arai<br />

Ishikawajima-Harima<br />

Heavy Industries Co.,Ltd.<br />

1, Shin-Nakahara-Cho, Isogo-Ku,<br />

Yokohama, 235-8501 JAPAN<br />

Email:hideyuki arai@ihi.co.jp<br />

Eiji Ariga<br />

Nagoya Daini Red Cross Hospital<br />

2-9 Myouken-cho, Shouwa-ku.<br />

Nagoya, JAPAN<br />

Email:ariga@nagoya2.jrc.or.jp<br />

Kazumi Asamura<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Physics,<br />

Yamagata University<br />

1-4-12 Kojirakawa, Yamagata<br />

990-8560 Japan<br />

Email:asamura@kspirit.kj.yamagata-u.ac.jp<br />

Yoshihiro Asano<br />

Synchrotr<strong>on</strong> Radiati<strong>on</strong> Research Center<br />

Japan Atomic Energy Research Institute<br />

SPring-8, Mikatuki-cho, Hyogo-ken<br />

679-5143 Japan<br />

Email:asano@spring8.or.jp<br />

1<br />

A. F. Bielajew<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Engineering and<br />

Radiological Sciences<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g>Michigan<br />

Cooley Building (North Campus)<br />

2355 B<strong>on</strong>isteel Boulevard<br />

Ann Arbor, Michigan 48109-4540, USA<br />

Email:bielajew@engin.umich.edu<br />

Syuichi Ban<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305 Japan<br />

Email: s.ban@kek.jp<br />

Kotaro Bessyo<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305 Japan<br />

Email: kotaro.bessyo@kek.jp<br />

Hiroyuki Date<br />

Hokkiadou University<br />

Kitaku N12 W5, Sapporo,<br />

060-0812 JAPAN<br />

date@cme.hokudai.ac.jp<br />

Cheung Yiu Chung Joel<br />

Gamma Knife Centre (HK)<br />

Canossa Hospital<br />

No.1 Old Peak Road, H<strong>on</strong>g K<strong>on</strong>g<br />

Email:joel@gammaknife.com.hk<br />

William L. Dunn<br />

Quantum Research Services, Inc.<br />

5410-W Apex Highway, Durham,<br />

NC 27713-9434, USA<br />

Email:wldunn@quantumres.com


Zhigao Fang<br />

The Graduate University<br />

for Advanced Studies<br />

1-1, Oho, Tsukuba, Ibaraki<br />

305-0801, Japan<br />

Email:fang@post.kek.jp<br />

Tatsuya Fujisaki<br />

Ibaraki Prefectural University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

4669-2 Ami-Machi ,Inashiki-Gun,<br />

Ibaraki, Japan<br />

Email:hujisaki@ipu.ac.jp<br />

Jun Funabiki<br />

Mitusbishi Research Institute Inc.<br />

3-6 Ohtemachi 2 Chome, Chiyoda-ku,<br />

Tokyo, 100-8141 Japan<br />

Email:funabiki@mri.co.jp<br />

Yoshiko Harima<br />

CRC Reserach Institute, Inc.<br />

2-7-5, Minamisuna, Koto-ku<br />

Tokyo 136, Japan<br />

Email:j90204@sinet.ad.jp<br />

Mitsuyasu Hashimoto<br />

<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Health and Welfare<br />

2600-1 Kitakanemura, Otawara City<br />

Tochigi, 324-8501 Japan<br />

Email:hasimoto@iuhw.ac.jp<br />

Kouji Hashimoto<br />

Nagoya University<br />

Furo-cho, Chikusa-ku, Nagoya<br />

464-8603 Japan<br />

Email:hashimoto@avocet.nucl.nagoya-u.ac.jp<br />

Kensuke Hayashi<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-ku,<br />

Nagoya, 461-8673 Japan<br />

Sachiko Hibino<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-ku,<br />

Nagoya, 461-8673 Japan<br />

2<br />

Shun-ichi Himeno<br />

Morisaki Attorny O ce<br />

2-1-4-502, Nagayama, Tama-city,Tokyo<br />

206-0025 Japan<br />

Email:himenosi@guitar.ocn.ne.jp<br />

Hideo Hirayama<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: hideo.hirayama@kek.jp<br />

Masahiro Hirota<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-ku,<br />

Nagoya, 461-8673 Japan<br />

Mituhiko H<strong>on</strong>ma<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-ku,<br />

Nagoya, 461-8673 Japan<br />

Kenichi Hozumi<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: kenichi.hozumi@kek.jp<br />

Tetsuo Iguchi<br />

Nagoya University<br />

Furo-cho, Chikusa-ku, Nagoya<br />

464-8603 JAPAN<br />

Email:t-iguchi@nucl.nagoya-u.ac.jp<br />

Kazuhiko Iijima<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: kazuhiko.iijima@kek.jp


Kotaro Imagawa<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Allied Health Sciences,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine,<br />

Osaka University<br />

1-7 Yamadaoka, Suita, Osaka<br />

565-0871 Japan<br />

Email:kimagawa@sahs.med.osaka-u.ac.jp<br />

Kunihiro Ishii<br />

Ohyo Koken Kogyo Co., Ltd.<br />

Measuring Instruments Dep.<br />

1642-26, Kumagawa, Fussa-Shi<br />

Tokyo, 197-0003 Japan<br />

Email:oken@inv.co.jp<br />

Masaki Ishiduka<br />

Institute for Cosmic Ray Reasearch<br />

room234,5-1-5, Kashiwa-no-ha, Kashiwa<br />

Chiba, 277-8582 Japan<br />

Email:ishi@suketto.icrr.u-tokyo.ac.jp<br />

Hidesuke Itadzu<br />

Nagoya University<br />

Furo-cho, Chikusa-ku, Nagoya<br />

464-8603 JAPAN<br />

Noriyuki Itakura<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-ku<br />

Nagoya, 461-8673 Japan<br />

Taku Itoh<br />

Kyoto University, Nuclear Engineering<br />

Yoshidah<strong>on</strong>machi, Sakyouku, Kyoto<br />

Japan<br />

Email:itoh@ras.cc<br />

Wang Jeng-Ning<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Energy Research<br />

1000, Wenhua Rd., Chiaan Village, Lungtan,<br />

Taiwan, R.O.C.<br />

Email:jnwang@iner.gov.tw<br />

Gyo Kajiwara<br />

Shimizu Corporati<strong>on</strong><br />

1-2-3 Shibaura Minatoku, Tokyo, Japan<br />

Email:gkajiwara@mx4.ttcn.ne.jp<br />

3<br />

Yukio Kanda<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: yukio.kanda@kek.jp<br />

Ikuo Kanno<br />

Quantum Science and Engineering Center<br />

Kyoto University<br />

Sakyo, Kyoto 606-8501, Japan<br />

Email:kanno@qsec.kyoto-u.ac.jp<br />

Jyunnya Kato<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ic Infomatics<br />

Hosei University<br />

3-7-2, Kajino-cho, Koganei-City<br />

Tokyo, 184-8584 Japan<br />

Email:junya@ogw.ei.hosei.ac.jp<br />

Hideo Kimura<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Engineering<br />

Kyoto University<br />

Yoshida, Sakyo<br />

Kyoto, 606-8501 Japan<br />

Email:hkimura@nucleng.kyoto-u.ac.jp<br />

Sakae Kinase<br />

Japan Atomic Energy Research Institute<br />

Tokai-mura, Naka-gun, Ibaraki-ken<br />

319-1195 Japan<br />

Email:skinase@jrr3fep2.tokai.jaeri.go.jp<br />

Shunji Kitamoto<br />

Osaka University<br />

1-1, Machikaneyama, Toy<strong>on</strong>aka<br />

Osaka, 560-0043 Japan<br />

Email:kitamoto@ess.sci.osaka-u.ac.jp<br />

Kenjiro K<strong>on</strong>do<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: kenjiro.k<strong>on</strong>do@kek.jp


Kichiro Koshida<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiological Technology,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, KANAZAWA University<br />

5-11-80 Kodatsuno, Kanazawa<br />

920-0942 Japan<br />

Email:kosida@kenroku.kanazawa-u.ac.jp<br />

Syuuji Koyama<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-Ku<br />

Nagoya, 461-8673 Japan<br />

Katuhisa Kudo<br />

Electrotechnical Laboratory (ETL)<br />

1-1-4 Umez<strong>on</strong>o, Tsukuba-shi, Ibaraki<br />

305-8568 Japan.<br />

Email: kkudo@etl.go.jp<br />

Tadahiro Kurosawa<br />

Electrotechnical laboratory<br />

1-1-4, Umez<strong>on</strong>o, Tsukuba, Ibaraki<br />

305-8568 Japan<br />

Email:kurosawa@etl.go.jp<br />

James C. Liu<br />

Stanford Linear Accelerator Center<br />

MS 48, P.O. BOX 4349,<br />

Stanford, CA 94309, USA.<br />

Email: james@slac.stanford.edu<br />

Patrick Lui<br />

Stanford Linear Accelerator Center<br />

Stanford University, P.O. Box 4349,<br />

MS/02, Stanford, CA 94309, USA<br />

Email:plui@slac.stanford.edu<br />

Ernesto Mainegra Hing<br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Studies<br />

for Nuclear Development<br />

calle 30 #502 e/ 5ta Ave. y 7ma Ave.,<br />

Playa, Ciudad Habana, Cuba<br />

Email:mainegra@ceaden.edu.cu<br />

Takuya Maeda<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Physics,<br />

Yamagata University<br />

1-4-12 Kojirakawa, Yamagata<br />

990-8560 Japan<br />

Email:maeda@kspirit.kj.yamagata-u.ac.jp<br />

4<br />

Koujiro Minemoto<br />

Visible Informati<strong>on</strong> Center, Inc.<br />

440 Muramatsu Tokai-mura Naka-gun<br />

Ibaraki, 319-1112 Japan<br />

Email:minemoto@vic.co.jp<br />

Taichi Miura<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: taichi.miura@kek.jp<br />

Satoshi Miyajima<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Allied Health Sciences,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine,<br />

Osaka University<br />

1-7 Yamadaoka, Suita, Osaka<br />

565-0871 Japan<br />

Email:satoshi@sahs.med.osaka-u.ac.jp<br />

Aiko Nagamatsu<br />

Nati<strong>on</strong>al Space Development Agency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Japan<br />

2-1-1, Sengen, Tsukuba, Ibaragi<br />

305-8505 Japan<br />

Email:Nagamatsu.Aiko@nasda.go.jp<br />

Tsutomu Nagayoshi<br />

Tokyo Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

2-12-1 O-okayama Meguro Tokyo Japan<br />

nagayosi@hp.phys.titech.ac.jp<br />

Tomoshige Nagase<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-ku<br />

Nagoya, 461-8673 Japan<br />

Hajime Nakamura<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: hajime.nakamura@kek.jp


Takashi Nakamura<br />

Cyclotr<strong>on</strong> and Radioisotope Center,<br />

Tohoku University,<br />

Aoba, Aramaki, Aoba-ku<br />

Sendai, 980-8578 Japan<br />

Email:nakamura@risun1.cyric.tohoku.ac.jp<br />

Yuzuru Nakamura<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Therapeutic Radiology<br />

Saitama Cancer Center<br />

818, Komuro, Ina-machi, Kita-Adachi-gun<br />

Saitama, 362-0806 Japan<br />

Email:ynakamura@cancer-c.pref.saitama.jp<br />

Noriaki Nakao<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: noriaki.nakao@kek.jp<br />

Takao Nakatsuka<br />

Okayama Shoka University<br />

Tsushima-Kyomachi, Okayama<br />

700-8601 JAPAN<br />

Email:nakatuka@osu.ac.jp<br />

Yoshihito Namito<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801, Japan<br />

Email:yoshihito.namito@kek.jp<br />

Nobuteru Nariyama<br />

Ship Research Institute<br />

6-38-1 Shinkawa, Mitaka<br />

Tokyo, 181-0004 Japan<br />

Email:nari@srimot.go.jp<br />

Water Ralph Nels<strong>on</strong><br />

Stanford Linear Accelerator Center (SLAC)<br />

MS 48, P.O. BOX 4349,<br />

Stanford, CA 94309, USA.<br />

Email: wrnrp@SLAC.Stanford.EDU<br />

5<br />

Sakiko Nishio<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiological Technology,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Kanazawa University<br />

5-11-80 Kodatsuno, Kanazawa<br />

920-0942 Japan<br />

Email:<br />

Shengli Niu<br />

Northwest Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Technology<br />

P.O. BOX 69-15, XI'AN,<br />

SHAANXI 710024 CHINA<br />

Email:ezhou@nint.ac.cn<br />

Ryo Nouchi<br />

Quantum Science and Engineering Center<br />

Kyoto University<br />

Yoshida, Sakyo, Kyoto, 606-8501 Japan<br />

Email:nouchi@nucleng.kyoto-u.ac.jp<br />

Masaharu Numajiri<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: masaharu.numajiri@kek.jp<br />

Hiroyuki Ogi<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-Ku<br />

Nagoya, 461-8673 Japan<br />

Jin Ohta<br />

Hosei University<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ic Infomatics<br />

Hosei University<br />

3-7-2, Kajino-cho, Koganei-City<br />

Tokyo, 184-8584 Japan<br />

Email:ohta@ogw.ei.hosei.ac.jp<br />

Souta OKi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Material<br />

Processing Engineering<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

Nagoya University<br />

Furo-cho, Chikusa-ku, Nagoya<br />

464-8603 Japan<br />

Email:oki@nsr.numse.nagoya-u.ac.jp


Yuichi Oki<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: yuichi.oki@kek.jp<br />

Masahiro Onoguchi<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine,<br />

Kanazawa University<br />

5-11-80 Kodatsuno, Kanazawa<br />

920-0942 Japan<br />

Email:<strong>on</strong>oguchi@kenroku.kanazawa-u.ac.jp<br />

Motoari Oota<br />

Osaka University<br />

1-1, Machikaneyama, Toy<strong>on</strong>aka,<br />

Osaka 560-0043 Japan<br />

A. H. D. Rasol<strong>on</strong>jatovo<br />

Tohoku University<br />

Cyclotr<strong>on</strong> and Radioisotope Center<br />

Aoba, Aramaki, Aoba-ku, Sendai 980-8578 Japan<br />

Email:danielle@cyric.tohoku.ac.jp<br />

Sheu Ren-Dih<br />

Nati<strong>on</strong>al Tsing-Hua University<br />

Taiwan, R.O.C<br />

101, Secti<strong>on</strong> 2, Kuang Fu Road ,Hsinchu,<br />

Taiwan 300, R.O.C<br />

Email:d867107@oz.nthu.edu.tw<br />

Hidetoshi Saitoh<br />

Tokyo Metropolitan University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

7-2-10 Higashi-Ogu, Arakawa-Ku,<br />

Tokyo, 116-8551 Japan<br />

Email:saitoh@metro-hs.ac.jp<br />

Ryoko Sakai<br />

Medical Fr<strong>on</strong>t<br />

Asahigaoka 2646-1-2-807 Hanamigawa-ku<br />

Chiba-city Chiba, Japan<br />

Email:ryoko-s@cba.att.ne.jp<br />

6<br />

Toshiya Sanami<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: toshiya.sanami@kek.jp<br />

Shin'ichi Sasaki<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: shinichi.sasaki@kek.jp<br />

Kaoru Sato<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Physics<br />

Tokai Research Establishment<br />

Japan Atomic Energy Research Institute<br />

2-4 Shirakata-Shirane, Tokai-mura<br />

Naka-gun, Ibaraki-ken 319-1195 Japan<br />

Email:ksato@popsvr.tokai.jaeri.go.jp<br />

Kazuo Sato<br />

Atomic Energy Research Institute<br />

Nih<strong>on</strong> University<br />

7-24-1 Narashinodai, Funabashi-shi<br />

Chiba-ken, 274-8501 Japan<br />

Email:sato@acc.phys.cst.nih<strong>on</strong>-u.ac.jp<br />

Osamu Sato<br />

Mitusbishi Research Institute Inc.<br />

3-6 Ohtemachi 2 Chome, Chiyoda-ku<br />

Tokyo, 100-8141 Japan<br />

Email:sato@mri.co.jp<br />

Tetsuya Shimoyama<br />

Fukui University<br />

Bunkyo 3-9-1, Fukui, 910-8507, Japan<br />

Email:simoyama@midori.apphy.fukui-u.ac.jp<br />

Tokushi Shibata<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: tokushi.shibata@kek.jp


Kozo Shimizu<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiological Technology,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Kanazawa University<br />

5-11-80 Kodatsuno, Kanazawa<br />

920-0942 Japan<br />

Email:shimizu@mhs.mp.kanazawa-u.ac.jp<br />

Chandra Roy Sprakash<br />

Cyclotr<strong>on</strong> and Radioisotope Center,<br />

Tohoku University,<br />

Aoba, Aramaki, Aoba-ku,<br />

Sendai, 980-8578 Japan<br />

Hiroyuki Suzuki<br />

Cyclotr<strong>on</strong> and Radioisotope Center,<br />

Tohoku University,<br />

Aoba, Aramaki, Aoba-ku,<br />

Sendai, 980-8578 Japan<br />

Email:daishin@cyric.tohoku.ac.jp<br />

Takenori Suzuki<br />

High Energy Accelerator<br />

Research Organizati<strong>on</strong>(<strong>KEK</strong>)<br />

1-1 Oho, Tsukuba Ibaraki<br />

305-0801 Japan<br />

Email:takenori.suzuki@kek.jp<br />

Toshiji Suzuki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Physics,<br />

Yamagata University<br />

1-4-12 Kojirakawa, Yamagata<br />

990-8560 Japan<br />

Email:suzuki@kspirit.kj.yamagata-u.ac.jp<br />

Katsuyoshi Tabushi<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-Ku,<br />

Nagoya, 461-8673 Japan<br />

Email:tabushi@met.nagoya-u.ac.jp<br />

JunIchiro Tada<br />

SPring-8, JASRI<br />

Koto 1-1-1, Mikazuki-cho, Sayo-gun,<br />

Hyogo, 679-5198, Japan<br />

Email:tada@spring8.or.jp<br />

7<br />

Shunji Takagi<br />

Mitusbishi Research Institute Inc.<br />

3-6 Ohtemachi 2 Chome, Chiyoda-ku,<br />

Tokyo, 100-8141 Japan<br />

Email:takagi@mri.co.jp<br />

Shin-ichi Takahara<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: shin-ichi.takahara@kek.jp<br />

Fumiaki Takahashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Physics,<br />

Tokai Establishment,<br />

Japan Atomic Energy Research Institute<br />

(JAERI)<br />

Tokai-Mura, Naka-gun, Ibaraki,<br />

319-1195 Japan<br />

Email:taka@frs.tokai.jaeri.go.jp<br />

Yoshifumi Takashima<br />

Institute for Molecular Science<br />

Okazaki, 444-8585 Japan<br />

Email:takasima@ims.ac.jp<br />

Shigeharu Takebayashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Radiological Technology,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Kanazawa University<br />

5-11-80 Kodatsuno, Kanazawa<br />

920-0942 Japan<br />

Hayanori Takei<br />

Japan Nuclear Cycle Development Institute<br />

(JNC)<br />

4002, Narita-cho, O-Arai-Machi,<br />

Ibaraki-Ken, 311-1393 Japan<br />

Email:takei@oec.jnc.go.jp<br />

Shingo Taniguchi<br />

Japan Synchrotr<strong>on</strong> Radiati<strong>on</strong><br />

Research Institute (SPring-8)<br />

Koto 1-1-1, Mikazuki-cho, Sayo-gun,<br />

Hyogo, 679-5198 Japan<br />

Email:shingo@spring8.or.jp


Hiroko Tawara<br />

<strong>KEK</strong>, High Energy Accelerator<br />

Reserach Organizati<strong>on</strong><br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki, 305-0801 Japan<br />

Email: hiroko.tawara@kek.jp<br />

Takako Tezuka<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-Ku,<br />

Nagoya, 461-8673 Japan<br />

Tatsuo Torii<br />

M<strong>on</strong>ju C<strong>on</strong>structi<strong>on</strong> O ce, JNC<br />

2-1 Shiraki, Tsuruga, Fukui-ken<br />

919-1279 Japan<br />

Email:torii@t-hq.jnc.go.jp<br />

Shuichi Tsuda<br />

Japan Atomic Energy Research Institute<br />

(JAERI)<br />

2-4, Sirakata Sirane, Tokai-mura,<br />

Naka-gun, Ibaraki, 319-1195 Japan<br />

Email:tsuda@frs.tokai.jaeri.go.jp<br />

Masahiro Tsutsumi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Physics<br />

Japan Atomic Energy Research Institute<br />

2-4, Sirakata Sirane, Tokai-mura,<br />

Naka-gun, Ibaraki, 319-1195 Japan<br />

Email:tsutsumi@sakura.tokai.jaeri.go.jp<br />

Takeshi Uchibori<br />

ALOKA Co., Ltd.<br />

22-1, Mure, 6-chome, Mitaka-city, Tokyo<br />

181-8622 Japan<br />

Email:uchi3401@am.aloka.co.jp<br />

Kohtaro Ueki<br />

Ship Research Institute<br />

6-38-1 Shinkawa, Mitaka,<br />

Tokyo, 181-0004 Japan<br />

Email:ueki@srimot.go.jp<br />

8<br />

Yasuhiro Yamaguchi<br />

Japan Atomic Energy Research Institute<br />

2-4 Shirakata, Tokai, Ibaraki,<br />

319-1195 Japan<br />

Email:yasu@frs.tokai.jaeri.go.jp<br />

Tomohiro Yamashita<br />

Nagoya University<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

1-20 Daikominami-1-chome, Higashi-Ku,<br />

Nagoya, 461-8673 Japan<br />

Kenichi Yano<br />

ALOKA Co., Ltd.<br />

22-1, Mure, 6-chome, Mitaka-city, Tokyo<br />

181-8622 Japan<br />

Email:yano3149@am.aloka.co.jp<br />

Takashi Yokoi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical System,<br />

Shimadzu Corporati<strong>on</strong><br />

1 Nishinokyo-Kuwabara-Cho, Nakagyo-ku<br />

Kyoto, Japan<br />

Email:yokoi@shimadzu.co.jp<br />

Koichi Yokoyama<br />

Ibaraki Prefectural University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Health Sciences<br />

Ami, Ami-machi, Ibaraki-ken<br />

300-03 JAPAN<br />

Email:yokoyamak@ipu.ac.jp<br />

Gwang-Ho Yoo<br />

Dae-Bul University<br />

Sam-Ho Myun, Young-Arm kun,<br />

Ch<strong>on</strong>nam, S.Korea<br />

Email:ghyoo@mail.daebul.ac.kr<br />

Runsheng Yu<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Energy Physics,<br />

Chinese Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

P. O.Box 2732, Beijing 100080, China<br />

Email:yursh@ihepa.ac.cn

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!