06.07.2013 Views

Will Perkins NYU joint work with Joel Spencer and Mihyun Kang ...

Will Perkins NYU joint work with Joel Spencer and Mihyun Kang ...

Will Perkins NYU joint work with Joel Spencer and Mihyun Kang ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Bohman-Frieze<br />

Process<br />

Rutgers, 2/22/2011<br />

<strong>Will</strong> <strong>Perkins</strong><br />

<strong>NYU</strong><br />

<strong>joint</strong> <strong>work</strong> <strong>with</strong> <strong>Joel</strong> <strong>Spencer</strong> <strong>and</strong> <strong>Mihyun</strong> <strong>Kang</strong>


The Erdős–Rényi R<strong>and</strong>om<br />

Graph Process<br />

• Begin <strong>with</strong> an empty graph on n vertices<br />

• At each step, add a uniformly r<strong>and</strong>om edge to the graph<br />

• The graph ‘evolves’ from empty to full


R<strong>and</strong>om Graph Evolution


2/10/2011<br />

The Erdős-Rényi Phase Transition<br />

2.0<br />

• At step<br />

1.5<br />

cn<br />

2 , c1, |C1| = Θ(n)<br />

|C1|<br />

n<br />

1.0 n<br />

2/<br />

Achlioptas Processes<br />

1<br />

0.5<br />

The2 Erdős-Rényi · Edges Ph<br />

t = An Achlioptas Process:<br />

0.0 2 · Edgesn<br />

0.0 0.5 1.0 1.5 2.0<br />

t =<br />

|C1|<br />

0 1<br />

n<br />

•<br />

|C1|<br />

Size of smaller components<br />

Achlioptas Processes n<br />

• Inside the critical window: t =1+λn<br />

• Structure Dimitris of components<br />

Achlioptas asked: “Can the power of two choices in a r<strong>and</strong>om graph<br />

process delay the critical point?”<br />

An Achlioptas Process:<br />

2 · Edges<br />

t = −1/3<br />

Erdős-Rényi time: t =<br />

• At each step, r<strong>and</strong>om select t<br />

• Add one of the two edges to<br />

• Each rule corresponds to a ra<br />

e1<br />

#ofEdges<br />

. n/2<br />

G(t) ∼ G(n, t<br />

n )<br />

The Erdős-Rényi<br />

Erdős-Rényi time: t = #ofE<br />

n/<br />

G(t) ∼ G(n, t<br />

n )<br />

optas Processes<br />

Achlioptas asked: “Can the power of two choices in a r<strong>and</strong>om graph<br />

elay the critical point?”<br />

chlioptas Process:<br />

Wil<br />

Dimitris Achlioptas slope = 2 asked: “Can th<br />

process delay the critical point?”<br />

• Begin <strong>with</strong> an empty graph o<br />

Achlioptas Processes


Achlioptas Processes<br />

Can we delay the giant component by<br />

allowing two choices at each step?<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


Achlioptas Processes<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


Achlioptas Processes<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


Achlioptas Processes<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


Achlioptas Processes<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


Achlioptas Processes<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


Achlioptas Processes<br />

• Start <strong>with</strong> empty graph on n vertices<br />

• At each step, select two r<strong>and</strong>om edges<br />

• Add one of the edges according to some rule


as Processes<br />

The Bohman-Frieze<br />

2 · Edges<br />

t = t =1+λn −1/3<br />

Yes we can!<br />

n<br />

Process<br />

t =1+λn −1/3<br />

e1<br />

hlioptas Processes<br />

The Rule:<br />

e2<br />

itris Achlioptas asked: “Can the power of two choices in a r<br />

• If the first edge would join<br />

two isolated vertices, add it<br />

cess delay the critical point?”<br />

An Achlioptas<br />

•<br />

Process:<br />

Otherwise, add the second<br />

optas asked: “Can the power of two choices in a r<strong>and</strong>om graph<br />

e1<br />

e2


The Bohman-Frieze<br />

The Rule:<br />

Process<br />

• If the first edge would join<br />

two isolated vertices, add it<br />

• Otherwise, add the second


as Processes<br />

2 · Edges<br />

t = t =1+λn<br />

n<br />

−1/3<br />

The Bohman-Frieze<br />

t =1+λn −1/3<br />

e1<br />

hlioptas Processes<br />

The Rule:<br />

Process<br />

e2<br />

itris Achlioptas asked: “Can the power of two choices in a r<br />

• If the first edge would join<br />

two isolated vertices, add it<br />

cess delay the critical point?”<br />

An Achlioptas<br />

•<br />

Process:<br />

Otherwise, add the second close enough!<br />

optas asked: “Can the power of two choices in a r<strong>and</strong>om graph<br />

e1<br />

e2<br />

Shorth<strong>and</strong> for a larger<br />

class of processes:<br />

‘Bounded-Size Rules’<br />

Not really the process<br />

from their result, but


m quantities in the r<strong>and</strong>om graph process are<br />

their expectation. The expectation is a deter-<br />

system of ODE’s.<br />

olated vertices at step j of the Bohman-Frieze<br />

1.0<br />

1(j)<br />

n<br />

= x1(t)+o(1)<br />

2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0 0.5 1.0 1.5 2.0<br />

t


Susceptibility<br />

Average component size of a<br />

r<strong>and</strong>omly chosen vertex


Susceptibility<br />

Average component size of a<br />

r<strong>and</strong>omly chosen vertex


Susceptibility<br />

Average component size of a<br />

r<strong>and</strong>omly chosen vertex


Susceptibility<br />

Average component size of a<br />

r<strong>and</strong>omly chosen vertex


Breadth-First<br />

Search of C(v):<br />

Why Susceptibility?<br />

v


With susceptibility<br />

we can ‘skip ahead’:<br />

Why Susceptibility?<br />

v


With susceptibility<br />

we can ‘skip ahead’:<br />

Why Susceptibility?<br />

v<br />

Offspring<br />

distributed like<br />

component size of a<br />

r<strong>and</strong>omly chosen<br />

vertex


With susceptibility<br />

we can ‘skip ahead’:<br />

Why Susceptibility?<br />

v<br />

Offspring<br />

distributed like<br />

component size of a<br />

r<strong>and</strong>omly chosen<br />

vertex<br />

Mean = Susceptibility<br />

2nd moment also<br />

follows an ODE


Size of Second-Largest<br />

Component Not a monotone<br />

property


Other Rules?<br />

• Bounded-size rules are in Erdős–Rényi Universality Class:<br />

same qualitative behavior, different constants<br />

• Is different behavior possible?<br />

• In terms of growth of giant, ?<br />

• C<strong>and</strong>idate processes: Least Product Rule / Least Sum Rule


|C1|<br />

Other<br />

2 · Edges<br />

n Rules?<br />

t =<br />

n<br />

t =1+λn −1/3<br />

• Bounded-size rules are in Erdős–Rényi Universality Class:<br />

2 · Edges<br />

same qualitative t = behavior, different constants<br />

• Is different behavior n possible?<br />

• In terms of growth of giant, ?<br />

• C<strong>and</strong>idate processes: Least Product Rule / Least Sum Rule<br />

t =1+λn −1/3<br />

e1<br />

Numerical Evidence presented in ‘Explosive Percolation in<br />

R<strong>and</strong>om Net<strong>work</strong>s’ (Achlioptas/D’Souza/<strong>Spencer</strong> ’09)<br />

chlioptas Processes<br />

e2<br />

e1<br />

e2


Product Rule<br />

• Where is the critical point?<br />

• Is the phase transition continuous?<br />

• How big is the second-largest super-critical component?


Product Rule<br />

• Where is the critical point?<br />

• Is the phase transition continuous?<br />

• How big is the second-largest super-critical component?<br />

? infinite<br />

slope?


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!