06.07.2013 Views

MECH 314 Rolling without Slipping 7-Bar Mechanism Velocity ... - CIM

MECH 314 Rolling without Slipping 7-Bar Mechanism Velocity ... - CIM

MECH 314 Rolling without Slipping 7-Bar Mechanism Velocity ... - CIM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1 Position Analysis<br />

<strong>MECH</strong> <strong>314</strong><br />

Dynamics of <strong>Mechanism</strong>s<br />

September 27, 2010<br />

<strong>Rolling</strong> <strong>without</strong> <strong>Slipping</strong> 7-<strong>Bar</strong> <strong>Mechanism</strong> <strong>Velocity</strong> Analysis<br />

Examine Fig. 1. It shows the mechanism that defied the CGK planar mobility relation. To do a position analysis,<br />

given the positions of anchored R-joints A, B, H, the two wheel radii and the link lengths CE, DF , EF , EG, F G<br />

and GH is beyond the scope of this course. Therefore the coordinates of all these points are given as shown on the<br />

illustration. Furthermore to aid in the velocity analysis the distances rAC = 6 and rBD = 4 are given.<br />

(1.334,5.850) C<br />

2 <strong>Velocity</strong> Analysis<br />

(0,0)<br />

(11.544,11.972) G<br />

(5.957,7.754)<br />

3s -1<br />

A<br />

AC<br />

E<br />

B<br />

H<br />

RwoS09z<br />

F (12,403,5.024)<br />

D<br />

(10,0)<br />

Figure 1: A 1dof Geared 7-<strong>Bar</strong> <strong>Mechanism</strong><br />

(16,14)<br />

(13,354,2.179)<br />

Assume that the input link is AC and at this instant it turns at ωAC = 3rdn/s CCW as shown. Although a graphical<br />

synopsis will be presented later it is more straight forward to write two velocity loop closure vector equations in four<br />

variables ωCE, ωDF , ωEF G and ωGH. First we note that the rolling <strong>without</strong> slip of the two gear wheels, on which<br />

AC and BD rotate gives the angular velocity ωBD.<br />

The loop closure equations are<br />

ωAC<br />

rAC<br />

ωBD = −ωAC<br />

rBD<br />

= −3 6<br />

= −4.5rnd/s CW<br />

4<br />

ACEGH : vC + v E/C + v G/E − vG = 0, BDF GH : vD + v F/D + v G/F − vG = 0<br />

These expand to the following two sums of cross-products.<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡<br />

0 rACx 0 rCEx 0<br />

⎣ 0 ⎦ × ⎣ ⎦ + ⎣ 0 ⎦ × ⎣ ⎦ + ⎣ 0<br />

rACy<br />

0<br />

ωCE<br />

rCEy<br />

0<br />

ωEF G<br />

⎤<br />

⎡<br />

⎦ × ⎣<br />

rEGx<br />

rEGy<br />

0<br />

⎤<br />

⎡<br />

⎦ − ⎣<br />

0<br />

0<br />

ωGH<br />

⎤<br />

⎡<br />

⎦ × ⎣<br />

rHGx<br />

rHGy<br />

0<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

0<br />

0<br />

0<br />

⎤<br />


2<br />

⎡<br />

⎣<br />

0<br />

0<br />

ωBD<br />

⎤<br />

⎡<br />

⎦ × ⎣<br />

rBDx<br />

rBDy<br />

0<br />

⎤<br />

⎡<br />

⎦ + ⎣<br />

0<br />

0<br />

ωDF<br />

⎤<br />

⎡<br />

⎦ × ⎣<br />

rDF x<br />

rDF y<br />

0<br />

⎤<br />

⎡<br />

⎦ + ⎣<br />

0<br />

0<br />

ωEF G<br />

⎤<br />

⎡<br />

⎦ × ⎣<br />

rF Gx<br />

rF Gy<br />

0<br />

⎤<br />

⎡<br />

⎦ − ⎣<br />

0<br />

0<br />

ωGH<br />

⎤<br />

⎡<br />

⎦ × ⎣<br />

rHGx<br />

rHGy<br />

0<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

These lead to a detached coefficient form of four simultaneous linear equations in five homogeneous variables<br />

⎡<br />

−ωACrACy<br />

⎢ ωACrACx ⎢<br />

⎣ −ωBDrBDy<br />

ωBDrBDx<br />

−rCEy<br />

rCEx<br />

0<br />

0<br />

0<br />

0<br />

−rDF y<br />

rDF x<br />

−rEGy<br />

rEGx<br />

−rF Gy<br />

rF Gx<br />

rHGy<br />

−rHGx<br />

rHGy<br />

−rHGx<br />

⎡<br />

⎤ ∆<br />

⎢ ΩCE ⎥ ⎢<br />

⎥ ⎢ ΩDF ⎦ ⎢<br />

⎣ ΩEF G<br />

⎤<br />

⎥<br />

⎦ =<br />

⎡ ⎤<br />

0<br />

⎢ 0 ⎥<br />

⎢ 0 ⎥<br />

⎣ 0 ⎦<br />

0<br />

such that<br />

where<br />

ΩGH<br />

ωCE = ΩCE<br />

∆ , ωDF = ΩDF<br />

∆ , ωEF G = ΩEF G<br />

∆ , ωGH = ΩGH<br />

∆<br />

<br />

<br />

<br />

<br />

∆ = <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ΩCE = − <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ΩDF = <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ΩEF G = − <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ΩGH = <br />

<br />

<br />

<br />

−rCEy 0 −rEGy rHGy<br />

rCEx 0 rEGx −rHGx<br />

0 −rDF y −rF Gy rHGy<br />

0 rDF x rF Gx −rHGx<br />

−ωACrACy 0 −rEGy rHGy<br />

ωACrACx 0 rEGx −rHGx<br />

−ωBDrBDy −rDF y −rF Gy rHGy<br />

ωBDrBDx rDF x rF Gx −rHGx<br />

−ωACrACy −rCEy −rEGy rHGy<br />

ωACrACx rCEx rEGx −rHGx<br />

−ωBDrBDy 0 −rF Gy rHGy<br />

ωBDrBDx 0 rF Gx −rHGx<br />

−ωACrACy −rCEy 0 rHGy<br />

ωACrACx rCEx 0 −rHGx<br />

−ωBDrBDy 0 −rDF y rHGy<br />

ωBDrBDx 0 rDF x −rHGx<br />

−ωACrACy −rCEy 0 −rEGy<br />

ωACrACx rCEx 0 rEGx<br />

−ωBDrBDy 0 −rDF y −rF Gy<br />

ωBDrBDx 0 rDF x rF Gx<br />

The link vectors are obtained by subtracting the coordinates of the first point subscript from the second, e.g.,<br />

differences of point position vectors such as rAC = c − a.<br />

⎡ ⎤<br />

1.334<br />

⎡<br />

4.623<br />

⎤ ⎡ ⎤<br />

5.587<br />

rAC = ⎣ 5.850 ⎦ , rCE = ⎣ 1.904 ⎦ , rEG = ⎣ 4.218 ⎦<br />

⎡ ⎤<br />

3.354<br />

0<br />

⎡ ⎤<br />

−0.951<br />

0<br />

⎡ ⎤<br />

−0.859<br />

0<br />

⎡<br />

−4.456<br />

⎤<br />

rBD = ⎣ 2.179 ⎦ , rDF = ⎣ 2.845 ⎦ , rF G = ⎣ 6.948 ⎦ , rHG = ⎣ −2.028 ⎦<br />

0<br />

0<br />

0<br />

0<br />

3 Results and a Graphical Check<br />

Substituting the numerical values for the parameters in the detached coefficient matrix yields<br />

⎡<br />

⎢<br />

⎣<br />

−17.55<br />

4.002<br />

9.8055<br />

−1.904<br />

4.623<br />

0<br />

0<br />

0<br />

−2.845<br />

−4.218<br />

5.587<br />

−6.948<br />

⎤<br />

−2.028<br />

4.456 ⎥<br />

−2.028 ⎦<br />

−15.093 0 −0.951 −0.859 4.456<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

0<br />

0<br />

⎤<br />


Taking all 4 × 4 sub-matrix determinants with alternating sign and dividing the last four by the first produces the<br />

unknown angular velocities.<br />

vCy<br />

ωCE = 4.0055, ωDF = 20.846, ωEF G = −8.9105, ωGH = 6.1184<br />

The five point velocity vectors are calculated as follows.<br />

<br />

vCx<br />

<br />

−ωACrACy<br />

=<br />

<br />

−17.55<br />

=<br />

4.002<br />

<br />

,<br />

vEx<br />

vEy<br />

ωACrACx<br />

vDx<br />

vDy<br />

<br />

=<br />

−ωBDrBDy<br />

ωBDrBDx<br />

<br />

vCx − ωCErCEy −25.1765 vGx<br />

=<br />

=<br />

, =<br />

vCy + ωCErCEx 22.5195 vGy<br />

<br />

vF x vDx − ωDF rDF y −49.5023<br />

=<br />

=<br />

−34.9179<br />

vF y<br />

vDy + ωDF rDF x<br />

−ωGHrHGy<br />

ωGHrHGx<br />

<br />

=<br />

9.8095<br />

−15.093<br />

<br />

=<br />

<br />

12.4082<br />

−27.26373<br />

These results are checked by plotting the triangle EF G and projecting the velocity vectors vE, vF and vG onto the<br />

respective triangle sides. Analytically these projections vE=, vF = and vG= would be dot-product operations. All<br />

this has been done in Fig. 2 and the magnitudes of the projected vector pairs at either end of a side are compared.<br />

Notice the good agreement. Discrepancy is largely due to three-place precision of the coordinates of the three points<br />

that were given a-priori.<br />

v EF= @E=31.966<br />

v EF= @F=31.964<br />

v EG= @E=6.528<br />

v EG= @G=6.521<br />

v FG= @F=28.582<br />

v FG= @G=28.580<br />

v F<br />

v EF=<br />

v E<br />

v EG=<br />

E<br />

7BrRB091<br />

Figure 2: Checking the Results of the <strong>Velocity</strong> Analysis<br />

F<br />

G<br />

v FG=<br />

v G<br />

<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!