07.07.2013 Views

9 Interlayer Exchange Interactions in Magnetic Multilayers

9 Interlayer Exchange Interactions in Magnetic Multilayers

9 Interlayer Exchange Interactions in Magnetic Multilayers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

336 9 <strong>Interlayer</strong> <strong>Exchange</strong> <strong>Interactions</strong> <strong>in</strong> <strong>Magnetic</strong> <strong>Multilayers</strong><br />

n(ε) ≈ cos (qD+ φA + φB) . (8)<br />

We expect, furthermore, that this effect will proportional to the amplitude of the<br />

reflections at barriers A and B, i. e., to |rArB|; f<strong>in</strong>ally, n(ε) must be proportional to<br />

the width, D, of the spacer and to the density of states per unit energy and unit width:<br />

2 dq<br />

(9)<br />

π dε<br />

which <strong>in</strong>cludes a factor of 2 for sp<strong>in</strong> degeneracy. We can also <strong>in</strong>clude the effect of<br />

higher-order <strong>in</strong>terferences, because of n round trips <strong>in</strong> the spacer; the phase shift φ<br />

is then multiplied by n and |rArB| is replaced by |rArB| n . Gather<strong>in</strong>g all the terms, we<br />

obta<strong>in</strong>:<br />

n(ε) ≈ 2D dq<br />

∞<br />

|rArB|<br />

π dε<br />

n=1<br />

n cos n (qD+ φA + φB)<br />

= 2<br />

π Im<br />

<br />

iD dq<br />

∞<br />

(rArB)<br />

dε<br />

n=1<br />

n e niqD<br />

<br />

= 2<br />

π Im<br />

<br />

i dq rArB e<br />

dε<br />

iqD<br />

<br />

(10)<br />

1 − rArB e iqD<br />

As will appear clearly below, it is more convenient to consider the <strong>in</strong>tegrated density<br />

of states:<br />

N(ε) ≡<br />

ε<br />

−∞<br />

n(ε ′ ) dε ′ . (11)<br />

The modification N(ε) of the <strong>in</strong>tegrated density of states because of electron conf<strong>in</strong>ement<br />

is:<br />

N(ε) = 2<br />

π Im<br />

∞ (rArB) n<br />

e<br />

n<br />

niqD<br />

=− 2<br />

π<br />

n=1<br />

Im ln<br />

<br />

1 − rArB e iqD<br />

A simple graphical <strong>in</strong>terpretation of the above expression can be obta<strong>in</strong>ed by not<strong>in</strong>g<br />

that Im ln(z) = Arg (z), for z complex; thus, N(ε) is given by the argument, <strong>in</strong> the<br />

complex plane, of a po<strong>in</strong>t located at an angle φ = qD + φA + φB on a circle of<br />

radius |rArB| centred <strong>in</strong> Fig. 1. This graphical construction is shown <strong>in</strong> Fig. 1.<br />

The variation of N(ε) as a function of D is shown <strong>in</strong> Fig. 2, for different values of<br />

the conf<strong>in</strong>ement strength |rArB|. For weak conf<strong>in</strong>ement (a), N(ε) varies with D <strong>in</strong><br />

s<strong>in</strong>usoidal manner. As one the conf<strong>in</strong>ement strength is <strong>in</strong>creased (b), the oscillations<br />

are distorded, because of higher-order <strong>in</strong>terferences. F<strong>in</strong>ally, for full conf<strong>in</strong>ement (c),<br />

N(ε) conta<strong>in</strong>s jumps that correspond to the appearance of bound states. We note,<br />

however, that the period, , of the oscillations of N(ε) does not depend on the<br />

conf<strong>in</strong>ement strength, but only on the wavevector q ≡ k + − k − ,i.e. = 2π/q.<br />

(12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!