12.07.2013 Views

Effects of tune modulation on the long-term stability

Effects of tune modulation on the long-term stability

Effects of tune modulation on the long-term stability

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EFFECTS OF TUNE MODULATIONS ON THE LONG-TERM STABILITY<br />

IN ELECTRON-POSITRON STORAGE RING<br />

Eun-San Kim and Moohyun Yo<strong>on</strong>, PAL, POSTECH, Pohang, Kyungbuk, Korea, 79-784<br />

Abstract<br />

<strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong>. The change in <strong>the</strong> vertical <str<strong>on</strong>g>tune</str<strong>on</strong>g><br />

due to <strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong> can be written as<br />

The combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s and beam-beam<br />

interacti<strong>on</strong> are investigated in <strong>term</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>on</strong>g-<strong>term</strong> <strong>stability</strong><br />

in an electr<strong>on</strong>-positr<strong>on</strong> storage rings. The <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s<br />

due to power supply ripple and synchrotr<strong>on</strong> oscillati<strong>on</strong><br />

are studied for <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> KEKB. The <str<strong>on</strong>g>tune</str<strong>on</strong>g>s are<br />

sinusoidally modulated at different amplitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ripples<br />

and synchrotr<strong>on</strong> oscillati<strong>on</strong>s. It is shown that choices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g> greatly affect <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> beam size<br />

through <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> and <strong>the</strong> beam-beam interacti<strong>on</strong>.<br />

It is shown that <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due<br />

to <strong>the</strong> ripple is str<strong>on</strong>ger than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due to<br />

<strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong>.<br />

1 INTRODUCTION<br />

The l<strong>on</strong>g-<strong>term</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in a storage ring may<br />

be affected by various factors. To some degrees it is de<strong>term</strong>ined<br />

by <strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> machine and <strong>the</strong> strengths<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>linearities that may exist in <strong>the</strong> machine. Factors<br />

such as power supply ripple and ground moti<strong>on</strong> are known<br />

to increase emittance growth and particle loss rate in prot<strong>on</strong><br />

storage ring <str<strong>on</strong>g>of</str<strong>on</strong>g> HERA [1]. The beam-beam interacti<strong>on</strong><br />

also imposes limitati<strong>on</strong>s <strong>on</strong> <strong>the</strong> performances <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> colliding<br />

rings. Here we investigate <strong>the</strong> combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s due to <strong>the</strong> power supply ripple and <strong>the</strong><br />

synchrotr<strong>on</strong> oscillati<strong>on</strong> <strong>on</strong> <strong>the</strong> beam-beam interacti<strong>on</strong>. For<br />

this purpose, a tracking studies are performed by <strong>the</strong> using<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> KEKB parameters which are being commissi<strong>on</strong>ing and<br />

tracking runs <str<strong>on</strong>g>of</str<strong>on</strong>g> ¢ turns that corresp<strong>on</strong>d to 10 sec in<br />

actual machine operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> KEKB.<br />

We model <strong>the</strong> ripple as a <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> at <strong>the</strong><br />

ripple frequency. For this work, variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> beam size are<br />

studied by tracking particles for a milli<strong>on</strong> turn. Here we<br />

investigate <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> modulating in <strong>the</strong> vertical <str<strong>on</strong>g>tune</str<strong>on</strong>g>.<br />

The change in <strong>the</strong> vertical <str<strong>on</strong>g>tune</str<strong>on</strong>g> is given by<br />

Ý ÝÓ Ö Ó× ÖØ (1)<br />

where ÝÓ is <strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> machine in <strong>the</strong> absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ripple. The ripple is represented by Ö, <strong>the</strong> amplitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>, Ö <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g><br />

and Ø time for <strong>on</strong>e turn in a ring. We study <strong>the</strong> effect<br />

at different ripple frequencies due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

harm<strong>on</strong>ics. 50 Hz is c<strong>on</strong>sidered as <strong>the</strong> main ripple<br />

frequency. In additi<strong>on</strong> to this, we study <strong>the</strong> effects at 100<br />

Hz as ano<strong>the</strong>r harm<strong>on</strong>ic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> main ripple frequencies to<br />

c<strong>on</strong>sider effect <str<strong>on</strong>g>of</str<strong>on</strong>g> high frequency. We also study <strong>the</strong> variati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> beam size with <strong>the</strong> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> ripple at a fixed<br />

ripple frequency.<br />

Next we investiagte <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due to<br />

Ý ÝÓ ××Ò ×Ø (2)<br />

where ÝÓ is <strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> machine. The amplitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> is represented by ×, × <strong>the</strong> synchrotr<strong>on</strong><br />

<str<strong>on</strong>g>tune</str<strong>on</strong>g> and <strong>the</strong> time Ø is measured in turn number.<br />

It is shown that <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s that are c<strong>on</strong>sidered<br />

above may result in growth <str<strong>on</strong>g>of</str<strong>on</strong>g> beam size in <strong>the</strong> KEKB<br />

machine. The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> growth depends <strong>on</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> machine and also <strong>on</strong> <strong>the</strong> amplitude<br />

and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>. In result, our simulati<strong>on</strong>s<br />

show that <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> may be a source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

emittance growth and luminosity degradati<strong>on</strong> in electr<strong>on</strong>positr<strong>on</strong><br />

storage rings.<br />

Table 1: Parameters that are used in <strong>the</strong> simulati<strong>on</strong>s<br />

Parameter Unit Value<br />

Beam Energy Ó 8 GeV<br />

Emittance ¯ 3.6¢ m<br />

Cicumference 3016 m<br />

Energy Spread Æ 6.7¢ <br />

Bunch Length Þ 5.6 mm<br />

Beam-beam <str<strong>on</strong>g>tune</str<strong>on</strong>g> shift 0.052<br />

Beta functi<strong>on</strong> at IP ¬ÁÈ 1.1 cm<br />

Synchrotr<strong>on</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> × 0.0114<br />

Betatr<strong>on</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> ÝÓ 42.14<br />

2 SIMULATION<br />

Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for a particle is described by introducing<br />

scaled coordinates in transverse and l<strong>on</strong>gitudinal phase<br />

spaces. With × denoting <strong>the</strong> l<strong>on</strong>gitudinal coordinate, <strong>the</strong>y<br />

are given by<br />

Ý ×<br />

Ý ×<br />

× × ¬ÁÈ <br />

Ý<br />

Þ<br />

Ý<br />

Þ ×<br />

¯ ×<br />

× × (3)<br />

where ¬ÁÈ represents <strong>the</strong> betatr<strong>on</strong> functi<strong>on</strong> at <strong>the</strong> interacti<strong>on</strong><br />

point(IP) and Ý , Þ and ¯ are <strong>the</strong> nominal rms<br />

values at <strong>the</strong> IP <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transverse beam size, <strong>the</strong> bunch<br />

length and <strong>the</strong> relative energy spread, respectively. In <strong>the</strong><br />

above equati<strong>on</strong>, Ý and Ý are <strong>the</strong> positi<strong>on</strong> and <strong>the</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a macroparticle in a beam in <strong>the</strong> transverse directi<strong>on</strong>, respectively,<br />

and ¯ is <strong>the</strong> relative energy deviati<strong>on</strong> from <strong>the</strong><br />

nominal energy [¯ ]. We use<br />

¯<br />

Þ × Ø × (4)


where is <strong>the</strong> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light, and Ø is <strong>the</strong> difference in <strong>the</strong><br />

arrival time at × between <strong>the</strong> particle under c<strong>on</strong>siderati<strong>on</strong><br />

and <strong>the</strong> reference particle. Thus, Þ × indicates that<br />

<strong>the</strong> particle arrives at × earlier than <strong>the</strong> reference particle.<br />

The evoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se normalized parameters in <strong>the</strong><br />

ring can be treated separately at <strong>the</strong> IP and around <strong>the</strong> arc<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ring. First, at <strong>the</strong> IP, <strong>the</strong> change in scaled coordinates<br />

due to <strong>the</strong> beam-beam interacti<strong>on</strong> is given by [2, 3]<br />

Ê £ ÆÈ<br />

ÆÈ<br />

<br />

Ê ÆÈ <br />

ÆÈ (5)<br />

Here, <strong>the</strong> beam-beam interacti<strong>on</strong> is modeled by <strong>the</strong> interacti<strong>on</strong><br />

between a macroparticle in a weak beam and <strong>on</strong>e in a<br />

str<strong>on</strong>g beam with several slices. The center <str<strong>on</strong>g>of</str<strong>on</strong>g> each slice is<br />

represented by <strong>the</strong> l<strong>on</strong>gitudinal positi<strong>on</strong> Þ £. In eq. (5), we<br />

have defined<br />

ÆÈ Ò£<br />

Ò£<br />

<br />

Æ£ Ê £ <br />

Ê Ê £<br />

<br />

Æ£ Ê £<br />

<br />

Ê £ <br />

<br />

Ê £<br />

Ô<br />

Ê Þ<br />

Ê <br />

£ Þ£<br />

Þ<br />

¬ÁÈ<br />

¯<br />

<br />

¯ ¬ÁÈ<br />

<br />

<br />

(6)<br />

Here, is <strong>the</strong> nominal beam-beam parameter defined by<br />

Æ£Ö<br />

­¯<br />

(7)<br />

where ¯ is <strong>the</strong> transverse nominal emittance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> str<strong>on</strong>g<br />

beam, Ö is <strong>the</strong> classical electr<strong>on</strong> radius and ­ is <strong>the</strong> usual<br />

relativistic factor. More detailed discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> eqs. (5) and<br />

(6) can be found in ref. 2 and 3.<br />

As menti<strong>on</strong>ed above, <strong>the</strong> str<strong>on</strong>g beam is divided l<strong>on</strong>gitudinally<br />

into several slices, and a beam-beam kick given<br />

in eq. (6) for each slice is delivered at <strong>the</strong> barycenter £.<br />

Here, £ is <strong>the</strong> l<strong>on</strong>gitudinal barycenter <str<strong>on</strong>g>of</str<strong>on</strong>g> each slice in <strong>the</strong><br />

str<strong>on</strong>g beam and each barycenter represents Ò £Æ£ <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

particles in <strong>the</strong> str<strong>on</strong>g beam where ƣ and ң are <strong>the</strong> numbers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles in <strong>the</strong> str<strong>on</strong>g beam and in each slice, respectively.<br />

In our simulati<strong>on</strong> 4 slices are used.<br />

The transformati<strong>on</strong> in <strong>the</strong> transverse plane from IP to IP<br />

around <strong>the</strong> ring is simply a rotati<strong>on</strong>:<br />

<br />

<br />

<br />

Ó× Ý ×Ò Ý<br />

<br />

where Ý is <strong>the</strong> vertical <str<strong>on</strong>g>tune</str<strong>on</strong>g>.<br />

×Ò Ý Ó× Ý<br />

<br />

<br />

(8)<br />

Synchrotr<strong>on</strong> radiati<strong>on</strong> is given by<br />

Ý<br />

Õ Ý Ö Ý<br />

Õ Ý Ö <br />

× Ô ×<br />

Ö (9)<br />

where Ö × are independent, random Gaussian variables with<br />

unit standard derivati<strong>on</strong>. Here <strong>the</strong> is damping factors defined<br />

by<br />

Ý ÌÝ × Ì× (10)<br />

where <strong>the</strong> Ì denotes damping times normalized by <strong>the</strong> revoluti<strong>on</strong><br />

time.<br />

3 RESULTS OF THE SIMULATION<br />

3.1 Tune <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due to <strong>the</strong> power supply<br />

ripple<br />

Figure 1 shows <strong>the</strong> vertical beam sizes normalized by ÝÓ<br />

verse <strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes Ö× at <strong>the</strong> 50 Hz ripple<br />

frequency and ÝÓ . Figure 1(a) shows <strong>the</strong> case<br />

when <strong>the</strong>re is no <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>. Figure 1(b),(c) and (d)<br />

corresp<strong>on</strong>d to <strong>the</strong> cases <str<strong>on</strong>g>of</str<strong>on</strong>g> Ö=0.005, 0.01 and 0.015, respectively.<br />

Figure 2(a),(b),(c) and (d) show <strong>the</strong> vertical<br />

beam sizes normalized by ÝÓ in Ö=0, 0.005, 0.01 and<br />

0.015, respectively, at <strong>the</strong> 100 Hz ripple frequency and<br />

ÝÓ=42.14. Figure 3 shows <strong>the</strong> vertical beam sizes normalized<br />

by ÝÓ verse <strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g> variati<strong>on</strong> which are<br />

held c<strong>on</strong>stant at Ö=0.02 and 50 Hz ripple frequency. Figure<br />

3(a),(b),(c) and (d)corresp<strong>on</strong>d to <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> ÝÓ=42.11,<br />

42.12, 42.13 and 42.15, repectively.<br />

The larger <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> ( Ö) has str<strong>on</strong>ger effects.<br />

The ripple frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 Hz shows larger growth in<br />

beam size than that <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 Hz. We see that <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

beam size also depends <strong>on</strong> <strong>the</strong> choices <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nominal <str<strong>on</strong>g>tune</str<strong>on</strong>g>.<br />

3.2 Tune <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due to <strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong><br />

Figure 4 shows <strong>the</strong> vertical beam sizes normalized by ÝÓ<br />

over <strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes × and Ý=42.14. Figure<br />

4(a),(b),(c) and (d) corresp<strong>on</strong>d to <strong>the</strong> cases <str<strong>on</strong>g>of</str<strong>on</strong>g> × =0,<br />

0.005, 0.01, 0.015 and 0.02, respectively. The result for <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due to <strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong><br />

may be roughly represented by<br />

Ý ÝÓ × (11)<br />

The vertical beam size is varied linearly with <strong>the</strong> amplitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>.<br />

4 RESULTS<br />

The KEKB parameters are used to investigate <strong>the</strong> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s that are generated by <strong>the</strong> power supply<br />

ripple and <strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong>. Under current<br />

operating c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> KEKB, <strong>the</strong> beam sizes may be


affected by <strong>the</strong> combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s<br />

and beam-beam interacti<strong>on</strong>, depending <strong>on</strong> <strong>the</strong> strengths <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes. Our simulati<strong>on</strong>s also show that <strong>the</strong><br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> beam size depends<br />

<strong>on</strong> <strong>the</strong> operati<strong>on</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g>. It is shown that <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due<br />

to power supply ripple results in larger effects in growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> vertical beam size than <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> due to <strong>the</strong><br />

synchrotr<strong>on</strong> oscillati<strong>on</strong>. In our simulati<strong>on</strong>, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amplitude and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> are also investigated.<br />

It is shown that <strong>the</strong> <str<strong>on</strong>g>tune</str<strong>on</strong>g> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g>s may have<br />

important effects <strong>on</strong> <strong>the</strong> moti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles to n<strong>on</strong>linearities<br />

in electr<strong>on</strong>-positr<strong>on</strong> storage ring.<br />

σ<br />

1.4<br />

y1.2<br />

1.0<br />

1.4<br />

1.0<br />

(a)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

(c)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

1.4<br />

y 1.2<br />

1.0<br />

1.4<br />

σy 1.2<br />

σy<br />

1.2<br />

1.0<br />

(b)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

(d)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

Figure 1: The vertical beam sizes normalized by ÝÓ verse<br />

<strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes Ö=0,0.005,0.01 and 0.015, respectively,<br />

at <strong>the</strong> 50 Hz ripple frequency.<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

(a)<br />

σ σ<br />

σ<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

(c)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

(b)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

(d)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

Figure 2: The vertical beam sizes normalized by ÝÓ verse<br />

<strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes Ö=0,0.005,0.01 and 0.015, respectively,<br />

at <strong>the</strong> 100 Hz ripple frequency.<br />

σ<br />

σ<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

(a)<br />

σ σ<br />

0 1x10 6<br />

0.9<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

σ<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

(c)<br />

0 1x10 6<br />

0.9<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

1.3<br />

1.2<br />

y<br />

1.1<br />

1.0<br />

(b)<br />

0 1x10 6<br />

0.9<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

1.3<br />

1.2<br />

y1.1<br />

1.0<br />

(d)<br />

0 1x10 6<br />

0.9<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

Figure 3: The vertical beam sizes normalized by ÝÓ verse<br />

<strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes Ö and 50 Hz ripple frequency.<br />

Figure 3(a),(b),(c) and (d) corresp<strong>on</strong>d to <strong>the</strong> case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ÝÓ=42.11, 42.12, 42.13 and 42.15, respectively.<br />

σ<br />

1.2<br />

1.1<br />

y<br />

σ<br />

1.0<br />

1.2<br />

1.1<br />

y<br />

1.0<br />

(a)<br />

0 1x10 6<br />

(c)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

1.2<br />

y 1.1<br />

1.0<br />

1.2<br />

y 1.1<br />

1.0<br />

(b)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

(d)<br />

0 1x10 6<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Turns<br />

Figure 4: The vertical beam sizes normalized by ÝÓ verse<br />

<strong>the</strong> <str<strong>on</strong>g>modulati<strong>on</strong></str<strong>on</strong>g> amplitudes ×=0,0.005,0.01 and 0.015, respectively,<br />

due to <strong>the</strong> synchrotr<strong>on</strong> oscillati<strong>on</strong>.<br />

5 REFERENCES<br />

[1] O.S. Bruning and F. Willeke, Particle Accelerator, Vol.54,<br />

p.237, (1996).<br />

[2] K. Hirata, H. Moshammer and F. Ruggiero, Particle Accelerator,<br />

Vol. 40, p.205-228 (1993).<br />

[3] K. Hirata, H. Moshammer, F. Ruggiero and M. Bassetti,<br />

CERN SL-AP/90-02 (1990).<br />

σ<br />

σ<br />

σ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!