13.07.2013 Views

an epidemiological study of listeriosis in dairy cattle

an epidemiological study of listeriosis in dairy cattle

an epidemiological study of listeriosis in dairy cattle

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AN EPIDEMIOLOGICAL STUDY OF LISTERIOSIS IN<br />

DAIRY CATTLE<br />

by<br />

Hidayet Met<strong>in</strong> ERDOGAN<br />

A thesis submitted to the University <strong>of</strong> Bristol <strong>in</strong> accord<strong>an</strong>ce<br />

with the requirements for the degree <strong>of</strong> Doctor <strong>of</strong> Philosophy<br />

Division <strong>of</strong> Animal Health <strong>an</strong>d Husb<strong>an</strong>dry, Department <strong>of</strong><br />

Veter<strong>in</strong>ary Cl<strong>in</strong>ical Science, University <strong>of</strong> Bristol<br />

July 1998<br />

i


SUMMARY<br />

The aim <strong>of</strong> this <strong>study</strong> was to provide some <strong>epidemiological</strong> <strong>in</strong>formation about<br />

the distribution <strong>an</strong>d the dynamics <strong>of</strong> Listeria monocytogenes <strong>in</strong>fection <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>.<br />

In <strong>an</strong> attempt to determ<strong>in</strong>e the frequency <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>an</strong>d<br />

risk factors associated with it, a postal questionnaire designed to identify farm level risk<br />

factors associated with disease was sent to a r<strong>an</strong>dom sample <strong>of</strong> 1500 <strong>dairy</strong> farmers <strong>in</strong><br />

Engl<strong>an</strong>d <strong>in</strong> August 1995. The questionnaire <strong>in</strong>cluded questions about the disease <strong>an</strong>d<br />

farm m<strong>an</strong>agement practices (feed<strong>in</strong>g, hous<strong>in</strong>g <strong>an</strong>d dung disposal, etc.). The farm<br />

prevalence was 12.3% (95% CL, 10.0-14.8) overall 9.3% (95%CL, 7.4-11.7) <strong>in</strong> milk<strong>in</strong>g<br />

cows, 5% (95%CL, 3.6-6.8) <strong>in</strong> replacement heifers <strong>an</strong>d 1.4% (95% CL, 0.7-2.6) <strong>in</strong> <strong>dairy</strong><br />

calves. The farm prevalence <strong>in</strong> milk<strong>in</strong>g cows was signific<strong>an</strong>tly higher th<strong>an</strong> others<br />

(P


In the second part <strong>of</strong> the <strong>study</strong> a longitud<strong>in</strong>al survey <strong>of</strong> five <strong>dairy</strong> farms was<br />

carried out to determ<strong>in</strong>e the <strong>in</strong>fection rate with Listeria monocytogenes <strong>an</strong>d its<br />

behaviour <strong>in</strong> the environment, <strong>in</strong>dividual cows, pastures, soil, water sources, forage <strong>an</strong>d<br />

bulk milk t<strong>an</strong>ks on the five farms monitored bacteriologically <strong>an</strong>d serologically between<br />

August 96 <strong>an</strong>d May 97. The <strong>in</strong>fection rate varied between farms <strong>an</strong>d months. Two<br />

patterns <strong>of</strong> <strong>in</strong>fection rate were observed. On 3 farms the highest prevalence <strong>of</strong> <strong>in</strong>fection<br />

rates were obta<strong>in</strong>ed between November <strong>an</strong>d April, around 90% <strong>of</strong> <strong>an</strong>imals excreted L.<br />

monocytogenes <strong>in</strong> their faeces dur<strong>in</strong>g this period whereas on the other 2 farms the<br />

<strong>in</strong>fection rate was lower, around 30% <strong>of</strong> <strong>an</strong>imals excreted L. monocytogenes (that was<br />

only <strong>in</strong> March). An ELISA assay employ<strong>in</strong>g Listeriolys<strong>in</strong> O (LLO) was used to<br />

determ<strong>in</strong>e seroconversion before, dur<strong>in</strong>g <strong>an</strong>d after silage feed<strong>in</strong>g <strong>an</strong>d w<strong>in</strong>ter hous<strong>in</strong>g.<br />

Almost all <strong>an</strong>imals exam<strong>in</strong>ed on each farm had <strong>an</strong>ti-LLO <strong>an</strong>tibodies to L.<br />

monocytogenes before silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g. The <strong>an</strong>tibody level rema<strong>in</strong>ed<br />

unch<strong>an</strong>ged throughout the <strong>study</strong> with only a small number <strong>of</strong> <strong>an</strong>imals exhibit<strong>in</strong>g<br />

ch<strong>an</strong>ges on only one farm.<br />

Three species <strong>of</strong> Listeria were isolated from the environmental samples (soil,<br />

grass, silage, water, bedd<strong>in</strong>g). The commonest isolate was L. monocytogenes. L.<br />

<strong>in</strong>nocua was less common <strong>an</strong>d the rarest was L. seeligeri. L. monocytogenes was<br />

isolated from bulk milk t<strong>an</strong>k on three farms. R<strong>an</strong>dom amplified polymorphic DNA<br />

(RAPD) assays were used to identify the source <strong>of</strong> <strong>in</strong>fection <strong>in</strong> <strong>dairy</strong> cows <strong>an</strong>d to<br />

determ<strong>in</strong>e the variation between the stra<strong>in</strong>s <strong>of</strong> different orig<strong>in</strong>. In total 113 isolates (40<br />

from the environment <strong>an</strong>d 73 from the <strong>an</strong>imals) were exam<strong>in</strong>ed <strong>an</strong>d 12 different RAPD<br />

patterns were obta<strong>in</strong>ed. The results <strong>in</strong>dicated that different “stra<strong>in</strong>s” exist between <strong>an</strong>d<br />

with<strong>in</strong> farms. There also were similar patterns <strong>of</strong> RAPD between environmental <strong>an</strong>d<br />

<strong>an</strong>imal stra<strong>in</strong>s.<br />

iii


ACKNOWLEDGEMENTS<br />

I gratefully th<strong>an</strong>k to the University <strong>of</strong> Kafkas, Kars, Turkey, for gr<strong>an</strong>t<strong>in</strong>g me the<br />

scholarship to carry out this work.<br />

I am grateful to the Heads <strong>of</strong> the Departments <strong>of</strong> Cl<strong>in</strong>ical Veter<strong>in</strong>ary Science <strong>of</strong><br />

Bristol University <strong>an</strong>d Liverpool University for allow<strong>in</strong>g me to use their facilities.<br />

I am particularly th<strong>an</strong>kful to my supervisor, Pr<strong>of</strong>. Kenton Morg<strong>an</strong>, for his<br />

const<strong>an</strong>t support <strong>an</strong>d encouragement. None <strong>of</strong> this work would have been possible<br />

without his direction, enthusiasm <strong>an</strong>d vision. I also th<strong>an</strong>k to Drs Peter Cripps <strong>an</strong>d Laura<br />

Green, my other supervisors, for their advice <strong>an</strong>d suggestions whenever needed<br />

I gratefully acknowledge the technical assist<strong>an</strong>t I received from the members <strong>of</strong><br />

Bristol University; Cl<strong>in</strong>ical Microbiology Unit, especially Ge<strong>of</strong>frey Werret, for the<br />

development <strong>of</strong> culture techniques <strong>an</strong>d Dilip Patel for the development <strong>of</strong> <strong>an</strong> ELISA<br />

assay, Dr Alasdair MacGow<strong>an</strong> <strong>an</strong>d Karen Bowker <strong>of</strong> the Department <strong>of</strong> Microbiology<br />

<strong>of</strong> Southmead Hospital, Bristol, for the development <strong>of</strong> a RAPD assay <strong>an</strong>d f<strong>in</strong>ally the<br />

member <strong>of</strong> Liverpool University; Thelma Roscue for tirelessly mak<strong>in</strong>g enormous<br />

volumes <strong>of</strong> culture media every month <strong>an</strong>d Dr Malcolm Bennett <strong>an</strong>d his group for<br />

allow<strong>in</strong>g me to carry out molecular tests <strong>in</strong> his laboratories <strong>an</strong>d for technical help.<br />

I would like to th<strong>an</strong>k to all members <strong>of</strong> the epidemiology research group for<br />

<strong>in</strong>spir<strong>in</strong>g discussions <strong>an</strong>d their friendship, Dr Nigel French, Dr. Eduardo Berriatua, Dr.<br />

Burh<strong>an</strong> Cet<strong>in</strong>kaya, Dr. Niki Mouttato, Galip Kaya, Giles Paiba, Connor Carson, Mark<br />

Bronsvolt <strong>an</strong>d especially Saad Al-Sult<strong>an</strong> for his help with data collection for<br />

longitud<strong>in</strong>al <strong>study</strong> <strong>an</strong>d Sue Edwards for check<strong>in</strong>g the reference list.<br />

Th<strong>an</strong>ks are also due to the farmers who took part <strong>in</strong> the cross sectional <strong>an</strong>d<br />

longitud<strong>in</strong>al studies.<br />

iv


I would like to th<strong>an</strong>k to Met<strong>in</strong> Ozturk, Ibrahim Gokce <strong>an</strong>d other Turkish friends<br />

I have made <strong>in</strong> Bristol <strong>an</strong>d Liverpool for their comp<strong>an</strong>ionship <strong>an</strong>d mak<strong>in</strong>g my stay <strong>in</strong><br />

the UK pleas<strong>an</strong>t. Th<strong>an</strong>ks are also due to the friends I have made dur<strong>in</strong>g my stay <strong>in</strong><br />

L<strong>an</strong>gford <strong>an</strong>d Leahurst.<br />

My special th<strong>an</strong>ks are to my parents, Arif <strong>an</strong>d Elife, for provid<strong>in</strong>g me with<br />

education <strong>an</strong>d support <strong>an</strong>d th<strong>an</strong>ks are also to every s<strong>in</strong>gle member <strong>of</strong> my family for their<br />

encouragement <strong>an</strong>d support.<br />

My greatest appreciation <strong>an</strong>d acknowledgement is to my wife, Hilal, for her<br />

patience <strong>an</strong>d underst<strong>an</strong>d<strong>in</strong>g.<br />

v


DEDICATION<br />

This thesis is dedicated to my parents Arif <strong>an</strong>d Elife<br />

(Bu calisma hakklar<strong>in</strong>i asla odeyemeyecegim babama ve <strong>an</strong>neme atfolunur)<br />

vi


DECLARATION<br />

I declare that apart from the advice <strong>an</strong>d assist<strong>an</strong>t acknowledged the work<br />

reported <strong>in</strong> this thesis is my own <strong>an</strong>d has not been submitted for consideration for <strong>an</strong>y<br />

other degree <strong>of</strong> qualification.<br />

Hidayet Met<strong>in</strong> Erdog<strong>an</strong><br />

vii


TABLE OF CONTENTS<br />

LIST OF TABLES AND FIGURES viii-xix<br />

CHAPTER 1<br />

General Introduction: a literature review 1-45<br />

1. 1. Listeriosis 1<br />

1. 2. History <strong>of</strong> Listeria monocytogenes <strong>an</strong>d Listeriosis 1<br />

1. 3. Morphology <strong>an</strong>d culture characteristics 2<br />

1. 4. Taxonomy <strong>of</strong> Listeria 6<br />

1. 5. Typ<strong>in</strong>g <strong>of</strong> Listeria monocytogenes 9<br />

1. 6. Pathogenesis, <strong>in</strong>fectious dose, virulence <strong>an</strong>d resist<strong>an</strong>ce 16<br />

1. 7. Epidemiology 21<br />

1. 8. Cl<strong>in</strong>ical signs <strong>an</strong>d pathology 28<br />

1. 9. Diagnosis<br />

32<br />

1. 10. Treatment 34<br />

1. 11. Control 36<br />

1. 12. Listeriosis <strong>in</strong> people 38<br />

1. 13 The objectives <strong>of</strong> this <strong>study</strong> 43<br />

CHAPTER 2<br />

The frequency <strong>an</strong>d some characteristics <strong>of</strong> cl<strong>in</strong>ical<br />

Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d<br />

46-64<br />

2. 1. Introduction 46<br />

viii


2. 2. Materials <strong>an</strong>d Methods 47<br />

2. 2. 1. Study Population 47<br />

2. 2. 2. Study Design 47<br />

2. 2. 3. The Questionnaire 47<br />

2. 2. 4. Data Analysis 48<br />

2. 2. 5. Data process<strong>in</strong>g <strong>an</strong>d <strong>an</strong>alysis 50<br />

2. 3. Results 50<br />

2. 3. 1. Response rate 50<br />

2. 3. 2. The prevalence <strong>of</strong> <strong>listeriosis</strong> at farm level 50<br />

2. 3. 3. The <strong>in</strong>cidence <strong>of</strong> <strong>listeriosis</strong> at herd level 52<br />

2. 3. 4. Season 53<br />

2. 3. 5. The prevalence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> other <strong>an</strong>imals<br />

55<br />

2. 3. 6. Cl<strong>in</strong>ical signs associated with reported cases <strong>of</strong> <strong>listeriosis</strong> 55<br />

2. 3. 7 Treatment 57<br />

2. 3. 8. Validation <strong>of</strong> the questionnaire 58<br />

2. 3. 9. Herd size 60<br />

2. 4. Discussion 60<br />

CHAPTER 3<br />

The relationship between farm m<strong>an</strong>agement practices <strong>an</strong>d cl<strong>in</strong>ical<br />

<strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d: univariate <strong>an</strong>alysis 65-106<br />

3. 1. Introduction 65<br />

3. 2. Materials <strong>an</strong>d Methods 66<br />

3. 2. 1. Study design 66<br />

ix


3. 3. Results:<br />

3. 2. 2. Outcome variables 66<br />

3. 2. 3. Predictor variables 66<br />

3. 2. 4. Data <strong>an</strong>alysis 73<br />

3. 3. 1. Univariate relationship between farm m<strong>an</strong>agement practices <strong>an</strong>d<br />

<strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (Overall cases ) 74<br />

3. 3. 2. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows 80<br />

3. 3. 3. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> reported <strong>in</strong> w<strong>in</strong>ter months 84<br />

3. 3. 4. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cases <strong>of</strong> <strong>listeriosis</strong> with silage eye (iritis) 88<br />

3. 3. 5. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

nervous signs <strong>listeriosis</strong> (encephalitis) 92<br />

3. 3. 6. A summary <strong>of</strong> risk factors associated with<br />

the different forms <strong>of</strong> disease 96<br />

3. 4. Discussion 98<br />

CHAPTER 4<br />

The multivariate relationship between farm m<strong>an</strong>agement practices <strong>an</strong>d<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d 107-128<br />

4. 1 Introduction 107<br />

4. 2. Materials <strong>an</strong>d methods 107<br />

4. 2. 1. Model build<strong>in</strong>g 109<br />

4. 3. Results 109<br />

x


4. 4. Discussion 125<br />

CHAPTER 5<br />

A pilot <strong>study</strong> <strong>of</strong> the bacteriological <strong>an</strong>d<br />

serological techniques used to determ<strong>in</strong>e<br />

the <strong>in</strong>fection <strong>of</strong> cows with Listeria monocytogenes 129-156<br />

5. 1. Introduction 129<br />

5. 2. Materials <strong>an</strong>d methods 133<br />

5. 2. 1. Study design 133<br />

5. 2. 2. Bacteriology 134<br />

5. 2. 3. Serology 139<br />

5. 2. 4. Statistical <strong>an</strong>alysis 143<br />

5. 3. Results 143<br />

5. 3. 1. Results <strong>of</strong> bacteriology 143<br />

5. 3. 2. Results <strong>of</strong> serology 150<br />

5. 4. Discussion 153<br />

CHAPTER 6<br />

A <strong>study</strong> <strong>of</strong> the dynamic <strong>of</strong> <strong>in</strong>fection with Listeria monocytogenes,<br />

<strong>in</strong> herds <strong>of</strong> milk<strong>in</strong>g cows<br />

157-214<br />

6. 1. Introduction 157<br />

6. 2. Materials <strong>an</strong>d Methods 160<br />

6. 2. 1. Study Design 160<br />

6. 2. 2. Farm M<strong>an</strong>agement 160<br />

xi


6. 2. 3. Sample size 162<br />

6. 2. 4. Sampl<strong>in</strong>g procedure 162<br />

6. 2. 5. Sample preparation <strong>an</strong>d process<strong>in</strong>g 165<br />

6. 2. 6. Measurement <strong>of</strong> serum <strong>an</strong>tibody to Listeria monocytogenes<br />

165<br />

6. 2. 7. Investigation <strong>of</strong> source <strong>of</strong> the bacteria 166<br />

6. 2. 8. Data <strong>an</strong>alysis 170<br />

6. 3. Results 170<br />

6. 3. 1. Bacteriology 170<br />

6. 3. 2. Serology 192<br />

6. 3. 3. RAPD 193<br />

6. 4. Discussion 206<br />

CHAPTER 7<br />

Conclusion 215-218<br />

REFERENCES 219-256<br />

APPENDIX<br />

xii


CHAPTER 1<br />

LIST OF TABLES AND FIGURES<br />

Table 1. 1. Some characteristics <strong>of</strong> Listeria org<strong>an</strong>isms 5<br />

Table 1. 2. Serovar distribution <strong>of</strong> Listeria 8<br />

Table 1. 3. Epidemic <strong>an</strong>d sporadic cases <strong>of</strong> foodborne<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> people 40<br />

Figure 1. 1. Pathogenesis <strong>of</strong> L. monocytogenes <strong>in</strong>fection 18<br />

Figure 1. 2. Epidemiology <strong>of</strong> L. monocytogenes <strong>in</strong>fection 28<br />

Figure 1. 3. Potential pathways <strong>of</strong> L. monocytogenes tr<strong>an</strong>smission to people 42<br />

CHAPTER 2<br />

Table 2. 1. The farm prevalence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong><br />

<strong>in</strong> Engl<strong>an</strong>d <strong>in</strong> 1994 - 1995 51<br />

Table 2. 2. The proportion <strong>of</strong> <strong>an</strong>imals affected with <strong>listeriosis</strong> (<strong>an</strong>imal-year/1000) 52<br />

Table 2. 3. The proportion <strong>of</strong> <strong>an</strong>imals affected with <strong>listeriosis</strong><br />

accord<strong>in</strong>g to the cl<strong>in</strong>ical signs (<strong>an</strong>imal-year/1000) 53<br />

Table 2. 4. Frequency <strong>of</strong> cl<strong>in</strong>ical signs <strong>in</strong> cases reported<br />

between June 1994 <strong>an</strong>d June 1995 56<br />

Table 2. 5. The frequency <strong>of</strong> cl<strong>in</strong>ical symptoms for the cases reported<br />

57<br />

<strong>in</strong> three groups <strong>of</strong> <strong>dairy</strong> <strong>cattle</strong> between July 1994 <strong>an</strong>d June 1995<br />

Table 2. 6. Treatment <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>an</strong>d its result for the cases<br />

reported between July 1994 <strong>an</strong>d June 1995 58<br />

Table 2. 7. The frequency <strong>of</strong> cl<strong>in</strong>ical signs chosen by farmers <strong>an</strong>d<br />

xiii


sensitivity <strong>of</strong> farmers report<strong>in</strong>g correct cl<strong>in</strong>ical signs 59<br />

Table 2. 8. Herd size <strong>in</strong> non-affected <strong>an</strong>d affected groups 60<br />

Figure 2. 1. Monthly distribution <strong>of</strong> cases <strong>of</strong> <strong>listeriosis</strong><br />

between July 1994 <strong>an</strong>d June 1995 54<br />

Figure 2. 2. Monthly distribution <strong>of</strong> cases show<strong>in</strong>g silage eye 54<br />

Figure 2. 3. Monthly distribution <strong>of</strong> cases show<strong>in</strong>g nervous signs 55<br />

CHAPTER 3<br />

Table 3. 1. Categorisation <strong>of</strong> forage <strong>an</strong>alysis 70<br />

Table 3. 2. Univariate relationship between herd sizes <strong>an</strong>d cl<strong>in</strong>ical <strong>listeriosis</strong><br />

74<br />

Table 3. 3. Effect <strong>of</strong> forages fed to <strong>dairy</strong> <strong>cattle</strong> on the occurrence <strong>of</strong> <strong>listeriosis</strong> 76<br />

Table 3. 4. The relationship between <strong>listeriosis</strong> <strong>an</strong>d duration <strong>of</strong> feed<strong>in</strong>g grass silage<br />

77<br />

Table 3. 5. The univariate relationship between number <strong>of</strong> grass cuts <strong>an</strong>d disease 78<br />

Table 3. 6 .Effect <strong>of</strong> silage quality on <strong>listeriosis</strong> 78<br />

Table 3. 7. Univariate relationship between hous<strong>in</strong>g practices <strong>an</strong>d <strong>listeriosis</strong><br />

80<br />

Table 3. 8. Univariate relationship between herd sizes <strong>an</strong>d<br />

81<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows<br />

Table 3. 9. The univariate relationship between feed<strong>in</strong>g practices <strong>an</strong>d<br />

82<br />

<strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows<br />

Table 3. 10. The relationship between number <strong>of</strong> grass cuts <strong>an</strong>d<br />

<strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows 82<br />

xiv


Table 3. 11. The relationship between hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement <strong>an</strong>d<br />

<strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows 83<br />

Table 3. 12. Univariate relationship between herd sizes <strong>an</strong>d<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> reported <strong>in</strong> w<strong>in</strong>ter months 84<br />

Table 3. 13. Effect <strong>of</strong> silage quality on <strong>listeriosis</strong> <strong>in</strong> w<strong>in</strong>ter months 86<br />

Table 3. 14. The univariate relationship between feed<strong>in</strong>g practices <strong>an</strong>d<br />

cases <strong>of</strong> <strong>listeriosis</strong> reported <strong>in</strong> w<strong>in</strong>ter months 86<br />

Table 3. 15. The relationship between hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement <strong>an</strong>d<br />

<strong>listeriosis</strong> reported <strong>in</strong> w<strong>in</strong>ter months 87<br />

Table 3. 16. The univariate relationship between herd sizes <strong>an</strong>d<br />

silage eye 88<br />

Table 3. 17 The relationship between feed<strong>in</strong>g practices <strong>an</strong>d<br />

silage eye (iritis) 90<br />

Table 3. 18 The relationship between hous<strong>in</strong>g, general m<strong>an</strong>agement <strong>an</strong>d<br />

silage eye 92<br />

Table 3. 19. The univariate relationship between herd sizes <strong>an</strong>d<br />

nervous form <strong>of</strong> <strong>listeriosis</strong> 93<br />

Table 3. 20. The relationship between feed<strong>in</strong>g, hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement<br />

practices <strong>an</strong>d risk <strong>of</strong> report<strong>in</strong>g nervous form <strong>of</strong> <strong>listeriosis</strong> 94<br />

Table 3. 21. Effect <strong>of</strong> silage quality on the report<strong>in</strong>g <strong>of</strong><br />

nervous form <strong>of</strong> <strong>listeriosis</strong> 95<br />

Table 3. 22. The predictor variables associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease 97<br />

Table 3. 23. The predictor variables associated with a decreased risk <strong>of</strong> disease 98<br />

CHAPTER 4<br />

Table 4. 1. The multivariate relationship between major farm<strong>in</strong>g practices <strong>an</strong>d<br />

xv


cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (prelim<strong>in</strong>ary model) 111<br />

Table 4. 2. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

<strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (overall cases) 114<br />

Table 4. 3. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

115<br />

<strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows<br />

Table 4. 4. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cases <strong>of</strong> <strong>listeriosis</strong> occurr<strong>in</strong>g <strong>in</strong> w<strong>in</strong>ter months 116<br />

Table 4. 5. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

117<br />

cases <strong>of</strong> <strong>listeriosis</strong> with silage eye<br />

Table 4. 6. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cases <strong>of</strong> nervous signs 118<br />

Table 4. 7. The agreement between the two models for different outcomes 119<br />

Table 4. 8. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

<strong>listeriosis</strong> 121<br />

Table 4. 9. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

122<br />

<strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows<br />

Table 4. 10. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

<strong>listeriosis</strong> reported <strong>in</strong> w<strong>in</strong>ter months 122<br />

Table 4. 11. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cases <strong>of</strong> <strong>listeriosis</strong> with silage eye 123<br />

Table 4. 12. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d<br />

cases <strong>of</strong> <strong>listeriosis</strong> show<strong>in</strong>g nervous signs 124<br />

Table 4. 13. The agreement between the models for different outcome variables 125<br />

xvi


CHAPTER 5<br />

Table 5. 1. Date <strong>of</strong> visits <strong>an</strong>d number <strong>of</strong> samples collected 133<br />

Table 5. 2. Effect <strong>of</strong> cold enrichment on the growth qu<strong>an</strong>tity <strong>of</strong> Listeria spp 144<br />

Table 5. 3. Effect <strong>of</strong> sal<strong>in</strong>e on the isolation <strong>of</strong> Listeria 145<br />

Table 5. 4. Effect <strong>of</strong> LSEB <strong>an</strong>d NB on the growth <strong>of</strong> L. monocytogenes 145<br />

Table 5. 5. Monthly excretion rates <strong>of</strong> Listeria spp. <strong>in</strong> faeces 147<br />

Table 5. 6. The relationship between hous<strong>in</strong>g, silage feed<strong>in</strong>g <strong>an</strong>d<br />

Listeria excretion 149<br />

Table 5. 7. The relationship between age <strong>an</strong>d excretion <strong>of</strong> L. monocytogenes 149<br />

Table 5. 8. The effect <strong>of</strong> age on the frequency <strong>of</strong> <strong>an</strong>imals<br />

becom<strong>in</strong>g Listeria positive 150<br />

Table 5. 9. Effect <strong>of</strong> different coat<strong>in</strong>g temperature on the assay 151<br />

Table 5. 10. Plate pl<strong>an</strong> <strong>an</strong>d Optical densities 151<br />

Table 5. 11. The relationship between frequency <strong>of</strong> becom<strong>in</strong>g<br />

positive for Listeria <strong>an</strong>d <strong>an</strong>tibody level 152<br />

Table 5. 12. Relationship between age <strong>an</strong>d <strong>an</strong>tibody level 153<br />

Figure 5. 1. Isolation <strong>an</strong>d identification procedure for Listeria spp 136<br />

Figure 5. 2. Effect <strong>of</strong> cold enrichment on the growth <strong>of</strong> Listeria 146<br />

Figure 5. 3. Monthly excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes 148<br />

CHAPTER 6<br />

Table 6. 1. Some m<strong>an</strong>agement practices followed by the five farms 161<br />

Table 6. 2. Results <strong>of</strong> forage <strong>an</strong>alysis 161<br />

Table 6. 3. Age distribution <strong>of</strong> <strong>an</strong>imals on the farms A, B <strong>an</strong>d C 162<br />

xvii


Table 6. 4. Date <strong>of</strong> visits <strong>an</strong>d number <strong>of</strong> <strong>an</strong>imals sampled 163<br />

Table 6. 5. Number <strong>of</strong> <strong>an</strong>imals tested on more th<strong>an</strong> one occasion 163<br />

Table 6. 6. Dates <strong>an</strong>d numbers <strong>of</strong> blood samples collected 166<br />

Table 6. 7. Monthly excretion rate <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes <strong>in</strong> milk<strong>in</strong>g cows 172<br />

Table 6. 8. The relationship between silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g on the overall<br />

excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes 174<br />

Table 6. 9. The relationship between age <strong>an</strong>d excretion <strong>of</strong> Listeria spp. 175<br />

Table 6. 10. The effect <strong>of</strong> age on the excretion <strong>of</strong> Listeria spp.<br />

<strong>an</strong>d Listeria monocytogenes 176<br />

Table 6. 11. Isolation <strong>of</strong> Listeria spp. from the environment on Farm A 177<br />

Table 6. 12. Isolation <strong>of</strong> Listeria spp. from the environment on Farm B 179<br />

Table 6. 13. Isolation <strong>of</strong> Listeria spp. from the environment on Farm C 182<br />

Table 6. 14. Isolation <strong>of</strong> Listeria spp. from the environment on Farm D 185<br />

Table 6. 15. Isolation <strong>of</strong> Listeria spp. from the environment on Farm E 188<br />

Table 6. 16. Incidence rate <strong>of</strong> L. monocytogenes <strong>in</strong>fection by month 191<br />

Table 6. 17. Antibody ch<strong>an</strong>ges dur<strong>in</strong>g the period <strong>of</strong> the <strong>study</strong> 192<br />

Table 6. 18 The isolates, their orig<strong>in</strong> <strong>an</strong>d their RAPD patterns with the primer 5 194<br />

Table 6. 19. The distribution <strong>of</strong> the RAPD patterns by their orig<strong>in</strong> <strong>an</strong>d the farms 196<br />

Table 6. 20. Comparison <strong>of</strong> environmental <strong>an</strong>d <strong>an</strong>imals isolates<br />

obta<strong>in</strong>ed at different visits 197<br />

Figure 6. 1. The scheme followed for the collection <strong>of</strong> environmental samples 164<br />

Figure 6. 2. The monthly excretion <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes <strong>in</strong> faeces on Farm A 171<br />

Figure 6. 3. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes on Farm B 178<br />

xviii


Figure 6. 4. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes on Farm C 182<br />

Figure 6. 5. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes on Farm D 185<br />

Figure 6. 6. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes on Farm E 188<br />

Figure 6. 7. Monthly <strong>in</strong>cidence rate <strong>of</strong> L. monocytogenes <strong>in</strong>fection 191<br />

Figure 6. 8. The repeatability <strong>of</strong> RAPD <strong>an</strong>d<br />

discrim<strong>in</strong>ation <strong>of</strong> different species <strong>of</strong> Listeria 200<br />

Figure 6. 9. The discrim<strong>in</strong>ation <strong>of</strong> isolates <strong>of</strong> L. monocytogenes<br />

with different primers 201<br />

Figure 6. 10. The distribution <strong>of</strong> stra<strong>in</strong>s <strong>in</strong> two persistently<br />

<strong>in</strong>fected <strong>an</strong>imals on farm A 202<br />

Figure 6. 11. The RAPD pattern obta<strong>in</strong>ed from environmental <strong>an</strong>d<br />

faecal isolates <strong>of</strong> farm C 203<br />

Figure 6. 12a. The RAPD pattern obta<strong>in</strong>ed from<br />

the environmental isolates <strong>of</strong> farm D 204<br />

Figure 6. 12b. The RAPD patterns obta<strong>in</strong>ed from faecal isolates on farm D 205<br />

Figure 6. 13. Animal-environment cycle <strong>of</strong> L. monocytogenes 214<br />

xix


1. 1. Listeriosis<br />

CHAPTER 1<br />

General Introduction: a literature review<br />

Listeriosis is <strong>an</strong> <strong>in</strong>fectious disease <strong>of</strong> m<strong>an</strong> <strong>an</strong>d <strong>an</strong>imals with a world-wide<br />

distribution. It m<strong>an</strong>ifests itself <strong>in</strong> three major cl<strong>in</strong>ical forms, men<strong>in</strong>goencephalitis,<br />

abortion <strong>an</strong>d septicaemia (Hird <strong>an</strong>d Genegeogis 1990). Listeriosis is caused by a<br />

member <strong>of</strong> the genus Listeria. The majority <strong>of</strong> the cl<strong>in</strong>ical cases are associated with<br />

Listeria monocytogenes <strong>in</strong>fection. Only a few reported cases have been associated with<br />

Listeria iv<strong>an</strong>ovii, Listeria seeligeri <strong>an</strong>d Listeria <strong>in</strong>nocua (McLauchl<strong>in</strong> 1987).<br />

1. 2. History <strong>of</strong> Listeria monocytogenes <strong>an</strong>d Listeriosis:<br />

Although Gray <strong>an</strong>d Kill<strong>in</strong>ger, <strong>in</strong> a review published <strong>in</strong> 1966, date the discovery<br />

<strong>of</strong> Listeria monocytogenes to the reports from Fr<strong>an</strong>ce <strong>an</strong>d Germ<strong>an</strong>y <strong>in</strong> the late<br />

n<strong>in</strong>eteenth century, it was only <strong>in</strong> 1926 that Listeria was described by Murray, Webb<br />

<strong>an</strong>d Sw<strong>an</strong>n. It was implicated <strong>in</strong> <strong>an</strong> outbreak <strong>of</strong> disease <strong>in</strong> laboratory rabbits <strong>an</strong>d the<br />

bacterium was isolated from the liver <strong>of</strong> affected <strong>in</strong>dividuals. The disease was<br />

characterised by a leukocytosis <strong>in</strong> which the predom<strong>in</strong><strong>an</strong>t cells were large mononuclear<br />

cells <strong>an</strong>d the org<strong>an</strong>ism was named Bacterium monocytogenesis. In 1927 Piere isolated<br />

<strong>an</strong> identical org<strong>an</strong>ism from lesions <strong>in</strong> the liver <strong>of</strong> gerbils <strong>an</strong>d named the org<strong>an</strong>ism<br />

1


Listeralla hepatolytica. In the same year Nyfeldt made the first confirmed isolation <strong>of</strong><br />

Listeria from m<strong>an</strong>. The org<strong>an</strong>ism was recovered from <strong>an</strong> outbreak <strong>of</strong> <strong>an</strong> <strong>in</strong>fectious<br />

mononucleosis-like disease (cited by Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966). The first report <strong>of</strong> the<br />

disease <strong>in</strong> rum<strong>in</strong><strong>an</strong>ts was <strong>in</strong> 1929 when Gill reported a disease <strong>of</strong> sheep (locally called<br />

"circl<strong>in</strong>g disease") <strong>in</strong> New Zeal<strong>an</strong>d <strong>an</strong>d two years later isolated the same org<strong>an</strong>ism from<br />

sick sheep <strong>an</strong>d designated it Listeralla ovis (Gill 1937). The first report <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong><br />

<strong>cattle</strong> was by Jones <strong>an</strong>d Little <strong>in</strong> 1934 where it was implicated <strong>in</strong> what is now known as<br />

“typical Listeriosis”, namely men<strong>in</strong>goencephalitis. The literature on Listeria <strong>an</strong>d<br />

<strong>listeriosis</strong> has grown rapidly s<strong>in</strong>ce that time.<br />

Almost every researcher who isolated this newly discovered bacteria named it<br />

differently which resulted <strong>in</strong> a list <strong>of</strong> names all referr<strong>in</strong>g to the same org<strong>an</strong>ism. In 1940<br />

Pirie proposed the name Listeria monocytogenes for this new bacterium after the<br />

British surgeon <strong>an</strong>d medical pioneer Lord Lister. The adoption <strong>of</strong> this name concluded<br />

the conflict about the name <strong>of</strong> this new bacteria. By the 1960s Listeria monocytogenes<br />

had been reported from over 50 species <strong>of</strong> diseased <strong>an</strong>d healthy <strong>an</strong>imals <strong>in</strong>clud<strong>in</strong>g dog,<br />

cat, horse, pig, fowl <strong>an</strong>d m<strong>an</strong>y domesticated <strong>an</strong>d wild <strong>an</strong>imals (Gray <strong>an</strong>d Kill<strong>in</strong>ger<br />

1966).<br />

1. 3. Morphology <strong>an</strong>d culture characteristics:<br />

a) Morphology: Listeria are gram positive, non-sporeform<strong>in</strong>g, non-capsular, short,<br />

regular rods. They are, 0.4-0.5μm <strong>in</strong> diameter <strong>an</strong>d 0.5-2μm <strong>in</strong> length with rounded ends.<br />

They are motile with a characteristic tumbl<strong>in</strong>g movement, best seen at room<br />

temperature. Fresh mature cultures <strong>of</strong> Listeria show a typical diphtheroid palisade<br />

formation with V <strong>an</strong>d/or Y shapes either s<strong>in</strong>gly or <strong>in</strong> short cha<strong>in</strong>s whereas <strong>in</strong> very young<br />

or old cultures they may be seen <strong>in</strong> coccoid forms. In fresh cultures they are always<br />

2


gram positive whereas <strong>in</strong> old cultures gram sta<strong>in</strong><strong>in</strong>g is irregular (Seeliger <strong>an</strong>d Jones<br />

1986, Lovett 1990).<br />

b) Colony characteristics: Listeria form colonies which are 0.5-1.5mm round,<br />

tr<strong>an</strong>slucent, with a low convex surface, a f<strong>in</strong>e texture, <strong>an</strong> entire marg<strong>in</strong> end <strong>an</strong>d a dew-<br />

drop appear<strong>an</strong>ce. On agar plates, older colonies, between 3-7 days are larger, 3-5mm <strong>in</strong><br />

diameter, with a more opaque centre <strong>an</strong>d rough colonial forms. The colonies appear<br />

bluish grey by normal illum<strong>in</strong>ation <strong>an</strong>d a characteristic bluish green sheen is produced<br />

by obliquely tr<strong>an</strong>smitted light. Under obliquely tr<strong>an</strong>smitted light the colony appear<strong>an</strong>ce<br />

is so characteristic that, with a little practice, colonies c<strong>an</strong> easily <strong>an</strong>d quickly be<br />

dist<strong>in</strong>guished even <strong>in</strong> severely contam<strong>in</strong>ated plates. Colonies may be sticky when<br />

removed from agar plates. After removal <strong>of</strong> haemolytic colonies they leave a<br />

haemolysed zone while non-haemolytic colonies leave <strong>an</strong> impression on the agar plate<br />

(Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Seeliger <strong>an</strong>d Jones 1986, Lovett 1990).<br />

Three <strong>of</strong> the seven species <strong>of</strong> the genus Listeria are capable <strong>of</strong> lys<strong>in</strong>g<br />

erythrocytes. L. iv<strong>an</strong>ovii is markedly haemolytic whereas L. monocytogenes <strong>an</strong>d<br />

especially L. seeligeri are less haemolytic. The haemolytic activity <strong>of</strong> these species is<br />

used to differentiate them <strong>in</strong> a modified CAMP test (Christie <strong>an</strong>d others 1944) which<br />

employs Rhodococcus equi as well as Staphylococcus aureus. This test is widely used<br />

for the differentiation <strong>of</strong> the three species <strong>in</strong> spite <strong>of</strong> conflict<strong>in</strong>g results (Vazquez-<br />

Bol<strong>an</strong>d <strong>an</strong>d others 1990, McKellar 1993). The haemolytic activity <strong>of</strong> L. monocytogenes<br />

<strong>an</strong>d L. seeligeri is enh<strong>an</strong>ced when grown adjacent to Staphylococcus aureus whilst no<br />

reaction is observed with Rhodococcus equi. They are therefore CAMP test positive for<br />

S. aureus <strong>an</strong>d negative for R. equi. In contrast L. iv<strong>an</strong>ovii produces large shovel shaped<br />

areas <strong>of</strong> haemolysis when grown next to R. equi, but no reaction when grown next to S<br />

aureus. It is therefore CAMP test negative for S. aureus <strong>an</strong>d positive for R. equi.<br />

3


Listeriolys<strong>in</strong> O (Fern<strong>an</strong>daz-Garayzabal <strong>an</strong>d others 1992a) or phospholipase C (Skalka<br />

<strong>an</strong>d others 1982) are believed to be <strong>in</strong>volved <strong>in</strong> the reaction seen with S. aureus <strong>an</strong>d<br />

sph<strong>in</strong>gomyel<strong>in</strong>ase is <strong>in</strong>volved <strong>in</strong> the reaction seen with R. equi (Vazquez-Bol<strong>an</strong>d <strong>an</strong>d<br />

others 1989a, Kreft <strong>an</strong>d others 1989). It has been reported that haemolytic activity <strong>of</strong><br />

some stra<strong>in</strong>s <strong>of</strong> L. monocytogenes c<strong>an</strong> also be enh<strong>an</strong>ced when grown next to R. equi<br />

(Vazquaz-Bol<strong>an</strong>d <strong>an</strong>d others 1990) thus caution should be exercised when <strong>in</strong>terpret<strong>in</strong>g<br />

the results. The rest <strong>of</strong> the genus is unreactive to CAMP test <strong>an</strong>d uniformly non-<br />

haemolytic.<br />

Some biochemical <strong>an</strong>d physical characteristics <strong>of</strong> Listeria are given <strong>in</strong> the Table<br />

1. 1. Speciation <strong>of</strong> the members <strong>of</strong> the genus Listeria are made on the basis <strong>of</strong> these<br />

properties.<br />

d) Antibiotic susceptibility: Although the <strong>an</strong>tibiotic susceptibility <strong>of</strong> Listeria is<br />

ambiguous <strong>in</strong> diseased <strong>an</strong>imals, especially <strong>in</strong> men<strong>in</strong>goencephalitis, <strong>in</strong> vitro<br />

exam<strong>in</strong>ations reveal them to be susceptible to Tetracycl<strong>in</strong>e, Penicill<strong>in</strong> G, Ampicill<strong>in</strong>,<br />

Erythromyc<strong>in</strong>, Chloromphenicol, Neomyc<strong>in</strong>, Novobioc<strong>in</strong>, Cephalorid<strong>in</strong>e but resist<strong>an</strong>t to<br />

Colist<strong>in</strong>, Sulfate, Nalidixic acid, Polymix<strong>in</strong> B, Acriflav<strong>in</strong> <strong>an</strong>d Sulfonamides. Further<br />

<strong>in</strong>vestigation is required to develop satisfactory treatment regimes for encephalitic cases<br />

<strong>of</strong> Listeriosis (Seeliger <strong>an</strong>d Jones 1986, Benedict 1990).<br />

e) Serogroups: The <strong>an</strong>tigenic composition <strong>of</strong> Listeria has been the subject <strong>of</strong> <strong>in</strong>tensive<br />

<strong>in</strong>vestigations (Gray <strong>an</strong>d Kikll<strong>in</strong>ger 1966, Seeliger 1984). The currently accepted<br />

scheme is based on the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Paterson (1940), Donker-Voet (1972) <strong>an</strong>d Seeliger<br />

<strong>an</strong>d Hohne (1979). The serogroups are based upon O (somatic) <strong>an</strong>d H (flagellar)<br />

<strong>an</strong>tigens. The scheme now consists <strong>of</strong> 16 serovars (Table 1. 2).<br />

4


Table 1. 1. Some characteristics <strong>of</strong> listeria org<strong>an</strong>isms<br />

monocytogenes iv<strong>an</strong>ovii seeligeri <strong>in</strong>nocua welshimeri grayi murrayi<br />

Gram + + + + + + + +<br />

Catalase + + + + + + +<br />

Oxidase - - - - - - -<br />

urease - - - - - - -<br />

β-haemolysis + ++ +? - - - -<br />

CAMP test<br />

S. aureus + - + - - - -<br />

R.equi - + - - - - -<br />

Utilisation<br />

Aescul<strong>in</strong> + + + + + + +<br />

Rhamnose + - - v v - v<br />

Glucose + + + + + + +<br />

Xylose - + + - + - -<br />

M<strong>an</strong>nitol - - - - - + +<br />

Galactose - - - - - + +<br />

M<strong>an</strong>noside + - v + + - -<br />

Reduction <strong>of</strong><br />

NO3 to NO2<br />

enh<strong>an</strong>cment <strong>of</strong><br />

growth by<br />

iron<br />

Mouse<br />

virul<strong>an</strong>ce<br />

serovars 1/2a, /2b, 1/2c,<br />

3a, 3b, 3c, 4a,<br />

4b, 4ab, 4d, 4e,<br />

7<br />

- - - - - - +<br />

+ + + + + + +<br />

+ + +v - - - -<br />

1/2b,<br />

4c, 4d,<br />

6b, ud<br />

5 6a, 6b,<br />

4ab, ud<br />

6a, 6b<br />

+ =positive reaction, - = negative reaction, v = variable reaction, ++ = strong haemolys<strong>in</strong>, +? = weak<br />

haemolys<strong>in</strong>, +v = variation <strong>in</strong> pathogenicity, ud = undesignated<br />

1. 4. Taxonomy <strong>of</strong> Listeria:<br />

5


L. monocytogenes was the only recognised species with<strong>in</strong> the genus Listeria<br />

until 1961 when Listeria denitrific<strong>an</strong>s was <strong>in</strong>cluded <strong>in</strong> the genus. Listeria grayi was<br />

<strong>in</strong>cluded <strong>in</strong> 1966 <strong>an</strong>d Listeria murrayi <strong>in</strong> 1971 (Roucort <strong>an</strong>d others 1982). In their<br />

taxonomic <strong>in</strong>vestigation <strong>of</strong> L. monocytogenes Seeliger <strong>an</strong>d Hohne (1979) divided it<br />

<strong>in</strong>to 16 different serogroups (Table 1. 2.). All serotype 5 stra<strong>in</strong>s were strongly β-<br />

haemolytic <strong>an</strong>d <strong>in</strong> 1975 Iv<strong>an</strong>ov, a Bulgari<strong>an</strong> scientist proposed a separate species,<br />

Listeria bulgarica. L. bulgarica was later named L. iv<strong>an</strong>ovii by Seeliger <strong>an</strong>d colleques<br />

(1984) after Iv<strong>an</strong>ov. Two years later, non haemolytic <strong>an</strong>d non pathogen serotype 6<br />

stra<strong>in</strong>s were proposed as a new species, Listeria <strong>in</strong>nocua by Seeliger (1981). Listeria<br />

welshimeri <strong>an</strong>d Listeria seeligeri were <strong>in</strong>cluded <strong>in</strong> the genus <strong>in</strong> 1983 (Rocourt <strong>an</strong>d<br />

Grimont 1983).<br />

The orig<strong>in</strong>al taxonomic classification <strong>of</strong> Listeria was based on biochemical <strong>an</strong>d<br />

physical characteristics <strong>of</strong> the org<strong>an</strong>ism. The species are biochemically very similar to<br />

each other but differ <strong>in</strong> DNA sequences. Recent developments <strong>in</strong> DNA technology have<br />

extended our knowledge <strong>of</strong> the bacteria at molecular level. DNA-DNA hybridisation <strong>of</strong><br />

Listeria has confirmed that Listeria monocytogenes, <strong>in</strong>nocua, welshimeri, seeligeri <strong>an</strong>d<br />

iv<strong>an</strong>ovii are closely related to each other but still differ at the DNA sequence level<br />

(Rocourt <strong>an</strong>d others 1982, Seeliger <strong>an</strong>d Jones 1986, Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991). The<br />

classification <strong>of</strong> L. denitrific<strong>an</strong>s , L. murrayi <strong>an</strong>d L. grayi became problematic after the<br />

<strong>study</strong> <strong>of</strong> the numerical taxonomic, DNA base composition <strong>an</strong>d DNA-DNA<br />

hybridisation studies (Stuart <strong>an</strong>d Welshimer 1973 <strong>an</strong>d 1974, Rocourt <strong>an</strong>d others 1982).<br />

These studies concluded that these three species were dist<strong>in</strong>ct from L. monocytogenes.<br />

However Fiedler <strong>an</strong>d Seger (1983) exam<strong>in</strong>ed the am<strong>in</strong>o acid sequences <strong>of</strong> the cell wall<br />

<strong>of</strong> these species <strong>an</strong>d concluded that the mure<strong>in</strong> variation found <strong>in</strong> L. grayi <strong>an</strong>d L.<br />

murrayi was also found <strong>in</strong> L. monocytogenes. The mure<strong>in</strong> content <strong>of</strong> L. denitrific<strong>an</strong>s<br />

was signific<strong>an</strong>tly different from those <strong>of</strong> other Listeria species which led to exclusion <strong>of</strong><br />

6


L. denitrific<strong>an</strong>s from the genus. After serological studies <strong>an</strong>d other related taxonomic<br />

works L. murrayi <strong>an</strong>d L. grayi were kept with<strong>in</strong> the genus (Rocourt <strong>an</strong>d others 1987,<br />

Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991).<br />

At the present time, the genus Listeria has seven species which are L.<br />

monocytogenes, L. iv<strong>an</strong>ovii, L. seeligeri, L. <strong>in</strong>nocua, L. welshimeri, L. murrayi <strong>an</strong>d L.<br />

grayi. Although Listeria monocytogenes is widely considered to be the only pathogen<br />

<strong>of</strong> people <strong>an</strong>d <strong>an</strong>imals, L. iv<strong>an</strong>ovii has been associated with abortion <strong>in</strong> sheep <strong>an</strong>d rarely<br />

<strong>in</strong> <strong>cattle</strong> (Alex<strong>an</strong>der <strong>an</strong>d others 1992), L. seeligeri has been isolated from cases <strong>of</strong><br />

encephalitis <strong>in</strong> people <strong>an</strong>d L. <strong>in</strong>nocua has been implicated <strong>in</strong> some encephalitic cases<br />

both naturally <strong>an</strong>d experimentally <strong>in</strong> rum<strong>in</strong><strong>an</strong>ts (Walker <strong>an</strong>d others 1994). The other<br />

species are believed to be non pathogenic (McLauchl<strong>in</strong> 1987).<br />

7


Table 1. 2. Serovar distribution <strong>of</strong> Listeria<br />

Paterson Seeliger -<br />

Donker-Voet<br />

O <strong>an</strong>tigen H <strong>an</strong>tigen<br />

1 1/2a I II (III) AB<br />

1/2b I II (III) ABC<br />

2 1/2c I II (III) BD<br />

3a II (III) AB<br />

3 3b II (III) IV (XII) (XIII) ABC<br />

3c II (III) IV (XII) (XIII) BD<br />

4a (III) (V) VII IX ABC<br />

4b (III) V VI ABC<br />

4c (III) V VII ABC<br />

4d (III) (V) VI VIII ABC<br />

4 4e (III) V VI (VIII) (IX) ABC<br />

5 (III) (V) VI VIII X ABC<br />

6a (4f) (III) V (VI) (VII) (IX) (XV) ABC<br />

6b (4g) (III) (V) (VI) (VII) IX X XI ABC<br />

7 (III) XII XIII ABC<br />

L. grayi (III) XII XIV E<br />

L.<br />

murrayi<br />

( ) = not always present<br />

(III) XII (XIV) E<br />

8


1. 5. Typ<strong>in</strong>g <strong>of</strong> Listeria monocytogenes:<br />

Epidemiological studies <strong>of</strong> <strong>in</strong>fectious diseases require methods to differentiate<br />

causative agents beyond the species <strong>an</strong>d subspecies levels. A number <strong>of</strong> typ<strong>in</strong>g methods<br />

have been developed for this purpose based on the genotypic <strong>an</strong>d phenotypic<br />

characteristics <strong>of</strong> the agent. The implication <strong>of</strong> L. monocytogenes <strong>in</strong> epidemic <strong>an</strong>d<br />

sporadic <strong>listeriosis</strong> made it necessary to develop more discrim<strong>in</strong>at<strong>in</strong>g typ<strong>in</strong>g techniques<br />

to underst<strong>an</strong>d the epidemiology <strong>of</strong> disease <strong>an</strong>d thus to help epidemiologist develop<br />

preventive measures aga<strong>in</strong>st L. monocytogenes <strong>in</strong>fection. These techniques <strong>in</strong>clude<br />

serotyp<strong>in</strong>g (Seeliger <strong>an</strong>d Hohne 1979), biotyp<strong>in</strong>g (Ralovich 1993), <strong>an</strong>tibiotic<br />

susceptibility patterns (MacGow<strong>an</strong> <strong>an</strong>d others 1990a), phage typ<strong>in</strong>g (McLauchl<strong>in</strong> <strong>an</strong>d<br />

others 1986), pyrolysis mass spectrometry (PyMS) (Freemen <strong>an</strong>d others, 1991),<br />

multilocus enzyme electrophoresis (MEE) (Bibb <strong>an</strong>d others, 1990), plasmid typ<strong>in</strong>g<br />

(Fac<strong>in</strong>elli <strong>an</strong>d others 1989), restriction endonuclease <strong>an</strong>alysis (REA) (Nocera <strong>an</strong>d others<br />

1990), pulsed field gel electrophoresis (PFGE) (Brosch <strong>an</strong>d others, 1994), ribotyp<strong>in</strong>g<br />

(Graves <strong>an</strong>d others, 1991) <strong>an</strong>d r<strong>an</strong>dom amplified polymorphic DNA (RAPD) (Mazurier<br />

<strong>an</strong>d Wernars 1992). These techniques are required to fulfil three import<strong>an</strong>t criteria; (a)<br />

typeability, (b) repeatability or reproducibility <strong>an</strong>d (c) discrim<strong>in</strong>atory power, i.e. ability<br />

to differentiate similar but unrelated stra<strong>in</strong>s. As import<strong>an</strong>t as these three criteria are cost,<br />

rapidity, ease <strong>of</strong> the <strong>in</strong>terpretation <strong>of</strong> the results <strong>an</strong>d ease <strong>of</strong> perform<strong>in</strong>g the techniques<br />

(Maslow <strong>an</strong>d others 1993, Arbeit 1995). Each typ<strong>in</strong>g technique has some adv<strong>an</strong>tages<br />

<strong>an</strong>d disadv<strong>an</strong>tages. The commonly used techniques are briefly expla<strong>in</strong>ed below.<br />

Biotyp<strong>in</strong>g utilises the metabolic activities expressed by Listeria such as<br />

fermentation <strong>of</strong> carbohydrates <strong>an</strong>d colony characteristics. This technique is widely used<br />

to differentiate the species <strong>an</strong>d subspecies <strong>in</strong> the genus Listeria. Although it is <strong>an</strong> easy<br />

<strong>an</strong>d cheap technique it fails to differentiate dist<strong>in</strong>ct stra<strong>in</strong>s with<strong>in</strong> L. monocytogens<br />

(Ralovich, 1993).<br />

9


Serotyp<strong>in</strong>g is based on the identification <strong>of</strong> <strong>an</strong>tigenic determ<strong>in</strong><strong>an</strong>ts on the cell<br />

surface. Listeria has O <strong>an</strong>d H <strong>an</strong>tigens as def<strong>in</strong>ed by Paterson <strong>in</strong> 1940 <strong>an</strong>d c<strong>an</strong> be<br />

divided <strong>in</strong>to 16 serogroups (Seeliger <strong>an</strong>d Hohne 1979). This method is widely used<br />

because it is relatively cheap <strong>an</strong>d easy to perform. However serological classification<br />

us<strong>in</strong>g polyclonal <strong>an</strong>tiserum is <strong>of</strong> limited value <strong>in</strong> <strong>epidemiological</strong> studies because the<br />

method does not type all stra<strong>in</strong>s <strong>an</strong>d few serotypes are implicated, i.e. 1/2a, 1/2b, 4b, <strong>in</strong><br />

most <strong>of</strong> the <strong>in</strong>cidents (Seeliger <strong>an</strong>d Hohne 1979, Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991).<br />

Antibiotic susceptibility <strong>of</strong> most bacteria is regularly carried out <strong>in</strong> cl<strong>in</strong>ical<br />

microbiological laboratories. M<strong>an</strong>y <strong>an</strong>tibiotics used <strong>in</strong> agar or automated systems are<br />

now <strong>in</strong> use (Arbeit 1995). The technique is cheap, <strong>in</strong>expensive <strong>an</strong>d easy to <strong>in</strong>terpret but<br />

the major problem with it is that stra<strong>in</strong>s c<strong>an</strong> develop resist<strong>an</strong>ce to <strong>an</strong>tibiotics. This<br />

method has been used for typ<strong>in</strong>g L. monocytogenes (MacGow<strong>an</strong> <strong>an</strong>d others 1990a).<br />

S<strong>in</strong>ce plasmid mediated resist<strong>an</strong>ce to Listeria has also been reported (Poyart-Salmeron<br />

<strong>an</strong>d others 1990), its value is open to dispute.<br />

Phage typ<strong>in</strong>g utilises viruses capable <strong>of</strong> <strong>in</strong>fect<strong>in</strong>g or lys<strong>in</strong>g bacterial cells. A set<br />

<strong>of</strong> bacteriophages were identified for L. monocytogenes (McLauchl<strong>in</strong> <strong>an</strong>d others<br />

1986). Although this method is more discrim<strong>in</strong>atory <strong>an</strong>d reproducible th<strong>an</strong> serotyp<strong>in</strong>g<br />

not all L. monocytogenes stra<strong>in</strong>s are typeable because the number <strong>of</strong> suitable<br />

bacteriophages is limited. Furthermore only few laboratories perform this technique<br />

rout<strong>in</strong>ely (Ralovich 1993).<br />

Multilocus enzyme electrophoresis (MEE) utilises the difference <strong>in</strong> the<br />

electrophoretic mobilities <strong>of</strong> <strong>in</strong>dividual soluble metabolic enzymes. The cellular<br />

prote<strong>in</strong>s <strong>of</strong> the micro-org<strong>an</strong>isms are separated by gel electrophoresis <strong>an</strong>d <strong>in</strong>dividual<br />

enzymes are detected us<strong>in</strong>g specific substrates. Variations <strong>in</strong> electrophoretic mobility<br />

reflect am<strong>in</strong>o acid substitutions that alter the charge <strong>of</strong> the prote<strong>in</strong> <strong>an</strong>d thereby identify<br />

variations <strong>in</strong> the chromosomal genes encod<strong>in</strong>g the enzymes. The use <strong>of</strong> multiple<br />

10


metabolic enzymes ensure that all isolates are typeable <strong>an</strong>d this technique also provides<br />

<strong>in</strong>formation on the genetic relationship between stra<strong>in</strong>s (Maslow <strong>an</strong>d others 1993,<br />

Arbeit 1995). It has been successfully used to <strong>an</strong>alyse stra<strong>in</strong>s <strong>of</strong> L. monocytogenes<br />

(Bibb <strong>an</strong>d others 1990). However the technique is very dem<strong>an</strong>d<strong>in</strong>g <strong>an</strong>d is reported to be<br />

less discrim<strong>in</strong>atory th<strong>an</strong> other techniques (Lawrence <strong>an</strong>d Gilmour 1995, Donachie <strong>an</strong>d<br />

others 1992).<br />

Pyrolysis-mass spectrometry (Py-MS) has orig<strong>in</strong>ally been developed for the<br />

<strong>an</strong>alysis <strong>of</strong> <strong>in</strong>soluble polymeric materials. It has also been used for identify<strong>in</strong>g,<br />

classify<strong>in</strong>g <strong>an</strong>d typ<strong>in</strong>g or chemically <strong>an</strong>alys<strong>in</strong>g bacteria (Freem<strong>an</strong> <strong>an</strong>d others 1990).<br />

After cultivation the stra<strong>in</strong>s are smeared on pyrolysis foils, heat dried <strong>an</strong>d pyrolysed at<br />

530 0 C for 4s then the complex mixtures obta<strong>in</strong>ed are qu<strong>an</strong>titatively <strong>an</strong>alysed <strong>in</strong> mass<br />

spectrometry (Freem<strong>an</strong> <strong>an</strong>d others 1990, Ralovich 1993). The technique has been used<br />

<strong>in</strong> the field <strong>of</strong> Listeria to <strong>an</strong>alyse epidemic <strong>an</strong>d sporadic stra<strong>in</strong>s <strong>an</strong>d the stra<strong>in</strong>s isolated<br />

from sheep (Freem<strong>an</strong> <strong>an</strong>d others 1991, Low <strong>an</strong>d others 1992a). Py-MS is simple <strong>an</strong>d<br />

cheap but it does not assign perm<strong>an</strong>ent type- designations, its assessment <strong>of</strong> stra<strong>in</strong>s is<br />

valid for only stra<strong>in</strong>s pyrolysed as a s<strong>in</strong>gle batch <strong>of</strong> freshly prepared media. Results may<br />

vary with culture age, <strong>in</strong>cubation conditions <strong>an</strong>d technical factors (Freem<strong>an</strong> <strong>an</strong>d others<br />

1991, Low <strong>an</strong>d others 1992a).<br />

Plasmid typ<strong>in</strong>g is carried out by separat<strong>in</strong>g isolated plasmids electrophoretically<br />

<strong>in</strong> agarose gel to determ<strong>in</strong>e their size <strong>an</strong>d numbers. This technique has been used for L.<br />

monocytogenes (Fac<strong>in</strong>elli <strong>an</strong>d others, 1989). However most stra<strong>in</strong>s <strong>of</strong> L.<br />

monocytogenes do not carry plasmids (Perez-Diaz <strong>an</strong>d others, 1982) <strong>an</strong>d therefore this<br />

typ<strong>in</strong>g method is not <strong>of</strong> much value.<br />

Restriction enzyme <strong>an</strong>alysis (REA) uses endonucleases with relatively frequent<br />

restriction sites to digest bacterial chromosomal DNA thereby generat<strong>in</strong>g numerous<br />

fragments. These fragments c<strong>an</strong> be separated by size with use <strong>of</strong> agarose gel<br />

11


electrophoresis. Different stra<strong>in</strong>s <strong>of</strong> the same species have different REA patterns<br />

because <strong>of</strong> variations <strong>in</strong> their DNA sequences that alters the number <strong>an</strong>d distribution <strong>of</strong><br />

restriction sites. Nocera <strong>an</strong>d others (1990) typed L. monocytogenes with this technique.<br />

They found that although the technique was able to type all stra<strong>in</strong>s <strong>an</strong>d was reproducible<br />

it did not completely discrim<strong>in</strong>ate between serotype 4b <strong>an</strong>d 1/2b. In general<br />

<strong>in</strong>terpretation <strong>of</strong> REA is difficult because <strong>of</strong> the numerous DNA fragments generated.<br />

These frequently overlap or are unresolved <strong>in</strong> agarose gels. Restriction enzymes are also<br />

expensive (Maslow <strong>an</strong>d others 1993, Arbeit 1995).<br />

Ribotyp<strong>in</strong>g is a simplification <strong>of</strong> REA. Chromosomal DNA digested with<br />

endonuclease is separated by agarose gel electrophoresis. Result<strong>in</strong>g fragments are<br />

blotted on nitrocellulose or nylon membr<strong>an</strong>e. The fragments conta<strong>in</strong><strong>in</strong>g specific<br />

sequences are then detected by us<strong>in</strong>g a labelled ribosomal operons (16S rRNA, 25S<br />

rRNA). It has been used <strong>in</strong> the field <strong>of</strong> Listeria (Graves <strong>an</strong>d others 1991, Wiedm<strong>an</strong>n <strong>an</strong>d<br />

others 1996) with vary<strong>in</strong>g degrees <strong>of</strong> success. The technique is robust <strong>an</strong>d easy to<br />

<strong>in</strong>terpret compar<strong>in</strong>g to REA but it is less discrim<strong>in</strong>at<strong>in</strong>g th<strong>an</strong> RAPD (Wiedm<strong>an</strong>n <strong>an</strong>d<br />

others 1996).<br />

Pulse field gel electrophoresis (PFGE) is also a variation <strong>of</strong> REA <strong>in</strong> which<br />

enzymes with relatively few restriction sites are used to digest bacterial DNA. As a<br />

result fewer but much larger restriction fragments are obta<strong>in</strong>ed. These fragments are<br />

then resolved us<strong>in</strong>g <strong>an</strong> agarose gel electrophoresis technique <strong>in</strong> which the orientation <strong>of</strong><br />

electronic field is periodically ch<strong>an</strong>ged rather th<strong>an</strong> be<strong>in</strong>g kept const<strong>an</strong>t as <strong>in</strong><br />

conventional agarose gel electrophoresis used for REA. PFGE has been used to type L.<br />

monocytogenes by Brosch <strong>an</strong>d others (1994). Although they were satisfied with the<br />

capacity <strong>of</strong> the technique to type all the stra<strong>in</strong>s tested <strong>an</strong>d its reproducibility they found<br />

differences between the enzymes used (AscI <strong>an</strong>d ApaI) <strong>in</strong> discrim<strong>in</strong>at<strong>in</strong>g subtypes <strong>an</strong>d<br />

also noted that some serotypes were not dist<strong>in</strong>guishable. In general the technique is very<br />

12


dem<strong>an</strong>d<strong>in</strong>g <strong>an</strong>d time consum<strong>in</strong>g <strong>an</strong>d the enzymes are expensive (Maslow <strong>an</strong>d others<br />

1993, Arbeit 1995).<br />

RAPD (R<strong>an</strong>dom Amplified Polymorphic DNA); method is a variation <strong>of</strong> the<br />

PCR <strong>in</strong> which primers <strong>of</strong> <strong>an</strong> arbitrarily chosen sequence, rather th<strong>an</strong> two specifically<br />

designed primers, are used (Williams <strong>an</strong>d others 1990). Any length <strong>of</strong> sequence will<br />

suffice <strong>an</strong>d one or more c<strong>an</strong> be used <strong>in</strong> reaction mixture. The method has the potential<br />

for typ<strong>in</strong>g s<strong>in</strong>ce it exploits the fact that, for <strong>an</strong>y given oligonucleotide sequence, the<br />

genomes <strong>of</strong> bacteria are likely to conta<strong>in</strong> m<strong>an</strong>y sequences with partial, rather th<strong>an</strong><br />

complete, homology to the primer. Under non-str<strong>in</strong>gent conditions the primer will<br />

<strong>an</strong>neal to these sequences with vary<strong>in</strong>g degrees <strong>of</strong> stability, as determ<strong>in</strong>ed by the<br />

number <strong>of</strong> H-bonds that c<strong>an</strong> be formed between the primer <strong>an</strong>d a particular partially<br />

homologous sequence. If two such complementary sequences are located close together<br />

on the genome on opposite str<strong>an</strong>ds, <strong>an</strong>d both have the same polarity, then PCR<br />

amplification <strong>of</strong> the <strong>in</strong>terven<strong>in</strong>g sequence c<strong>an</strong> occur under conditions that permit the<br />

primer to <strong>an</strong>neal to both sequences. The distribution <strong>of</strong> these partially complementary<br />

sequences is r<strong>an</strong>dom, <strong>an</strong>d hence the result <strong>of</strong> PCR is a set <strong>of</strong> r<strong>an</strong>dom amplified<br />

polymorphic DNA sequences. S<strong>in</strong>gle base ch<strong>an</strong>ge may destroy the ability <strong>of</strong> a sequence<br />

to <strong>an</strong>neal to a primer, or may create a new primer b<strong>an</strong>d<strong>in</strong>g site. Hence, the pattern <strong>of</strong><br />

amplified sequences obta<strong>in</strong>ed is primer <strong>an</strong>d stra<strong>in</strong> specific, <strong>an</strong>d constitutes <strong>an</strong> identity<br />

pr<strong>of</strong>ile <strong>of</strong> the org<strong>an</strong>ism.<br />

RAPD was first used to <strong>study</strong> the epidemiology <strong>of</strong> L. monocytogenes by<br />

Mazurier <strong>an</strong>d Wernars (1992). This was followed by several other attempts with<br />

vary<strong>in</strong>g applications (MacGow<strong>an</strong> <strong>an</strong>d others 1993, O`Donoghue <strong>an</strong>d others 1995,<br />

Wiedm<strong>an</strong>n <strong>an</strong>d others 1994, Wernars <strong>an</strong>d others 1996). RAPD is cheap, very easy to<br />

perform <strong>an</strong>d results are easily <strong>in</strong>terpreted. However before RAPD is used for large scale<br />

typ<strong>in</strong>g optimisation <strong>of</strong> the technique must be done <strong>an</strong>d this may take some time. Boerl<strong>in</strong><br />

13


<strong>an</strong>d others (1995) came to the conclusion that RAPD was the best typ<strong>in</strong>g technique<br />

when compared with the most commonly used techniques, namely REA, Ribotyp<strong>in</strong>g,<br />

Serotyp<strong>in</strong>g, Phage typ<strong>in</strong>g <strong>an</strong>d MEE.<br />

Several comparisons <strong>of</strong> the available Listeria typ<strong>in</strong>g methods have been made.<br />

Lawrence <strong>an</strong>d Gilmour (1995) used RAPD <strong>an</strong>d MEE to determ<strong>in</strong>e the characteristics <strong>of</strong><br />

L. monocytogenes <strong>in</strong> poultry product <strong>an</strong>d process<strong>in</strong>g pl<strong>an</strong>ts. They concluded that<br />

although MEE was less discrim<strong>in</strong>atory th<strong>an</strong> RAPD it provided <strong>in</strong>formation on genetic<br />

relatedness <strong>of</strong> stra<strong>in</strong>s <strong>in</strong>vestigated <strong>an</strong>d also added that reproducibility <strong>of</strong> RAPD was<br />

excellent provided that the method was st<strong>an</strong>dardised. In <strong>an</strong>other <strong>study</strong>, Donachie <strong>an</strong>d his<br />

colleagues (1992) typed stra<strong>in</strong>s <strong>of</strong> L. monocytogenes isolated from sheep by MEE <strong>an</strong>d<br />

PyMS. They found PyMS was more discrim<strong>in</strong>atory, rapid <strong>an</strong>d <strong>in</strong>expensive th<strong>an</strong> MEE.<br />

However MEE was more reproducible th<strong>an</strong> PyMS because stra<strong>in</strong>s used <strong>in</strong> PyMS could<br />

not perm<strong>an</strong>ently be labelled <strong>an</strong>d this could result <strong>in</strong> the same stra<strong>in</strong> be<strong>in</strong>g considered<br />

different when exam<strong>in</strong>ed on more th<strong>an</strong> one occasion. Norrung <strong>an</strong>d Gerner-Smidt (1993)<br />

used four typ<strong>in</strong>g methods (MEE, Ribotyp<strong>in</strong>g, REA <strong>an</strong>d Phage typ<strong>in</strong>g) to type isolates <strong>of</strong><br />

L. monocytogenes <strong>of</strong> different orig<strong>in</strong>. Their results <strong>in</strong>dicate that typeability <strong>an</strong>d<br />

reproducibility <strong>of</strong> RAE, MEE <strong>an</strong>d Ribotyp<strong>in</strong>g were 100%. Typeability <strong>of</strong> phagetyp<strong>in</strong>g<br />

was 95% <strong>an</strong>d also reproducibility was less th<strong>an</strong> 100%. They found that different<br />

methods were more discrim<strong>in</strong>atory for different serotypes <strong>of</strong> L. monocytogenes (REA<br />

for serotype 1, Phage typ<strong>in</strong>g for serotype 4 <strong>an</strong>d the comb<strong>in</strong>ation <strong>of</strong> RAE <strong>an</strong>d MEE was<br />

more discrim<strong>in</strong>atory for both stra<strong>in</strong>s th<strong>an</strong> the use <strong>of</strong> each technique alone). Boerl<strong>in</strong> <strong>an</strong>d<br />

colleagues (1995) compared the typ<strong>in</strong>g result obta<strong>in</strong>ed with RAPD to serotyp<strong>in</strong>g,<br />

ribotyp<strong>in</strong>g, MEE, REA <strong>an</strong>d Phage typ<strong>in</strong>g. They concluded that the discrim<strong>in</strong>atory<br />

power <strong>of</strong> RAPD was best <strong>an</strong>d that the reproducibility was also good but that if RAPD<br />

was to be widely used the method should be st<strong>an</strong>dardised. In <strong>an</strong>other <strong>study</strong> Boerl<strong>in</strong> <strong>an</strong>d<br />

colleagues (1997) also used four different typ<strong>in</strong>g methods (MEE, REA, PFGE <strong>an</strong>d<br />

14


serotyp<strong>in</strong>g) <strong>an</strong>d found that PFGE was the most powerful technique <strong>in</strong> discrim<strong>in</strong>at<strong>in</strong>g<br />

subtypes while MEE <strong>an</strong>d serotyp<strong>in</strong>g were less discrim<strong>in</strong>at<strong>in</strong>g. Destro <strong>an</strong>d others (1996)<br />

used PFGE <strong>an</strong>d RAPD to trace the contam<strong>in</strong>ation <strong>of</strong> a shrimp process<strong>in</strong>g pl<strong>an</strong>t with L.<br />

monocytogenes . They suggested that to reach the best conclusion the two methods<br />

should be used together.<br />

This brief summary <strong>of</strong> <strong>in</strong>formation about typ<strong>in</strong>g methods employed <strong>in</strong> the field<br />

<strong>of</strong> <strong>listeriosis</strong> may lead one to conclude that no s<strong>in</strong>gle method meets the criteria stated<br />

above because each technique lacks one or more import<strong>an</strong>t factor. However the<br />

superiority <strong>of</strong> RAPD over some techniques has been acknowledged (Mazurier <strong>an</strong>d<br />

others 1992, Boerl<strong>in</strong> <strong>an</strong>d others 1995, Wiedm<strong>an</strong>n <strong>an</strong>d others 1996). Others have<br />

suggested that a comb<strong>in</strong>ation <strong>of</strong> two or more techniques will allow the best results<br />

(Norrung <strong>an</strong>d Gerner-Smidt 1993, Destro <strong>an</strong>d others 1996 <strong>an</strong>d Louie <strong>an</strong>d others 1996).<br />

The use <strong>of</strong> typ<strong>in</strong>g methods <strong>in</strong> <strong>epidemiological</strong> <strong>in</strong>vestigations <strong>of</strong> <strong>listeriosis</strong> has<br />

enabled the discrim<strong>in</strong>ation <strong>of</strong> <strong>in</strong>dividual stra<strong>in</strong>s <strong>of</strong> L. monocytogenes. An<br />

<strong>epidemiological</strong> l<strong>in</strong>k between contam<strong>in</strong>ated foodstuffs <strong>an</strong>d <strong>listeriosis</strong> <strong>in</strong> people has been<br />

established (McLaucl<strong>in</strong> <strong>an</strong>d others 1986, Nocera <strong>an</strong>d others 1990, Norrung <strong>an</strong>d<br />

Skovgaard 1993). Similarly a l<strong>in</strong>k between silage (Vazquez -Bol<strong>an</strong>d <strong>an</strong>d others 1992,<br />

Baxter <strong>an</strong>d others 1993, Wiedm<strong>an</strong>n <strong>an</strong>d others 1994), bedd<strong>in</strong>g (Green <strong>an</strong>d Morg<strong>an</strong><br />

1994) <strong>an</strong>d cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>an</strong>imals has been established us<strong>in</strong>g these techniques.<br />

However there is little detail regard<strong>in</strong>g the distribution <strong>an</strong>d temporal occurrence <strong>of</strong> these<br />

stra<strong>in</strong>s <strong>in</strong> the veter<strong>in</strong>ary field (Low <strong>an</strong>d Donachie 1997).<br />

1. 6. Pathogenesis, <strong>in</strong>fectious dose, virulence <strong>an</strong>d resist<strong>an</strong>ce:<br />

a) Pathogenesis: The ways <strong>in</strong> which L. monocytogenes reaches <strong>an</strong>d causes systemic<br />

illness <strong>an</strong>d disturb<strong>an</strong>ces <strong>in</strong> the bra<strong>in</strong> have long been the subject <strong>of</strong> <strong>in</strong>terest. The<br />

existence <strong>of</strong> different forms <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>an</strong>d their irregular distribution <strong>in</strong><br />

15


<strong>an</strong>imals suggests that L. monocytogenes ga<strong>in</strong>s entry <strong>in</strong> several ways. Numerous<br />

naturally occurr<strong>in</strong>g epidemic <strong>an</strong>d sporadic cases <strong>of</strong> <strong>listeriosis</strong> <strong>an</strong>d experimental studies<br />

have shown the import<strong>an</strong>ce <strong>of</strong> the oral route as the <strong>in</strong>itial exposure site.<br />

The cl<strong>in</strong>ical occurrence <strong>of</strong> encephalitis <strong>an</strong>d experiments carried out by Asahi<br />

<strong>an</strong>d others (1957) <strong>an</strong>d Barlow <strong>an</strong>d McGorum (1985) suggest that encephalitis follows<br />

<strong>in</strong>fection <strong>of</strong> the bra<strong>in</strong> stem, result<strong>in</strong>g from L. monocytogenes ascend<strong>in</strong>g via cr<strong>an</strong>ial<br />

nerves follow<strong>in</strong>g m<strong>in</strong>ute wounds <strong>in</strong> buccal mucosa, <strong>in</strong>halation <strong>an</strong>d conjunctival<br />

contam<strong>in</strong>ation. Intr<strong>an</strong>asal <strong>in</strong>fection <strong>of</strong> sheep with L. monocytogenes (Gill 1933) <strong>an</strong>d<br />

conjunctival <strong>in</strong>oculation <strong>of</strong> rabbits (Gray <strong>an</strong>d others 1948) resulted <strong>in</strong> encephalitis.<br />

Asahi <strong>an</strong>d others (1957) produced encephalitis by <strong>in</strong>still<strong>in</strong>g L. monocytogenes <strong>in</strong>to the<br />

conjunctiva, lips, gum, parotid region, oral cavity <strong>an</strong>d tongue <strong>of</strong> mice, rabbits <strong>an</strong>d goats<br />

after break<strong>in</strong>g the <strong>in</strong>tegrity <strong>of</strong> mucosal membr<strong>an</strong>es, <strong>an</strong>d also by feed<strong>in</strong>g L.<br />

monocytogenes contam<strong>in</strong>ated feed to the <strong>an</strong>imals. Their histopathologic <strong>an</strong>d cl<strong>in</strong>ical<br />

exam<strong>in</strong>ation revealed that encephalitis occurred after <strong>in</strong>stillation <strong>of</strong> L. monocytogenes<br />

through bruised <strong>an</strong>d wounded membr<strong>an</strong>es <strong>an</strong>d feed<strong>in</strong>g contam<strong>in</strong>ated feed to goat, mice,<br />

rabbits. Mucosal damage played <strong>an</strong> import<strong>an</strong>t role <strong>in</strong> <strong>in</strong>fect<strong>in</strong>g the trigem<strong>in</strong>al nerve<br />

which then carried the org<strong>an</strong>ism to the bra<strong>in</strong>. Barlow <strong>an</strong>d McGorum (1985) produced<br />

encephalitis <strong>in</strong> sheep by <strong>in</strong>oculat<strong>in</strong>g L. monocytogenes <strong>in</strong>to the dental cavity <strong>an</strong>d they<br />

also acknowledged the role <strong>of</strong> the trigem<strong>in</strong>al nerve <strong>in</strong> the occurrence <strong>of</strong> encephalitis.<br />

These studies have contributed to the hypothesis that forages such as grass, silage, gra<strong>in</strong><br />

awns, straw <strong>an</strong>d hay c<strong>an</strong> break up the <strong>in</strong>tegrity <strong>of</strong> mucosal membr<strong>an</strong>es <strong>an</strong>d allow L.<br />

monocytogenes to penetrate them. Hav<strong>in</strong>g penetrated the mucosal membr<strong>an</strong>e L.<br />

monocytogenes c<strong>an</strong> then travel along cr<strong>an</strong>ial nerves (especially trigem<strong>in</strong>al nerve) to<br />

reach the bra<strong>in</strong> (Dennis 1993). Subcut<strong>an</strong>eous <strong>in</strong>jection <strong>of</strong> mice with L. monocytogenes<br />

also resulted <strong>in</strong> encephalitis <strong>an</strong>d this po<strong>in</strong>ts to the role <strong>of</strong> <strong>in</strong>fected wounds <strong>an</strong>d the<br />

16


tr<strong>an</strong>sneural spread <strong>of</strong> the org<strong>an</strong>ism (Pohj<strong>an</strong>virta <strong>an</strong>d Huttunen 1985). Osebold (1963a)<br />

also suggested that encephalitis might follow a bacteraemic stage.<br />

Septicaemia <strong>an</strong>d latent <strong>in</strong>fection are possible results <strong>of</strong> be<strong>in</strong>g exposed to the<br />

agent by <strong>in</strong>halation <strong>an</strong>d <strong>in</strong>gestion (MacDonald <strong>an</strong>d Carter 1980, Pohj<strong>an</strong>virta <strong>an</strong>d<br />

Huttunen 1985, Marco <strong>an</strong>d others 1992, Bracegirdle <strong>an</strong>d others 1994). Follow<strong>in</strong>g oral<br />

<strong>in</strong>take the entry <strong>of</strong> L. monocytogenes has been shown to occur through various cells. It<br />

has been suggested that L. monocytogenes penetrates M cells overly<strong>in</strong>g Payer's patches<br />

(MacDonald <strong>an</strong>d Carter 1980) or <strong>in</strong>test<strong>in</strong>al epithelial cells (Racz <strong>an</strong>d others 1972) from<br />

where they dissem<strong>in</strong>ate to other org<strong>an</strong>s such as the liver, spleen, kidney, lung, genital<br />

org<strong>an</strong>s <strong>an</strong>d bra<strong>in</strong>. Colonisation <strong>in</strong> the gut also results <strong>in</strong> <strong>an</strong> <strong>in</strong>apparent <strong>in</strong>fection <strong>an</strong>d<br />

prolonged faecal excretion (reviewed by Radostits <strong>an</strong>d others 1994). In vitro studies<br />

have also demonstrated that L. monocytogenes c<strong>an</strong> penetrate <strong>an</strong>d multiply with<strong>in</strong><br />

various cells <strong>in</strong>clud<strong>in</strong>g epithelial cells <strong>an</strong>d fibroblast-like cells (Cossart <strong>an</strong>d Menguad<br />

1989).<br />

Abortion <strong>an</strong>d genital org<strong>an</strong> <strong>in</strong>fections also occur after <strong>in</strong>gestion <strong>of</strong> L.<br />

monocytogenes contam<strong>in</strong>ated feed <strong>an</strong>d a result<strong>an</strong>t bacteremia. Experimental studies<br />

have shown that after <strong>in</strong>gestion or parenteral <strong>in</strong>jection <strong>of</strong> L. monocytogenes the genital<br />

org<strong>an</strong>s <strong>an</strong>d foetus are <strong>in</strong>vaded with<strong>in</strong> 24 hours <strong>of</strong> the onset <strong>of</strong> bacteremia. This results <strong>in</strong><br />

abortion <strong>in</strong> 5-10 days (Njoku <strong>an</strong>d Dennis 1973, Low <strong>an</strong>d Renton 1985, Lammerd<strong>in</strong>g <strong>an</strong>d<br />

others 1992, reviewed by Radostits <strong>an</strong>d others 1994).<br />

Although more research is required to fully underst<strong>an</strong>d the pathogenesis <strong>of</strong> L.<br />

monocytogenes <strong>in</strong>fection, it is apparent from experimental <strong>an</strong>d recent outbreaks <strong>of</strong><br />

Listeriosis <strong>in</strong> people <strong>an</strong>d <strong>an</strong>imals (Low <strong>an</strong>d Renton 1985, Gitter <strong>an</strong>d others 1986a,<br />

Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991, Schlech 1993) that the <strong>in</strong>itial exposure is via the oral route<br />

<strong>an</strong>d that L. monocytogenes spreads to other org<strong>an</strong>s after colonisation <strong>in</strong> the <strong>in</strong>test<strong>in</strong>e<br />

(Figure 1. 1) (Gronstol 1986, MacDonald <strong>an</strong>d Carter 1980).<br />

17


Immunity reduc<strong>in</strong>g Septicaemia<br />

factors Abortion<br />

Infected feed Epithelial phase Bacteremia<br />

Neuritis Encephalitis<br />

Figure 1. 1. Pathogenesis <strong>of</strong> L. monocytogenes <strong>in</strong>fection (Gronstol 1986)<br />

b) Infectious dose: Most <strong>of</strong> the experimental studies <strong>in</strong> mice have shown that a variable<br />

number <strong>of</strong> L. monocytogenes is required for <strong>in</strong>fection to develop, vary<strong>in</strong>g between 1.7<br />

x 10 3 <strong>an</strong>d 2.5 x 10 8 org<strong>an</strong>isms (Ferber <strong>an</strong>d Paterk<strong>in</strong>s 1991). In rum<strong>in</strong><strong>an</strong>ts the results <strong>of</strong><br />

experimental studies have also varied, 1.5x10 3 cfu/ml <strong>in</strong>jected <strong>in</strong>to mammary gl<strong>an</strong>d<br />

<strong>in</strong>duced mastitis <strong>in</strong> <strong>cattle</strong> (Bourry <strong>an</strong>d others 1995), 3x10 7 to 7.5x10 10 cfu/ml <strong>in</strong>jected<br />

<strong>in</strong>to the pulp cavity <strong>of</strong> sheep produced encephalitis (Barlow <strong>an</strong>d McGorum 1985) <strong>an</strong>d<br />

8x10 9 cfu/ml given orally <strong>in</strong>duced abortion <strong>in</strong> ewes (Gitter <strong>an</strong>d other 1986a) while 10 6<br />

<strong>an</strong>d 10 10 cfu/ml doses <strong>of</strong> the org<strong>an</strong>ism given orally to sheep <strong>an</strong>d lambs produced no<br />

cl<strong>in</strong>ical signs (Low <strong>an</strong>d Donachie 1991, Lhopital <strong>an</strong>d others 1993). The <strong>in</strong>fectious dose<br />

required to trigger disease <strong>in</strong> naturally occurr<strong>in</strong>g <strong>listeriosis</strong> <strong>in</strong> rum<strong>in</strong><strong>an</strong>ts is not known.<br />

c) Virulence: Several virulence determ<strong>in</strong><strong>an</strong>ts <strong>of</strong> L. monocytogenes have been identified<br />

<strong>an</strong>d all <strong>of</strong> them are associated with the entry, survival, multiplication <strong>an</strong>d spread <strong>of</strong><br />

org<strong>an</strong>ism <strong>in</strong> the host’s cells (Portnoy <strong>an</strong>d others 1992, Sheeh<strong>an</strong> <strong>an</strong>d others 1994).<br />

18


The <strong>in</strong>fection <strong>of</strong> the host’s cell beg<strong>in</strong>s with <strong>in</strong>ternalisation <strong>of</strong> the bacterium<br />

either by host derived phagocytosis <strong>in</strong> the case <strong>of</strong> macrophages or by pathogen <strong>in</strong>duced<br />

phagocytosis <strong>in</strong> the case <strong>of</strong> non-phagocytic cells (Dramsi <strong>an</strong>d others 1996).<br />

In the process <strong>of</strong> entry two surface prote<strong>in</strong>s which take part <strong>in</strong> the <strong>in</strong>duced<br />

<strong>in</strong>ternalisation <strong>of</strong> L. monocytogenes by nonpr<strong>of</strong>essional phagocytic cells have been<br />

identified. These are <strong>in</strong>ternal<strong>in</strong>, <strong>an</strong>d a p60 extracellular prote<strong>in</strong> which are regulated by<br />

genes called <strong>in</strong>lA <strong>an</strong>d <strong>in</strong>lB, <strong>an</strong>d iap respectively (Sheeh<strong>an</strong> <strong>an</strong>d others 1994). InlA has<br />

been shown to <strong>in</strong>itiate entry <strong>in</strong>to enterocyte like cell l<strong>in</strong>es by b<strong>in</strong>d<strong>in</strong>g to the host cell E-<br />

cadher<strong>in</strong> receptors, while <strong>in</strong>lB is required for entry <strong>in</strong>to hepatocytes <strong>an</strong>d some epithelial<br />

cell l<strong>in</strong>es. The receptor for <strong>in</strong>lB is not known but it is suggested that phospho<strong>in</strong>ositic<br />

(PI)-3 k<strong>in</strong>ase is required for L. monocytogenes uptake triggered by <strong>in</strong>lB (Dramsi <strong>an</strong>d<br />

others 1997). In recent years 5 more <strong>in</strong>ternal<strong>in</strong> prote<strong>in</strong>s <strong>of</strong> unknown functions have been<br />

identified. These are <strong>in</strong>ternal<strong>in</strong> C (<strong>in</strong>lC), C2 (<strong>in</strong>lC2), D (<strong>in</strong>lD), E (<strong>in</strong>lE) <strong>an</strong>d F (<strong>in</strong>lF)<br />

(Dramsi <strong>an</strong>d others 1997) <strong>an</strong>d act<strong>in</strong> polymerase regulated by ActA has recently been<br />

identified as be<strong>in</strong>g <strong>in</strong>volved <strong>in</strong> the entry process by <strong>in</strong>teract<strong>in</strong>g with hepar<strong>in</strong> sulfate-<br />

proteoglyc<strong>an</strong> receptor (Kuhn <strong>an</strong>d Goebel 1997). The studies have shown that stra<strong>in</strong>s<br />

lack<strong>in</strong>g these genes failed to enter or adhere to cells (Sheen <strong>an</strong>d others 1994).<br />

Follow<strong>in</strong>g <strong>in</strong>ternalisation, Listeria are trapped with<strong>in</strong> a phagosome where they<br />

produce haemolys<strong>in</strong> or listeriolys<strong>in</strong> O, a pore form<strong>in</strong>g thiol-activated cell product <strong>an</strong>d<br />

phospholipase C which together break up the phagosomal membr<strong>an</strong>e so that the Listeria<br />

are released <strong>an</strong>d enter the cell cytoplasm. Listeria then multiply us<strong>in</strong>g host cell<br />

nutrients. The production <strong>of</strong> Listeriolys<strong>in</strong> O <strong>an</strong>d Phospholipase C is respectively<br />

regulated by genes called hlyA <strong>an</strong>d plcA. (Sheeh<strong>an</strong> <strong>an</strong>d others 1994). Experimental<br />

studies have shown that stra<strong>in</strong>s lack<strong>in</strong>g these genes were not able to multiply with<strong>in</strong> the<br />

cell (Portnoy <strong>an</strong>d others 1988, Goebel <strong>an</strong>d others 1988, Camilli <strong>an</strong>d others 1991). The<br />

strategy for survival <strong>in</strong> a host’s cell is believed to be a major virulence determ<strong>in</strong><strong>an</strong>t <strong>of</strong> L.<br />

19


monocytogenes <strong>an</strong>d a prerequisite to successful <strong>in</strong>fection by this bacterium (Dramsi <strong>an</strong>d<br />

others 1996).<br />

After escape from the phagosome L. monocytogenes utilises cytoplasmic<br />

nutrients to susta<strong>in</strong> its growth with<strong>in</strong> the cell. Dur<strong>in</strong>g the process <strong>of</strong> multiplication,<br />

act<strong>in</strong>, a product <strong>of</strong> actA gene, is produced. This enables the bacterium to move with<strong>in</strong><br />

the cell. While mov<strong>in</strong>g freely the bacterium makes contact with the macrophage<br />

membr<strong>an</strong>e generat<strong>in</strong>g a pseudopod org<strong>an</strong>elle. This is then taken up by <strong>an</strong> adjacent cell.<br />

The life cycle cont<strong>in</strong>ues <strong>in</strong> this newly <strong>in</strong>fected cell (Tilney <strong>an</strong>d Portnoy, 1989, Tilney<br />

<strong>an</strong>d Tilney 1993, Southwick <strong>an</strong>d Purich 1996).<br />

d) Resist<strong>an</strong>ce: Hav<strong>in</strong>g briefly expla<strong>in</strong>ed virulence <strong>an</strong>d its determ<strong>in</strong><strong>an</strong>ts the follow<strong>in</strong>g is<br />

a brief description <strong>of</strong> mech<strong>an</strong>isms <strong>of</strong> resist<strong>an</strong>ce <strong>of</strong> the host to L. monocytogenes which<br />

<strong>in</strong>volves elements that deal with the org<strong>an</strong>ism at each stage <strong>of</strong> <strong>in</strong>fection. With<strong>in</strong> first<br />

hours <strong>of</strong> the <strong>in</strong>ternalisation around 90% <strong>of</strong> <strong>in</strong>vad<strong>in</strong>g listeria are killed by phagocytes.<br />

The recruitment <strong>of</strong> <strong>in</strong>flammatory cells such as neutrophils is also <strong>in</strong>duced by <strong>in</strong>terleuk<strong>in</strong><br />

1 produced by <strong>in</strong>fected macrophages. Neutrophils play <strong>an</strong> import<strong>an</strong>t role by limit<strong>in</strong>g L.<br />

monocytogenes access to host’s cells <strong>an</strong>d abort<strong>in</strong>g cell to cell spread by lys<strong>in</strong>g <strong>in</strong>fected<br />

cells. Macrophages activated by phagocytos<strong>in</strong>g L. monocytogenes release <strong>in</strong>terleuk<strong>in</strong>-1,<br />

tumor necrosis factor-α <strong>an</strong>d <strong>in</strong>terleuk<strong>in</strong> 12. TNF-α <strong>an</strong>d IL-12 then stimulate natural<br />

killer cells to produce <strong>in</strong>terferon-γ. INFγ <strong>an</strong>d IL-1 are necessary for macrophages to<br />

express MHC class II molecules <strong>an</strong>d for enh<strong>an</strong>ced listeriocidal activity. The activated<br />

macrophages <strong>in</strong>hibit the release <strong>of</strong> the org<strong>an</strong>ism from the phagosome. Macrophage<br />

activation <strong>an</strong>d the destruction <strong>of</strong> L. monocytogenes enable listeria specific <strong>an</strong>tigens to<br />

be presented to T cells which together with the IL-12 production promote the <strong>in</strong>duction<br />

<strong>of</strong> T helper 1 cells <strong>an</strong>d CD8+ T cells result<strong>in</strong>g <strong>in</strong> a protective effect. L. monocytogenes<br />

rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the endocytic compartment will be presented through the MHC class II<br />

20


molecules to CD4+ T helper 1 cells <strong>an</strong>d those <strong>in</strong> the cytoplasmic compartment will be<br />

presented through MHC class I pathway to cytolytic CD8+ T cells. CD4+ T cells turn<br />

mononuclear phagocytes <strong>in</strong>to potent effector cells by produc<strong>in</strong>g cytok<strong>in</strong>es which allow<br />

the rapid kill<strong>in</strong>g <strong>of</strong> rema<strong>in</strong><strong>in</strong>g org<strong>an</strong>isms. Cytolytic CD 8+ T cells provide protection<br />

aga<strong>in</strong>st <strong>in</strong>fected non-pr<strong>of</strong>essional phagocytes (Mack<strong>an</strong>nes 1962, Kaufm<strong>an</strong>n 1990,<br />

Portnoy 1992, Kaufm<strong>an</strong>n 1993, Brombacher <strong>an</strong>d Kopf 1996, North <strong>an</strong>d Conlon 1998).<br />

1. 7. Epidemiology<br />

a) Occurrence: Listeriosis is believed to be a sporadic disease, predom<strong>in</strong><strong>an</strong>tly <strong>of</strong><br />

rum<strong>in</strong><strong>an</strong>ts. Sheep are affected frequently (Low <strong>an</strong>d Donachie 1997) <strong>an</strong>d a ch<strong>an</strong>ge <strong>in</strong> the<br />

pattern <strong>of</strong> disease from sporadic cases to outbreaks has been reported (Gitter 1986,<br />

Wilesmith <strong>an</strong>d Gitter 1986, Gitter 1989) Cl<strong>in</strong>ical Listeriosis has been reported <strong>in</strong> a wide<br />

r<strong>an</strong>ge <strong>of</strong> <strong>an</strong>imals (more th<strong>an</strong> 50 species) <strong>an</strong>d L. monocytogenes has been isolated from<br />

reptiles, fishes, crustace<strong>an</strong>s, leeches, snails, arthropods <strong>an</strong>d a variety <strong>of</strong> birds (pigeon<br />

etc.) (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Hyslop 1975). The disease is rarely reported <strong>in</strong> the<br />

horse, pig, fowl, dog, cat, deer <strong>an</strong>d <strong>in</strong> wild <strong>an</strong>imals (rodents, birds) (Gray <strong>an</strong>d Kill<strong>in</strong>ger<br />

1966, Gitter 1989, reviewed by Radostits <strong>an</strong>d others 1994)<br />

Although Listeriosis is <strong>of</strong> world wide distribution it has been <strong>an</strong> import<strong>an</strong>t<br />

problem <strong>in</strong> North America, Europe, Brita<strong>in</strong>, New Zeal<strong>an</strong>d <strong>an</strong>d Australia (reviewed by<br />

Radostits <strong>an</strong>d others 1994). In the northern hemisphere, Listeriosis has a dist<strong>in</strong>ct<br />

seasonal occurrence with the highest prevalence <strong>in</strong> the w<strong>in</strong>ter months (between<br />

December <strong>an</strong>d May) (Low <strong>an</strong>d L<strong>in</strong>klater 1985, Ralovich 1987, reviewed by Radostits<br />

<strong>an</strong>d others 1994). Sporadic cases <strong>of</strong> <strong>listeriosis</strong> have also been reported throughout the<br />

year. The morbidity is relatively low but mortality is high <strong>in</strong> the encephalitic form <strong>of</strong> the<br />

disease (reviewed by Radostits <strong>an</strong>d others 1994). Wilesmith <strong>an</strong>d Gitter (1986) reported<br />

21


a variable number <strong>of</strong> cases <strong>of</strong> encephalitis <strong>in</strong> a survey <strong>of</strong> 60 flocks with the me<strong>an</strong> attack<br />

rate be<strong>in</strong>g 2.5%. This c<strong>an</strong> be as high as 35% <strong>in</strong> serious outbreaks. The attack rate for<br />

abortion is reported <strong>in</strong> the region <strong>of</strong> 10% (reviewed by Radostits <strong>an</strong>d others 1994).<br />

b) Distribution: L. monocytogenes is ubiquitous <strong>in</strong> the environment <strong>an</strong>d has been<br />

isolated from a variety <strong>of</strong> <strong>an</strong>imals <strong>an</strong>d people (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966). It has also<br />

been isolated from the faeces <strong>of</strong> healthy <strong>an</strong>imals <strong>an</strong>d people which <strong>in</strong>dicates that it c<strong>an</strong><br />

live <strong>in</strong> the host’s <strong>in</strong>test<strong>in</strong>e without caus<strong>in</strong>g <strong>an</strong>y cl<strong>in</strong>ical illness.<br />

Several studies <strong>in</strong>dicate that a variable proportion <strong>of</strong> <strong>an</strong>imals excrete L.<br />

monocytogenes <strong>in</strong> their faeces. Kampelmacher <strong>an</strong>d v<strong>an</strong> Noorle-J<strong>an</strong>sen (1969) isolated<br />

L. monocytogenes from 15.3% <strong>an</strong>d 6% <strong>of</strong> <strong>cattle</strong> kept <strong>in</strong> two different regions, similarly<br />

v<strong>an</strong> Renterghem <strong>an</strong>d colleagues (1991) isolated it from 20% <strong>of</strong> <strong>cattle</strong> faeces samples<br />

exam<strong>in</strong>ed. In a survey carried out by Husu (1990) between 9. 2 % (<strong>in</strong>door period) <strong>an</strong>d<br />

3.1% (outdoor period) <strong>of</strong> <strong>dairy</strong> <strong>cattle</strong> excreted L. monocytogenes <strong>in</strong> their faeces <strong>an</strong>d the<br />

figures were higher when all Listeria spp. were considered. However Skovgaard <strong>an</strong>d<br />

Morgen (1988) reported the highest excretion rates <strong>in</strong> <strong>cattle</strong> faeces 67% Listeria spp.<br />

<strong>an</strong>d 51% L. monocytogenes. It has also been noted that the seasonal distribution <strong>of</strong><br />

faecal carriage is the same as that <strong>of</strong> cl<strong>in</strong>ical Listeriosis <strong>in</strong> northern hemisphere (Husu<br />

1990).<br />

The presence <strong>an</strong>d concentration <strong>of</strong> L. monocytogenes <strong>in</strong> nature is believed to be<br />

<strong>in</strong>fluenced by environment <strong>an</strong>d climate (Picar-Bonnaud <strong>an</strong>d others 1989). L.<br />

monocytogenes has been isolated from soil, vegetation (soybe<strong>an</strong>, corn, grass, forest,<br />

etc.), cultivated <strong>an</strong>d uncultivated fields (Welshimer 1968, Welshimer <strong>an</strong>d Donker-Voet<br />

1971, Welshimer 1975, Weis 1975). This character <strong>of</strong> L. monocytogenes led some<br />

researchers to conclude that there was a saprophytic existence <strong>of</strong> the org<strong>an</strong>ism <strong>in</strong> the<br />

pl<strong>an</strong>t-soil environment where<strong>in</strong> this environment served as a reservoir (Welshimer <strong>an</strong>d<br />

22


Donker-Voet 1971, Weis <strong>an</strong>d Seeliger 1975, Seeliger 1989). The survival <strong>of</strong> L.<br />

monocytogenes at 5 0 C was <strong>in</strong>vestigated by Dijkstra (1975); the org<strong>an</strong>ism was found to<br />

survive for 13 years <strong>in</strong> milk, 16 years <strong>in</strong> a bra<strong>in</strong> sample, 12 years <strong>in</strong> faeces <strong>an</strong>d 12 years<br />

<strong>in</strong> silage. It is reported to persist for 2 years <strong>in</strong> dry soil, 11.5 months <strong>in</strong> damp soil, 2<br />

years <strong>in</strong> dry faeces, 3 months <strong>in</strong> sheep faeces, 16.5 months <strong>in</strong> <strong>cattle</strong> faeces <strong>an</strong>d up to 7<br />

months on dry straw (reviewed by Radostits <strong>an</strong>d others 1994). Isolation <strong>of</strong> the org<strong>an</strong>ism<br />

from sewage, sewage sludge, <strong>an</strong>d river water has also been reported (Kampelmacher<br />

<strong>an</strong>d V<strong>an</strong> Noorle-J<strong>an</strong>sen 1975, Watk<strong>in</strong>s <strong>an</strong>d Sleath 1981, MacGow<strong>an</strong> <strong>an</strong>d others 1994). It<br />

is also frequently isolated from surface water, bedd<strong>in</strong>g, feed, the walls <strong>of</strong> build<strong>in</strong>g <strong>an</strong>d<br />

water (reviewed by Radostits <strong>an</strong>d others 1994).<br />

Infective material also derives from <strong>in</strong>fected <strong>an</strong>imals, faeces, ur<strong>in</strong>e, the aborted<br />

foetus, uter<strong>in</strong>e discharges <strong>an</strong>d milk. Carrier <strong>an</strong>imals (both domesticated <strong>an</strong>d wild) c<strong>an</strong><br />

also <strong>in</strong>troduce the org<strong>an</strong>ism <strong>in</strong>to the herd or flock (Fenlon 1985, Dennis 1993).<br />

c. Risk Factors: In addition to the presence <strong>of</strong> L. monocytogenes a number <strong>of</strong><br />

predispos<strong>in</strong>g factors for the disease have been proposed. These <strong>in</strong>clude factors which<br />

lower the host’s resist<strong>an</strong>ce <strong>an</strong>d factors which <strong>in</strong>crease the <strong>in</strong>fection pressure <strong>of</strong> the<br />

agent.<br />

Factors which may <strong>in</strong>crease susceptibility <strong>of</strong> <strong>an</strong>imals to disease <strong>in</strong>clude poor<br />

nutritional state, sudden ch<strong>an</strong>ges to very cold <strong>an</strong>d wet weather, the stress <strong>of</strong> late<br />

pregn<strong>an</strong>cy <strong>an</strong>d parturition, long periods <strong>of</strong> flood<strong>in</strong>g with poor access to pasture <strong>an</strong>d<br />

hous<strong>in</strong>g, <strong>an</strong>d overcrowded <strong>an</strong>d uns<strong>an</strong>itary conditions with poor access to feed supplies<br />

(Hyslop 1975, V<strong>an</strong>degraaff <strong>an</strong>d others 1981, Barlow <strong>an</strong>d McGorum 1985). Poor flock<br />

m<strong>an</strong>agement has also been associated with disease <strong>in</strong> sheep (Meredith <strong>an</strong>d Schneider<br />

1984).<br />

23


The relationship between age <strong>an</strong>d Listeriosis <strong>in</strong> <strong>an</strong>imals is unclear. Studies to<br />

date have produced conflict<strong>in</strong>g results. Wilesmith <strong>an</strong>d Gitter (1986) found no<br />

association between age <strong>an</strong>d disease but Nash <strong>an</strong>d others (1995) reported lamb <strong>an</strong>d<br />

yearl<strong>in</strong>gs to be at <strong>an</strong> <strong>in</strong>creased risk. Barlow <strong>an</strong>d McGorum (1985) noted that most cases<br />

occurred <strong>in</strong> lambs up to 4 months old or <strong>in</strong> adults <strong>of</strong> 2 years old. Scott (1993) also<br />

reported a preponder<strong>an</strong>ce <strong>of</strong> cases <strong>in</strong> 2 year-old ewes.<br />

Pregn<strong>an</strong>cy is well known to be associated with Listeriosis <strong>in</strong> people <strong>an</strong>d it is<br />

thought that this is associated with a decrease <strong>in</strong> cell mediated immunity (CMI) (Lorber<br />

1990). The cell mediated immune response is known to play <strong>an</strong> import<strong>an</strong>t role <strong>in</strong><br />

resist<strong>an</strong>ce to L. monocytogenes <strong>in</strong>fection. Its role <strong>in</strong> <strong>an</strong>imal Listeriosis is not well<br />

def<strong>in</strong>ed.<br />

The sex <strong>of</strong> <strong>an</strong>imals has not been l<strong>in</strong>ked with cl<strong>in</strong>ical Listeriosis. However breed<br />

has been reported as a predispos<strong>in</strong>g factor <strong>an</strong>d Angora goats <strong>in</strong> the USA (Johnson <strong>an</strong>d<br />

others 1996) <strong>an</strong>d Rambouillets sheep <strong>in</strong> the USA (Nash <strong>an</strong>d others 1995) have been<br />

reported to be more susceptible. No such l<strong>in</strong>k is reported for different breeds <strong>of</strong> <strong>cattle</strong>.<br />

The <strong>in</strong>fection pressure <strong>of</strong> L. monocytogenes is <strong>in</strong>fluenced by environmental<br />

factors that either favour or h<strong>in</strong>der its growth <strong>an</strong>d survival. Some factors have been<br />

identified to <strong>in</strong>fluence the life cycle <strong>of</strong> the org<strong>an</strong>ism <strong>in</strong> nature: temperature, pH <strong>an</strong>d<br />

atmosphere. Their <strong>in</strong>fluence is <strong>of</strong>ten <strong>in</strong>terdependent <strong>an</strong>d <strong>of</strong> complex nature.<br />

Listeria org<strong>an</strong>isms c<strong>an</strong> multiply from around 0 0 C to between 45 0 C <strong>an</strong>d 50 0 C<br />

with optimal growth be<strong>in</strong>g between 30 0 C <strong>an</strong>d 37 0 C (Juntilla <strong>an</strong>d others 1988). The<br />

ability <strong>of</strong> Listeria to grow at refrigeration temperature poses great concern to hum<strong>an</strong><br />

health. As the temperature decreases the duration <strong>of</strong> the lag phase <strong>in</strong>creases <strong>an</strong>d at 4 0 C<br />

the lag phase lasts 5 - 10 days. Interest<strong>in</strong>gly these cultures are highly motile, possess<br />

well-developed flagella <strong>an</strong>d are more pathogenic for laboratory <strong>an</strong>imals (Gray <strong>an</strong>d<br />

Kill<strong>in</strong>ger 1966, Ralovich 1992). The org<strong>an</strong>ism also rema<strong>in</strong>s viable after repeated<br />

24


freez<strong>in</strong>g <strong>an</strong>d thaw<strong>in</strong>g. The toler<strong>an</strong>ce to this broad r<strong>an</strong>ge <strong>of</strong> temperatures makes it<br />

possible for L. monocytogenes to survive <strong>an</strong>d grow <strong>in</strong>def<strong>in</strong>itely <strong>in</strong> the environment.<br />

Studies to date <strong>in</strong>dicate that L. monocytogenes c<strong>an</strong> tolerate a wide r<strong>an</strong>ge <strong>of</strong> pH<br />

(3.8-9.2). The relationship between pH <strong>an</strong>d survival <strong>an</strong>d growth <strong>of</strong> the org<strong>an</strong>ism has<br />

been reported <strong>in</strong> various samples. The survival <strong>of</strong> L. monocytogenes <strong>in</strong> three k<strong>in</strong>ds <strong>of</strong><br />

soil was <strong>in</strong>vestigated <strong>an</strong>d it was found that its survival <strong>in</strong> peaty soil (pH 5.5), was<br />

shorter (156 days) th<strong>an</strong> chalky (pH 8.3), <strong>an</strong>d a mixture <strong>of</strong> both (pH 7.9) (1500 days)<br />

(Picard-Bonnaud <strong>an</strong>d others 1989). Similar results were found when silage was studied.<br />

The role <strong>of</strong> pH <strong>in</strong> preserv<strong>in</strong>g silage will be dealt with below.<br />

Listeria spp. are aerobic or facultatively <strong>an</strong>aerobic org<strong>an</strong>isms. The growth <strong>of</strong> L.<br />

monocytogenes was studied under both aerobic <strong>an</strong>d <strong>an</strong>aerobic conditions at different<br />

temperatures by Buch<strong>an</strong><strong>an</strong> <strong>an</strong>d others (1989). They found that at pH 4.5 the aerobic<br />

growth <strong>of</strong> L. monocytogenes was dependent on <strong>in</strong>cubation temperatures. An active<br />

growth (<strong>an</strong> <strong>in</strong>crease <strong>in</strong> population density) was observed at 19 0 C <strong>an</strong>d 28 0 C. It was also<br />

noted that the bacteria did not grow at 5 0 C <strong>an</strong>d 10 0 C but m<strong>an</strong>aged to survive for<br />

extended periods. When the temperature was raised to 37 0 C L. monocytogenes died <strong>of</strong>f<br />

rapidly. Anaerobic preservation <strong>of</strong> silage is very import<strong>an</strong>t. Listeria spp. will cont<strong>in</strong>ue<br />

to survive <strong>in</strong> silage exposed to air even if its pH is as low as 3.9 (Fenlon 1986a, 1988).<br />

A <strong>study</strong> done by Fenlon (1986a) confirms that Listeria could also grow <strong>an</strong>d survive <strong>in</strong><br />

<strong>an</strong>aerobic conditions if the pH is high.<br />

Although the org<strong>an</strong>ism is widespread <strong>in</strong> the environment L. monocytogenes<br />

<strong>in</strong>fections have frequently been associated with the feed<strong>in</strong>g <strong>of</strong> poor quality silage (Gray<br />

1960a, Palsson 1963, Fenlon 1986b, Wilesmit <strong>an</strong>d Gitter, 1986, Sargison 1993). The<br />

disease is therefore called "silage sickness" (Dennis 1993). However the way(s) <strong>in</strong><br />

which silage acts as a risk factor is not clear. It may act as <strong>an</strong> enrichment medium<br />

allow<strong>in</strong>g the org<strong>an</strong>ism to grow excessively (Blenden <strong>an</strong>d others 1967, Fenlon 1986c), or<br />

25


a reservoir from which it spreads to <strong>an</strong>imals <strong>an</strong>d the environment (Fenlon 1985) or<br />

alternatively as <strong>an</strong> immunsuppress<strong>in</strong>g factor due to subst<strong>an</strong>ces that it harbours (Gronstol<br />

1980a), though this is disputed (Gitter <strong>an</strong>d others 1986b). However silage appears to<br />

play a role it is virtually impossible to make silage free <strong>of</strong> L. monocytogenes. The<br />

multiplication <strong>of</strong> this org<strong>an</strong>ism c<strong>an</strong> be kept to a m<strong>in</strong>imum by proper silage mak<strong>in</strong>g<br />

procedures <strong>an</strong>d also by effectively preserv<strong>in</strong>g silage by <strong>an</strong>aerobic storage, a high<br />

concentration <strong>of</strong> org<strong>an</strong>ic acids <strong>an</strong>d a pH between 4.2- 4.5. Listeria c<strong>an</strong> multiply <strong>in</strong><br />

silage above pH 5.0 - 5.5, the critical pH depend<strong>in</strong>g on its dry matter content (Irv<strong>in</strong><br />

1968, Fenlon 1986a). Growth <strong>of</strong> the org<strong>an</strong>ism <strong>in</strong>creases as silage pH <strong>in</strong>creases<br />

(Gronstol 1979a). Listeria c<strong>an</strong> be present <strong>in</strong> silage which is poorly fermented but it c<strong>an</strong><br />

also occur <strong>in</strong> pockets <strong>of</strong> aerobic deterioration <strong>in</strong> otherwise good silage (Fenlon 1986b,<br />

Fenlon 1988). These areas are <strong>of</strong>ten <strong>in</strong>dicated by mould growth <strong>an</strong>d occur at the edges<br />

<strong>of</strong> the silage clamp <strong>an</strong>d <strong>in</strong> the top few <strong>in</strong>ches <strong>of</strong> the surface <strong>in</strong> plastic covered clamps<br />

where air has circulated under the plastic. The risk <strong>of</strong> contam<strong>in</strong>ation <strong>of</strong> silage with<br />

Listeria is higher when soil is present <strong>in</strong> the silage. Soil may be picked up from mole-<br />

hills present <strong>in</strong> the field or get <strong>in</strong>to clamp or silo by other me<strong>an</strong>s such as tractor tyres or<br />

from the clamp or silo floor. Soil contam<strong>in</strong>ation is <strong>in</strong>dicated when the ash content is<br />

high <strong>in</strong> the silage content (Fenlon 1988, Gitter 1989). Big bale silage is more prone to<br />

contam<strong>in</strong>ation with Listeria because <strong>of</strong> lower density, poorer fermentation <strong>an</strong>d greater<br />

risk <strong>of</strong> mech<strong>an</strong>ical damage to the plastic cover<strong>in</strong>gs (Fenlon 1986b, Sargison 1993).<br />

Moist preserved feeds are also considered to be a risk for Listerial growth <strong>an</strong>d<br />

Listeriosis (Core <strong>an</strong>d other 1990, Serge<strong>an</strong>t <strong>an</strong>d others 1991). Cases due to feed<strong>in</strong>g <strong>of</strong><br />

moist brewer gra<strong>in</strong>s, wet spoiled hay <strong>an</strong>d silage made from or<strong>an</strong>ge have been reported<br />

(reviewed by Radostits <strong>an</strong>d others 1994).<br />

The disease c<strong>an</strong> occur 2 - 30 days after silage has been <strong>in</strong>troduced. However, the<br />

time from exposure to disease c<strong>an</strong> vary <strong>an</strong>d appears to depend on the distribution <strong>an</strong>d<br />

26


concentration <strong>of</strong> the bacteria <strong>in</strong> the silage. However, <strong>listeriosis</strong> is a disease <strong>of</strong> a complex<br />

aetiology <strong>an</strong>d its epidemiology is not fully understood (Donachie <strong>an</strong>d Low 1995). Cases<br />

have also been reported where the pasture was overflooded <strong>an</strong>d poorly dra<strong>in</strong>ed<br />

(V<strong>an</strong>degraaff <strong>an</strong>d others 1981) <strong>an</strong>d also dur<strong>in</strong>g droughts (Reuter <strong>an</strong>d others 1989).<br />

The current underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> epidemiology <strong>an</strong>d pathogenesis <strong>of</strong> disease is<br />

schematised <strong>in</strong> the Figure 1. 2 (Dennis 1993).<br />

Figure 1. 2. Epidemiology <strong>of</strong> L. monocytogenes <strong>in</strong>fection (Dennis 1993)<br />

27


1. 8. Cl<strong>in</strong>ical signs <strong>an</strong>d pathology<br />

Although Listeriosis is m<strong>an</strong>ifested by three major cl<strong>in</strong>ical signs;<br />

men<strong>in</strong>goencephalitis, abortion <strong>an</strong>d septicaemia, only one cl<strong>in</strong>ical form <strong>of</strong> the disease<br />

usually occurs <strong>in</strong> a group <strong>of</strong> <strong>an</strong>imals or <strong>an</strong> <strong>in</strong>dividual <strong>an</strong>imal. However <strong>an</strong> overlap <strong>of</strong><br />

cl<strong>in</strong>ical forms <strong>of</strong> disease have been reported (Gitter <strong>an</strong>d Terlecki 1965, Gitter 1986,<br />

Low <strong>an</strong>d Renton 1985, Ohshima <strong>an</strong>d others 1974). In addition to these three major signs<br />

<strong>of</strong> disease, mastitis (Gitter <strong>an</strong>d others 1980), myelitis (Gates <strong>an</strong>d others 1967, Seamen<br />

<strong>an</strong>d others 1990), iritis <strong>an</strong>d/or keratoconjunctivitis (Kummeneje <strong>an</strong>d Mikkelsen 1975,<br />

Morg<strong>an</strong> 1977, Bee 1993, Walker <strong>an</strong>d Morgen 1993) have also been associated with L.<br />

monocytogenes .<br />

a) Men<strong>in</strong>go - encephalitis: This is the most commonly recognised form <strong>of</strong> Listeriosis <strong>in</strong><br />

adult rum<strong>in</strong><strong>an</strong>ts <strong>an</strong>d is the most common bacterial <strong>in</strong>fection <strong>of</strong> the Central Nervous<br />

System <strong>of</strong> adult <strong>cattle</strong> (Rebhun 1987). Although the cl<strong>in</strong>ical picture is similar <strong>in</strong> all<br />

adult rum<strong>in</strong><strong>an</strong>ts the course <strong>of</strong> the disease (1-2 weeks) is longer <strong>in</strong> <strong>cattle</strong> (Gitter 1989).<br />

The basic cl<strong>in</strong>ical picture comb<strong>in</strong>es signs <strong>of</strong> the "dummy syndrome" with<br />

press<strong>in</strong>g aga<strong>in</strong>st fixed objects <strong>an</strong>d unilateral paralysis (reviewed by Radostits <strong>an</strong>d others<br />

1994). In the early stages, <strong>an</strong>imals are depressed, disoriented, febrile, <strong>in</strong>different to their<br />

surround<strong>in</strong>gs <strong>an</strong>d usually separate themselves from the rest <strong>of</strong> the herd (Dennis 1993).<br />

As a consequence <strong>of</strong> the destruction <strong>in</strong> the trigem<strong>in</strong>al nerve there is usually a<br />

facial paralysis with a droop<strong>in</strong>g ear, dilated nostril, <strong>an</strong>d lowered eyelid on the affected<br />

side. This is more common <strong>in</strong> <strong>cattle</strong> th<strong>an</strong> <strong>in</strong> sheep (Gitter 1989). As a result <strong>of</strong> facial<br />

paralysis <strong>an</strong>imals become dehydrated <strong>an</strong>d fluid-electrolyte bal<strong>an</strong>ce deviates from<br />

normal (reviewed by Radostits <strong>an</strong>d others 1994).<br />

28


There is a degree <strong>of</strong> deviation from normal <strong>in</strong> the position <strong>of</strong> head. It may be<br />

retr<strong>of</strong>lexed, ventr<strong>of</strong>lexed or even normal depend<strong>in</strong>g on the localisation <strong>of</strong> the lesions <strong>in</strong><br />

the bra<strong>in</strong>stem (reviewed by Radostits <strong>an</strong>d others 1994).<br />

The destruction <strong>of</strong> vestibulocochlear nuclei results <strong>in</strong> propulsive circl<strong>in</strong>g toward<br />

the affected side. This form <strong>of</strong> the disease is therefore called "circl<strong>in</strong>g disease" (Hird<br />

<strong>an</strong>d Genegeorgis 1990). If the <strong>an</strong>imal walks, it stumbles <strong>an</strong>d moves <strong>in</strong> circles. There is<br />

ataxia, <strong>of</strong>ten with consistent fall<strong>in</strong>g to one side (Dennis 1993).<br />

Animals became recumbent <strong>an</strong>d death is due to respiratory collapse. The<br />

morbidity rate is low but the mortality rate is usually high (Rebhun 1987). Cases <strong>of</strong><br />

men<strong>in</strong>go - encephalitis have been reported <strong>in</strong> calves (Seimiye <strong>an</strong>d others 1992) <strong>an</strong>d <strong>in</strong><br />

lambs (Green <strong>an</strong>d Morg<strong>an</strong> 1994). However men<strong>in</strong>go - encephalitis is never observed <strong>in</strong><br />

calves <strong>an</strong>d lambs whose rumen is not yet function<strong>in</strong>g (Dennis 1993).<br />

There are usually no remarkable gross lesions <strong>in</strong> the bra<strong>in</strong> <strong>of</strong> affected <strong>an</strong>imals<br />

but occasionally slight cloud<strong>in</strong>g or p<strong>in</strong>-po<strong>in</strong>t greyish-white foci <strong>of</strong> the men<strong>in</strong>ges may be<br />

observed. Microscopic lesions are always conf<strong>in</strong>ed to the pons, medulla <strong>an</strong>d <strong>an</strong>terior<br />

sp<strong>in</strong>al cord. Both white <strong>an</strong>d grey matter may be <strong>in</strong>volved. In the bra<strong>in</strong> subst<strong>an</strong>ce <strong>an</strong>d<br />

sometimes <strong>in</strong> the men<strong>in</strong>ges a remarkable perivascular cuff<strong>in</strong>g with vary<strong>in</strong>g degrees <strong>of</strong><br />

focal necrosis develops which is typical <strong>of</strong> Listerial encephalitis. In this area there is<br />

collection <strong>of</strong> mononuclear cells, oedema, haemorrhage <strong>an</strong>d neurone degeneration. The<br />

org<strong>an</strong>ism c<strong>an</strong> be demonstrated <strong>in</strong> the focal lesions but not <strong>in</strong> the perivascular cuffs<br />

(Ladds <strong>an</strong>d others 1974, Thomson 1988).<br />

b) Listerial Abortion: Abortions due to Listeria are usually sporadic <strong>in</strong> <strong>cattle</strong>. Outbreaks<br />

<strong>of</strong> abortion have been reported (Osebold <strong>an</strong>d others 1960) but occur more commonly <strong>in</strong><br />

sheep <strong>an</strong>d goats. Abortion may occur at <strong>an</strong>y stage <strong>of</strong> pregn<strong>an</strong>cy but it occurs most<br />

commonly <strong>in</strong> the last third <strong>of</strong> gestation (reviewed by Radostits <strong>an</strong>d others 1994). There<br />

29


is seldom cl<strong>in</strong>ical illness <strong>in</strong> the dam. In sheep as well as <strong>in</strong> <strong>cattle</strong> the <strong>in</strong>cidence <strong>of</strong><br />

abortion <strong>in</strong> a group is low but may reach as high as 15%. Liveborn <strong>of</strong>fspr<strong>in</strong>g are usually<br />

too weak to survive for long (reviewed by Radostits <strong>an</strong>d others 1994). Abortions due to<br />

L. iv<strong>an</strong>ovii have also been reported <strong>an</strong>d are similar to those due to L. monocytogenes<br />

(Alex<strong>an</strong>der <strong>an</strong>d others 1992).<br />

In abortion the pathological picture depends on the stage <strong>of</strong> pregn<strong>an</strong>cy. If it<br />

occurs <strong>in</strong> the early stages <strong>of</strong> the last trimester the placenta is quickly <strong>in</strong>vaded by the<br />

bacteria <strong>an</strong>d the foetus dies as a result <strong>of</strong> septicaemia. The dead foetus is expelled<br />

with<strong>in</strong> 5 days <strong>an</strong>d by this time autolytic ch<strong>an</strong>ges cover the m<strong>in</strong>or gross lesions produced<br />

by the org<strong>an</strong>ism. Metritis usually occurs <strong>an</strong>d results <strong>in</strong> retention <strong>of</strong> the foetal<br />

membr<strong>an</strong>es. If it occurs at a late stage the <strong>of</strong>fspr<strong>in</strong>g may be born <strong>in</strong> the normal way but<br />

is usually unable to survive. In the aborted foetus the lesions are less severe. Gross<br />

lesions are t<strong>in</strong>y p<strong>in</strong>-po<strong>in</strong>t yellow foci <strong>in</strong> the liver. Similar foci but visible only<br />

microscopically are seen <strong>in</strong> the lung, myocardium, kidney, spleen <strong>an</strong>d bra<strong>in</strong>. The<br />

bacteria c<strong>an</strong> be demonstrated <strong>in</strong> the centre <strong>of</strong> these focal areas (Ladds <strong>an</strong>d others 1974,<br />

Thomson 1988).<br />

c) Septicaemia: Although it is believed to be a syndrome <strong>of</strong> young rum<strong>in</strong><strong>an</strong>ts <strong>an</strong>d<br />

monogastric species outbreaks <strong>of</strong> septicaemia have been reported both <strong>in</strong> <strong>cattle</strong> (Price<br />

1975) <strong>an</strong>d <strong>in</strong> sheep (Low <strong>an</strong>d Renton 1985). This syndrome comprises depression,<br />

weakness, emaciation, pyrexia <strong>an</strong>d diarrhoea. At necropsy some cases show hepatic<br />

necrosis, gastroenteritis, ser<strong>of</strong>ibr<strong>in</strong>ous men<strong>in</strong>gitis <strong>an</strong>d ophthalmitis.<br />

d) Mastitis: S<strong>in</strong>ce listeric mastitis goes unnoticed due to lack <strong>of</strong> cl<strong>in</strong>ical illness, mastitis<br />

associated with L. monocytogenes is not well documented (Gitter 1989). In some cases<br />

sk<strong>in</strong> discolorization on the udder or teats <strong>an</strong>d firm <strong>an</strong>d nodular tissue development may<br />

30


e noticed with careful exam<strong>in</strong>ation. Pa<strong>in</strong> is not observed dur<strong>in</strong>g exam<strong>in</strong>ation. The milk<br />

is usually normal (Gitter <strong>an</strong>d others 1980).<br />

L. monocytogenes has been isolated from raw milk. This has import<strong>an</strong>t<br />

implications <strong>in</strong> terms <strong>of</strong> its tr<strong>an</strong>smission to m<strong>an</strong> <strong>an</strong>d <strong>an</strong>imals (Rea <strong>an</strong>d others 1992).<br />

e) Keratoconjunctivitis <strong>an</strong>d/or iritis: Kummeneje <strong>an</strong>d Mikkelsen (1975), Morg<strong>an</strong><br />

(1977), Baptista (1979), Watson (1989), Mee <strong>an</strong>d Rea (1993) Walker <strong>an</strong>d Morg<strong>an</strong><br />

(1993) <strong>an</strong>d Welchm<strong>an</strong> <strong>an</strong>d others (1997) reported cases <strong>of</strong> keratoconjunctivitis <strong>an</strong>d /or<br />

iritis associated with silage feed<strong>in</strong>g or L. monocytogenes. They reported a catarrhal<br />

conjunctivitis with epiphora <strong>an</strong>d photophobia <strong>an</strong>d a moderate ophthalmitis with<br />

hydrophthalmis, hypopion <strong>an</strong>d <strong>in</strong> some cases keratitis. Animals are usually affected<br />

unilaterally. Conjunctivitis is not purulent <strong>an</strong>d corneal ch<strong>an</strong>ges are m<strong>in</strong>imal. Uveitis is<br />

also reported with the encephalitic form (Ohshima <strong>an</strong>d others 1974). In some cases<br />

bl<strong>in</strong>dness is also reported. There is, however, a need to establish the relationship<br />

between L. monocytogenes <strong>an</strong>d iritis or keratoconjuntivitis.<br />

1. 9. Diagnosis<br />

Diagnosis <strong>of</strong> Listeriosis relies on the comb<strong>in</strong>ation <strong>of</strong> cl<strong>in</strong>ical signs <strong>an</strong>d<br />

laboratory tests. Haematological exam<strong>in</strong>ation (Dennis 1993) <strong>an</strong>d serum biochemical<br />

tests (Rebhun <strong>an</strong>d deLahunte 1982) are <strong>of</strong> limited value especially <strong>in</strong> the diagnosis <strong>of</strong><br />

encephalitic <strong>listeriosis</strong> because there are no ch<strong>an</strong>ges <strong>in</strong> these values to <strong>in</strong>dicate<br />

<strong>listeriosis</strong>. Cerebrosp<strong>in</strong>al fluid <strong>an</strong>alysis may have a diagnostic value because <strong>an</strong> <strong>in</strong>crease<br />

<strong>in</strong> White blood cells (WBC), prote<strong>in</strong> <strong>an</strong>d pressure have been reported (Rebhun <strong>an</strong>d<br />

deLahunte 1982, Asl<strong>an</strong> <strong>an</strong>d others 1991 <strong>an</strong>d Scott 1993) <strong>an</strong>d isolation <strong>of</strong> Listeria from<br />

CSF is possible.<br />

31


Bacterial culture is widely used for the diagnosis <strong>of</strong> Listeriosis along with other<br />

tests. Several selective <strong>an</strong>d non-selective culture media have been developed for<br />

detect<strong>in</strong>g L. monocytogenes <strong>in</strong> food (Curtis <strong>an</strong>d others 1995) <strong>an</strong>d these have been used<br />

for isolat<strong>in</strong>g L. monocytogenes from cl<strong>in</strong>ical specimens (Gray <strong>an</strong>d others 1948, Gray<br />

<strong>an</strong>d Kill<strong>in</strong>ger 1966, Eld <strong>an</strong>d others 1993). However, the value <strong>of</strong> bacteriological culture<br />

is disputable, because isolation <strong>of</strong> L. monocytogenes from cl<strong>in</strong>ical specimens does not<br />

necessarily reflect disease due to the fact that successful isolation from bra<strong>in</strong> <strong>an</strong>d faeces<br />

<strong>of</strong> healthy <strong>an</strong>imals have been reported (Gronstol 1980b, Husu 1990).<br />

Histopathologic exam<strong>in</strong>ation <strong>of</strong> org<strong>an</strong>s, especially bra<strong>in</strong>s, <strong>of</strong> Listeria <strong>in</strong>fected<br />

cases is currently the most reliable method for diagnosis <strong>of</strong> listeric encephalitis.<br />

Immunocytochemical techniques (peroxidase-<strong>an</strong>tiperoxidase) us<strong>in</strong>g polyclonal<br />

sera (Dom<strong>in</strong>go <strong>an</strong>d others 1986, Marco <strong>an</strong>d others 1988, Johnson <strong>an</strong>d others 1995) have<br />

been used <strong>an</strong>d compared with bacterial culture methods <strong>in</strong> the veter<strong>in</strong>ary field. Johnson<br />

<strong>an</strong>d others (1995) have reported the superiority <strong>of</strong> this technique over bacterial culture<br />

but the use <strong>of</strong> polyclonal <strong>an</strong>ti-sera must be regarded with caution because <strong>of</strong> cross-<br />

reaction with other Gram positive org<strong>an</strong>isms (Low <strong>an</strong>d Donachie 1997). McLauchl<strong>in</strong><br />

<strong>an</strong>d colleagues (1989) have used this technique us<strong>in</strong>g monoclonal sera <strong>in</strong> diagnosis <strong>of</strong><br />

<strong>listeriosis</strong> <strong>in</strong> people, but this is not used <strong>in</strong> the veter<strong>in</strong>ary field. An immun<strong>of</strong>luoroscent<br />

test us<strong>in</strong>g polyclonal <strong>an</strong>ti-sera has also been used for diagnosis (Evel<strong>an</strong>d 1963) but this<br />

test faces the same problems associated with polyclonal <strong>an</strong>ti - sera.<br />

Serological tests are the only tools that c<strong>an</strong> be used to detect L. monocytogenes<br />

<strong>in</strong>fection or traces <strong>of</strong> <strong>in</strong>fection <strong>in</strong> live <strong>an</strong>imals. Complement fixation, agglut<strong>in</strong>ation,<br />

haemagglut<strong>in</strong>ation <strong>an</strong>d precipitation tests (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966) have been used but<br />

lack the predictive value needed for diagnostic use. These tests employ either crude<br />

cells or somatic (O) <strong>an</strong>d flagellar (H) <strong>an</strong>tigen. These <strong>an</strong>tigens have been proved to cross<br />

react with other Gram positive bacteria such as streptococci, staphylococci <strong>an</strong>d<br />

32


enterococci (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Peel 1987, Low <strong>an</strong>d Donachie 1997). Attempts<br />

were made to improve the specificity <strong>of</strong> the agglut<strong>in</strong>ation test <strong>an</strong>d to overcome the<br />

cross-reaction problem by pre-treat<strong>in</strong>g serum with 2-mercaptoeth<strong>an</strong>ol but Larsen <strong>an</strong>d<br />

others (1974) reported a decreased sensitivity after such a treatment. Recently more<br />

specific <strong>an</strong>tigens such as Listeriolys<strong>in</strong> O (LLO) have been developed for use <strong>in</strong><br />

serological assays. ELISA <strong>an</strong>d immunoblot assays employ<strong>in</strong>g LLO have successfully<br />

been used <strong>in</strong> experimental <strong>an</strong>d field studies (Berche <strong>an</strong>d others 1990, Low <strong>an</strong>d others<br />

1992b, Lhopital <strong>an</strong>d others 1993, Baetz <strong>an</strong>d Wesley 1995, Bourry <strong>an</strong>d Poutrel 1996,<br />

Bourry <strong>an</strong>d others 1997). Large scale field trials us<strong>in</strong>g such ELISA assays have not yet<br />

been made <strong>an</strong>d cross reaction between LLO <strong>an</strong>d other cytolys<strong>in</strong>s such as Streptolys<strong>in</strong> O<br />

(SLO), produced by some gram-positive org<strong>an</strong>isms should not be ruled out (Baetz <strong>an</strong>d<br />

Wesley 1995, Gholizadeh <strong>an</strong>d others 1996).<br />

In recent years molecular techniques have <strong>in</strong>creas<strong>in</strong>gly been used for the<br />

detection <strong>of</strong> L. monocytogenes <strong>in</strong> food <strong>an</strong>d cl<strong>in</strong>ical cases <strong>of</strong> Listeriosis <strong>in</strong> people <strong>an</strong>d<br />

<strong>an</strong>imals (Datta 1990, Furrer <strong>an</strong>d other 1991, Wiedm<strong>an</strong>n <strong>an</strong>d others 1994, Walker <strong>an</strong>d<br />

others 1994, Bubert <strong>an</strong>d others 1997). In these tests the primers prepared from genes<br />

that determ<strong>in</strong>e virulence factors <strong>of</strong> L. monocytogenes such as haemolys<strong>in</strong> (hlyA), p60<br />

extracellular prote<strong>in</strong> (iap) <strong>an</strong>d act<strong>in</strong> polymerisation (actA) have been used. The use <strong>of</strong><br />

PCR <strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> sheep resulted <strong>in</strong> the detection <strong>of</strong> L.<br />

monocytogenes from CSF <strong>an</strong>d bra<strong>in</strong> tissues (Wiedm<strong>an</strong>n <strong>an</strong>d others 1994, Wiedm<strong>an</strong>n<br />

<strong>an</strong>d others 1997). However, Peters <strong>an</strong>d colleagues` (1996) attempt to detect L.<br />

monocytogenes <strong>in</strong> CSF us<strong>in</strong>g PCR was not promis<strong>in</strong>g, they detected L. monocytogenes<br />

<strong>in</strong> only 1 <strong>of</strong> 11 confirmed cases <strong>of</strong> Listeriosis. Improvements <strong>in</strong> these techniques should<br />

result <strong>in</strong> the rapid detection <strong>of</strong> L. monocytogenes with<strong>in</strong> hours.<br />

33


Differential diagnosis: Listerial men<strong>in</strong>gitis may be confused with bov<strong>in</strong>e spongi<strong>of</strong>orm<br />

encephalopathy, the nervous form <strong>of</strong> ketosis, polioencephalomalacia, lead poison<strong>in</strong>g,<br />

otitis media <strong>an</strong>d <strong>in</strong>terna, thromboembolic men<strong>in</strong>goencephalitis, viral encephalitis,<br />

<strong>in</strong>fectious keratoconjunctivitis <strong>an</strong>d abortion <strong>an</strong>d mastitis due to other agents (reviewed<br />

by Radostits <strong>an</strong>d others 1994, Dennis 1993).<br />

1. 10. Treatment<br />

Successful treatment <strong>of</strong> Listeriosis depends on the cl<strong>in</strong>ical form exhibited, the<br />

duration <strong>an</strong>d severity <strong>of</strong> cl<strong>in</strong>ical signs <strong>an</strong>d the species affected (Cooper <strong>an</strong>d Walker<br />

1998). Although the optimal <strong>an</strong>tibiotic treatment regimes for the various forms <strong>of</strong><br />

Listeriosis have not been established <strong>in</strong> experimental <strong>an</strong>d cl<strong>in</strong>ical trials (Gell<strong>in</strong> <strong>an</strong>d<br />

Brrome 1989), cases with non nervous signs (abortion, septicaemia, iritis) respond well<br />

to <strong>an</strong>tibiotic treatments (Low <strong>an</strong>d Renton 1985, Low <strong>an</strong>d Donachie 1997). Success <strong>in</strong><br />

treat<strong>in</strong>g encephalitic Listeriosis is generally poor <strong>an</strong>d the reported recovery rate is<br />

around 30% <strong>in</strong> sheep (Donachie <strong>an</strong>d Low 1995). The treatment is less effective <strong>in</strong> sheep<br />

th<strong>an</strong> <strong>cattle</strong> because the course <strong>of</strong> the disease is shorter <strong>an</strong>d more severe <strong>in</strong> sheep (Dennis<br />

1993). Animals that rema<strong>in</strong> ambulatory are likely to recover (Scott 1992), but<br />

recumbent or comatose <strong>an</strong>imals rarely survive <strong>an</strong>d spont<strong>an</strong>eous recovery rarely occurs<br />

(Cooper <strong>an</strong>d Walker 1998). The difficulty <strong>in</strong> treat<strong>in</strong>g encephalitic Listeriosis has<br />

resulted <strong>in</strong> several <strong>in</strong> vitro <strong>an</strong>d <strong>in</strong> vivo experimental studies to determ<strong>in</strong>e the best<br />

possible treatment regiments. In vitro studies have shown that the majority <strong>of</strong><br />

<strong>an</strong>tibiotics, penicill<strong>in</strong>, ampicill<strong>in</strong>, erythromyc<strong>in</strong>, rifampic<strong>in</strong>, chloromphenicol, the<br />

tetracycl<strong>in</strong>es, <strong>an</strong>d the am<strong>in</strong>ogylcosides, with the exception <strong>of</strong> cephalspor<strong>in</strong>s are effective<br />

aga<strong>in</strong>st L. monocytogenes (H<strong>of</strong> 1991, Kh<strong>an</strong> <strong>an</strong>d others 1975). However, their <strong>in</strong> vivo<br />

use has proved controversial. Several drugs <strong>an</strong>d their comb<strong>in</strong>ations were used <strong>in</strong><br />

experimental Listeriosis <strong>in</strong> laboratory <strong>an</strong>imals. Kh<strong>an</strong> <strong>an</strong>d others (1975) reported that a<br />

34


comb<strong>in</strong>ation <strong>of</strong> trimethoprim <strong>an</strong>d tetracycl<strong>in</strong>e was more effective th<strong>an</strong> a comb<strong>in</strong>ation <strong>of</strong><br />

trimethoprim <strong>an</strong>d penicill<strong>in</strong> <strong>an</strong>d these comb<strong>in</strong>ations were better th<strong>an</strong> the use <strong>of</strong> each<br />

<strong>an</strong>tibiotic alone. They also reported that both comb<strong>in</strong>ations failed <strong>in</strong> terms <strong>of</strong> complete<br />

recovery. Scheld <strong>an</strong>d others (1979) also tried to evaluate the effect <strong>of</strong> rifampic<strong>in</strong>,<br />

penicill<strong>in</strong>, ampicill<strong>in</strong> <strong>an</strong>d the comb<strong>in</strong>ations <strong>of</strong> gentamic<strong>in</strong> <strong>an</strong>d penicill<strong>in</strong> or ampicill<strong>in</strong><br />

<strong>an</strong>d the mixture <strong>of</strong> rifampic<strong>in</strong> <strong>an</strong>d penicill<strong>in</strong>. They found that ampicill<strong>in</strong> had a greater <strong>in</strong><br />

vivo bactericidal effect th<strong>an</strong> penicill<strong>in</strong> <strong>an</strong>d rifampic<strong>in</strong> <strong>an</strong>d penicill<strong>in</strong> was better th<strong>an</strong><br />

rifampic<strong>in</strong> <strong>an</strong>d the comb<strong>in</strong>ation <strong>of</strong> penicill<strong>in</strong> <strong>an</strong>d rifampic<strong>in</strong>. Their f<strong>in</strong>d<strong>in</strong>gs also suggest<br />

that addition <strong>of</strong> gentamyc<strong>in</strong> to penicill<strong>in</strong> or ampicill<strong>in</strong> enh<strong>an</strong>ces their bactericidal<br />

activity <strong>an</strong>d ampicill<strong>in</strong> plus gentamyc<strong>in</strong> was the most effective comb<strong>in</strong>ation <strong>in</strong><br />

experimental listeric encephalitis <strong>in</strong> rabbit.<br />

Penicill<strong>in</strong> <strong>in</strong> high dosages was reported to be successful <strong>in</strong> treatment <strong>of</strong> cl<strong>in</strong>ical<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> <strong>cattle</strong> (Divers 1996) <strong>an</strong>d was preferred to tetracycl<strong>in</strong>es (Rebhun<br />

<strong>an</strong>d deLahunte 1982). In ov<strong>in</strong>e encephalitis cases prolonged treatment with high doses<br />

<strong>of</strong> ampicill<strong>in</strong> <strong>an</strong>d amoxicill<strong>in</strong> with <strong>an</strong> am<strong>in</strong>gylcoside are recommended (Scott 1992)<br />

Although <strong>an</strong>tibiotic resist<strong>an</strong>ce <strong>in</strong> cl<strong>in</strong>ical isolates is rare (Fac<strong>in</strong>elli <strong>an</strong>d others<br />

1991) resist<strong>an</strong>ce to tetracycl<strong>in</strong>e, m<strong>in</strong>ocycl<strong>in</strong>e, trimethoprim, streptomyc<strong>in</strong> (Charpentier<br />

<strong>an</strong>d others 1995), erythromyc<strong>in</strong> (MacGow<strong>an</strong> <strong>an</strong>d others 1990b) <strong>an</strong>d tr<strong>an</strong>sferable plasmid<br />

mediated resist<strong>an</strong>ce to chloramphenicol, erythromyc<strong>in</strong>, streptomyc<strong>in</strong> <strong>an</strong>d tetracycl<strong>in</strong>e<br />

has been reported (Poyart-Salmeron <strong>an</strong>d others 1990). Abortion <strong>an</strong>d encephalitis caused<br />

by multi-resist<strong>an</strong>t stra<strong>in</strong>s <strong>of</strong> L. monocytogenes have been reported <strong>in</strong> people (Quent<strong>in</strong><br />

<strong>an</strong>d others 1990, Tsakris <strong>an</strong>d others 1997). It is not known if multiresist<strong>an</strong>t stra<strong>in</strong>s have<br />

been <strong>in</strong>volved <strong>in</strong> <strong>an</strong>imal Listeriosis but it should be considered where response to the<br />

<strong>an</strong>tibiotics mentioned above is negative.<br />

1. 11. Control<br />

35


S<strong>in</strong>ce elim<strong>in</strong>ation <strong>of</strong> L. monocytogenes from the farm environment is not<br />

possible due to its ubiquitous occurrence <strong>in</strong> nature, the lack <strong>of</strong> reliable <strong>an</strong>d rapid<br />

methods <strong>of</strong> detect<strong>in</strong>g the org<strong>an</strong>ism when it is present <strong>in</strong> low numbers <strong>an</strong>d the lack <strong>of</strong><br />

underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> epidemiology <strong>of</strong> Listeriosis <strong>an</strong>d L. monocytogenes <strong>in</strong>fection, attempts<br />

c<strong>an</strong> only be made to prevent Listeria org<strong>an</strong>isms from multiply<strong>in</strong>g to the level <strong>of</strong> <strong>an</strong><br />

<strong>in</strong>fectious dose, to m<strong>in</strong>imise its presence <strong>in</strong> the farm environment by improv<strong>in</strong>g hygiene<br />

<strong>an</strong>d cle<strong>an</strong>l<strong>in</strong>ess <strong>of</strong> the farm, <strong>an</strong>d to m<strong>in</strong>imise its <strong>in</strong>take by <strong>an</strong>imals by prepar<strong>in</strong>g<br />

foodstuffs such that L. monocytogenes does not grow. The epidemiology <strong>of</strong> Listeriosis<br />

<strong>in</strong> <strong>an</strong>imals is not fully understood (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, reviewed by Radostits <strong>an</strong>d<br />

others 1994, Donachie <strong>an</strong>d Low 1995) therefore risk factors other th<strong>an</strong> silage feed<strong>in</strong>g<br />

are not known. Where silage is implicated some recommendations c<strong>an</strong> be made. The<br />

proportion <strong>of</strong> silage <strong>in</strong> the ration c<strong>an</strong> be reduced, silage feed<strong>in</strong>g c<strong>an</strong> be <strong>in</strong>troduced to the<br />

<strong>an</strong>imals gradually <strong>an</strong>d more attention c<strong>an</strong> be paid to silage mak<strong>in</strong>g. Spoiled <strong>an</strong>d mouldy<br />

silage should be removed from the feed. When mak<strong>in</strong>g silage, additives should be used,<br />

soil contam<strong>in</strong>ation should be avoided <strong>an</strong>d the silo or clamp should be sealed <strong>of</strong>f as<br />

quickly as possible (Fenlon 1988, reviewed by Radostits <strong>an</strong>d others 1994). It has been<br />

reported that improvement <strong>in</strong> silage mak<strong>in</strong>g resulted <strong>in</strong> a decrease <strong>in</strong> the <strong>in</strong>cidence <strong>of</strong><br />

Listeriosis <strong>in</strong> Holl<strong>an</strong>d (Dijsktra 1986). However, disease has also been reported <strong>in</strong> some<br />

parts <strong>of</strong> the world where silage feed<strong>in</strong>g is not practised (V<strong>an</strong>degraaff <strong>an</strong>d others 1981,<br />

Asl<strong>an</strong> <strong>an</strong>d others 1991, Meredith <strong>an</strong>d Schneider 1984). In such circumst<strong>an</strong>ces better<br />

farm m<strong>an</strong>agement practices, such as improvement <strong>of</strong> nutritional status <strong>of</strong> <strong>an</strong>imals <strong>an</strong>d<br />

better hous<strong>in</strong>g conditions, c<strong>an</strong> also be <strong>of</strong> some value <strong>in</strong> prevent<strong>in</strong>g disease.<br />

Vacc<strong>in</strong>ation: Several attempts have been made to immunise <strong>an</strong>imals aga<strong>in</strong>st Listeriosis<br />

us<strong>in</strong>g killed or live L. monocytogenes. The results obta<strong>in</strong>ed us<strong>in</strong>g a vacc<strong>in</strong>e prepared<br />

36


from killed or <strong>in</strong>activated Listeria have been controversial. The experiments carried out<br />

by Asahi (1963) <strong>an</strong>d Von Koenig <strong>an</strong>d F<strong>in</strong>ger (1982) revealed that vacc<strong>in</strong>es prepared<br />

from killed Listeria org<strong>an</strong>isms did not <strong>of</strong>fer <strong>an</strong>y protection. However Szemeredi <strong>an</strong>d<br />

Pad<strong>an</strong>yi (1989) reported a reduction <strong>in</strong> the <strong>in</strong>cidence <strong>of</strong> Listeriosis <strong>in</strong> sheep immunised<br />

with chemically killed L. monocytogenes. Use <strong>of</strong> live Listeria org<strong>an</strong>isms as a vacc<strong>in</strong>e<br />

resulted <strong>in</strong> protection aga<strong>in</strong>st <strong>in</strong>fection (Asahi 1963, Iv<strong>an</strong>ov <strong>an</strong>d others 1979, Gudd<strong>in</strong>g<br />

<strong>an</strong>d others 1989, L<strong>in</strong>de <strong>an</strong>d others 1995). It signific<strong>an</strong>tly reduced the <strong>in</strong>cidence <strong>of</strong><br />

<strong>listeriosis</strong> <strong>in</strong> the field trials (Gudd<strong>in</strong>g <strong>an</strong>d other 1989, L<strong>in</strong>de <strong>an</strong>d others 1995). Currently<br />

no vacc<strong>in</strong>e is used <strong>in</strong> the United K<strong>in</strong>gdom. A vacc<strong>in</strong>e, conta<strong>in</strong><strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> live<br />

4b <strong>an</strong>d 1/2b stra<strong>in</strong>s <strong>of</strong> L. monocytogenes, is available <strong>in</strong> some eastern Europe<strong>an</strong> <strong>an</strong>d<br />

Sc<strong>an</strong>d<strong>in</strong>avi<strong>an</strong> countries. In these countries the vacc<strong>in</strong>e is believed to reduce the <strong>an</strong>nual<br />

<strong>in</strong>cidence <strong>of</strong> the disease. However, the results <strong>of</strong> vacc<strong>in</strong>e trials are not satisfactory <strong>in</strong><br />

terms <strong>of</strong> complete protection, the efficacy <strong>of</strong> the vacc<strong>in</strong>e has not been evaluated <strong>an</strong>d no<br />

experimental model is available to test their efficacy (Donachie <strong>an</strong>d Low 1995, Low<br />

<strong>an</strong>d Donachie 1997).<br />

1. 12. Listeriosis <strong>in</strong> People<br />

a) Occurrence: The first confirmed report <strong>of</strong> Listeriosis <strong>in</strong> people was made <strong>in</strong> 1929 by<br />

Nyfeld (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966). Listeriosis is caused by predom<strong>in</strong><strong>an</strong>tly L.<br />

monocytogenes <strong>an</strong>d only three <strong>in</strong>fections caused by L. iv<strong>an</strong>ovii (2) <strong>an</strong>d L. seeligeri (1)<br />

have been reported (McLauchl<strong>in</strong> 1987). Cl<strong>in</strong>ical Listeriosis m<strong>an</strong>ifests itself <strong>in</strong> three<br />

forms; encephalitis <strong>an</strong>d abortion predom<strong>in</strong><strong>an</strong>tly <strong>in</strong> adults, <strong>an</strong>d septicaemia <strong>in</strong> neonates<br />

<strong>an</strong>d rarely <strong>in</strong> adults (McLauchl<strong>in</strong> 1987, Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991, Schuchat <strong>an</strong>d others<br />

1991, Schlech 1991). In addition focal <strong>in</strong>fections such as septic arthritis, peritonitis,<br />

liver abscess, endophthalmitis <strong>an</strong>d cut<strong>an</strong>eous <strong>in</strong>fection, c<strong>an</strong> also occur (Gell<strong>in</strong> <strong>an</strong>d<br />

Broome 1989). Although reports <strong>of</strong> cl<strong>in</strong>ical Listeriosis have grown <strong>in</strong> number s<strong>in</strong>ce its<br />

37


first description, it was only 1980s that L. monocytogenes <strong>in</strong>fection achieved<br />

prom<strong>in</strong>ence as a food borne disease (Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991, McLauchl<strong>in</strong> 1996).<br />

Most cases <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> appears to be sporadic but epidemics have also been<br />

reported <strong>in</strong> recent years. The <strong>an</strong>nual endemic rates have been reported to be between 2<br />

<strong>an</strong>d 15 cases per million (Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991). The current <strong>in</strong>cidence <strong>of</strong> cl<strong>in</strong>ical<br />

Listeriosis is about 2-3 cases per million per <strong>an</strong>num <strong>in</strong> Engl<strong>an</strong>d <strong>an</strong>d Wales with case<br />

fatality rates be<strong>in</strong>g between 20 <strong>an</strong>d 40% (McLauchl<strong>in</strong> 1996). In Engl<strong>an</strong>d <strong>an</strong>d Wales<br />

there was a dramatic <strong>in</strong>crease <strong>in</strong> the number <strong>of</strong> cases reported <strong>in</strong> people <strong>in</strong> the 1980s<br />

which co<strong>in</strong>cided with <strong>an</strong> <strong>in</strong>crease <strong>in</strong> <strong>an</strong>imal Listeriosis reported by Veter<strong>in</strong>ary<br />

Investigation Centre (VIC), <strong>in</strong> other hum<strong>an</strong> disease caused by <strong>in</strong>test<strong>in</strong>al pathogens <strong>an</strong>d<br />

use <strong>of</strong> untreated hum<strong>an</strong> sewage sludge <strong>an</strong>d <strong>an</strong>imal slurry on agricultural l<strong>an</strong>d<br />

(McLauchl<strong>in</strong> 1987). A decl<strong>in</strong>e <strong>in</strong> the number <strong>of</strong> cases has been observed s<strong>in</strong>ce 1990.<br />

This may be due to improved control measures associated with developments <strong>in</strong><br />

isolation <strong>an</strong>d typ<strong>in</strong>g methods or <strong>in</strong>creas<strong>in</strong>g public awareness.<br />

b) Risk factors: Listeriosis <strong>in</strong> people is believed to be a disease <strong>of</strong> those whose immune<br />

system is suppressed. However, a recent outbreak <strong>in</strong> the USA has shown that L.<br />

monocytogenes could equally be a potential health problem for immuncompetent<br />

<strong>in</strong>dividuals (Dalton <strong>an</strong>d others 1997). Several predispos<strong>in</strong>g factors have been identified<br />

to be associated with the occurrence <strong>of</strong> cl<strong>in</strong>ical Listeriosis. Extremes <strong>of</strong> age, pregn<strong>an</strong>cy,<br />

malign<strong>an</strong>cy, immunsuppression (HIV <strong>in</strong>fection, org<strong>an</strong> tr<strong>an</strong>spl<strong>an</strong>tation) are the major<br />

risk factors (Lorber 1990, Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991, Rocourt 1996).<br />

c) Tr<strong>an</strong>smission: The route <strong>of</strong> tr<strong>an</strong>smission <strong>of</strong> Listeriosis has long been the subject <strong>of</strong><br />

debate. Direct contact with <strong>in</strong>fected <strong>an</strong>imals has been shown to be one way <strong>of</strong><br />

tr<strong>an</strong>smission for the cut<strong>an</strong>eous form <strong>of</strong> Listeriosis. 10 cases have been reported <strong>in</strong> the<br />

UK <strong>an</strong>d 7 cases <strong>in</strong> the rest <strong>of</strong> the world (McLauchl<strong>in</strong> <strong>an</strong>d Low 1994, McLauchl<strong>in</strong> 1996).<br />

Hospital cross <strong>in</strong>fections dur<strong>in</strong>g the neonatal period have been reported on 29 occasions<br />

38


<strong>in</strong> the UK <strong>an</strong>d <strong>in</strong> 22 <strong>in</strong>st<strong>an</strong>ces <strong>in</strong> the rest <strong>of</strong> the world (McLauchl<strong>in</strong> 1996). However L.<br />

monocytogenes is now a well recognised food borne pathogen. M<strong>an</strong>y sporadic <strong>an</strong>d<br />

epidemic cases <strong>of</strong> Listeriosis have been traced to food (Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991,<br />

Schuchat <strong>an</strong>d others 1991, McLauchl<strong>in</strong> 1996) <strong>an</strong>d the role <strong>of</strong> food <strong>in</strong> the occurrence <strong>of</strong><br />

Listeriosis has been established <strong>in</strong> a case control <strong>study</strong> (P<strong>in</strong>ner <strong>an</strong>d others 1992,<br />

Schuchat <strong>an</strong>d others 1992). Some food borne outbreaks <strong>an</strong>d sporadic cases <strong>of</strong> Listeriosis<br />

are presented <strong>in</strong> the Table 1. 3.<br />

Table 1. 3. Epidemic <strong>an</strong>d sporadic cases <strong>of</strong> foodborne cl<strong>in</strong>ical Listeriosis <strong>in</strong> people.<br />

Country Year No. <strong>of</strong> cases Implicated food<br />

Outbreaks<br />

C<strong>an</strong>ada 1981 41 Coleslaw<br />

USA 1983 49 Milk<br />

USA 1985 142 S<strong>of</strong>t cheese<br />

United K<strong>in</strong>gdom 1987-89 >350 Pate<br />

Switzerl<strong>an</strong>d 1983-87 122 S<strong>of</strong>t cheese<br />

Australia 1991 4 Smoked mussels<br />

Fr<strong>an</strong>ce 1992 279 Pork tongue<br />

Fr<strong>an</strong>ce 1995 17 S<strong>of</strong>t cheese<br />

Sporadic cases<br />

USA 1987 Raw milk<br />

Engl<strong>an</strong>d 1988 S<strong>of</strong>t cheese<br />

Engl<strong>an</strong>d 1988 Rennet<br />

USA 1989 Sausage<br />

Italy 1989 Fish<br />

F<strong>in</strong>l<strong>an</strong>d 1989 Mushrooms<br />

Italy 1994 Pickled olives<br />

This table was extracted from a publication by McLauchl<strong>in</strong> (1996).<br />

The table <strong>in</strong>dicates that a variety <strong>of</strong> foods has been l<strong>in</strong>ked with disease but <strong>in</strong> the<br />

majority <strong>of</strong> cases <strong>an</strong>imal products have been implicated. Studies carried out to<br />

determ<strong>in</strong>e the presence <strong>of</strong> L. monocytogenes on vegetables, <strong>in</strong> nature, <strong>in</strong> <strong>dairy</strong> products<br />

39


<strong>an</strong>d meat products have resulted <strong>in</strong> <strong>an</strong> enormous number <strong>of</strong> publications (Johnson <strong>an</strong>d<br />

others 1990, Jay 1996, Kozak <strong>an</strong>d colleques 1996, Beuchat 1996).<br />

L. monocytogenes has frequently been isolated from soil, vegetation such as<br />

corn, soybe<strong>an</strong> pl<strong>an</strong>ts, grass (Welshimer <strong>an</strong>d Donker-Voet 1971, Weis <strong>an</strong>d Seeliger<br />

1975), sewage sludge (MacGow<strong>an</strong> <strong>an</strong>d others 1994), river waters, <strong>in</strong>dustrial effluent<br />

such as abattoirs, <strong>cattle</strong> market, poultry pack<strong>in</strong>g pl<strong>an</strong>ts (Watk<strong>in</strong>s <strong>an</strong>d Sleath 1981),<br />

vegetables such as cabbage, cucumbers, potatoes, radishes (Beuchat 1996), salads<br />

conta<strong>in</strong><strong>in</strong>g cabbage, carrots, lettuce, cucumber, onion, leeks, watercress, celery <strong>an</strong>d<br />

fennel (Sizmur <strong>an</strong>d Walker 1988).<br />

Jay (1996) reviewed the overall prevalence <strong>of</strong> L. monocytogenes <strong>in</strong> meat <strong>an</strong>d<br />

meat products by comb<strong>in</strong><strong>in</strong>g the results <strong>of</strong> several studies. The prevalence <strong>in</strong> meat (fresh<br />

or frozen) was 20% <strong>in</strong> pork, 16% <strong>in</strong> beef <strong>an</strong>d lamb <strong>an</strong>d 17% <strong>in</strong> poultry. He also<br />

estimated a 13% overall prevalence for processed meat such as sausages, bacon, salami,<br />

pate <strong>an</strong>d corned beef.<br />

Kozak <strong>an</strong>d colleagues (1996) reported the prevalence <strong>of</strong> L. monocytogenes <strong>in</strong><br />

raw milk <strong>in</strong> the same way as Jay. It was 3.1% <strong>in</strong> the USA, 2.7% <strong>in</strong> C<strong>an</strong>ada <strong>an</strong>d 4.1% <strong>in</strong><br />

Europe. In a national survey carried out <strong>in</strong> Engl<strong>an</strong>d <strong>an</strong>d Wales by Greenwood <strong>an</strong>d<br />

colleagues (1991) L. monocytogenes was isolated from 3.6% <strong>of</strong> raw milk samples.<br />

Fenlon <strong>an</strong>d Wilson (1989) exam<strong>in</strong>ed bulk milk t<strong>an</strong>k for the presence <strong>of</strong> L.<br />

monocytogenes <strong>in</strong> Scotl<strong>an</strong>d over a period <strong>of</strong> time <strong>an</strong>d found that 3.8% <strong>of</strong> samples were<br />

positive for L. monocytogenes. In <strong>an</strong>other <strong>study</strong> Fenlon <strong>an</strong>d colleagues (1995a) isolated<br />

L. monocytogenes from 25 <strong>of</strong> 160 bulk milk t<strong>an</strong>k samples. L. monocytogenes<br />

org<strong>an</strong>isms occur <strong>in</strong> low number <strong>in</strong> milk <strong>an</strong>d are easily killed at pasteurisation<br />

temperatures (Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991, Kozak <strong>an</strong>d colleagues 1996). However, the<br />

isolation <strong>of</strong> L. monocytogenes <strong>in</strong> pasteurised milk <strong>an</strong>d <strong>in</strong> several milk products such as<br />

cheese, ice cream, yoghurt, (Greenwood <strong>an</strong>d others 1991) suggest that post<br />

40


pasteurisation contam<strong>in</strong>ation c<strong>an</strong> occur at the process<strong>in</strong>g pl<strong>an</strong>ts or retailers (Kozak <strong>an</strong>d<br />

others 1996, Fenlon <strong>an</strong>d others 1996) <strong>an</strong>d outbreaks <strong>of</strong> Listeriosis due to a such<br />

contam<strong>in</strong>ation have been reported (L<strong>in</strong>n<strong>an</strong> <strong>an</strong>d other 1988, Dalton <strong>an</strong>d others 1997).<br />

These f<strong>in</strong>d<strong>in</strong>gs reflect the fact that L. monocytogenes is <strong>an</strong> environmental<br />

org<strong>an</strong>ism with a broad distribution. People are exposed ma<strong>in</strong>ly through the oral route<br />

<strong>an</strong>d bacteria are possibly <strong>in</strong>gested at low dosages daily. The Figure 1. 3. shows the<br />

current underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> potential ways <strong>of</strong> tr<strong>an</strong>smission for Listeriosis <strong>in</strong> people.<br />

d) Carrier status: L. monocytogenes is thought to be a normal <strong>in</strong>habit<strong>an</strong>t <strong>of</strong> the<br />

<strong>in</strong>test<strong>in</strong>al tract <strong>of</strong> people. The proportion <strong>of</strong> hum<strong>an</strong> carriers varies from 0.5% to 91.7%<br />

(Ralovich 1987). At <strong>an</strong>y one time, between 5% to 10% <strong>of</strong> normal healthy population<br />

excrete L. monocytogenes <strong>in</strong> their faeces (Farber <strong>an</strong>d Paterk<strong>in</strong>s 1991).<br />

Faeces Insects<br />

harvest<strong>in</strong>g, h<strong>an</strong>dl<strong>in</strong>g<br />

process<strong>in</strong>g<br />

Sewage environment<br />

Animals Water Vegetables People<br />

Pl<strong>an</strong>ts silage, feed meat, milk, eggs<br />

Soil (cross contam<strong>in</strong>ation)<br />

Figure 1. 3. Potential pathways <strong>of</strong> L. monocytogenes tr<strong>an</strong>smission to people (after<br />

Beuchat, 1996)<br />

e) Infectious dose: The number <strong>of</strong> L. monocytogenes required to cause illness depends<br />

on m<strong>an</strong>y factors, the most import<strong>an</strong>t appears to be the host’s susceptibility <strong>an</strong>d<br />

genetically determ<strong>in</strong>ed <strong>an</strong>d phenotypically expressed properties <strong>of</strong> the pathogen. The<br />

41


<strong>in</strong>fectious dose for the <strong>in</strong>fection <strong>in</strong> people is not known. From outbreaks <strong>an</strong>d sporadic<br />

cases it c<strong>an</strong> be concluded that the dose varies from 10 2 to 3.4x10 9 with the <strong>in</strong>cubation<br />

period be<strong>in</strong>g between less th<strong>an</strong> 24 hours <strong>an</strong>d 23 days (Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991)<br />

f) Control: L. monocytogenes is so widespread that its elim<strong>in</strong>ation from our<br />

environment is beyond our technical capacity. But some strict regulations <strong>an</strong>d<br />

m<strong>an</strong>agement practices such as HACCP (Hazard Analysis Critical Control Po<strong>in</strong>ts) <strong>an</strong>d<br />

hygiene <strong>in</strong> process<strong>in</strong>g pl<strong>an</strong>ts <strong>an</strong>d at home, c<strong>an</strong> be put <strong>in</strong> place so that L. monocytogenes<br />

does not exceed the level <strong>of</strong> <strong>in</strong>fectious dose or propagate beyond the host’s ability to<br />

cope with it (Greenwood <strong>an</strong>d others 1991, Farber <strong>an</strong>d Peterk<strong>in</strong>s 1991, Dalton <strong>an</strong>d others<br />

1997).<br />

1. 13 The objectives <strong>of</strong> this <strong>study</strong>:<br />

L. monocytogenes has received tremendous attention ow<strong>in</strong>g not only to<br />

economic losses <strong>an</strong>d public health concern but also to its use as a model bacterial<br />

pathogen <strong>in</strong> <strong>study</strong><strong>in</strong>g immunology, pathogenesis, behaviour <strong>of</strong> <strong>in</strong>tracellular pathogens<br />

<strong>an</strong>d their <strong>in</strong>teraction with host. Economic losses due to Listeriosis <strong>an</strong>d L.<br />

monocytogenes have been estimated <strong>in</strong> some studies. Low <strong>an</strong>d Renton (1985) reported<br />

£5,130 loss due to a s<strong>in</strong>gle outbreak <strong>of</strong> Listeriosis <strong>in</strong> a flock, similarly Nash <strong>an</strong>d<br />

colleagues (1995) estimated that the economic loss would be £6,809 <strong>in</strong> a Rambouillet<br />

flock after <strong>an</strong> outbreak with 12% mortality. In countries such as the USA, where “zero<br />

toler<strong>an</strong>ce” policies are applied the loss due to food recall could count for billions <strong>of</strong><br />

dollars (Archer 1996). L. monocytogenes <strong>in</strong>fections <strong>in</strong> people <strong>an</strong>d its consequences are<br />

<strong>in</strong>calculable. This <strong>an</strong>d the fact that there appears to be a close relationship between<br />

42


hum<strong>an</strong> Listeriosis <strong>an</strong>d <strong>an</strong>imal Listeriosis prompted us to <strong>in</strong>vestigate this disease <strong>an</strong>d its<br />

cause, L. monocytogenes , <strong>in</strong> more details <strong>in</strong> order to determ<strong>in</strong>e:<br />

a) the frequency <strong>of</strong> Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d. The figures on prevalence <strong>an</strong>d<br />

<strong>in</strong>cidence <strong>of</strong> cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> were not known at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> this<br />

<strong>study</strong>. Listeriosis is not a notifiable disease <strong>an</strong>d the only figures available are those<br />

estimated from cases submitted to the Central Veter<strong>in</strong>ary Laboratories (CVL) <strong>in</strong> most<br />

cases for the diagnoses <strong>of</strong> other disease such as BSE <strong>an</strong>d Brucellosis. Cases <strong>of</strong><br />

Listeriosis other th<strong>an</strong> encephalitis are not usually reported to these centres. Therefore a<br />

cross sectional <strong>study</strong> us<strong>in</strong>g a postal questionnaire was carried out to determ<strong>in</strong>e the<br />

prevalence, <strong>in</strong>cidence <strong>an</strong>d some characteristics <strong>of</strong> cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong><br />

Engl<strong>an</strong>d (Chapter 2).<br />

b) risk factors associated with disease at the farm level. The relationship between silage<br />

feed<strong>in</strong>g <strong>an</strong>d L. monocytogenes is established but the exact m<strong>an</strong>ner <strong>in</strong> which silage<br />

plays a role is not known (Wilesmith <strong>an</strong>d Gitter 1986, Gitter 1989). There is <strong>an</strong><br />

evidence that farm m<strong>an</strong>agement may also be import<strong>an</strong>t (Meredith <strong>an</strong>d Schneider 1984).<br />

In the cross sectional <strong>study</strong> we also attempted to identify <strong>an</strong>d test some hypothesises for<br />

farm level risk factor(s) associated with the occurrence <strong>of</strong> cl<strong>in</strong>ical Listeriosis (Chapters<br />

3 <strong>an</strong>d 4).<br />

c) <strong>in</strong>fection rate <strong>in</strong> <strong>in</strong>dividual <strong>an</strong>imals. Several studies have been carried out to<br />

determ<strong>in</strong>e carriage status <strong>of</strong> this org<strong>an</strong>ism (Skovgaard <strong>an</strong>d Morgen 1988, Husu 1990).<br />

These studies lacked <strong>epidemiological</strong> <strong>an</strong>d statistical design <strong>an</strong>d differences were<br />

detected <strong>in</strong> excretion rate between them. There have been no studies <strong>in</strong> the United<br />

K<strong>in</strong>gdom aimed at determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>fection rate <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>. We therefore conducted<br />

43


a longitud<strong>in</strong>al <strong>study</strong> <strong>in</strong>volv<strong>in</strong>g five <strong>dairy</strong> herds to determ<strong>in</strong>e the <strong>in</strong>fection rate us<strong>in</strong>g<br />

bacteriological <strong>an</strong>d serological tests (Chapters 5 <strong>an</strong>d 6).<br />

d) degree <strong>of</strong> environmental contam<strong>in</strong>ation. L. monocytogenes is well known for its<br />

commonness <strong>in</strong> the environment. Dur<strong>in</strong>g the longitud<strong>in</strong>al <strong>study</strong> we also tried to<br />

determ<strong>in</strong>e the degree <strong>of</strong> the environmental contam<strong>in</strong>ation on the farms that we studied<br />

(Chapter 6)<br />

f) source <strong>of</strong> <strong>in</strong>fection. The use <strong>of</strong> typ<strong>in</strong>g methods has enabled researchers to easily trace<br />

the source <strong>of</strong> L. monocytogenes <strong>in</strong> sporadic <strong>an</strong>d epidemic Listeriosis <strong>an</strong>d<br />

<strong>epidemiological</strong> <strong>in</strong>vestigation. In this <strong>study</strong> we used a molecular typ<strong>in</strong>g method<br />

(R<strong>an</strong>domly amplified polymorphic DNA) to determ<strong>in</strong>e the relationship between the<br />

org<strong>an</strong>ism <strong>an</strong>d <strong>in</strong>fection on the farms studied (Chapter 6).<br />

44


CHAPTER 2<br />

The frequency <strong>an</strong>d some characteristics <strong>of</strong> cl<strong>in</strong>ical<br />

2. 1. Introduction<br />

<strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d<br />

Listeriosis is <strong>an</strong> <strong>in</strong>fectious disease caused by micro-org<strong>an</strong>isms <strong>of</strong> the genus Listeria<br />

(Farber <strong>an</strong>d Peterk<strong>in</strong> 1991, reviewed by Radostits <strong>an</strong>d others 1994). Three dist<strong>in</strong>ct patterns<br />

<strong>of</strong> cl<strong>in</strong>ical disease are recognised <strong>in</strong> both <strong>an</strong>imals <strong>an</strong>d people; encephalitis, abortion,<br />

septicaemia. (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966). In addition, mastitis (Gitter <strong>an</strong>d others 1980, Boury<br />

<strong>an</strong>d others 1995), iritis <strong>an</strong>d keratoconjunctivitis (Kummeneje <strong>an</strong>d Mikkelsen 1975, Morg<strong>an</strong><br />

1977, Watson 1989, Bee 1993) have also been associated with Listeriosis <strong>in</strong> rum<strong>in</strong><strong>an</strong>ts <strong>in</strong><br />

recent years.<br />

Listeria has attracted considerable attention ow<strong>in</strong>g not only to <strong>in</strong>creased reports <strong>of</strong><br />

cl<strong>in</strong>ical disease <strong>in</strong> <strong>an</strong>imals (Gitter 1989) <strong>an</strong>d people (MacLauchl<strong>in</strong> <strong>an</strong>d others 1991) but<br />

also to its implication as a food-borne pathogen (Schlech, 1991).<br />

Although much progress has been made <strong>in</strong> the isolation, identification <strong>an</strong>d typ<strong>in</strong>g <strong>of</strong><br />

listeria the epidemiology <strong>of</strong> <strong>listeriosis</strong> rema<strong>in</strong>s poorly understood (Donachie <strong>an</strong>d Low<br />

1995). There has been no <strong>study</strong> <strong>of</strong> the prevalence <strong>an</strong>d <strong>in</strong>cidence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong><br />

46


<strong>in</strong> Brita<strong>in</strong>. In this part <strong>of</strong> the <strong>study</strong> the frequency <strong>of</strong> <strong>listeriosis</strong> <strong>an</strong>d its cl<strong>in</strong>ical presentation <strong>in</strong><br />

<strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d are presented.<br />

2. 2. Materials <strong>an</strong>d Methods<br />

2. 2. 1. Study Population<br />

A r<strong>an</strong>dom sample <strong>of</strong> 1500 <strong>dairy</strong> <strong>cattle</strong> farmers <strong>in</strong> Engl<strong>an</strong>d was selected. The sample<br />

size was calculated from <strong>an</strong> expected prevalence <strong>of</strong> 50% with 95% level <strong>of</strong> confidence, a<br />

desired accuracy <strong>of</strong> 3% <strong>an</strong>d predicted response rate <strong>of</strong> 70% (C<strong>an</strong>on <strong>an</strong>d Roe 1982). This<br />

sample represented 5.8% <strong>of</strong> the total <strong>dairy</strong> <strong>cattle</strong> hold<strong>in</strong>gs <strong>in</strong> Engl<strong>an</strong>d (MAFF 1994).<br />

2. 2. 2. Study Design<br />

This was a cross sectional <strong>study</strong> <strong>in</strong> which a postal questionnaire was used to collect<br />

data on the frequency <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d between July 1994 <strong>an</strong>d June<br />

1995.<br />

2. 2. 3. The Questionnaire (Appendix 1)<br />

A self adm<strong>in</strong>istered, eight-page, postal questionnaire was designed to collect data<br />

about <strong>listeriosis</strong> from <strong>dairy</strong> farmers <strong>in</strong> Engl<strong>an</strong>d. The questionnaire consisted <strong>of</strong> 7 parts.<br />

Parts one <strong>an</strong>d two were designed to obta<strong>in</strong> <strong>in</strong>formation on the prevalence <strong>an</strong>d <strong>in</strong>cidence <strong>of</strong><br />

Listeriosis, part three was designed to estimate herd size, replacement rate <strong>an</strong>d number <strong>of</strong><br />

47


<strong>dairy</strong> calves <strong>in</strong> July 1994 <strong>an</strong>d June 1995, the rema<strong>in</strong><strong>in</strong>g parts collected <strong>in</strong>formation on farm<br />

level variables which might <strong>in</strong>fluence the occurrence <strong>of</strong> <strong>listeriosis</strong>. This <strong>in</strong>cluded questions<br />

on feed<strong>in</strong>g, (type, preparation, storage, feed<strong>in</strong>g regime), hous<strong>in</strong>g, (season <strong>of</strong> hous<strong>in</strong>g, type<br />

<strong>of</strong> hous<strong>in</strong>g, type <strong>of</strong> bedd<strong>in</strong>g, storage <strong>of</strong> bedd<strong>in</strong>g, cle<strong>an</strong><strong>in</strong>g <strong>of</strong> house) <strong>an</strong>d general <strong>in</strong>formation<br />

(cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> other species <strong>of</strong> <strong>an</strong>imals, vacc<strong>in</strong>e use etc.).<br />

Pilot questionnaires were tested by send<strong>in</strong>g them to 9 <strong>dairy</strong> farmers on the 5th <strong>of</strong><br />

August, 1995. The questionnaire, cover<strong>in</strong>g letter, <strong>an</strong>d a stamped addressed envelope were<br />

sent to farmers on the 25th <strong>of</strong> August, 1995. Two rem<strong>in</strong>der post cards <strong>an</strong>d second copy <strong>of</strong><br />

the questionnaire were sent to non-respondents <strong>an</strong>d a f<strong>in</strong>al fourth rem<strong>in</strong>der letter was sent to<br />

the rema<strong>in</strong><strong>in</strong>g non-respondents on the 23rd <strong>of</strong> December, 1995 (Appendix 1).<br />

Questionnaires returned after the 12th <strong>of</strong> J<strong>an</strong>uary, 1996 were not <strong>in</strong>cluded <strong>in</strong> the <strong>study</strong>.<br />

2. 2. 4. Data Analysis<br />

Two estimates <strong>of</strong> the frequency <strong>of</strong> <strong>listeriosis</strong> were calculated <strong>in</strong> this <strong>study</strong>; the farm<br />

level prevalence <strong>an</strong>d the crude with<strong>in</strong> herd <strong>in</strong>cidence rate. They were estimated from<br />

cl<strong>in</strong>ical cases reported between July 1994 <strong>an</strong>d June 1995 for three groups <strong>of</strong> <strong>dairy</strong> <strong>cattle</strong>;<br />

milk<strong>in</strong>g cows, replacement heifers <strong>an</strong>d <strong>dairy</strong> calves. For the same groups, the <strong>in</strong>cidence<br />

rates were recalculated for two cl<strong>in</strong>ical signs; silage eye <strong>an</strong>d nervous signs.<br />

To calculate the with<strong>in</strong> herd <strong>in</strong>cidence rate the me<strong>an</strong> numbers <strong>of</strong> milk<strong>in</strong>g cows,<br />

replacement heifers <strong>an</strong>d <strong>dairy</strong> calves reported <strong>in</strong> July 1994 <strong>an</strong>d June 1995 were used to<br />

estimate the number <strong>of</strong> <strong>an</strong>imals at risk <strong>in</strong> each group. The with<strong>in</strong> herd <strong>in</strong>cidence rate <strong>of</strong><br />

<strong>listeriosis</strong> was calculated separately for herds report<strong>in</strong>g cl<strong>in</strong>ical disease <strong>an</strong>d for all herds.<br />

Respondents who did not know if they had had <strong>an</strong>y cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>an</strong>y <strong>of</strong> these<br />

48


groups were excluded from <strong>an</strong>alysis. In calculat<strong>in</strong>g the with<strong>in</strong> herd <strong>in</strong>cidence rates for the<br />

different cl<strong>in</strong>ical signs those cases where cl<strong>in</strong>ical signs were not reported were excluded<br />

from the <strong>an</strong>alysis.<br />

Three alternatives were given for the diagnosis <strong>of</strong> the disease; veter<strong>in</strong>ary surgeon,<br />

veter<strong>in</strong>ary <strong>in</strong>vestigation centre (V.I.C) or self diagnosis. In order to validate diagnosis by<br />

farmers, they were asked to select the cl<strong>in</strong>ical signs <strong>of</strong> <strong>listeriosis</strong> from a list <strong>of</strong> eight cl<strong>in</strong>ical<br />

signs, two commonly associated with <strong>listeriosis</strong> (nervous sign <strong>an</strong>d silage eye-<br />

keratoconjunctivitis), four occasionally associated with the disease (abortion, sudden death,<br />

diarrhoea <strong>an</strong>d mastitis) <strong>an</strong>d the rema<strong>in</strong><strong>in</strong>g two not l<strong>in</strong>ked to <strong>listeriosis</strong> (lameness,<br />

pneumonia). The criterion validity (Abramson 1988) <strong>of</strong> “self diagnoses” was made by<br />

compar<strong>in</strong>g the report<strong>in</strong>g <strong>of</strong> cl<strong>in</strong>ical signs by farmers with the comb<strong>in</strong>ation <strong>of</strong> veter<strong>in</strong>ary<br />

surgeon or V.I.C. diagnoses. The questionnaire was also externally validated us<strong>in</strong>g data on<br />

the frequency <strong>of</strong> <strong>listeriosis</strong> collected by Central Veter<strong>in</strong>ary Laboratory (CVL) dur<strong>in</strong>g<br />

statutory Bov<strong>in</strong>e Spongiform Encephalopathy (BSE) report<strong>in</strong>g between July 1994 <strong>an</strong>d June<br />

1995.<br />

Information about the month <strong>of</strong> illness, treatment <strong>an</strong>d its outcome was also<br />

collected. Cases reported to occur over a period <strong>of</strong> two or more months were divided<br />

equally between the months <strong>in</strong> order to estimate their seasonal <strong>an</strong>d monthly distribution.<br />

Those cases where no month <strong>of</strong> diagnosis was given were excluded from <strong>an</strong>alysis. Cases<br />

where cl<strong>in</strong>ical signs <strong>an</strong>d treatment were not <strong>in</strong>dicated were also excluded from <strong>an</strong>alysis.<br />

2. 2. 5. Data process<strong>in</strong>g <strong>an</strong>d <strong>an</strong>alysis:<br />

49


All data were numerically coded, entered onto a database (Micros<strong>of</strong>t Access 2,<br />

Simpson 1994) <strong>an</strong>d <strong>an</strong>alysed us<strong>in</strong>g Epi-<strong>in</strong>fo version 6 (De<strong>an</strong> <strong>an</strong>d others 1994). A Yates<br />

corrected chi squared test was used to compare the differences between proportions. A<br />

Kruskal-Wallis test was used to compare the differences between medi<strong>an</strong> values (De<strong>an</strong> <strong>an</strong>d<br />

others 1994). A probability <strong>of</strong> p< 0.05 was accepted as statistically signific<strong>an</strong>t.<br />

2. 3. Results:<br />

2. 3. 1. Response rate:<br />

Of the 1500 <strong>dairy</strong> <strong>cattle</strong> farmers, 961 returned questionnaires, giv<strong>in</strong>g <strong>an</strong> overall<br />

response rate <strong>of</strong> 64.1%. 67 <strong>of</strong> the 961 questionnaires were returned un<strong>an</strong>swered because the<br />

farmers no longer kept <strong>dairy</strong> <strong>cattle</strong> (36 farms) or were unwill<strong>in</strong>g to take part <strong>in</strong> the <strong>study</strong>.<br />

These were removed from the <strong>study</strong> leav<strong>in</strong>g 61.1% usable questionnaires (894/1464).<br />

2. 3. 2. The prevalence <strong>of</strong> <strong>listeriosis</strong> at farm level:<br />

Respondents who did not know whether they had cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>an</strong>y <strong>of</strong> the<br />

groups <strong>of</strong> <strong>dairy</strong> <strong>cattle</strong> were removed from <strong>an</strong>alysis. 12.3% (93/759) reported cl<strong>in</strong>ical<br />

<strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> on their farms between July 1994 <strong>an</strong>d June 1995 . Cases were<br />

diagnosed by a veter<strong>in</strong>ary surgeon or V.I.C. on 83.9% (78/93) <strong>of</strong> the affected farms. When<br />

the overall proportion <strong>of</strong> farms affected was estimated us<strong>in</strong>g only cases diagnosed by a<br />

veter<strong>in</strong>ari<strong>an</strong> or V.I.C., the proportion was 10.3%. This was not statistically different from<br />

that <strong>of</strong> 12.3% (P=0.2).<br />

50


The proportions <strong>of</strong> farms with cases <strong>in</strong> milk<strong>in</strong>g cows, replacement heifers <strong>an</strong>d <strong>dairy</strong><br />

calves were 9.3% (71/761), 5% (39/780) <strong>an</strong>d 1.4% (11/781) respectively. The proportion <strong>of</strong><br />

farmers report<strong>in</strong>g <strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows was signific<strong>an</strong>tly higher th<strong>an</strong> those <strong>in</strong><br />

replacement heifers <strong>an</strong>d <strong>dairy</strong> calves (P


<strong>in</strong>cidence rate was 4/1000 <strong>an</strong>imal-years (423/104 720) <strong>in</strong> all herds <strong>an</strong>d 51.4/1000 <strong>an</strong>imal-<br />

years (423/6 017) <strong>in</strong> affected herds.<br />

The <strong>in</strong>cidence rate was estimated for each group. It was 39.7/1000cow-years<br />

(239/6017) <strong>in</strong> affected herds <strong>an</strong>d 4.2/1000cow-years (239/56 849) <strong>in</strong> all herds for milk<strong>in</strong>g<br />

cows. For replacement heifers, it was 86.6/1000heifer-years (142/1639) <strong>in</strong> affected herds<br />

<strong>an</strong>d 7.4/1000heifer-years (142/19174) overall. The <strong>in</strong>cidence rate <strong>in</strong> <strong>dairy</strong> calves was<br />

73.7/1000calf-years (42/570) <strong>in</strong> affected herds <strong>an</strong>d 1.5/1000calf-years (42/28697) <strong>in</strong> all<br />

herds. The <strong>in</strong>cidence rate <strong>in</strong> replacement heifers was signific<strong>an</strong>tly higher th<strong>an</strong> <strong>in</strong> milk<strong>in</strong>g<br />

cows <strong>an</strong>d <strong>dairy</strong> calves (P


Table 2. 3. The proportion <strong>of</strong> <strong>an</strong>imals affected with <strong>listeriosis</strong> accord<strong>in</strong>g to the cl<strong>in</strong>ical<br />

signs (<strong>an</strong>imal-year/1000)<br />

<strong>in</strong>cidence rate β<br />

silage eye nervous signs<br />

affected all affected all<br />

overall 66.5 (355/5,337) 3.4 (355/104,720) 9.9 (20/2,011) 0.2 (20/104,720)<br />

milk<strong>in</strong>g cows 45.6 (194/4,259) 4.2 (194/56,849) 7.7 (14/1,809) 0.25 (14/56,849)<br />

replacement<br />

heifers<br />

148.4 (127/856) 6.6 (127/19,174) 29.7 (6/202) 0.3 (6/19,174)<br />

<strong>dairy</strong> calves 153.2 (34/222) 1.2 (34/28,697) 0 0<br />

β signific<strong>an</strong>t difference between the groups <strong>of</strong> <strong>an</strong>imals <strong>an</strong>d also between the affected <strong>an</strong>d all herds (P


percentage<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Monthly distribution <strong>of</strong> cases <strong>of</strong> Listeriosis<br />

n=403<br />

J F M A M J J A S O N D<br />

MONTH<br />

Figure 2. 2. Monthly distribution <strong>of</strong> cases show<strong>in</strong>g silage eye<br />

percentage<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

silage eye<br />

n=316<br />

J F M A M J J A S O N D<br />

MONTH<br />

Figure 2. 3. Monthly distribution <strong>of</strong> cases show<strong>in</strong>g nervous signs.<br />

54


percentage<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Nervous signs<br />

n=20<br />

J F M A M J J A S O N D<br />

MONTH<br />

2. 3. 5. The prevalence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> other <strong>an</strong>imals:<br />

Farmers were asked whether they had <strong>an</strong>y cl<strong>in</strong>ical cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>an</strong>y other<br />

<strong>an</strong>imals kept on their farms; 1.7% (14/810) reported cases <strong>in</strong> beef <strong>cattle</strong> <strong>an</strong>d 4.3% (35/822)<br />

<strong>in</strong> sheep.<br />

2. 3. 6. Cl<strong>in</strong>ical signs associated with reported cases <strong>of</strong> <strong>listeriosis</strong>:<br />

Farmers report<strong>in</strong>g cl<strong>in</strong>ical cases between July 1994 <strong>an</strong>d June 1995 were asked to<br />

specify the cl<strong>in</strong>ical signs seen <strong>in</strong> the cases on their farm. No cl<strong>in</strong>ical signs were reported for<br />

4.3% (18/423) <strong>of</strong> the cases. The frequency <strong>of</strong> cl<strong>in</strong>ical signs reported by farmers is given <strong>in</strong><br />

the Table 2. 4. The most frequently reported cl<strong>in</strong>ical sign was silage eye (83.7%), followed<br />

by nervous signs (4.9%) <strong>an</strong>d abortion (2.5%). In 7.2% (29/403) <strong>of</strong> the cases both nervous<br />

signs <strong>an</strong>d silage eye were reported. A similar distribution was obta<strong>in</strong>ed when the diagnosis<br />

55


was made by a veter<strong>in</strong>ari<strong>an</strong> or V.I.C. The frequency <strong>of</strong> cl<strong>in</strong>ical signs seen <strong>in</strong> milk<strong>in</strong>g cows,<br />

replacement heifers <strong>an</strong>d <strong>dairy</strong> calves is also given <strong>in</strong> Table 2. 5.<br />

Table 2. 4. Frequency <strong>of</strong> cl<strong>in</strong>ical signs <strong>in</strong> cases reported between June 1994 <strong>an</strong>d June<br />

1995<br />

all diagnosis diagnosed by vet. Or VIC<br />

Cl<strong>in</strong>ical signs n=405 (%) n=222 (%)<br />

silage eye 339 (83.7) 177 (79.7)<br />

silage eye <strong>an</strong>d nervous signs 29 (7.2) 12 (5.4)<br />

nervous signs 20 (4.9) 20 (9)<br />

abortion 10 (2.5) 9 (4.1)<br />

mastitis 4 (1) 1 (0.5)<br />

Sudden death 1 (0.2) 1 (0.5)<br />

Diarrhoea 1 (0.2) 1 (0.5)<br />

silage eye <strong>an</strong>d sudden death 1 (0.2) 1 (0.5)<br />

n number <strong>of</strong> cases<br />

When re-estimated for the three age groups <strong>of</strong> <strong>dairy</strong> <strong>cattle</strong> the distribution <strong>of</strong> silage<br />

eye was similar <strong>in</strong> all groups but no cases <strong>of</strong> Listeriosis show<strong>in</strong>g nervous signs were<br />

reported <strong>in</strong> <strong>dairy</strong> calves (Table 2. 5).<br />

Table 2. 5. The frequency <strong>of</strong> cl<strong>in</strong>ical signs for the cases reported <strong>in</strong> three groups <strong>of</strong><br />

<strong>dairy</strong> <strong>cattle</strong> between July 1994 <strong>an</strong>d June 1995<br />

56


Milk<strong>in</strong>g cows (%) Rep. heifers (%) Dairy calves (%)<br />

Cl<strong>in</strong>ical signs n α =238 n ß =146 n α =127 n ß =65 n α =40 n ß =11<br />

silage eye 194 (81.5) 117 (80.1) 111 (87.4) 52 (80) 34 (85) 8 (72.7)<br />

s. eye <strong>an</strong>d n. signs 14 (5.9) 3 (2.1) 9 (7.1) 6 (9.2) 6 (15) 3 (27.3)<br />

nervous signs 14 (5.9) 14 (9.6) 6 (4.7) 6 (9.2) 0 0<br />

abortion 10 (4.2) 9 (6.2) 0 0 0 0<br />

mastitis 4 (1.7) 1 (0.7) 0 0 0 0<br />

Sudden death 1 (0.4) 1 (07) 0 0 0 0<br />

Diarrhoea 1 (0.4) 1 (0.7) 0 0 0 0<br />

s. eye <strong>an</strong>d s. death 0 0 1 (0.8) 1 (1.6) 0 0<br />

α diagnosed by all three given alternatives, self, veter<strong>in</strong>ari<strong>an</strong>, VIC, ß diagnosed by veter<strong>in</strong>ari<strong>an</strong> or VIC, n<br />

number <strong>of</strong> cases<br />

2. 3. 7 Treatment :<br />

91.7% (388/423) <strong>of</strong> the cases reported between 1994 <strong>an</strong>d 1995 were treated. 95.6%<br />

(371/388) <strong>of</strong> treated cases recovered, 2.3% (9/388) died <strong>an</strong>d 2.1% (8/388) were culled.<br />

3.6% (15/423) were untreated <strong>an</strong>d for the rema<strong>in</strong><strong>in</strong>g 4.7% (20/423) treatment was not<br />

reported. When cases were grouped accord<strong>in</strong>g to these present<strong>in</strong>g cl<strong>in</strong>ical signs recovery<br />

from silage eye was high (99%) while only 68.4% <strong>of</strong> the cases with nervous signs were<br />

reported to recover. This difference was statistically signific<strong>an</strong>t (P


all cases* 403 384 371 (96.6%) 9 (2.3%) 8 (2.1%)<br />

silage eye 339 331 328 (99%) 3 (1%) 0<br />

s. eye <strong>an</strong>d n. signs 29 29 26 (89.7%) 1 (3.4%) 2 (6.9%)<br />

nervous signs 20 19 13 (68.4%) 4 (21.1%) 2 (10.5)<br />

abortion 10 4 4 (100%) 0 0<br />

mastitis 4 0 0 0 4 (100%)<br />

s. eye <strong>an</strong>d s. death 1 1 0 1 0<br />

n number <strong>of</strong> the cases * exclud<strong>in</strong>g those whose cl<strong>in</strong>ical signs were not reported<br />

2. 3. 8. Validation <strong>of</strong> the questionnaire:<br />

The frequency <strong>of</strong> <strong>in</strong>dividual signs selected by farmers is given <strong>in</strong> the Table 2. 7.<br />

Abortion (57.8%), nervous sign (56.8%), silage eye (49.4%) <strong>an</strong>d diarrhoea (24.1%) were<br />

reported most frequently. Of 894 respondents, 41% (366/894) did not <strong>an</strong>swer this question,<br />

6% (54/894) <strong>an</strong>swered “don`t know” <strong>an</strong>d 53% (474/894) identified one or more cl<strong>in</strong>ical<br />

signs <strong>of</strong> <strong>listeriosis</strong>. When the diagnosis made by veter<strong>in</strong>ari<strong>an</strong> or V.I.C. was taken as the<br />

gold st<strong>an</strong>dard, the sensitivity <strong>of</strong> farmers report<strong>in</strong>g <strong>in</strong>dividual symptoms was 67.2% for<br />

silage eye, 49.2% for nervous signs <strong>an</strong>d 21.9% for abortion The sensitivity was high when<br />

more th<strong>an</strong> one cl<strong>in</strong>ical signs was reported. It was 96.1% (123/128) for farmers report<strong>in</strong>g a<br />

comb<strong>in</strong>ation <strong>of</strong> nervous signs, silage eye or abortion <strong>an</strong>d 87.5% (112/128) for farmers<br />

report<strong>in</strong>g nervous signs or silage eye. (Table 2.7).<br />

Table 2. 7. The frequency <strong>of</strong> cl<strong>in</strong>ical signs chosen by farmers <strong>an</strong>d sensitivity <strong>of</strong> farmers<br />

report<strong>in</strong>g correct cl<strong>in</strong>ical signs.<br />

Frequency <strong>of</strong> cl<strong>in</strong>ical<br />

Cl<strong>in</strong>ical signs<br />

signs n α sensitivity <strong>of</strong> farmers<br />

=474 (%) report<strong>in</strong>g n β =128 (%)<br />

58


Abortion 274 (57.8%) 28 (21.9%)<br />

Nervous signs 269 (56.8%) 63 (49.2%)<br />

Silage eye 234 (49.4%) 86 (67.2%)<br />

Diarrhoea 114 (24.1%) 8 (6.3%)<br />

Sudden death 87 (18.4%) 12 (9.4%)<br />

Mastitis 38 (8%) 4 (3.1%)<br />

Lameness 26 (5.5%) 0<br />

Pneumonia 21 (4.4%) 2 (1.6%)<br />

N. sign + s. eye + abortion 435 (91.7%) 123 (96.1)<br />

Nervous sign + silage eye 356 (75.1%) 112 (87.5)<br />

α diagnosed by all three given alternatives, β diagnosed only by veter<strong>in</strong>ari<strong>an</strong> or V.I.C.<br />

Dur<strong>in</strong>g the period between July 1994 <strong>an</strong>d June 1995, 99 cows which developed<br />

nervous signs <strong>an</strong>d were reported to the state veter<strong>in</strong>ary agency under the BSE notification<br />

scheme turned out to be cases <strong>of</strong> <strong>listeriosis</strong> on histopathological exam<strong>in</strong>ation. This<br />

represents 4.1/100 000 cases/<strong>cattle</strong> <strong>in</strong> the United K<strong>in</strong>gdom (except Northern Irel<strong>an</strong>d) (J.<br />

Wilesmith personal communication). For the same period <strong>in</strong> our survey the number <strong>of</strong> cases<br />

<strong>of</strong> Listerisosis reported as culled or dy<strong>in</strong>g <strong>of</strong> encephalitis were 5 <strong>an</strong>d the number <strong>of</strong> total<br />

<strong>dairy</strong> <strong>cattle</strong> population reported between July 1994 <strong>an</strong>d June 1995 was 119,123, giv<strong>in</strong>g a<br />

proportion <strong>of</strong> 4.2/100 000 cases/<strong>cattle</strong>. This is similar to the proportion estimated from the<br />

statutory report<strong>in</strong>g <strong>of</strong> <strong>cattle</strong> with nervous signs.<br />

2. 3. 9. Herd size:<br />

59


The reported number <strong>of</strong> milk<strong>in</strong>g cows r<strong>an</strong>ged from 8 to 390 <strong>in</strong> unaffected herds <strong>an</strong>d<br />

23 to 242 <strong>in</strong> affected herds. The medi<strong>an</strong> number <strong>of</strong> cows <strong>in</strong> affected herds was signific<strong>an</strong>tly<br />

greater th<strong>an</strong> that <strong>in</strong> unaffected herds (P


with others (K<strong>an</strong>uk <strong>an</strong>d Berenson 1975, Vaill<strong>an</strong>court <strong>an</strong>d others 1991). Farmer<br />

questionnaires are particularly useful when the disease is easily visible or has dist<strong>in</strong>ct<br />

cl<strong>in</strong>ical signs. In previous studies we have taken adv<strong>an</strong>tages <strong>of</strong> this to estimate the<br />

prevalence <strong>of</strong> blowfly strike (French <strong>an</strong>d others 1992) <strong>an</strong>d Johne`s disease (Cet<strong>in</strong>kaya <strong>an</strong>d<br />

others 1996). Listeriosis differs from these diseases by m<strong>an</strong>ifest<strong>in</strong>g itself by three different,<br />

rarely overlapp<strong>in</strong>g, syndromes; encephalitis, septicaemia <strong>an</strong>d abortion. In spite <strong>of</strong> this we<br />

considered that three aspects <strong>of</strong> <strong>listeriosis</strong> would make it suitable for a farmer based<br />

questionnaire; its sporadic occurrence, the likelihood that a veter<strong>in</strong>ari<strong>an</strong> would be <strong>in</strong>volved<br />

<strong>in</strong> diagnosis <strong>an</strong>d its dist<strong>in</strong>ctive name (reviewed by Radostits <strong>an</strong>d others 1994).<br />

A key component <strong>in</strong> the use <strong>of</strong> questionnaires as measur<strong>in</strong>g <strong>in</strong>struments is the<br />

repeatability <strong>an</strong>d validity <strong>of</strong> these measures.<br />

In this <strong>study</strong> we have no measure <strong>of</strong> repeatability but we attempted to validate the<br />

questionnaire <strong>in</strong> three ways; by ask<strong>in</strong>g for the method <strong>of</strong> diagnosis <strong>an</strong>d stratify<strong>in</strong>g the<br />

results to <strong>in</strong>clude only those cases diagnosed by a veter<strong>in</strong>ari<strong>an</strong> or V.I.C.; by ask<strong>in</strong>g farmers<br />

to identify the cl<strong>in</strong>ical signs <strong>of</strong> <strong>listeriosis</strong> from a list which <strong>in</strong>cluded signs which were not<br />

typical <strong>of</strong> <strong>listeriosis</strong> <strong>an</strong>d by compar<strong>in</strong>g the proportion <strong>of</strong> culled nervous cases <strong>of</strong> <strong>listeriosis</strong><br />

<strong>in</strong> our <strong>study</strong> with the proportion <strong>of</strong> nervous <strong>listeriosis</strong> diagnosed at necropsy dur<strong>in</strong>g<br />

statutory BSE report<strong>in</strong>g where cows show<strong>in</strong>g <strong>an</strong>y nervous disorder had to be culled dur<strong>in</strong>g<br />

the same period as our <strong>study</strong> covered. The majority <strong>of</strong> the cases were diagnosed by a<br />

veter<strong>in</strong>ari<strong>an</strong> or V.I.C.. On 83.9% <strong>of</strong> farms report<strong>in</strong>g cases between July 1994 <strong>an</strong>d June 1995<br />

diagnoses were made by veter<strong>in</strong>ari<strong>an</strong> or V.I.C.. When these data were used to calculate the<br />

farm prevalence, the results were with<strong>in</strong> the confidence limits <strong>of</strong> the overall estimates <strong>an</strong>d<br />

did not statistically differ from them. When we asked farmers to identify cl<strong>in</strong>ical signs <strong>of</strong><br />

<strong>listeriosis</strong> the sensitivity <strong>of</strong> farmers report<strong>in</strong>g a s<strong>in</strong>gle correct cl<strong>in</strong>ical sign was low ( r<strong>an</strong>ge<br />

61


from 3.1% to 67.2%) but it was high when three correct signs were exam<strong>in</strong>ed (96.1%). This<br />

may <strong>in</strong>dicate that the farmers were poor at self diagnosis or alternatively they were only<br />

report<strong>in</strong>g the cl<strong>in</strong>ical signs seen <strong>in</strong> cases on their farm. On the majority <strong>of</strong> farms only one<br />

type <strong>of</strong> cl<strong>in</strong>ical sign was seen. However, <strong>in</strong> view <strong>of</strong> the fact that there was no signific<strong>an</strong>t<br />

difference between the overall proportion <strong>an</strong>d those estimates based on veter<strong>in</strong>ari<strong>an</strong> <strong>an</strong>d<br />

veter<strong>in</strong>ary <strong>in</strong>vestigation centre diagnoses we do not consider that the farmers’ misdiagnoses<br />

<strong>in</strong>troduced bias <strong>in</strong>to the results. The failure <strong>of</strong> farmers to recognise cl<strong>in</strong>ical signs other th<strong>an</strong><br />

nervous disease <strong>an</strong>d to call a veter<strong>in</strong>ari<strong>an</strong> may have resulted <strong>in</strong> <strong>an</strong> underestimation <strong>of</strong> true<br />

prevalence. As a further validation measure the proportion <strong>of</strong> <strong>cattle</strong> with nervous signs<br />

culled or died <strong>in</strong> this survey was compared with confirmed Listeria cases submitted to CVL<br />

as suspect BSE cases. Those proportions were remarkably similar. The close similarity <strong>of</strong><br />

the results adds credence to the results <strong>of</strong> this survey.<br />

The <strong>in</strong>fluence <strong>of</strong> non-respondents was not measured but <strong>an</strong> effort was made to<br />

maximise the response rate by send<strong>in</strong>g a number <strong>of</strong> rem<strong>in</strong>ders to the farmers. The 64.1%<br />

response rate was good for the size <strong>of</strong> samples used <strong>in</strong> this <strong>study</strong> (Vailloncourt <strong>an</strong>d others<br />

1991). However, when compared with the two recent surveys conducted by our group <strong>in</strong><br />

which response rates were 74.2% <strong>an</strong>d 78.3% (French <strong>an</strong>d others 1992, Cet<strong>in</strong>kaya <strong>an</strong>d others<br />

1996) the response rate was lower. The difference <strong>in</strong> the length, format <strong>an</strong>d content <strong>of</strong> the<br />

questionnaire might have contributed to this lower response rate (del Garso <strong>an</strong>d Wallop<br />

1975). Our questionnaire consisted <strong>of</strong> 8 pages <strong>an</strong>d 50 questions, where as Cet<strong>in</strong>kaya <strong>an</strong>d<br />

others (1996) used 39 questions on 5 pages <strong>an</strong>d French <strong>an</strong>d others (1992) used 15 questions<br />

on 2 pages.<br />

At farm level, Listeriosis <strong>in</strong> milk<strong>in</strong>g cows was reported more frequently th<strong>an</strong> <strong>in</strong><br />

other groups <strong>of</strong> <strong>an</strong>imals. However with<strong>in</strong> the affected herds the highest <strong>in</strong>cidence <strong>of</strong> disease<br />

62


occurred <strong>in</strong> replacement heifers <strong>an</strong>d <strong>dairy</strong> calves. These results suggest that the younger<br />

<strong>an</strong>imals were at greater risk. This is also <strong>in</strong> agreement with reports <strong>of</strong> ov<strong>in</strong>e <strong>listeriosis</strong><br />

(Gudd<strong>in</strong>g <strong>an</strong>d others 1989, Nash <strong>an</strong>d others 1995) <strong>an</strong>d has also been reported for hum<strong>an</strong><br />

<strong>listeriosis</strong> (Lober 1990).<br />

Silage eye was the most frequent cl<strong>in</strong>ical sign reported <strong>in</strong> this <strong>study</strong>, this<br />

corresponds to <strong>an</strong> <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> field reports <strong>of</strong> iritis <strong>an</strong>d/or keratoconjunctivitis<br />

(silage eye) <strong>in</strong> recent years. Although this is attributed to silage feed<strong>in</strong>g contam<strong>in</strong>ated with<br />

Listeria monocytogenes (Walker <strong>an</strong>d Morg<strong>an</strong> 1993, Sargison 1994) there has been no<br />

<strong>epidemiological</strong> <strong>in</strong>vestigation <strong>of</strong> this problem. In naturally occurr<strong>in</strong>g cases <strong>of</strong> <strong>listeriosis</strong> <strong>an</strong><br />

overlap <strong>of</strong> different forms <strong>of</strong> cl<strong>in</strong>ical signs is rare (Gitter 1989) <strong>an</strong>d <strong>in</strong> this <strong>study</strong> only a<br />

small number <strong>of</strong> such cases were reported.<br />

The seasonal occurrence <strong>of</strong> <strong>listeriosis</strong> has long been known (Gray <strong>an</strong>d Kill<strong>in</strong>ger<br />

1966), most <strong>of</strong> cases occurr<strong>in</strong>g between J<strong>an</strong>uary <strong>an</strong>d May (Low <strong>an</strong>d L<strong>in</strong>klater 1985). In this<br />

survey the occurrence <strong>of</strong> <strong>listeriosis</strong> was also seasonal. Most <strong>of</strong> the cases were reported <strong>in</strong><br />

W<strong>in</strong>ter <strong>an</strong>d Spr<strong>in</strong>g mostly between J<strong>an</strong>uary <strong>an</strong>d May. This co<strong>in</strong>cides with two key ch<strong>an</strong>ges<br />

<strong>in</strong> m<strong>an</strong>agement; silage feed<strong>in</strong>g <strong>an</strong>d w<strong>in</strong>ter hous<strong>in</strong>g (Low <strong>an</strong>d L<strong>in</strong>klater 1985). Silage<br />

feed<strong>in</strong>g has been identified as <strong>an</strong> import<strong>an</strong>t risk factor for <strong>listeriosis</strong> but hous<strong>in</strong>g also occurs<br />

at a time when the environment may be heavily contam<strong>in</strong>ated with Listeria monocytogenes<br />

(V<strong>an</strong>degraaff <strong>an</strong>d others 1981).<br />

In this <strong>study</strong> the rate <strong>of</strong> recovery after treatment varied with the cl<strong>in</strong>ical presentation<br />

<strong>of</strong> disease. It was 99% for silage eye <strong>an</strong>d 68.4% for nervous signs. It is suggested that if<br />

treatment is started at <strong>an</strong> early stage <strong>of</strong> the cl<strong>in</strong>ical disease a high ch<strong>an</strong>ce <strong>of</strong> recovery is<br />

possible (reviewed by Radostitis <strong>an</strong>d others 1994). This may have been the case <strong>in</strong> this<br />

<strong>study</strong> or success may have been attributed to the fact that cl<strong>in</strong>ical signs were ma<strong>in</strong>ly non-<br />

63


nervous <strong>an</strong>d therefore easier to treat. A similar statement was made for non-nervous cl<strong>in</strong>ical<br />

signs by Low <strong>an</strong>d L<strong>in</strong>klater (1985).<br />

This is the first <strong>study</strong> <strong>of</strong> the frequency <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong><br />

Engl<strong>an</strong>d. Although L. monocytogenes is widespread <strong>in</strong> the environment <strong>an</strong>d <strong>an</strong>imals are<br />

exposed to it only 12.3% <strong>of</strong> farms had cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> their <strong>an</strong>imals. This may be due<br />

to differences <strong>in</strong> farm practices. This relationship between the prevalence, <strong>in</strong>cidence <strong>of</strong><br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>an</strong>d farm related factors is dealt with <strong>in</strong> the next two chapters.<br />

64


CHAPTER 3<br />

The relationship between farm m<strong>an</strong>agement practices <strong>an</strong>d<br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d: univariate<br />

3. 1. Introduction:<br />

<strong>an</strong>alysis<br />

Infectious disease is the result <strong>of</strong> a complex set <strong>of</strong> <strong>in</strong>teractions between the<br />

<strong>in</strong>fectious agent, host <strong>an</strong>d environment. The <strong>in</strong>fectious agent is <strong>an</strong> essential component<br />

<strong>of</strong> disease but it may not be sufficient to trigger disease on its own. Other factors are<br />

also needed for disease to develop. Listeriosis is a good example <strong>of</strong> this disease process.<br />

Listeria org<strong>an</strong>isms (ma<strong>in</strong>ly L. monocytogenes) are necessary causative agents <strong>of</strong><br />

disease but the isolation <strong>of</strong> L. monocytogenes from the bra<strong>in</strong> (Gronstol 1980b) <strong>an</strong>d<br />

faeces (Husu 1990) <strong>of</strong> healthy <strong>in</strong>dividuals suggests that other factors are also <strong>in</strong>volved.<br />

Some other risk factors have been identified both <strong>in</strong> epidemic <strong>an</strong>d sporadic cases <strong>of</strong><br />

hum<strong>an</strong> <strong>listeriosis</strong>; various physiological states <strong>of</strong> host such as extremes <strong>of</strong> age <strong>an</strong>d<br />

pregn<strong>an</strong>cy (Ciesielski <strong>an</strong>d others, 1988), underly<strong>in</strong>g conditions such as c<strong>an</strong>cer (Niemen<br />

<strong>an</strong>d Lorber 1980), immunosuppression, such as HIV <strong>in</strong>fection (Jurado <strong>an</strong>d others 1993),<br />

org<strong>an</strong> tr<strong>an</strong>spl<strong>an</strong>tation (Lorber 1990) <strong>an</strong>d concurrent <strong>in</strong>fections (Rocourt 1996). However<br />

less is known about the risk factors associated with <strong>listeriosis</strong> <strong>in</strong> <strong>an</strong>imals. The<br />

association between silage feed<strong>in</strong>g <strong>an</strong>d the occurrence <strong>of</strong> Listeriosis is well documented<br />

(Gray 1960a, Wilesmith <strong>an</strong>d Gitter 1986, Fenlon 1988, Sargison 1993) but the exact<br />

65


m<strong>an</strong>ner <strong>in</strong> which silage plays a role is little known. Improper silage mak<strong>in</strong>g practices<br />

have been suggested as <strong>an</strong> expl<strong>an</strong>ation for this association (Wilesmith <strong>an</strong>d Gitter 1986)<br />

but more work is required to ascerta<strong>in</strong> the role <strong>of</strong> silage. Stress <strong>of</strong> hous<strong>in</strong>g, pregn<strong>an</strong>cy<br />

<strong>an</strong>d weather have been considered as predispos<strong>in</strong>g factors (Hyslop 1975). Poor flock<br />

m<strong>an</strong>agement has also been associated with disease (Meredith <strong>an</strong>d Schneider 1984).<br />

However no data is available to qu<strong>an</strong>tify these factors.<br />

A postal questionnaire survey was designed to determ<strong>in</strong>e the frequency <strong>of</strong><br />

cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>an</strong>d the relationship between farm m<strong>an</strong>agement factors <strong>an</strong>d<br />

occurrence <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>. The latter is described <strong>in</strong> this chapter.<br />

3. 2. Materials <strong>an</strong>d Methods:<br />

3. 2. 1. Study design:<br />

Chapter 2.<br />

Information about the questionnaire design <strong>an</strong>d conduct <strong>of</strong> <strong>study</strong> is given <strong>in</strong> the<br />

In <strong>study</strong><strong>in</strong>g the relationship between the occurrence <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>an</strong>d<br />

farm related m<strong>an</strong>agement factors, only those cases reported between July 1994 <strong>an</strong>d June<br />

1995 were considered. 5 outcome variables <strong>an</strong>d 5 groups <strong>of</strong> predictor variables were<br />

used.<br />

3. 2. 2. Outcome variables:<br />

(i) Total number <strong>of</strong> cases (Overall cases): Farms that reported cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong><br />

<strong>cattle</strong> <strong>of</strong> <strong>an</strong>y age.<br />

66


(ii) Cases <strong>in</strong> milk<strong>in</strong>g cows: Farms report<strong>in</strong>g at least one case <strong>of</strong> Listeriosis <strong>in</strong> milk<strong>in</strong>g<br />

cows.<br />

(iii) Cases <strong>in</strong> w<strong>in</strong>ter months: This <strong>in</strong>cludes only those farmers report<strong>in</strong>g cases <strong>of</strong><br />

Listeriosis <strong>in</strong> w<strong>in</strong>ter months.<br />

(iv) Cases <strong>of</strong> silage eye (iritis): Farms report<strong>in</strong>g silage eye as a cl<strong>in</strong>ical sign.<br />

(v) Cases <strong>of</strong> nervous signs: Farms which reported cases <strong>of</strong> <strong>listeriosis</strong> show<strong>in</strong>g nervous<br />

signs.<br />

3. 2. 3. Predictor variables:<br />

The five groups <strong>of</strong> predictor variables were herd size, feed<strong>in</strong>g practices, forage<br />

mak<strong>in</strong>g, hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement. These <strong>in</strong>cluded b<strong>in</strong>ary, categorical <strong>an</strong>d<br />

cont<strong>in</strong>uous variables. Each group <strong>of</strong> predictor variables had subsets <strong>of</strong> variables that are<br />

dealt with under the related head<strong>in</strong>gs. When cont<strong>in</strong>uous variables were categorised the<br />

cut <strong>of</strong>f po<strong>in</strong>ts for each categories were set accord<strong>in</strong>g to known biological <strong>in</strong>fluences e.<br />

g. pH, number <strong>of</strong> cuts <strong>an</strong>d wilt<strong>in</strong>g.<br />

(i) Herd size:<br />

The herd size reported <strong>in</strong> July 1994 <strong>an</strong>d June 1995 was used as a categorical<br />

variable with 3 herd sizes:-the number <strong>of</strong> <strong>an</strong>imals on each farm less th<strong>an</strong> or 50, 51-100,<br />

<strong>an</strong>d greater th<strong>an</strong> 100 <strong>an</strong>imals.<br />

(ii) Feed<strong>in</strong>g practices:<br />

67


a) Type <strong>of</strong> forages fed to <strong>an</strong>imals: Farmers were asked to state whether they fed <strong>an</strong>y <strong>of</strong><br />

the follow<strong>in</strong>g forages; grass silage, maize silage, hay, feed straw <strong>an</strong>d root crops. These<br />

variables were treated as b<strong>in</strong>ary variables except for straw <strong>an</strong>d root crops which were<br />

first treated as b<strong>in</strong>ary then categorised accord<strong>in</strong>g to type (barley, wheat, potatoes, sugar<br />

beet etc.).<br />

b) Source <strong>of</strong> forages: The farmers were asked about the source <strong>of</strong> their forages. Three<br />

options were provided; home-made, purchased <strong>an</strong>d other sources. These were treated as<br />

b<strong>in</strong>ary variables.<br />

c) Month <strong>of</strong> feed<strong>in</strong>g forages: To assess the relationship between the duration <strong>of</strong> feed<strong>in</strong>g<br />

<strong>an</strong>d Listeriosis farmers were asked to state the month <strong>in</strong> which forage feed<strong>in</strong>g started<br />

<strong>an</strong>d stopped. The duration <strong>of</strong> feed<strong>in</strong>g forages was used as categorical variable with 4<br />

levels: - less th<strong>an</strong> 6 months, 6 months, more th<strong>an</strong> 6 months <strong>an</strong>d all year around.<br />

d) Methods <strong>of</strong> feed<strong>in</strong>g forages: These were divided <strong>in</strong>to those used dur<strong>in</strong>g the outdoor<br />

period <strong>an</strong>d <strong>in</strong>door period. A list <strong>of</strong> feed<strong>in</strong>g methods was given on the questionnaire.<br />

This <strong>in</strong>cluded ad libitum, on the ground, at the clamp face, <strong>in</strong> hay racks, <strong>of</strong>f the field, <strong>in</strong><br />

r<strong>in</strong>g feeders etc. (Appendix 1). These variables were treated as b<strong>in</strong>ary variables for each<br />

forage.<br />

iii) Mak<strong>in</strong>g forage crops:<br />

68


To assess the relationship between different harvest<strong>in</strong>g practises <strong>an</strong>d the<br />

occurrence <strong>of</strong> Listeriosis one section <strong>of</strong> the questionnaire was devoted to acquir<strong>in</strong>g<br />

<strong>in</strong>formation about harvest <strong>of</strong> forages such as month <strong>of</strong> harvest, type <strong>of</strong> harvester used<br />

etc.<br />

a) Month <strong>of</strong> mak<strong>in</strong>g forages: This variable was categorised <strong>in</strong>to 3 levels:- before <strong>an</strong>d<br />

dur<strong>in</strong>g May, <strong>in</strong> June <strong>an</strong>d dur<strong>in</strong>g <strong>an</strong>d after July.<br />

b) Type <strong>of</strong> harvesters or mowers used: Farmers were asked about the type <strong>of</strong> harvester<br />

used for forage. The options given were forage harvesters, discs <strong>an</strong>d drums, mower<br />

conditioner <strong>an</strong>d comb<strong>in</strong>e harvester. These variables were used as b<strong>in</strong>ary variables for<br />

each forage.<br />

c) Number <strong>of</strong> cuts made for grass silage <strong>an</strong>d hay: This was a categorical variable.<br />

Farmers reported mak<strong>in</strong>g up to 4 cuts for grass silage <strong>an</strong>d up to 3 cuts for hay.<br />

d) Duration <strong>of</strong> wilt<strong>in</strong>g or dry<strong>in</strong>g forages: The length <strong>of</strong> wilt<strong>in</strong>g or dry<strong>in</strong>g <strong>of</strong> forages was<br />

assessed. This was first treated as a b<strong>in</strong>ary variable i.e. whether wilt<strong>in</strong>g or dry<strong>in</strong>g took<br />

place or not <strong>an</strong>d then categorised accord<strong>in</strong>g to number <strong>of</strong> days <strong>of</strong> wilt<strong>in</strong>g or dry<strong>in</strong>g (0, 1,<br />

2, <strong>an</strong>d 3 <strong>an</strong>d more days).<br />

d) Type <strong>of</strong> additives used <strong>in</strong> the preparation <strong>of</strong> forages: Farmers were asked about the<br />

type <strong>of</strong> additives used <strong>in</strong> preserv<strong>in</strong>g their forages. This variable was first treated as a<br />

b<strong>in</strong>ary variable (i.e. whether or not additives were used) <strong>an</strong>d then categorised accord<strong>in</strong>g<br />

to composition <strong>of</strong> additives. For this 5 categories were used:- enzyme, <strong>in</strong>ocul<strong>an</strong>t, salt<br />

<strong>an</strong>d acid, enzyme <strong>an</strong>d <strong>in</strong>ocul<strong>an</strong>t <strong>an</strong>d a comb<strong>in</strong>ation <strong>of</strong> all 4.<br />

69


e) Storage <strong>of</strong> forages: Information about the method <strong>of</strong> stor<strong>in</strong>g forage crops was<br />

gathered. These are listed <strong>in</strong> the questionnaire (Appendix 1). Where appropriate the type<br />

<strong>of</strong> floor used <strong>in</strong> the storage area was also <strong>in</strong>vestigated. These were used as b<strong>in</strong>ary<br />

variables.<br />

f) Use <strong>of</strong> clamp: Farmers were also asked if they used separate clamps for each cut <strong>of</strong><br />

grass <strong>an</strong>d whether they sealed the clamp between each cut. These were treated as b<strong>in</strong>ary<br />

variables.<br />

g) Analysis <strong>of</strong> forage crops: Farmers were asked if they had their forages <strong>an</strong>alysed, if<br />

so, they were also asked to provide pH, Dry Matter (DM), Ash <strong>an</strong>d Metabolisable<br />

Energy (ME). This was first treated as a b<strong>in</strong>ary variable <strong>an</strong>d then categorised as shown<br />

<strong>in</strong> the Table 3. 1.<br />

Table 3. 1. Categorisation <strong>of</strong> forage <strong>an</strong>alysis<br />

Categories pH DM Ash ME<br />

1 11.6<br />

iv) Hous<strong>in</strong>g practices:<br />

The questionnaire had a section <strong>in</strong>vestigat<strong>in</strong>g hous<strong>in</strong>g practises. Farmers were<br />

first asked whether <strong>an</strong>imals were housed at <strong>an</strong>y time <strong>of</strong> the year <strong>an</strong>d then details <strong>of</strong><br />

hous<strong>in</strong>g <strong>an</strong>d bedd<strong>in</strong>g were gathered.<br />

a) Type <strong>of</strong> hous<strong>in</strong>g: Cubicles <strong>an</strong>d loose yard were the alternatives given, the farmers<br />

were also asked to specify <strong>an</strong>y other type <strong>of</strong> hous<strong>in</strong>g if these two were not <strong>in</strong> use. In<br />

<strong>an</strong>alys<strong>in</strong>g the data these were used as b<strong>in</strong>ary variables.<br />

70


) Duration <strong>of</strong> hous<strong>in</strong>g: If <strong>an</strong>imals were housed farmers were asked to specify the<br />

months between which <strong>an</strong>imals were kept <strong>in</strong>. This variable was categorised as less th<strong>an</strong><br />

6 months, 6 months, more th<strong>an</strong> 6 months or all year around.<br />

c) Type <strong>of</strong> floor: The farmers were asked to specify the type <strong>of</strong> floor <strong>of</strong> <strong>an</strong>y build<strong>in</strong>g,<br />

used to house <strong>cattle</strong>, from the follow<strong>in</strong>g list; earth, hard core, concrete, slatted <strong>an</strong>d<br />

others. These were used as b<strong>in</strong>ary variables.<br />

d) Use <strong>an</strong>d type <strong>of</strong> bedd<strong>in</strong>g: Farmers were asked if they used bedd<strong>in</strong>g <strong>an</strong>d this was used<br />

as a b<strong>in</strong>ary variable. They were also asked to select given options; sawdust, straw or<br />

specify other types <strong>of</strong> bedd<strong>in</strong>g material used on their farms. These were treated as<br />

b<strong>in</strong>ary variables. Frequency <strong>of</strong> weekly add<strong>in</strong>g <strong>an</strong>d remov<strong>in</strong>g fresh bedd<strong>in</strong>g to <strong>an</strong>d the<br />

frequency <strong>of</strong> cle<strong>an</strong><strong>in</strong>g out bedd<strong>in</strong>g from the house over the hous<strong>in</strong>g period was also<br />

used first as a b<strong>in</strong>ary variable <strong>an</strong>d then as a categorical variable.<br />

e) Straw bedd<strong>in</strong>g: If straw was used for bedd<strong>in</strong>g, the farmers were asked about the<br />

month <strong>of</strong> mak<strong>in</strong>g straw (categorical), duration <strong>of</strong> dry<strong>in</strong>g it (categorical), type (barley,<br />

wheat, etc.) (b<strong>in</strong>ary) <strong>an</strong>d whether it was big bale or others (b<strong>in</strong>ary).<br />

f) Storage <strong>of</strong> bedd<strong>in</strong>g materials: The method <strong>of</strong> stor<strong>in</strong>g bedd<strong>in</strong>g was <strong>in</strong>vestigated by<br />

ask<strong>in</strong>g farmers to identify the method(s) <strong>of</strong> storage from the follow<strong>in</strong>gs; stor<strong>in</strong>g <strong>in</strong> a<br />

covered barn, outside covered, outside uncovered <strong>an</strong>d others.<br />

71


g) Disposal <strong>of</strong> the dung: The farmers were asked about how the dirty bedd<strong>in</strong>g material<br />

was disposed. Three alternatives were given; solid m<strong>an</strong>ure, slurry <strong>an</strong>d others. These<br />

were b<strong>in</strong>ary variables.<br />

h) Stor<strong>in</strong>g dung: The farmers were asked if the dung was stored. If it was stored then<br />

they were asked to select one or more <strong>of</strong> the follow<strong>in</strong>g storage methods; beneath the<br />

slats, composted, <strong>in</strong> a slurry t<strong>an</strong>k, <strong>in</strong> a lagoon <strong>an</strong>d others (Appendix 1). These were used<br />

as b<strong>in</strong>ary variables.<br />

i) Spread<strong>in</strong>g dung on the pasture: Farmers were asked if they spread dung on pasture<br />

where <strong>an</strong>imals grazed or where hay <strong>an</strong>d silage were made. This was used as a b<strong>in</strong>ary<br />

variable.<br />

v) General m<strong>an</strong>agement practices:<br />

a) Cases <strong>of</strong> Listeriosis <strong>in</strong> other <strong>an</strong>imals: The presence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> other <strong>an</strong>imals was<br />

<strong>in</strong>vestigated by ask<strong>in</strong>g farmers whether they had cases <strong>in</strong> beef <strong>cattle</strong>, sheep, goats <strong>an</strong>d<br />

other. These were used as b<strong>in</strong>ary variables.<br />

b) Graz<strong>in</strong>g practices: The farmers were asked whether other <strong>an</strong>imals (beef <strong>cattle</strong>, sheep,<br />

goats <strong>an</strong>d other) grazed the same pasture as <strong>dairy</strong> <strong>cattle</strong>. These were treated as b<strong>in</strong>ary<br />

variables.<br />

c) Use <strong>of</strong> vacc<strong>in</strong>e: Farmers were asked if they vacc<strong>in</strong>ated their herds aga<strong>in</strong>st<br />

Salmonellosis, E. coli, Leptospirosis, Lungworm or other specified vacc<strong>in</strong>es. These<br />

were treated as b<strong>in</strong>ary variables.<br />

72


d) Presence <strong>of</strong> moles: Farmers were asked if they had seen mole hills <strong>in</strong> the fields where<br />

hay, grass silage <strong>an</strong>d straw were made. This was used as a b<strong>in</strong>ary variable.<br />

e) Control <strong>of</strong> moles: If the mole hills were present, farmers were asked if they<br />

controlled moles <strong>an</strong>d the methods <strong>of</strong> controll<strong>in</strong>g. These were used as b<strong>in</strong>ary variables<br />

<strong>an</strong>d categorical variables respectively .<br />

3. 2. 4. Data <strong>an</strong>alysis<br />

A Yates corrected chi-square test was used to determ<strong>in</strong>e differences between<br />

proportions. Odds ratios (OR) were calculated with 95% confidence limit (95%CL).<br />

Categorical data such as duration <strong>of</strong> wilt<strong>in</strong>g, frequency <strong>of</strong> add<strong>in</strong>g fresh bedd<strong>in</strong>g were<br />

first treated as b<strong>in</strong>ary variables (the affect <strong>of</strong> presence or absence on the outcome) <strong>an</strong>d<br />

then categorised <strong>an</strong>d <strong>an</strong>alysed us<strong>in</strong>g chi-square tests (2xk cont<strong>in</strong>gency tables <strong>an</strong>d chi<br />

square for trend test us<strong>in</strong>g scores for each category) (Armitage <strong>an</strong>d Berry, 1988).<br />

3. 3. Results:<br />

3. 3. 1. Univariate relationship between farm m<strong>an</strong>agement practices <strong>an</strong>d Listeriosis<br />

<strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (Overall cases ):<br />

73


93 <strong>of</strong> the total number <strong>of</strong> respondents (894) reported cases <strong>of</strong> cl<strong>in</strong>ical Listeriosis<br />

<strong>in</strong> their <strong>dairy</strong> <strong>cattle</strong> between June 1994 <strong>an</strong>d July 1995. 26 farm level predictor variables<br />

were associated with disease, 21 with <strong>an</strong> <strong>in</strong>creased <strong>an</strong>d 5 with a decreased risk.<br />

2.<br />

(i) Herd size:<br />

The overall results <strong>of</strong> the univariate <strong>an</strong>alysis are also presented <strong>in</strong> the appendix<br />

There was a statistically signific<strong>an</strong>t association between the number <strong>of</strong> milk<strong>in</strong>g<br />

cows <strong>in</strong> a herd <strong>an</strong>d the occurrence <strong>of</strong> disease. The risk <strong>of</strong> report<strong>in</strong>g disease <strong>in</strong>creased as<br />

the herd size <strong>in</strong>creased (Table 3. 2.).<br />

Table 3. 2. Univariate relationship between herd sizes <strong>an</strong>d cl<strong>in</strong>ical <strong>listeriosis</strong><br />

Herd<br />

sizes n<br />

June 1995 July 1994<br />

Y N OR P value X Y N OR P value X<br />

M. cows 100 31 141 3.26


<strong>listeriosis</strong>. Maize silage feed<strong>in</strong>g also <strong>in</strong>creased the risk <strong>of</strong> disease <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>an</strong>d the<br />

Odds Ratio for this variable was 2.4 (95% CL 1.50-3.85). There was also a statistically<br />

signific<strong>an</strong>t association between feed<strong>in</strong>g straw when <strong>an</strong>imals were housed <strong>an</strong>d a<br />

decreased risk <strong>of</strong> report<strong>in</strong>g disease <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (OR 0.38, 95% CL 0.18-0.78). (Table<br />

3. 3).<br />

When the <strong>in</strong>dividual types <strong>of</strong> straw (barley, wheat, wheat <strong>an</strong>d barley <strong>an</strong>d the<br />

comb<strong>in</strong>ation <strong>of</strong> wheat, barley, oat <strong>an</strong>d pea) or root crops (beet type, potatoes, brassica<br />

type, kale <strong>an</strong>d others) were taken <strong>in</strong>to consideration there was no association between<br />

these <strong>an</strong>d the occurrence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>.<br />

b) Sources <strong>of</strong> forage: Farmers were given three alternative sources <strong>of</strong> forage; purchased,<br />

home made <strong>an</strong>d <strong>an</strong>y other sources. There was a statistically signific<strong>an</strong>t association<br />

between purchased grass silage (OR 2.91, CL 1.22-6.8) <strong>an</strong>d <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g<br />

Listeriosis (Table 3. 3).<br />

c) Methods <strong>of</strong> feed<strong>in</strong>g forages:<br />

1) outdoor feed<strong>in</strong>g: Feed<strong>in</strong>g maize silage (OR 1.35, CL 1.59-13.04), hay (OR 2.98, CL<br />

1.12-8.23) <strong>an</strong>d straw (OR 3.72, CL 1.25-11.88) <strong>in</strong> r<strong>in</strong>g feeders when <strong>an</strong>imals were out<br />

were associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease (Table 3. 3).<br />

2) <strong>in</strong>door feed<strong>in</strong>g: Two methods (feed<strong>in</strong>g forages <strong>in</strong> r<strong>in</strong>g feeders <strong>an</strong>d on the floor) were<br />

associated with disease. Feed<strong>in</strong>g grass silage (OR 1.93, CL 1.21-3.07), maize silage<br />

(OR 4.96, CL 2.17-11.46) <strong>an</strong>d hay (OR 4.17, CL 1.83-9.61) <strong>in</strong> r<strong>in</strong>g feeders was<br />

positively associated with disease whereas feed<strong>in</strong>g grass silage (OR 0.23, CL 0.04-0.97)<br />

<strong>an</strong>d hay (OR 0.0, CL 0.0-0.85) on the floor was negatively associated with disease<br />

(Table 3. 3).<br />

75


Table 3. 3. Effect <strong>of</strong> forages fed to <strong>dairy</strong> <strong>cattle</strong> on the occurrence <strong>of</strong> <strong>listeriosis</strong>.<br />

Type <strong>of</strong> forages<br />

Y N OR 95% CL P Value<br />

Grass silage 93 761 ? ? 0.05<br />

Maize silage 39 185 2.4 1.50-3.85


found between the duration <strong>of</strong> feed<strong>in</strong>g maize silage, hay, straw or root crops <strong>an</strong>d cl<strong>in</strong>ical<br />

Listeriosis.<br />

Table 3. 4. The relationship between <strong>listeriosis</strong> <strong>an</strong>d duration <strong>of</strong> feed<strong>in</strong>g grass silage<br />

Duration <strong>of</strong> feed<strong>in</strong>g Grass silage Maize silage<br />

Y N OR P Value X Y N OR P Value X<br />

6 months 52 288 1.78 11 28 1.51<br />

All year 14 70 1.97 0.03 4 10 1.53 0.3<br />

R reference category, X X 2 for trend, OR odds ratio<br />

(iii) Mak<strong>in</strong>g forage crops:<br />

a) Type <strong>of</strong> harvesters: Us<strong>in</strong>g a mower conditioner <strong>in</strong> the process <strong>of</strong> mak<strong>in</strong>g grass silage<br />

<strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g disease (OR 2.02, CL 1.21-3.37). This relationship was<br />

statistically signific<strong>an</strong>t (Table 3. 3).<br />

b) Number <strong>of</strong> cuts made for grass silage <strong>an</strong>d hay: Although the relationship between<br />

number <strong>of</strong> cuts made for grass silage <strong>an</strong>d Listeriosis was not statistically signific<strong>an</strong>t<br />

there was <strong>an</strong> <strong>in</strong>creas<strong>in</strong>g risk <strong>of</strong> disease as the number <strong>of</strong> cuts were <strong>in</strong>creased (Table 3.<br />

5).<br />

Table 3. 5. The univariate relationship between number <strong>of</strong> grass cuts <strong>an</strong>d disease<br />

77


Grass Silage Hay<br />

No <strong>of</strong> cuts Y N OR P Value Y N OR P Value<br />

1 R 13 145 1.00 36 292 1.00<br />

2 43 382 1.26 3 7 3.48<br />

3 27 180 1.67 0 3 0.00 0.4<br />

4 2 9 2.48 0.09 NA<br />

R X 2<br />

refence category, X for trend, Y number <strong>of</strong> farmers report<strong>in</strong>g cases, N number <strong>of</strong> farmers not<br />

report<strong>in</strong>g cases, OR Odds Ratio<br />

c) Storage <strong>of</strong> forages: Different methods <strong>of</strong> stor<strong>in</strong>g forages were evaluated. Preserv<strong>in</strong>g<br />

grass silage <strong>in</strong> big bales (OR 2.19, CL 1.29-3.75), storage <strong>of</strong> hay outside covered (OR<br />

6.26, CL 1.12-32.13) <strong>an</strong>d straw outside covered (OR 2.68, CL 0.9-7.67) were associated<br />

with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease. These associations were statistically signific<strong>an</strong>t except<br />

for storage <strong>of</strong> straw outside covered (Table 3. 3).<br />

d) Analysis <strong>of</strong> forage crops: 57.8% (517/894) <strong>of</strong> the respondents reported hav<strong>in</strong>g their<br />

forages <strong>an</strong>alysed but not all <strong>of</strong> these provided complete <strong>in</strong>formation. There was <strong>an</strong><br />

association between the pH <strong>of</strong> grass silage <strong>an</strong>d disease. As the pH <strong>in</strong>creased the risk <strong>of</strong><br />

report<strong>in</strong>g disease <strong>in</strong>creased. This was only statistically signific<strong>an</strong>t for pH <strong>of</strong> Clamp1<br />

grass silage (Table 3. 6).<br />

Table 3. 6 .Effect <strong>of</strong> silage quality on <strong>listeriosis</strong> (univariate results)<br />

pH <strong>of</strong> Clamp 1 Y N OR p Value X<br />

1 R (4.2) 10 28 4.29 0.02<br />

R reference category, X X 2 for trend, OR odds ratio<br />

(iv) Hous<strong>in</strong>g practices:<br />

78


a) Type <strong>of</strong> hous<strong>in</strong>g : Hous<strong>in</strong>g <strong>an</strong>imals <strong>in</strong> build<strong>in</strong>gs other th<strong>an</strong> cubicles <strong>an</strong>d loose yards<br />

was associated with a decreased risk <strong>of</strong> disease (OR 0.12, CL 0.01-0.83) (Table 3. 7).<br />

b) Use <strong>an</strong>d type <strong>of</strong> bedd<strong>in</strong>g: Us<strong>in</strong>g straw bedd<strong>in</strong>g <strong>in</strong> cubicles <strong>in</strong>creased the risk <strong>of</strong><br />

disease (OR 2.56, CL 1.09-6.3) while use <strong>of</strong> straw <strong>in</strong> other types <strong>of</strong> hous<strong>in</strong>g decreased<br />

the risk (OR 0.0.0, CL 0.0-0.71) (Table 3. 7).<br />

c) Dung m<strong>an</strong>agement: Disposal <strong>of</strong> dung as slurry was associated with <strong>an</strong> <strong>in</strong>creased risk<br />

<strong>of</strong> disease (OR 1.73, CL 1.02-2.97). This association was statistically signific<strong>an</strong>t.<br />

Similarly, stor<strong>in</strong>g m<strong>an</strong>ure beneath the slats (OR 13.50, CL 1.74-121.23) was also found<br />

to <strong>in</strong>crease the risk <strong>of</strong> disease (Table 3. 7).<br />

(v) General m<strong>an</strong>agement:<br />

a) Cases <strong>of</strong> Listeriosis <strong>in</strong> other <strong>an</strong>imals: The presence <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong> (OR<br />

32.37, CL 8.07-151.24) <strong>an</strong>d sheep (OR 1.03, CL 1.03-6.25) was associated with<br />

<strong>in</strong>creased risk <strong>of</strong> disease (Table 3. 7).<br />

b) Vacc<strong>in</strong>e use: Vacc<strong>in</strong>at<strong>in</strong>g <strong>dairy</strong> <strong>cattle</strong> aga<strong>in</strong>st leptospirosis (OR 2.14, CL 1.34-3.42)<br />

was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g disease (Table 3. 7).<br />

Table 3. 7. Univariate relationship between hous<strong>in</strong>g practices <strong>an</strong>d <strong>listeriosis</strong><br />

Type <strong>of</strong> hous<strong>in</strong>g Y N OR 95% CL P Value<br />

79


other hous<strong>in</strong>g (cow shed) 1 65 0.12 0.01-0.83 0.02<br />

Straw bedd<strong>in</strong>g <strong>in</strong> cubicles 70 484 2.56 1.09-6.3 0.02<br />

Straw bedd<strong>in</strong>g <strong>in</strong> loose yard 31 193 ? ? 0.07<br />

straw bedd<strong>in</strong>g <strong>in</strong> others 0 56 0.0 0.0-0.71 0.02<br />

dung disposal<br />

slurry 71 521 1.73 1.02-2.97 0.04<br />

m<strong>an</strong>ure beneath the slats 3 2 13.50 1.74-121.23 0.003<br />

Listeriosis <strong>in</strong> other <strong>an</strong>imals<br />

Beef <strong>cattle</strong> 11 3 32.37 8.07-151.24


Herd<br />

sizes n<br />

Y N OR P value x Y N OR P value X<br />

M. cows 100 21 195 2.51 0.02 21 191 2.80


Type <strong>of</strong> forages<br />

Maize silage 31 193 2.53 1.49-4.29


<strong>of</strong> disease. Similarly stor<strong>in</strong>g feed straw covered outside was also associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease (OR 3.23, CL 0.97-10.09) (Table 3. 9).<br />

(iv) Hous<strong>in</strong>g:<br />

a) Type <strong>of</strong> hous<strong>in</strong>g: Hous<strong>in</strong>g <strong>an</strong>imals <strong>in</strong> houses other th<strong>an</strong> loose yards or cubicles was<br />

associated with a decreased risk <strong>of</strong> disease <strong>in</strong> milk<strong>in</strong>g cows but this was not statistically<br />

signific<strong>an</strong>t (OR 0.16, CL 0.01-1.12) (Table 3. 11).<br />

b) Use <strong>of</strong> bedd<strong>in</strong>g: Straw bedd<strong>in</strong>g <strong>in</strong> other types <strong>of</strong> houses was also associated with a<br />

decreased risk <strong>of</strong> report<strong>in</strong>g disease (OR 0.0, CL 0.0-0.95) (Table 3. 11).<br />

Table 3. 11. The relationship between hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement <strong>an</strong>d<br />

Listeriosis <strong>in</strong> milk<strong>in</strong>g cows<br />

Hous<strong>in</strong>g Y N OR 95% CL P Value<br />

other hous<strong>in</strong>g (cow shed) 1 65 0.16 0.01-1.12 0.07<br />

straw bedd<strong>in</strong>g <strong>in</strong> others 0 56 0.0 0.0-0.95 0.04<br />

Listeriosis <strong>in</strong> other <strong>an</strong>imals<br />

Beef <strong>cattle</strong> 6 8 15.78 4.73-53.78


a) Cases <strong>of</strong> Listeriosis <strong>in</strong> other <strong>an</strong>imals: Listeriosis <strong>in</strong> beef <strong>cattle</strong> was associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g <strong>listeriosis</strong> <strong>in</strong> milk<strong>in</strong>g cows (OR 15.78, CL 4.73-53.78) (Table<br />

3. 11).<br />

b) Vacc<strong>in</strong>e use: Vacc<strong>in</strong>at<strong>in</strong>g <strong>an</strong>imals aga<strong>in</strong>st Leptospirosis was associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease <strong>in</strong> milk<strong>in</strong>g cows. (OR 2.41, CL 1.42-4.08) (Table 3. 11).<br />

3. 3. 3. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cl<strong>in</strong>ical<br />

Listeriosis reported <strong>in</strong> w<strong>in</strong>ter months.<br />

Cases <strong>of</strong> <strong>listeriosis</strong> occurred between October1994 <strong>an</strong>d June 1995 on 76 farms.<br />

18 farm level predictor variables were associated with either <strong>an</strong> <strong>in</strong>creased (14 variables)<br />

or a decreased (4 variables) risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> <strong>listeriosis</strong> between October 1994<br />

<strong>an</strong>d June 1995.<br />

(i) Herd size<br />

As the herd size <strong>in</strong>creased the risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> w<strong>in</strong>ter<br />

months also <strong>in</strong>creased (Table 3. 12).<br />

Table 3. 12. Univariate relationship between herd sizes <strong>an</strong>d cl<strong>in</strong>ical <strong>listeriosis</strong><br />

reported <strong>in</strong> w<strong>in</strong>ter months<br />

June 1995 July 1994<br />

Herd<br />

sizes n<br />

Y N OR P value* Y N OR P value X<br />

M. cows 100 24 192 2.44 0.01 22 190 2.44 0.01<br />

n R X 2<br />

number <strong>of</strong> <strong>an</strong>imals, reference category, X for trend, Y number <strong>of</strong> farmers report<strong>in</strong>g cases, N<br />

number <strong>of</strong> farmers not report<strong>in</strong>g cases, OR, Odds Ratio.<br />

(ii) Feed<strong>in</strong>g practices:<br />

84


a) Type <strong>of</strong> forages: Feed<strong>in</strong>g maize silage (OR 1.97, CL 1.17-3.32) <strong>an</strong>d grass silage (OR<br />

not calculated) was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g disease (Table 3. 14).<br />

b) Source <strong>of</strong> forages: Purchased grass silage was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

disease (OR 2.62, CL 1.00-6.61) (Table 3. 14).<br />

c) Methods <strong>of</strong> feed<strong>in</strong>g forages;<br />

1) <strong>in</strong>door feed<strong>in</strong>g: Feed<strong>in</strong>g grass silage (OR 2.55, CL 1.51-4.32), maize silage (OR<br />

6.37, CL 2.42-17.19) <strong>an</strong>d hay (OR 4.86, CL 2.02-11.97) <strong>in</strong> r<strong>in</strong>g feeders was positively<br />

associated with disease. Feed<strong>in</strong>g maize silage ad libitum was also found to <strong>in</strong>crease the<br />

risk <strong>of</strong> report<strong>in</strong>g disease (OR 3.57, CL 0.96-12.74). Feed<strong>in</strong>g hay on the floor was<br />

negatively associated with disease (OR 0.0, CL 0.0-0.95) (Table 3. 14).<br />

(iii) Mak<strong>in</strong>g forage crops:<br />

a) Type <strong>of</strong> harvesters: Us<strong>in</strong>g a mower conditioner for mak<strong>in</strong>g grass silage was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease (OR 1.91, CL 1.10-3.35) (Table 3. 14).<br />

b) Storage: Preserv<strong>in</strong>g grass silage as big bales (OR 2.00, CL 1.13-3.57) <strong>an</strong>d stor<strong>in</strong>g<br />

hay outside covered (OR 6.86, CL 1.22-35.41) were found to <strong>in</strong>crease the risk <strong>of</strong><br />

report<strong>in</strong>g disease (Table 3. 14).<br />

c) Analysis <strong>of</strong> forages: There was <strong>an</strong> association between <strong>in</strong>creas<strong>in</strong>g pH <strong>an</strong>d <strong>in</strong>creas<strong>in</strong>g<br />

risk <strong>of</strong> disease reported <strong>in</strong> w<strong>in</strong>ter months, as the pH value <strong>in</strong>creased the risk <strong>of</strong> report<strong>in</strong>g<br />

disease also <strong>in</strong>creased (Table 3. 13).<br />

85


Table 3. 13 .Effect <strong>of</strong> silage quality on <strong>listeriosis</strong> <strong>in</strong> w<strong>in</strong>ter months<br />

pH <strong>of</strong> Clamp 1 Y N OR P Value X<br />

1 R (4.2) 10 34 4.29 0.003<br />

R reference category, X X 2 for trend, OR odds ratio<br />

Table 3. 14 The univariate relationship between feed<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

Listeriosis reported <strong>in</strong> w<strong>in</strong>ter months<br />

Y N OR 95% CL P Value<br />

Type <strong>of</strong> forages<br />

Grass silage 76 778 ? ? 0.09<br />

Maize silage 29 195 1.97 1.17-3.32 0.008<br />

source <strong>of</strong> forages<br />

purchased grass silage 7 29 2.62 1.00-6.61 0.05<br />

methods <strong>of</strong> feed<strong>in</strong>g : - <strong>in</strong>door<br />

r<strong>in</strong>g feeders for grass silage 48 315 2.55 1.51-4.32


) Use <strong>of</strong> bedd<strong>in</strong>g: Us<strong>in</strong>g straw bedd<strong>in</strong>g <strong>in</strong> cubicles was associated with <strong>an</strong> <strong>in</strong>creased<br />

risk <strong>of</strong> disease (OR 3.0, CL 1.12-8.76) while its use <strong>in</strong> other house types (OR 0.0 CL<br />

0.0-0.89) was associated with a decreased risk <strong>of</strong> disease (Table 3. 15).<br />

c) Dung disposal: Dispos<strong>in</strong>g <strong>of</strong> dung as slurry <strong>an</strong>d not stor<strong>in</strong>g m<strong>an</strong>ure were associated<br />

with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g disease, but these relationships were not statistically<br />

signific<strong>an</strong>t (Table 3. 15). Stor<strong>in</strong>g m<strong>an</strong>ure beneath the slats <strong>in</strong>creased the risk <strong>of</strong><br />

report<strong>in</strong>g disease <strong>in</strong> w<strong>in</strong>ter months (OR 17.72, CL 2.26-160.7).<br />

Table 3. 15 The relationship between hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement <strong>an</strong>d<br />

Listeriosis reported <strong>in</strong> w<strong>in</strong>ter months<br />

Hous<strong>in</strong>g Y N OR 95% CL P Value<br />

other hous<strong>in</strong>g (cow shed) 1 65 0.15 0.01-1.05 0.057<br />

Straw bedd<strong>in</strong>g <strong>in</strong> cubicles 59 495 3.0 1.12-8.76 0.02<br />

straw bedd<strong>in</strong>g <strong>in</strong> others 0 56 0.0 0.0-0.89 0.03<br />

dung disposal<br />

slurry 58 534 1.71 0.96-3.1 0.06<br />

not stor<strong>in</strong>g m<strong>an</strong>ure 4 14 3.37 0.87-12.04 0.08<br />

m<strong>an</strong>ure beneath the slats 2 3 17.72 2.26-160.7


) Vacc<strong>in</strong>e use: Vacc<strong>in</strong>at<strong>in</strong>g <strong>an</strong>imals aga<strong>in</strong>st Leptospirosis was also associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease (OR 1.88, CL 1.12-3.15) (Table 3. 15).<br />

c) Mole control: Controll<strong>in</strong>g moles was associated with a decreased risk <strong>of</strong> report<strong>in</strong>g<br />

disease (OR 0.49, CL 0.29-0.83) (Table 3. 15).<br />

3. 3. 4. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

Listeriosis with silage eye (iritis).<br />

65 <strong>of</strong> the respondents reported cases <strong>of</strong> Listeriosis with silage eye on their farms.<br />

17 <strong>of</strong> the farm level predictor variables were associated with disease (silage eye).<br />

(i) Herd size:<br />

As the herd size <strong>in</strong> milk<strong>in</strong>g cows <strong>in</strong>creased the risk <strong>of</strong> disease also <strong>in</strong>creased.<br />

This was only statistically signific<strong>an</strong>t for herd sizes reported <strong>in</strong> July 1994 (Table 3. 16)<br />

Table 3. 16. The univariate relationship between herd sizes <strong>an</strong>d silage eye<br />

June 1995 July 1994<br />

Herd<br />

sizes n<br />

Y N OR P value x Y N OR P value X<br />

M. cows 100 18 198 2.21 0.06 17 195 2.48 0.04<br />

n number <strong>of</strong> <strong>an</strong>imals, R reference category, X X 2 for trend, Y number <strong>of</strong> farmers report<strong>in</strong>g cases, N<br />

number <strong>of</strong> farmer not report<strong>in</strong>g cases, OR, Odds Ratio.<br />

(ii) Feed<strong>in</strong>g practices:<br />

a) Type <strong>of</strong> forages: Feed<strong>in</strong>g maize silage was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

report<strong>in</strong>g silage eye cases (OR 2.12, CL 1.21-3.70) (Table 3. 17).<br />

88


) Source <strong>of</strong> forages: Home made grass silage was negatively associated with report<strong>in</strong>g<br />

silage eye <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (OR 0.22, CL 0.06-0.84) (Table 3. 17).<br />

c) Methods <strong>of</strong> feed<strong>in</strong>g;<br />

1) outdoor feed<strong>in</strong>g: The use <strong>of</strong> r<strong>in</strong>g feeders to feed maize silage (OR 5.0, CL 1.47-<br />

17.98), grass silage (OR 1.98, CL 1.0-4.01), hay (OR 4.08, CL 1.21-15.17) <strong>an</strong>d straw<br />

(OR 5.23, CL 1.38-23.39) were associated with <strong>an</strong> <strong>in</strong>creased the risk <strong>of</strong> report<strong>in</strong>g silage<br />

eye <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (Table 3. 17).<br />

2) <strong>in</strong>door feed<strong>in</strong>g: The use <strong>of</strong> r<strong>in</strong>g feeders to feed maize silage (OR 5.06, CL 1.88-<br />

13.94), grass silage (OR 2.72, CL 1.54-4.83) <strong>an</strong>d hay (OR 4.29, 1.67-11.30) <strong>in</strong>creased<br />

the risk <strong>of</strong> report<strong>in</strong>g silage eye whereas feed<strong>in</strong>g hay (OR 0.0, CL 0.0-1.17) on the floor<br />

was associated with a reduced risk <strong>of</strong> report<strong>in</strong>g silage eye but this was not statistically<br />

signific<strong>an</strong>t (Table 3. 17).<br />

(iii) Mak<strong>in</strong>g forage crops:<br />

a) Type <strong>of</strong> harvesters: The use <strong>of</strong> a mower conditioner <strong>in</strong> the process <strong>of</strong> mak<strong>in</strong>g grass<br />

silage was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g silage eye (OR 1.74, CL 0.97-<br />

3.16) but this was not statistically signific<strong>an</strong>t (Table 3. 17).<br />

b) Storage: Preserv<strong>in</strong>g grass silage <strong>in</strong> big bales (OR 4.27, CL 1.99-9.46) <strong>an</strong>d stor<strong>in</strong>g hay<br />

outside covered (OR 9.55, CL 1.67-50.3.8) were associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

report<strong>in</strong>g silage eye <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (Table 3. 17).<br />

Table 3. 17 The relationship between feed<strong>in</strong>g practices <strong>an</strong>d silage eye (iritis)<br />

89


Type <strong>of</strong> forages<br />

Y N OR 95% CL P Value<br />

Maize silage 26 198 2.12 1.21-3.70 0.006<br />

source <strong>of</strong> forages<br />

home made grass silage 61 778 0.22 0.06-0.84 0.02<br />

methods <strong>of</strong> feed<strong>in</strong>g: - outdoor<br />

r<strong>in</strong>g feeders for maize silage 12 36 5.00 1.47-17.98 0.005<br />

r<strong>in</strong>g feeders for grass silage 42 365 1.98 1.0-4.01 0.05<br />

r<strong>in</strong>g feeders for hay 15 115 4.08 1.21-15.17 0.01<br />

r<strong>in</strong>g feeder for straw 17 117 5.23 1.38-23.39 0.009<br />

methods <strong>of</strong> feed<strong>in</strong>g : - <strong>in</strong>door<br />

r<strong>in</strong>g feeders for grass silage 42 321 2.72 1.54-4.83


1.29-18.22) whereas straw bedd<strong>in</strong>g <strong>in</strong> houses other th<strong>an</strong> cubicles <strong>an</strong>d loose yards was<br />

associated with a decreased risk <strong>of</strong> disease (OR 0.0, CL 0.0-1.05) (Table 3 18).<br />

(v) General m<strong>an</strong>agement:<br />

a) Cases <strong>of</strong> Listeriosis <strong>in</strong> other <strong>an</strong>imals: Report<strong>in</strong>g cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong><br />

(OR 51.4, CL 12.63-243.04) <strong>an</strong>d <strong>in</strong> sheep (OR 3.94, CL 1.55-9.71) was associated with<br />

<strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g silage eye cases (Table 3. 18).<br />

b) Vacc<strong>in</strong>e use: Vacc<strong>in</strong>at<strong>in</strong>g <strong>an</strong>imals aga<strong>in</strong>st Leptospirosis was associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease (OR 1.77, CL 1.01-3.10) (Table 3. 18).<br />

c) Mole hills: The presence <strong>of</strong> mole hills <strong>in</strong> fields was associated with <strong>an</strong> <strong>in</strong>creased risk<br />

<strong>of</strong> report<strong>in</strong>g silage eye (OR 1.80, CL 1.01-3.23) (Table 3. 18).<br />

Table 3. 18 The relationship between hous<strong>in</strong>g, general m<strong>an</strong>agement <strong>an</strong>d silage eye<br />

Hous<strong>in</strong>g Y N OR 95% CL P Value<br />

straw as bedd<strong>in</strong>g 62 686 4.79 1.12-29.11 0.03<br />

Straw bedd<strong>in</strong>g <strong>in</strong> cubicles 52 502 4.42 1.29-18.22 0.01<br />

straw bedd<strong>in</strong>g <strong>in</strong> others 0 56 0.0 0.0-1.05 0.05<br />

Listeriosis <strong>in</strong> other <strong>an</strong>imals<br />

Beef <strong>cattle</strong> 11 3 51.4 12.63-243.04


Sheep 8 27 3.94 1.55-9.71 0.001<br />

Vacc<strong>in</strong>e use<br />

Leptospirosis 25 216 1.77 1.01-3.10 0.04<br />

Mole hills<br />

mole hill 35 362 1.80 1.01-3.23 0.05<br />

Y number <strong>of</strong> farmers report<strong>in</strong>g cases, N number <strong>of</strong> farmers not report<strong>in</strong>g cases, OR (95% CL) Odds Ratio<br />

with 95% confidence limit.<br />

3. 3. 5. The univariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d nervous signs <strong>of</strong><br />

Listeriosis (men<strong>in</strong>go-encephalitis).<br />

Only 26 farms reported hav<strong>in</strong>g had cases with nervous signs <strong>of</strong> Listeriosis <strong>an</strong>d<br />

10 <strong>of</strong> the predictor variables were associated with report<strong>in</strong>g this form <strong>of</strong> the disease.<br />

(i) Herd size:<br />

There was a statistically signific<strong>an</strong>t association with herd sizes <strong>in</strong> all age groups<br />

(milk<strong>in</strong>g cows, replacement heifers <strong>an</strong>d <strong>dairy</strong> calves). As the herd sizes <strong>in</strong>creased the<br />

risk <strong>of</strong> report<strong>in</strong>g Listeriosis with nervous signs <strong>in</strong>creased (Table 3. 19).<br />

Table 3. 19. The univariate relationship between herd sizes <strong>an</strong>d nervous form <strong>of</strong><br />

<strong>listeriosis</strong><br />

June 1995 July 1994<br />

Herd sizes Y N OR P value Y N OR P value<br />

Milk<strong>in</strong>g cows 100 12 204 5.78 0.005 X 11 201 4.78 0.009 X<br />

Replacement


100 2 34 2.33 0.01 X 2 22 3.35 0.01 X<br />

Dairy calves 100 3 37 3.05 0.02 X<br />

R reference category, X X 2 for trend, Y number <strong>of</strong> farmers report<strong>in</strong>g cases, N number <strong>of</strong> farm not<br />

report<strong>in</strong>g cases, OR, Odds Ratio, NA not applicable.<br />

(ii) Feed<strong>in</strong>g practices:<br />

a) Type <strong>of</strong> forages: Feed<strong>in</strong>g maize silage was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

report<strong>in</strong>g cases <strong>of</strong> nervous signs (OR 3.11, CL 1.32-7.32) (Table 3. 20).<br />

b) Source <strong>of</strong> forages: Purchased grass silage was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

report<strong>in</strong>g nervous signs (OR 6.12, CL 1.86-18.88) (Table 3. 20).<br />

Methods <strong>of</strong> feed<strong>in</strong>g (<strong>in</strong>door): Feed<strong>in</strong>g straw (OR 0.31, CL 0.09-1.05) was negatively<br />

associated with risk <strong>of</strong> report<strong>in</strong>g cases with nervous signs <strong>an</strong>d this approached statistical<br />

signific<strong>an</strong>ce (Table 3. 20).<br />

Table 3. 20. The relationship between feed<strong>in</strong>g, hous<strong>in</strong>g <strong>an</strong>d general m<strong>an</strong>agement<br />

practices <strong>an</strong>d risk <strong>of</strong> report<strong>in</strong>g the nervous form <strong>of</strong> Listeriosis<br />

Y N OR 95% CL P Value<br />

Type <strong>of</strong> forages<br />

Maize silage 13 211 3.11 1.32-7.32 0.005<br />

source <strong>of</strong> forages<br />

purchased grass silage 5 31 6.12 1.86-18.88


straw outside covered 3 24 4.36 0.89-18.79 0.07<br />

dung disposal<br />

m<strong>an</strong>ure beneath the slats 2 3 24.18 2.47-211.43


a) Dung disposal: Storage <strong>of</strong> m<strong>an</strong>ure beneath slats (OR 24.18, CL 2.47-211.43) <strong>an</strong>d <strong>in</strong><br />

slurry t<strong>an</strong>ks (OR 8.95, CL 1.15-55.61) were associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> cases<br />

<strong>of</strong> Listeriosis with nervous signs (Table 3. 20).<br />

(v) General m<strong>an</strong>agement:<br />

a) Cases <strong>of</strong> Listeriosis <strong>in</strong> other <strong>an</strong>imals: The presence <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> (OR<br />

9.17, CL 1.86-39.51) <strong>an</strong>d <strong>in</strong> sheep (OR 4.95, CL 1.33-16.78) was associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cases with nervous signs (Table 3. 20).<br />

3. 3. 6. A summary <strong>of</strong> risk factors associated with the different forms <strong>of</strong> disease<br />

A summary <strong>of</strong> the predictor variables associated with different outcome<br />

variables is given <strong>in</strong> Table 3. 22 <strong>an</strong>d 3. 23. Overall 36 predictor variables were<br />

associated with the outcome variables. Table 3. 22. shows that 29 variables were<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease. 4 predictor variables were consistently<br />

associated with all outcome variables, 5 with 4 <strong>of</strong> them, 6 with 3 <strong>of</strong> them, 3 with 2 <strong>an</strong>d<br />

the rest with 1 <strong>of</strong> the outcome variables.<br />

95


In Table 3. 23, 7 predictor variables were associated with a decreased risk <strong>of</strong><br />

disease. None <strong>of</strong> the predictor variables was consistently associated with all <strong>of</strong> the<br />

outcome variables. Only 1 variable was associated with the 4 <strong>of</strong> the outcome variables,<br />

3 with 2 <strong>of</strong> them <strong>an</strong>d the rest with 1 <strong>of</strong> the outcome variables.<br />

Table 3. 22. The predictor variables associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease<br />

Outcome variables<br />

Predictor Variables O MC WC SE NS<br />

herd size + + + + +<br />

Listeriosis <strong>in</strong> beef <strong>cattle</strong> + + + + +<br />

feed<strong>in</strong>g maize silage + + + + +<br />

r<strong>in</strong>g feeder for maize silage (<strong>in</strong>door) + + + + +<br />

big bale + + + + -<br />

purchased grass silage + + + - +<br />

r<strong>in</strong>g feeders for grass silage (<strong>in</strong>door) + + + + -<br />

r<strong>in</strong>g feeders for hay (<strong>in</strong>door) + + + + -<br />

96


vacc<strong>in</strong>ation aga<strong>in</strong>st Leptospirosis + + + + -<br />

r<strong>in</strong>g feeders for maize silage (outdoor) + + NA + -<br />

r<strong>in</strong>g feeders for straw (outdoor) + + NA + -<br />

stor<strong>in</strong>g hay out covered + - + + -<br />

Listeriosis <strong>in</strong> sheep + - - + +<br />

straw bedd<strong>in</strong>g <strong>in</strong> cubicles + - + + -<br />

stor<strong>in</strong>g m<strong>an</strong>ure beneath the slats + - + - +<br />

mower conditioner (grass silage) + - + - -<br />

r<strong>in</strong>g feeders for hay (outdoor) + - NA + -<br />

pH (Clamp1) + - + - -<br />

feed<strong>in</strong>g grass silage + - - - -<br />

r<strong>in</strong>g feeders for grass silage (outdoor) - - NA + -<br />

stor<strong>in</strong>g big bale out uncovered - + - - -<br />

duration <strong>of</strong> feed<strong>in</strong>g grass silage + - - - -<br />

number <strong>of</strong> cuts for grass silage - + - - -<br />

maize silage ad libitum (<strong>in</strong>door) - - + - -<br />

stor<strong>in</strong>g straw out covered - + - - -<br />

straw as bedd<strong>in</strong>g - - - + -<br />

dispos<strong>in</strong>g dung as slurry + - - - -<br />

stor<strong>in</strong>g m<strong>an</strong>ure <strong>in</strong> slurry t<strong>an</strong>ks - - - - +<br />

presence <strong>of</strong> mole hills <strong>in</strong> the fields - - - + -<br />

O overall cases, MC milk<strong>in</strong>g cows, WC cases reported <strong>in</strong> w<strong>in</strong>ter months, SE silage eye, NS nervous<br />

signs. + associated with outcome, - not associated with outcome, NA not applicable.<br />

Table 3. 23. The predictor variables associated with a decrease risk <strong>of</strong> disease<br />

Outcome variables<br />

Predictor Variables O MC WC SE NS<br />

straw bedd<strong>in</strong>g <strong>in</strong> other hous<strong>in</strong>g + + + + -<br />

grass silage on the floor (<strong>in</strong>door) + + - - -<br />

hay on the floor (<strong>in</strong>door) + - + - -<br />

other types <strong>of</strong> hous<strong>in</strong>g + - + - -<br />

feed<strong>in</strong>g straw (<strong>in</strong>door) + - - - -<br />

home made grass silage - - - + -<br />

controll<strong>in</strong>g moles - - + - -<br />

O overall cases, MC milk<strong>in</strong>g cows, WC cases reported <strong>in</strong> w<strong>in</strong>ter months, SE silage eye, NS nervous<br />

signs. + associated with outcome, - not associated with outcome.<br />

97


3. 4. Discussion:<br />

In this <strong>study</strong> we tried to determ<strong>in</strong>e the farm level risk factors associated<br />

with different outcome variables. Different variables were associated with different<br />

outcomes. This difference may be due to the small number <strong>of</strong> farms with some <strong>of</strong> the<br />

outcome or predictor variables: for example nervous signs <strong>of</strong> disease were only reported<br />

by 26 farms. Alternatively it may reflect true differences <strong>in</strong> the models. However we<br />

th<strong>in</strong>k this may not be the case because 26 <strong>of</strong> 36 variables exam<strong>in</strong>ed were associated<br />

with Listeriosis when the total number <strong>of</strong> cases “overall” was the outcome. The other<br />

associated variables were closely related to these 26 variables. Of the 36 variables 16<br />

were consistently associated with at least 3 <strong>of</strong> the outcome variables. This consistency<br />

<strong>of</strong> associations is <strong>in</strong> agreement with the Ev<strong>an</strong>’s postulates <strong>of</strong> disease causation<br />

(Thrusfield 1995).<br />

Feed<strong>in</strong>g grass silage <strong>an</strong>d maize silage was associated with cl<strong>in</strong>ical Listeriosis.<br />

The relationship between feed<strong>in</strong>g silage <strong>an</strong>d Listeriosis is well documented (Gray<br />

1960a, Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Gronstol 1979a, Kalac <strong>an</strong>d Woolford 1982, Fenlon<br />

1986b, Fenlon 1988, Wilesmith <strong>an</strong>d Gitter 1986, Sargison 1993) <strong>an</strong>d disease is therefore<br />

called “silage sickness” (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Dennis 1993). However the<br />

determ<strong>in</strong><strong>an</strong>ts <strong>of</strong> this association are not well known. The possible ways <strong>in</strong> which silage<br />

may play a role have already been expla<strong>in</strong>ed <strong>in</strong> the Chapter 1. Where silage has been<br />

implicated its quality has always been described as “<strong>in</strong>ferior” (Gray 1960a, Fenlon<br />

1988, Sargison 1993). There are several factors that <strong>in</strong>fluence the quality <strong>of</strong> silage.<br />

These factors <strong>in</strong>clude the whole silage mak<strong>in</strong>g process; time <strong>an</strong>d stage <strong>of</strong> harvest<strong>in</strong>g,<br />

type <strong>of</strong> harvester used, soil contam<strong>in</strong>ation, wilt<strong>in</strong>g, method <strong>of</strong> stor<strong>in</strong>g etc. A lack <strong>of</strong> care<br />

at <strong>an</strong>y <strong>of</strong> these stages will result <strong>in</strong> poor quality silage that is m<strong>an</strong>ifested by improper<br />

fermentation (aerobic fermentation) where the critical pH (4.2) is exceeded <strong>an</strong>d the<br />

98


suppression <strong>of</strong> the growth <strong>of</strong> Listeria org<strong>an</strong>isms is lifted, result<strong>in</strong>g <strong>in</strong> rapid<br />

multiplication <strong>of</strong> L. monocytogenes to the level <strong>of</strong> the <strong>in</strong>fectious dose (Gronstol 1979a,<br />

Anon 1983, Fenlon 1988, Husu <strong>an</strong>d others 1990a, Sargison 1993). It has been<br />

demonstrated that the multiplication <strong>of</strong> L. monocytogenes is related to pH. As pH rises<br />

the number <strong>an</strong>d frequency <strong>of</strong> isolation <strong>of</strong> L. monocytogenes also <strong>in</strong>creases (Irv<strong>in</strong> 1968,<br />

Gronstol 1979b, Fenlon 1988). As import<strong>an</strong>t as silage quality is the method or methods<br />

<strong>of</strong> feed<strong>in</strong>g silage. Some cl<strong>in</strong>ical forms <strong>of</strong> Listeriosis (encephalitis, iritis) have been<br />

attributed to physical <strong>in</strong>juries <strong>of</strong> mucosal membr<strong>an</strong>es such as buccal or conjunctival<br />

membr<strong>an</strong>es caused by rough forages (Asahi 1957, Dennis 1993). These facts prompted<br />

us to further evaluate the role <strong>of</strong> silage by gather<strong>in</strong>g <strong>in</strong>formation on preparation, the<br />

method <strong>an</strong>d time <strong>of</strong> feed<strong>in</strong>g <strong>an</strong>d quality. This was done for both grass silage <strong>an</strong>d maize<br />

silage.<br />

The stage <strong>of</strong> growth or time <strong>of</strong> cutt<strong>in</strong>g grass for silage is known to be import<strong>an</strong>t.<br />

(Anon 1983, Wilesmith <strong>an</strong>d Gitter 1986, Gitter 1989). To ensure perfect fermentation<br />

grass must be harvested at the right stage when it conta<strong>in</strong>s a sufficient level <strong>of</strong><br />

carbohydrates <strong>an</strong>d has a Digestibility (D) value around 70%. This covers the period<br />

between May, June <strong>an</strong>d July (Anon 1983). In our <strong>study</strong> there was no association<br />

between the month <strong>of</strong> mak<strong>in</strong>g silage <strong>an</strong>d disease. This may be expla<strong>in</strong>ed by the fact that<br />

most <strong>of</strong> the farms (90%) made silage with<strong>in</strong> the recommended period (May <strong>an</strong>d June for<br />

grass silage or October for maize silage). However the number <strong>of</strong> times the grass was<br />

cut to make grass silage was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> Listeriosis <strong>in</strong> milk<strong>in</strong>g<br />

cows. It is known that first cut grass silage achieves better fermentation (Fenlon 1988)<br />

but second or later cuts grass may lack the necessary components (high sugar, correct<br />

dry matter level, 25-30%) to achieve optimal fermentation (Anon 1983, Fenlon 1988).<br />

Another import<strong>an</strong>t factor at cutt<strong>in</strong>g which helps determ<strong>in</strong>e silage quality is soil<br />

contam<strong>in</strong>ation. Soil causes butyric acid fermentation which results <strong>in</strong> higher pH values<br />

99


(Anon 1983, Fenlon 1988). Soil contam<strong>in</strong>ation occurs through harvesters or from mole<br />

hills <strong>in</strong> the field. It is known that some harvesters are more prone to soil contam<strong>in</strong>ation<br />

th<strong>an</strong> others (Anon 1983, Gitter 1986, Fenlon 1988). The risk <strong>of</strong> soil contam<strong>in</strong>ation is<br />

reported as high with a flail mower, moderate with mower conditioner <strong>an</strong>d low with<br />

discs <strong>an</strong>d drums (Anon 1983). In this <strong>study</strong> the use <strong>of</strong> a mower conditioner was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g disease. Another expl<strong>an</strong>ation for this<br />

association may be that mower conditioner bruises grass dur<strong>in</strong>g cutt<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> loss<br />

<strong>of</strong> carbohydrates <strong>in</strong> grass <strong>an</strong>d poorer fermentation condition. The presence <strong>of</strong> mole hills<br />

<strong>in</strong> the field where grass silage is made also <strong>in</strong>creases the risk <strong>of</strong> soil contam<strong>in</strong>ation <strong>an</strong>d<br />

<strong>in</strong> this <strong>study</strong> it was associated with <strong>an</strong> <strong>in</strong>creased risk but only <strong>in</strong> relation to silage eye.<br />

This was also supported by the negative association between controll<strong>in</strong>g moles <strong>an</strong>d the<br />

risk <strong>of</strong> Listeriosis reported <strong>in</strong> w<strong>in</strong>ter months, but these two variables were not associated<br />

with other outcome variables. Considerable publicity has been given to the potential<br />

import<strong>an</strong>ce <strong>of</strong> soil contam<strong>in</strong>ation as result <strong>of</strong> mole hills <strong>an</strong>d it is possible that some<br />

report<strong>in</strong>g bias was <strong>in</strong>troduced <strong>in</strong>to the <strong>study</strong> by farmers who were aware <strong>of</strong> this<br />

hypothesis. Ash content is used as a proxy measure <strong>of</strong> soil contam<strong>in</strong>ation. However <strong>in</strong><br />

this <strong>study</strong> there was no association between ash content <strong>an</strong>d disease. A statistically<br />

signific<strong>an</strong>t association between <strong>in</strong>creas<strong>in</strong>g pH <strong>of</strong> clamp 1 silage <strong>an</strong>d <strong>in</strong>creas<strong>in</strong>g risk <strong>of</strong><br />

report<strong>in</strong>g overall cases <strong>an</strong>d cases <strong>in</strong> w<strong>in</strong>ter months was found <strong>in</strong> this <strong>study</strong> but this<br />

association was not found with other outcome variables. The value <strong>of</strong> forage <strong>an</strong>alyses<br />

was questionable because only a small proportion <strong>of</strong> farms reported complete<br />

<strong>in</strong>formation <strong>an</strong>d this made the comparisons difficult.<br />

Stor<strong>in</strong>g grass silage as big bales <strong>in</strong>creased the risk <strong>of</strong> disease. Big bale silage has<br />

been reported to be more prone to L. monocytogenes contam<strong>in</strong>ation (Fenlon 1988,<br />

Sargison 1993), because <strong>of</strong> its very nature it is difficult to ma<strong>in</strong>ta<strong>in</strong> conditions for ideal<br />

fermentation (Fenlon 1985, Fenlon 1986a, Fenlon 1988, Fenlon <strong>an</strong>d others 1989, Gitter<br />

100


1989, Sargison 1993). It is also possible that the bags are subjected to physical damage<br />

by birds, mice or other rodents when stored outside <strong>an</strong>d that this results <strong>in</strong> rapid<br />

deterioration (Fenlon 1985, Sargison 1993). Stor<strong>in</strong>g big bales outside uncovered was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g Listeriosis <strong>in</strong> milk<strong>in</strong>g cows. Similarly the<br />

association between stor<strong>in</strong>g hay outside covered <strong>an</strong>d <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease <strong>in</strong><br />

milk<strong>in</strong>g cows may be due to the fact that outside storage exposed hay to factors (wet,<br />

cold, air <strong>an</strong>d physical damage) that may have led to the propagation <strong>of</strong> L.<br />

monocytogenes to the level <strong>of</strong> <strong>an</strong> <strong>in</strong>fectious dose. But only small number <strong>of</strong> farms<br />

reported stor<strong>in</strong>g their hay outside covered.<br />

In this <strong>study</strong> feed<strong>in</strong>g maize <strong>an</strong>d grass silage, hay <strong>an</strong>d straw <strong>in</strong> r<strong>in</strong>g feeders or ad<br />

libitum (<strong>in</strong>door or outdoor), <strong>in</strong>creased the risk <strong>of</strong> disease whereas feed<strong>in</strong>g on the floor<br />

decreased the risk. This may be <strong>an</strong> effect <strong>of</strong> the cl<strong>in</strong>ical forms <strong>of</strong> the disease reported <strong>in</strong><br />

this <strong>study</strong>. The predom<strong>in</strong><strong>an</strong>t cl<strong>in</strong>ical sign was silage eye (iritis). Although the exact<br />

relationship between L. monocytogenes <strong>an</strong>d silage eye awaits further studies, the<br />

association between silage feed<strong>in</strong>g <strong>an</strong>d silage eye cases has been acknowledged<br />

(Morg<strong>an</strong>1977, Watson 1989, Mee <strong>an</strong>d Rea 1989, Sargison 1993, Bee 1993, Welchm<strong>an</strong><br />

<strong>an</strong>d others 1997). It may well be that <strong>an</strong>imals eat<strong>in</strong>g silage <strong>in</strong> r<strong>in</strong>g feeders were at<br />

greater risk <strong>of</strong> physically damag<strong>in</strong>g their conjunctival membr<strong>an</strong>es which may have led<br />

to <strong>in</strong>fection by L. monocytogenes (Sargison 1993, Welchm<strong>an</strong> <strong>an</strong>d others 1997). It is<br />

also possible that encephalitis may follow eye <strong>in</strong>fection (Asahi 1957, Dennis 1993).<br />

Another expl<strong>an</strong>ation may be that <strong>in</strong> r<strong>in</strong>g feed<strong>in</strong>g systems <strong>an</strong>imals are <strong>in</strong> very close<br />

contact with a possibility <strong>of</strong> <strong>an</strong>imal to <strong>an</strong>imal spread. Alternatively unlike other<br />

methods, r<strong>in</strong>g feeders are not cle<strong>an</strong>ed regularly <strong>an</strong>d silage rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the feeder may<br />

have created <strong>an</strong> ideal environment for L. monocytogenes to multiply. This suggestion is<br />

supported with the f<strong>in</strong>d<strong>in</strong>g that feed<strong>in</strong>g forages (hay <strong>an</strong>d grass silage) on the floor was<br />

101


associated with a decreased risk <strong>of</strong> disease as the floors (feed<strong>in</strong>g passage) are cle<strong>an</strong>ed<br />

after feed<strong>in</strong>g.<br />

The association <strong>of</strong> grass silage with disease may also be expla<strong>in</strong>ed by the length<br />

<strong>of</strong> exposure to L. monocytogenes as <strong>an</strong> <strong>in</strong>creased duration <strong>of</strong> grass silage feed<strong>in</strong>g was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease.<br />

Another f<strong>in</strong>d<strong>in</strong>g was that purchased grass silage <strong>in</strong>creased the risk <strong>of</strong> disease<br />

whilst home made grass silage decreased the risk <strong>of</strong> report<strong>in</strong>g silage eye. This may be<br />

expla<strong>in</strong>ed by the fact that purchased silage would be ma<strong>in</strong>ly <strong>in</strong> the form <strong>of</strong> big bale<br />

silage or if bought <strong>in</strong> as clamp silage might be <strong>of</strong> poor quality because it had been<br />

exposed to air. Air <strong>in</strong> silage has been associated with <strong>an</strong> <strong>in</strong>crease <strong>in</strong> Listeria growth<br />

(Fenlon 1986, Woolford 1990, Fenlon <strong>an</strong>d others 1995b). Alternatively farmers may<br />

sell <strong>in</strong>ferior quality or old silage which is surplus <strong>of</strong> their own needs.<br />

Feed<strong>in</strong>g straw dur<strong>in</strong>g hous<strong>in</strong>g had a protective effect. Straw feed<strong>in</strong>g may have<br />

played a role by reduc<strong>in</strong>g silage <strong>in</strong>take therefore decreas<strong>in</strong>g the exposure to L.<br />

monocytogenes or the provision feed straw may have reduced the <strong>in</strong>take <strong>of</strong> dirty<br />

bedd<strong>in</strong>g straw.<br />

Wilesmith <strong>an</strong>d Gitter (1986) suggested that hous<strong>in</strong>g <strong>an</strong>imals did not have <strong>an</strong>y<br />

association with the occurrence <strong>of</strong> ov<strong>in</strong>e Listeriosis. This was also the case <strong>in</strong> our <strong>study</strong><br />

although only a small number <strong>of</strong> farmers did not house their <strong>an</strong>imals. When different<br />

types <strong>of</strong> hous<strong>in</strong>g were evaluated it was found that hous<strong>in</strong>g <strong>cattle</strong> <strong>in</strong> build<strong>in</strong>gs (ma<strong>in</strong>ly<br />

cow sheds) other th<strong>an</strong> cubicles <strong>an</strong>d loose yards had a protective effect. It is difficult to<br />

provide a biological expl<strong>an</strong>ation for this association, it may be due to a confound<strong>in</strong>g<br />

effect.<br />

The use <strong>of</strong> straw as bedd<strong>in</strong>g material <strong>an</strong>d straw bedd<strong>in</strong>g <strong>in</strong> cubicles was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease. The use <strong>of</strong> straw as bedd<strong>in</strong>g <strong>an</strong>d straw<br />

bedd<strong>in</strong>g <strong>in</strong> cubicles may result <strong>in</strong> a build up <strong>of</strong> L. monocytogenes <strong>in</strong> the environment.<br />

102


L. monocytogenes has been isolated from straw bedd<strong>in</strong>g (Husu 1990, v<strong>an</strong> Retrigham<br />

<strong>an</strong>d others 1991) <strong>an</strong>d cases <strong>of</strong> <strong>listeriosis</strong> associated with the same serotype as those<br />

found <strong>in</strong> the bedd<strong>in</strong>g material have been reported (Green <strong>an</strong>d Morg<strong>an</strong> 1994). Housed<br />

<strong>an</strong>imals <strong>of</strong>ten eat their bedd<strong>in</strong>g <strong>an</strong>d they may have eaten Listeria contam<strong>in</strong>ated dirty<br />

bedd<strong>in</strong>g. One likely expl<strong>an</strong>ation may be that <strong>an</strong>imals housed <strong>in</strong> cubicles were more<br />

likely to have eaten their bedd<strong>in</strong>g th<strong>an</strong> those housed <strong>in</strong> loose yards where bedd<strong>in</strong>g straw<br />

would be too dirty for a cow to eat.<br />

Environmental contam<strong>in</strong>ation with L. monocytogenes may also occur through<br />

the use <strong>of</strong> m<strong>an</strong>ure or slurry as a fertiliser <strong>an</strong>d this was exam<strong>in</strong>ed <strong>in</strong> this <strong>study</strong>. The<br />

disposal <strong>of</strong> dung as a slurry was associated with disease. This may have been due to<br />

failure <strong>of</strong> storage to kill or <strong>in</strong>activate listeria (Al-Gazali <strong>an</strong>d Al-Azawi 1986). No such<br />

association was seen <strong>in</strong> farms dispos<strong>in</strong>g <strong>of</strong> dung as m<strong>an</strong>ure. There was <strong>an</strong> association<br />

between stor<strong>in</strong>g dung beneath the slats, stor<strong>in</strong>g m<strong>an</strong>ure <strong>in</strong> slurry t<strong>an</strong>ks <strong>an</strong>d disease but<br />

only a small number <strong>of</strong> farmers used these systems.<br />

Larger herd sizes were also associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> Listeriosis. This<br />

may be expla<strong>in</strong>ed <strong>in</strong> several ways. Stock<strong>in</strong>g density may have <strong>in</strong>creased the risk <strong>of</strong> sick<br />

<strong>an</strong>imals com<strong>in</strong>g <strong>in</strong>to contact with others <strong>an</strong>d hygienic conditions may have been poor<br />

ow<strong>in</strong>g to overcrowd<strong>in</strong>g. Overcrowd<strong>in</strong>g <strong>an</strong>d related factors have been reported as<br />

predispos<strong>in</strong>g factors (Hyslop 1975, Meredith <strong>an</strong>d Schnieder 1984, V<strong>an</strong>degraaff 1981).<br />

An alternative expl<strong>an</strong>ation may be that these herds may have been higher produc<strong>in</strong>g<br />

units <strong>an</strong>d therefore <strong>an</strong>imals may have been highly stressed result<strong>in</strong>g <strong>in</strong> a decrease <strong>of</strong> the<br />

host resist<strong>an</strong>ce to <strong>in</strong>fection. It is also possible that these farms had a better observation<br />

system whereby quicker veter<strong>in</strong>ary <strong>in</strong>tervention may have occurred when <strong>an</strong>imals<br />

showed signs <strong>of</strong> disease.<br />

Hum<strong>an</strong> Listeriosis due to contact with <strong>an</strong>imals with Listeriosis has been reported<br />

(Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, McLauchl<strong>in</strong> <strong>an</strong>d Low 1994) but it is not known if direct<br />

103


tr<strong>an</strong>smission between <strong>an</strong>imals occurrs. In our <strong>study</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong> <strong>an</strong>d sheep<br />

<strong>in</strong>creased the risk <strong>of</strong> disease. This may be expla<strong>in</strong>ed <strong>in</strong> a number <strong>of</strong> ways. Dairy <strong>cattle</strong><br />

might have contracted the disease from sick beef <strong>cattle</strong> or sheep by direct contact or<br />

beef <strong>cattle</strong> or sheep with Listeriosis may have been the source <strong>of</strong> more pathogenic L.<br />

monocytogenes stra<strong>in</strong>s <strong>an</strong>d environmental contam<strong>in</strong>ation with these virulent stra<strong>in</strong>s<br />

resulted <strong>in</strong> <strong>in</strong>direct tr<strong>an</strong>smission. Alternatively, farmers who reported cases <strong>in</strong> beef<br />

<strong>cattle</strong> <strong>an</strong>d sheep may have had a better knowledge <strong>of</strong> disease <strong>an</strong>d therefore easily<br />

recognised the signs <strong>of</strong> disease <strong>in</strong> their <strong>dairy</strong> <strong>cattle</strong>. This association may also be due to<br />

a confound<strong>in</strong>g effect e.g. r<strong>in</strong>g feeders are usually used for beef <strong>cattle</strong>.<br />

The association between vacc<strong>in</strong>at<strong>in</strong>g <strong>an</strong>imals aga<strong>in</strong>st Leptospirosis <strong>an</strong>d <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> Listeriosis is without <strong>an</strong> obvious biological expl<strong>an</strong>ation. It might be<br />

expla<strong>in</strong>ed by the fact that concurrent <strong>in</strong>fections have been reported to make <strong>an</strong>imals <strong>an</strong>d<br />

hum<strong>an</strong> more susceptible to L. monocytogenes (Gray <strong>an</strong>d Kill<strong>in</strong>ger, 1966, Rocourt 1996)<br />

or the stress caused by the vacc<strong>in</strong>e may have made <strong>an</strong>imals more susceptible. An<br />

alternative expl<strong>an</strong>ation may be that farmers experienc<strong>in</strong>g abortion may have vacc<strong>in</strong>ated<br />

aga<strong>in</strong>st Leptospirosis with or without advice from a veter<strong>in</strong>ari<strong>an</strong> because the majority <strong>of</strong><br />

cases <strong>of</strong> abortion are attributed to Leptospirosis <strong>in</strong> this country without thorough<br />

<strong>in</strong>vestigation <strong>of</strong> actual cause. There may have been even a confusion <strong>of</strong> name between<br />

the two diseases. Such confusion <strong>of</strong> name was seen <strong>in</strong> a <strong>study</strong> from the USA (Schwartz<br />

1967).<br />

In this <strong>study</strong> 5 groups <strong>of</strong> farm level predictor variables were used to determ<strong>in</strong>e<br />

their relationship with 5 different outcome variables us<strong>in</strong>g univariate <strong>an</strong>alysis<br />

techniques. One <strong>of</strong> the major drawbacks <strong>of</strong> univariate <strong>an</strong>alysis is that it does not deal<br />

with confounders. A confounder is a variable that is positively or negatively associated<br />

with both the outcome variable <strong>an</strong>d hypothesised predictor variable that are be<strong>in</strong>g<br />

studied. Confound<strong>in</strong>g may result <strong>in</strong> either overestimation or underestimation <strong>of</strong> <strong>an</strong><br />

104


association (Kirkwood 1988, Thrusfield 1995). This problem is overcome by several<br />

ways i.e. stratify<strong>in</strong>g data to adjust for possible confounders or employ<strong>in</strong>g more complex<br />

multivariate techniques. This is dealt with <strong>in</strong> the follow<strong>in</strong>g chapter. However there also<br />

are adv<strong>an</strong>tages <strong>of</strong> this technique. In univariate <strong>an</strong>alysis it is possible to exam<strong>in</strong>e the<br />

association between all predictor variables <strong>an</strong>d <strong>an</strong> outcome. All observations obta<strong>in</strong>ed<br />

c<strong>an</strong> be used <strong>in</strong> the univariate <strong>an</strong>alysis whereas <strong>in</strong> the multivariate <strong>an</strong>alysis miss<strong>in</strong>g<br />

values c<strong>an</strong> result <strong>in</strong> a considerable reduction <strong>in</strong> the number <strong>of</strong> observations.<br />

In the <strong>an</strong>alysis <strong>of</strong> this data, possible confounders were not taken <strong>in</strong>to account but<br />

a number <strong>of</strong> predictor variables were found to be associated with the outcome variables.<br />

However demonstration <strong>of</strong> a statistically signific<strong>an</strong>t association between a predictor<br />

variable <strong>an</strong>d <strong>an</strong> outcome variable does not necessarily me<strong>an</strong> that a relationship is causal.<br />

In a biological sense for a predictor variable to be causal it must be experimentally<br />

proved that it leads to the occurrence <strong>of</strong> disease. However <strong>in</strong> the absence <strong>of</strong><br />

experimental evidence <strong>epidemiological</strong> identification <strong>of</strong> <strong>an</strong> association is <strong>of</strong><br />

considerable value because it <strong>in</strong>dicates a risk factor <strong>an</strong>d removal <strong>of</strong> such a factor may<br />

result <strong>in</strong> the reduction <strong>of</strong> disease (Thrusfield 1995).<br />

In the follow<strong>in</strong>g chapter the association between the predictor variables <strong>an</strong>d the<br />

different outcome variables is <strong>in</strong>vestigated us<strong>in</strong>g multivariate techniques.<br />

105


CHAPTER 4<br />

The multivariate relationship between farm m<strong>an</strong>agement<br />

practices <strong>an</strong>d cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d<br />

4. 1 Introduction<br />

In the previous chapter we identified some simple relationships between farm<strong>in</strong>g<br />

practices <strong>an</strong>d Listeriosis us<strong>in</strong>g univariate techniques. One <strong>of</strong> the problems with<br />

univariate methods is that they do not have the power to adjust for the effect <strong>of</strong><br />

confound<strong>in</strong>g. In this part <strong>of</strong> the <strong>study</strong> multivariate techniques are used to provide<br />

qu<strong>an</strong>titative estimates <strong>of</strong> the relationship between <strong>in</strong>dividual predictor variables <strong>an</strong>d the<br />

outcome variable when adjusted for the effect <strong>of</strong> other predictor variables.<br />

4. 2. Materials <strong>an</strong>d methods:<br />

In <strong>study</strong><strong>in</strong>g the multiple relationship between farm<strong>in</strong>g practices <strong>an</strong>d cl<strong>in</strong>ical<br />

<strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>, the predictor variables used were those that were either<br />

signific<strong>an</strong>tly associated with disease or had P values <strong>of</strong> less th<strong>an</strong> 0.25 <strong>in</strong> univariate<br />

<strong>an</strong>alysis or those that were considered biologically import<strong>an</strong>t. Unconditional logistic<br />

regression us<strong>in</strong>g EGRET (Statistics <strong>an</strong>d Epidemiology Research Corporation, 1993)<br />

was used to develop statistical models us<strong>in</strong>g a forward stepwise technique followed<br />

backwards elim<strong>in</strong>ation.


The predictor variables that met our <strong>in</strong>clusion criteria are listed below.<br />

Forage feed<strong>in</strong>g<br />

Grass silage<br />

Maize silage<br />

Hay<br />

Straw<br />

Root crops<br />

Herd size<br />

cows <strong>in</strong> 1995<br />

heifers <strong>in</strong> 1995<br />

Maize silage<br />

fed<br />

source<br />

home made<br />

Hous<strong>in</strong>g<br />

housed<br />

cubicles<br />

used<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust<br />

straw<br />

General<br />

m<strong>an</strong>agement<br />

Grass silage<br />

fed<br />

source<br />

purchased<br />

home made<br />

outdoor feed<strong>in</strong>g<br />

fed<br />

ad libitum<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

outdoor feed<strong>in</strong>g<br />

fed<br />

<strong>in</strong> complete diet<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g bedd<strong>in</strong>g<br />

remov<strong>in</strong>g bedd<strong>in</strong>g<br />

cle<strong>an</strong><strong>in</strong>g out<br />

loose yard<br />

used<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed<br />

ad libitum<br />

on the floor<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

number <strong>of</strong> cuts<br />

type <strong>of</strong> harvester<br />

mower conditioner<br />

wilt<strong>in</strong>g<br />

ad libitum<br />

on the floor<br />

<strong>in</strong> complete diet<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

<strong>in</strong> troughs<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust<br />

straw<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g bedd<strong>in</strong>g<br />

remov<strong>in</strong>g bedd<strong>in</strong>g<br />

cle<strong>an</strong><strong>in</strong>g out<br />

other houses<br />

pasture m<strong>an</strong>agement<br />

spread dung on the<br />

field<br />

storage<br />

big bale<br />

storage <strong>of</strong> big bale<br />

outside uncovered<br />

clamp use<br />

separate clamp<br />

seal<strong>in</strong>g clamp<br />

forage <strong>an</strong>alysis<br />

pH <strong>of</strong> Clamp 1<br />

type <strong>of</strong> harvester<br />

forage harvester<br />

additive use<br />

used<br />

storage<br />

clamp<br />

dung disposal<br />

solid m<strong>an</strong>ure<br />

slurry<br />

storage<br />

not stored<br />

graz<strong>in</strong>g beef <strong>cattle</strong><br />

graz<strong>in</strong>g sheep


Listeriosis <strong>in</strong> others<br />

beef <strong>cattle</strong><br />

sheep<br />

4. 2. 1. Model Build<strong>in</strong>g:<br />

Vacc<strong>in</strong>e<br />

Leptospirosis<br />

Lung worm<br />

mole hills<br />

<strong>in</strong> grass silage field<br />

controll<strong>in</strong>g moles<br />

It was not possible to fit all the selected variables <strong>in</strong> a s<strong>in</strong>gle model. This caused<br />

us to develop first a prelim<strong>in</strong>ary model that <strong>in</strong>cluded all the major variables like herd<br />

size, types <strong>of</strong> forages fed to <strong>an</strong>imals, hous<strong>in</strong>g, dung disposal variables <strong>an</strong>d general<br />

m<strong>an</strong>agement as b<strong>in</strong>ary variables. The effects <strong>of</strong> more qualitative aspects <strong>of</strong> each<br />

variable e.g. method <strong>of</strong> feed<strong>in</strong>g forage, silage <strong>an</strong>alysis that were statistically signific<strong>an</strong>t<br />

<strong>in</strong> the prelim<strong>in</strong>ary model were then <strong>in</strong>vestigated <strong>in</strong> detail by <strong>in</strong>clud<strong>in</strong>g more expl<strong>an</strong>atory<br />

variables <strong>in</strong> other models. F<strong>in</strong>ally variables which reduced the statistical power <strong>of</strong> the<br />

model because <strong>of</strong> large numbers <strong>of</strong> miss<strong>in</strong>g values, e.g. herd size (84 observations), or<br />

the variables which had strong effect on the model, e.g. cases <strong>in</strong> beef <strong>cattle</strong> (reported by<br />

14 farms), were excluded from the data set.<br />

4. 3. Results:<br />

(i) Prelim<strong>in</strong>ary Model:<br />

Us<strong>in</strong>g the overall cases reported <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> as <strong>an</strong> outcome variable a model<br />

was developed to <strong>in</strong>clude the variables listed below, namely feed<strong>in</strong>g forages, hous<strong>in</strong>g,<br />

dung disposal, general m<strong>an</strong>agement. Grass silage feed<strong>in</strong>g was not <strong>in</strong>cluded at this stage<br />

because those who did not feed grass silage did not report <strong>an</strong>y cases <strong>of</strong> Listeriosis.<br />

The list <strong>of</strong> variables used <strong>in</strong> the prelim<strong>in</strong>ary model is as follows:


Forage feed<strong>in</strong>g<br />

Maize silage<br />

Hay<br />

Straw<br />

Root crops<br />

Herd size<br />

cows (1995)<br />

heifers (1995)<br />

Hous<strong>in</strong>g<br />

housed<br />

dung disposal<br />

solid m<strong>an</strong>ure<br />

slurry<br />

Variables associated with disease.<br />

General<br />

m<strong>an</strong>agement<br />

pasture<br />

m<strong>an</strong>agement<br />

spread dung on the<br />

field<br />

graz<strong>in</strong>g beef <strong>cattle</strong><br />

graz<strong>in</strong>g sheep<br />

Listeriosis <strong>in</strong> others<br />

beef <strong>cattle</strong><br />

sheep<br />

Vacc<strong>in</strong>e<br />

Leptospirosis<br />

Lung worm<br />

mole hills<br />

<strong>in</strong> grass silage field<br />

controll<strong>in</strong>g moles<br />

Cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>: Listeriosis <strong>in</strong> beef <strong>cattle</strong> was associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (OR 26.06, CL 6.84-<br />

99.31)(Table 4. 1).<br />

Cases <strong>of</strong> Listeriosis <strong>in</strong> sheep: The presence <strong>of</strong> Listeriosis <strong>in</strong> sheep was associated with<br />

<strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease (OR 3.86, CL 1.57-9.44) (Table 4. 1).<br />

Maize silage feed<strong>in</strong>g: Feed<strong>in</strong>g maize silage (OR 2.7, CL 1.25-3.43) was associated with<br />

<strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (Table 4. 1).<br />

Vacc<strong>in</strong>ation aga<strong>in</strong>st Leptospirosis: Vacc<strong>in</strong>at<strong>in</strong>g <strong>an</strong>imals aga<strong>in</strong>st Leptospirosis was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (OR 1.7,<br />

CL 1.0-2.9) (Table 4. 1).


Graz<strong>in</strong>g sheep on the same pasture: Graz<strong>in</strong>g sheep on the same pasture as <strong>dairy</strong> <strong>cattle</strong><br />

was associated with a decreased risk <strong>of</strong> disease <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (OR 0.58, CL 0.36-0.95)<br />

(Table 4. 1).<br />

Table 4. 1. The multivariate relationship between major farm<strong>in</strong>g practices <strong>an</strong>d<br />

cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (prelim<strong>in</strong>ary model)<br />

N= 690 OR* 95% CL p Value<br />

Listeriosis <strong>in</strong> beef <strong>cattle</strong> 26.06 6.84-99.31


<strong>in</strong>door feed<strong>in</strong>g<br />

fed<br />

ad libitum<br />

on the floor<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

Hous<strong>in</strong>g<br />

housed<br />

cubicles<br />

used<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust<br />

straw<br />

General<br />

m<strong>an</strong>agement<br />

1) Overall cases:<br />

number <strong>of</strong> cuts<br />

type <strong>of</strong> harvester<br />

mower conditioner<br />

wilt<strong>in</strong>g<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g bedd<strong>in</strong>g<br />

remov<strong>in</strong>g bedd<strong>in</strong>g<br />

cle<strong>an</strong><strong>in</strong>g out<br />

loose yard<br />

used<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

pasture m<strong>an</strong>agement<br />

spread dung on the<br />

field<br />

graz<strong>in</strong>g beef <strong>cattle</strong><br />

graz<strong>in</strong>g sheep<br />

storage<br />

big bale<br />

storage <strong>of</strong> big bale<br />

outside uncovered<br />

sawdust<br />

straw<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g bedd<strong>in</strong>g<br />

remov<strong>in</strong>g bedd<strong>in</strong>g<br />

cle<strong>an</strong><strong>in</strong>g out<br />

other houses<br />

Listeriosis <strong>in</strong> others<br />

beef <strong>cattle</strong><br />

sheep<br />

Vacc<strong>in</strong>e<br />

Leptospirosis<br />

clamp use<br />

separate clamp<br />

seal<strong>in</strong>g clamp<br />

forage <strong>an</strong>alysis<br />

pH <strong>of</strong> Clamp 1<br />

dung disposal<br />

solid m<strong>an</strong>ure<br />

slurry<br />

storage<br />

not stored<br />

Lung worm<br />

mole hills<br />

<strong>in</strong> grass silage field<br />

controll<strong>in</strong>g moles<br />

After adjust<strong>in</strong>g for possible confounders, 9 variables were found to be associated<br />

with either <strong>in</strong>creas<strong>in</strong>g or decreas<strong>in</strong>g risk <strong>of</strong> report<strong>in</strong>g <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>.<br />

Cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>: The presence <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> the disease, OR 23.5 (CL 5.5-100) (Table 4. 2).<br />

Cases <strong>of</strong> Listeriosis <strong>in</strong> sheep: Listeriosis <strong>in</strong> sheep was associated with <strong>an</strong> <strong>in</strong>creased risk<br />

<strong>of</strong> disease (OR 2.9, CL 1.0-8.2) (Table 4. 2).


Maize silage feed<strong>in</strong>g: When adjusted for possible c<strong>of</strong>ounders feed<strong>in</strong>g maize silage was<br />

still signific<strong>an</strong>tly associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong><br />

(OR 2.1, CI 1.2-3.6) (Table 4. 2).<br />

Use <strong>of</strong> a mower conditioner: An <strong>in</strong>creased risk <strong>of</strong> disease was recorded for the farms<br />

who reported hav<strong>in</strong>g used mower conditioner <strong>in</strong> the process <strong>of</strong> grass silage mak<strong>in</strong>g, OR<br />

3.8 (CL 1.9-7.6) (Table 4. 2).<br />

R<strong>in</strong>g feeders: Feed<strong>in</strong>g grass silage <strong>in</strong> r<strong>in</strong>g feeders when <strong>an</strong>imals were housed <strong>in</strong>creased<br />

the risk <strong>of</strong> report<strong>in</strong>g Listeriosis, OR 2.4 (CL 1.4-4.2) (Table 4. 2).<br />

Big Bale silage: Preserv<strong>in</strong>g grass silage as big bale silage <strong>in</strong>creased the risk <strong>of</strong> report<strong>in</strong>g<br />

disease, OR 1.9 ( CL 1.0-3.5) (Table 4. 2)<br />

Wilt<strong>in</strong>g: There was l<strong>in</strong>ear relationship between wilt<strong>in</strong>g grass for silage <strong>an</strong>d cl<strong>in</strong>ical<br />

Listeriosis. As the duration <strong>of</strong> wilt<strong>in</strong>g <strong>in</strong>creased the risk <strong>of</strong> disease decreased (Table 4.<br />

2).<br />

Table 4. 2. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d <strong>listeriosis</strong><br />

<strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (overall cases)<br />

Number <strong>of</strong> observations=603 OR* 95% CL p Value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 23.5 5.5-100


cases <strong>of</strong> Listeriosis <strong>in</strong> sheep 2.9 1.0-8.2 0.04<br />

maize silage feed<strong>in</strong>g 2.1 1.2-3.6 0.01<br />

use <strong>of</strong> a mower conditioner 3.8 1.9-7.6 3 0.06 0.008-0.5 0.008<br />

not stor<strong>in</strong>g m<strong>an</strong>ure 2.1 1.1-3.9 0.02<br />

vacc<strong>in</strong>at<strong>in</strong>g aga<strong>in</strong>st Leptospirosis 1.7 1.0-2.9 0.04<br />

OR adjusted odds ratio, 95% CL, 95% confidence limit, R basel<strong>in</strong>e category was day 0, @ identified when<br />

rerun exclud<strong>in</strong>g herd size <strong>an</strong>d cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong>.<br />

The model was re-run <strong>in</strong> <strong>an</strong> attempt to <strong>in</strong>crease the number <strong>of</strong> observation <strong>in</strong> the<br />

model. The herd size was first removed which <strong>in</strong>creased the number <strong>of</strong> observation to<br />

687. This did not result <strong>in</strong> <strong>an</strong>y ch<strong>an</strong>ges. Herd size <strong>an</strong>d cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong><br />

were then excluded from the model which <strong>in</strong>creased the number <strong>of</strong> observations to 715.<br />

The same variables as above were still signific<strong>an</strong>t with slight ch<strong>an</strong>ges <strong>in</strong> odds ratios, <strong>in</strong><br />

addition, vacc<strong>in</strong>at<strong>in</strong>g <strong>cattle</strong> aga<strong>in</strong>st Leptospirosis was associated with <strong>an</strong> <strong>in</strong>creased risk<br />

<strong>of</strong> disease (OR 1.7, CL 1.0-2.9) <strong>an</strong>d not stor<strong>in</strong>g m<strong>an</strong>ure was also associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease (OR 2.1, 95% CL 1.1-3.9).<br />

2) Milk<strong>in</strong>g cows:<br />

Model 1 was used to determ<strong>in</strong>e the farm level predictor variables associated<br />

with cl<strong>in</strong>ical Listeriosis <strong>in</strong> milk<strong>in</strong>g cows. The presence <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> <strong>an</strong>d<br />

sheep, feed<strong>in</strong>g maize silage to milk<strong>in</strong>g cows, the use <strong>of</strong> a mower conditioner <strong>in</strong> the<br />

preparation <strong>of</strong> grass silage, feed<strong>in</strong>g grass silage <strong>in</strong> r<strong>in</strong>g feeders when <strong>an</strong>imals were<br />

housed, <strong>an</strong>d the use <strong>of</strong> vacc<strong>in</strong>e aga<strong>in</strong>st Leptospirosis were still associated with <strong>an</strong>


<strong>in</strong>creased risk <strong>of</strong> Listeriosis <strong>in</strong> milk<strong>in</strong>g cows <strong>an</strong>d <strong>in</strong> addition storage <strong>of</strong> big bale silage<br />

uncovered outside was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease (OR 2.0, CL 1.1-3.7)<br />

(Table 4. 3).<br />

When the same model was rerun exclud<strong>in</strong>g first herd size <strong>an</strong>d then herd size <strong>an</strong>d<br />

cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong> respectively, the same predictor variables were<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g Listeriosis <strong>in</strong> milk<strong>in</strong>g cow (Table 4. 3).<br />

Table 4. 3. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d <strong>listeriosis</strong><br />

<strong>in</strong> milk<strong>in</strong>g cows.<br />

Number <strong>of</strong> observations=603 OR 95% CL p Value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 9.8 2.8-33.7


<strong>an</strong>d controll<strong>in</strong>g moles <strong>in</strong> fields were associated with a decreased risk <strong>of</strong> disease <strong>in</strong><br />

w<strong>in</strong>ter months (OR 0.54, CL 0.3-0.9) (Table 4. 4).<br />

Exclusion <strong>of</strong> herd size <strong>an</strong>d then herd size <strong>an</strong>d cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong><br />

did not ch<strong>an</strong>ge the results (Table 4. 4).<br />

Table 4. 4. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

<strong>listeriosis</strong> occurr<strong>in</strong>g <strong>in</strong> w<strong>in</strong>ter months.<br />

Number <strong>of</strong> observations=603 OR 95% CL p Value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 29 7.6-111


additionally the use <strong>of</strong> straw bedd<strong>in</strong>g <strong>in</strong> cubicles was associated with <strong>an</strong> <strong>in</strong>creased risk<br />

<strong>of</strong> report<strong>in</strong>g silage eye (OR 2.3 95% CL 1.0-5.2). After the exclusion <strong>of</strong> herd size <strong>an</strong>d<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>, preserv<strong>in</strong>g grass silage <strong>in</strong> clamps (OR 2.4, 95% CL<br />

1.0-5.5) <strong>an</strong>d not stor<strong>in</strong>g m<strong>an</strong>ure (OR 2.1, 95% CL 1.1-4.1) were also associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease but the use <strong>of</strong> straw bedd<strong>in</strong>g <strong>in</strong> cubicles was no longer<br />

signific<strong>an</strong>t (Table 4. 5).<br />

Table 4. 5. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

Listeriosis with silage eye<br />

Number <strong>of</strong> observations=603 OR 95% CL p Value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 34.5 8.2-146


Cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> <strong>an</strong>d sheep were associated with <strong>an</strong> <strong>in</strong>creased<br />

risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> Listeriosis with nervous signs. Controll<strong>in</strong>g moles <strong>in</strong> fields was<br />

associated with a decreased risk <strong>of</strong> disease (OR 0.4, 95% CL 0.1-0.9) (Table 4. 6).<br />

No ch<strong>an</strong>ges <strong>in</strong> the results were observed after the removal <strong>of</strong> herd size from the<br />

model but maize silage feed<strong>in</strong>g was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cases<br />

<strong>of</strong> nervous signs (OR 2.9, 95% CL 1.3-6.6) (Table 4. 6) after the removal <strong>of</strong> herd size<br />

<strong>an</strong>d cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> from the data set.<br />

Table 4. 6. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

nervous signs.<br />

Number <strong>of</strong> observations=603 OR 95% CL p Value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 5.2 1.1-25.5 0.04<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> Sheep 4.9 1.3-18.9 0.02<br />

controll<strong>in</strong>g moles<br />

Number <strong>of</strong> observations=715<br />

0.4 0.1-0.9 0.04<br />

@<br />

maize silage feed<strong>in</strong>g 2.9 1.3-6.6 0.01<br />

OR adjusted odds ratio, @ after the exclusion <strong>of</strong> herd size <strong>an</strong>d cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>.<br />

The results obta<strong>in</strong>ed us<strong>in</strong>g the model for each different outcome variables were<br />

remarkably consistent. 14 variables were associated with the outcome variables. 12 <strong>of</strong><br />

them were associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease. Cases <strong>of</strong> Listeriosis <strong>in</strong> beef<br />

<strong>cattle</strong> <strong>an</strong>d sheep were found to be consistently associated with all outcome variables, the<br />

use <strong>of</strong> a mower conditioner <strong>in</strong> preparation <strong>of</strong> grass silage, feed<strong>in</strong>g grass silage <strong>in</strong> r<strong>in</strong>g<br />

feeders were also consistently associated with the outcome variables with the exception<br />

<strong>of</strong> nervous signs. Three predictor variables were associated with three different outcome<br />

variables; preserv<strong>in</strong>g grass silage as big bales (associated with overall cases, w<strong>in</strong>ter<br />

cases <strong>an</strong>d silage eye), maize silage feed<strong>in</strong>g (associated with overall cases, milk<strong>in</strong>g cows<br />

<strong>an</strong>d nervous signs) <strong>an</strong>d not stor<strong>in</strong>g m<strong>an</strong>ure (associated with overall, milk<strong>in</strong>g cows <strong>an</strong>d


silage eye), two predictor variables were associated with two outcome variables;<br />

vacc<strong>in</strong>at<strong>in</strong>g aga<strong>in</strong>st Leptospirosis (associated with overall cases <strong>an</strong>d milk<strong>in</strong>g cows) <strong>an</strong>d<br />

the use straw bedd<strong>in</strong>g <strong>in</strong> cubicles (associated with w<strong>in</strong>ter cases <strong>an</strong>d silage eye). The rest<br />

<strong>of</strong> the variables were associated with one outcome variable (Table 4. 7).<br />

2 variables were associated with a decreased risk <strong>of</strong> disease; wilt<strong>in</strong>g grass prior<br />

to ensil<strong>in</strong>g (associated with overall cases <strong>an</strong>d w<strong>in</strong>ter cases) <strong>an</strong>d controll<strong>in</strong>g moles <strong>in</strong><br />

fields (associated with w<strong>in</strong>ter cases <strong>an</strong>d nervous signs). 10 <strong>of</strong> the 14 predictor variables<br />

were also found signific<strong>an</strong>t <strong>in</strong> the univariate <strong>an</strong>alysis.<br />

Table 4. 7. The agreement between the different outcomes<br />

Predictor variables that Overall MC WC SE NS<br />

<strong>in</strong>creased the risk <strong>of</strong> disease<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>* + + + + +<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> sheep* + + + + +<br />

use <strong>of</strong> a mower conditioner* + + + + -<br />

r<strong>in</strong>g feeders for grass silage (<strong>in</strong>door)* + + + + -<br />

big bale silage* + - + + -<br />

maize silage feed<strong>in</strong>g* + + - - +<br />

not stor<strong>in</strong>g m<strong>an</strong>ure + + - + -<br />

vacc<strong>in</strong>at<strong>in</strong>g aga<strong>in</strong>st Leptospirosis* + + - - -<br />

straw bedd<strong>in</strong>g <strong>in</strong> cubicle* - - + + -<br />

big bale silage out uncovered* - + - - -<br />

grass silage ad libitum (outdoor) - - - + -<br />

clamp grass silage - - - + -<br />

decreased the risk <strong>of</strong> disease<br />

wilt<strong>in</strong>g + - + - -<br />

controll<strong>in</strong>g moles* - - + - +<br />

MC milk<strong>in</strong>g cows, WC w<strong>in</strong>ter cases, SE silage eye, NS nervous signs, + association with outcome<br />

variables, - no association with outcome variables, * also statistically signific<strong>an</strong>t <strong>in</strong> univariate <strong>an</strong>alysis<br />

(iii) Model 2:


This model was similar to the Model 1 but <strong>in</strong>cluded only those farmers who fed<br />

maize silage (224 farms reported feed<strong>in</strong>g maize silage). Maize silage related variables<br />

(mak<strong>in</strong>g, stor<strong>in</strong>g, feed<strong>in</strong>g etc.), all hous<strong>in</strong>g, dung disposal <strong>an</strong>d general m<strong>an</strong>agement<br />

variables were also <strong>in</strong>cluded <strong>in</strong> the model. The variables used <strong>in</strong> this model are listed<br />

below.<br />

Forage feed<strong>in</strong>g<br />

Grass silage<br />

Maize silage<br />

Hay<br />

Straw<br />

Root crops<br />

Hous<strong>in</strong>g<br />

housed<br />

cubicles<br />

used<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust<br />

straw<br />

General<br />

m<strong>an</strong>agement<br />

1) Overall cases:<br />

Maize silage<br />

fed<br />

source<br />

home made<br />

outdoor feed<strong>in</strong>g<br />

fed<br />

<strong>in</strong> complete diet<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g bedd<strong>in</strong>g<br />

remov<strong>in</strong>g bedd<strong>in</strong>g<br />

cle<strong>an</strong><strong>in</strong>g out<br />

loose yard<br />

used<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust<br />

pasture m<strong>an</strong>agement<br />

spread dung on the<br />

field<br />

graz<strong>in</strong>g beef <strong>cattle</strong><br />

graz<strong>in</strong>g sheep<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed<br />

ad libitum<br />

on the floor<br />

<strong>in</strong> complete diet<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

<strong>in</strong> troughs<br />

straw<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g bedd<strong>in</strong>g<br />

remov<strong>in</strong>g bedd<strong>in</strong>g<br />

cle<strong>an</strong><strong>in</strong>g out<br />

other houses<br />

Listeriosis <strong>in</strong> others<br />

beef <strong>cattle</strong><br />

sheep<br />

Vacc<strong>in</strong>e<br />

Leptospirosis<br />

type <strong>of</strong> harvester<br />

forage harvester<br />

additive use<br />

used<br />

storage<br />

clamp<br />

dung disposal<br />

solid m<strong>an</strong>ure<br />

storage<br />

not stored<br />

slurry<br />

disposed<br />

Lung worm<br />

Herd size<br />

cows <strong>in</strong> 1995<br />

heifers <strong>in</strong> 1995


Cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>: Listeriosis <strong>in</strong> beef <strong>cattle</strong> was found to <strong>in</strong>crease the<br />

risk <strong>of</strong> disease (OR 13.7, CL 1.31-144.0) (Table 4. 8).<br />

Maize silage feed<strong>in</strong>g: Dur<strong>in</strong>g <strong>in</strong>door period feed<strong>in</strong>g maize silage <strong>in</strong> r<strong>in</strong>g feeders (OR<br />

5.09, CL 2.19-11.87) <strong>an</strong>d ad libitum feed<strong>in</strong>g maize silage (OR 3.69, CL 1.04-13.17)<br />

were associated with <strong>an</strong> <strong>in</strong>creased risk Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> (Table 4. 8).<br />

Exclusion <strong>of</strong> herd size <strong>an</strong>d herd size <strong>an</strong>d cases <strong>of</strong> <strong>listeriosis</strong> beef <strong>cattle</strong> did not<br />

alter the results but slight ch<strong>an</strong>ges <strong>in</strong> odds ratio were observed.<br />

Table 4. 8. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d Listeriosis<br />

Number <strong>of</strong> observations=176 OR 95% CL p value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 13.71 1.31-144 0.03<br />

r<strong>in</strong>g feeder for maize silage<br />

(<strong>in</strong>door)<br />

5.09 2.19-11.87


Table 4. 9. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d Listeriosis<br />

<strong>in</strong> milk<strong>in</strong>g cows<br />

Number <strong>of</strong> observations=176 OR 95% CL p value<br />

r<strong>in</strong>g feeder for maize silage (<strong>in</strong>door) 6.5 2.48-17.15


4) Silage eye cases:<br />

Cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong>: The presence <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> silage eye (OR 35.5, CL 3.08-<br />

409) (Table 4. 11).<br />

Maize silage feed<strong>in</strong>g: Feed<strong>in</strong>g maize silage <strong>in</strong> r<strong>in</strong>g feeders when <strong>an</strong>imals were housed<br />

(OR 4.37, CL 1.54-12.4) was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g silage eye<br />

cases (Table 4. 11)<br />

Use <strong>of</strong> straw bedd<strong>in</strong>g: Big bale straw bedd<strong>in</strong>g was negatively associated with report<strong>in</strong>g<br />

silage eye cases (OR 0.18, CL 0.04-0.87) (Table 4. 11)<br />

When herd size <strong>an</strong>d herd size <strong>an</strong>d cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> were<br />

excluded from the model the same variables were still associated with disease (Table 4.<br />

11).<br />

Table 4. 11. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

Listeriosis with silage eye<br />

Number <strong>of</strong> observations=176 OR 95% CL p value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> 35.5 3.08-409 0.004<br />

r<strong>in</strong>g feeder for maize silage<br />

(<strong>in</strong>door)<br />

4.37 1.54-12.4 0.006<br />

big bale straw bedd<strong>in</strong>g 0.18 0.08-0.87 0.034<br />

OR adjusted odds ratio, 95% CL, 95% confidence limit.


5) Nervous signs:<br />

Cases <strong>of</strong> Listeriosis <strong>in</strong> sheep: The presence <strong>of</strong> Listeriosis <strong>in</strong> sheep was associated with<br />

<strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> Listeriosis with nervous signs (OR 10.15, CL<br />

1.3-78.5) (Table 4.12).<br />

Maize silage feed<strong>in</strong>g: Feed<strong>in</strong>g maize silage ad libitum (OR 7.68, CL 1.59-37.08) <strong>an</strong>d <strong>in</strong><br />

r<strong>in</strong>g feeders (OR 4.3, CL 1.07-17.9) when <strong>an</strong>imals were housed was associated with <strong>an</strong><br />

<strong>in</strong>creased risk <strong>of</strong> disease (Table 4. 12).<br />

The exclusion <strong>of</strong> herd size <strong>an</strong>d herd size <strong>an</strong>d cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong><br />

did not alter the results.<br />

Table 4. 12. The multivariate relationship between farm<strong>in</strong>g practices <strong>an</strong>d cases <strong>of</strong><br />

Listeriosis show<strong>in</strong>g nervous signs<br />

Number <strong>of</strong> observations=176 OR 95% CL p value<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> sheep 10.15 1.3-78.5 0.02<br />

maize silage feed<strong>in</strong>g ad libitum (<strong>in</strong>door) 7.68 1.59-37.08 0.01<br />

r<strong>in</strong>g feeder for maize silage (<strong>in</strong>door) 4.3 1.07-17.9 0.04<br />

OR adjusted odds ratio, 95% CL, 95% confidence limit.<br />

Overall 7 predictor variables were associated with <strong>an</strong>y <strong>of</strong> the outcome variables.<br />

Of these 5 were associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g disease <strong>an</strong>d 2 were with a<br />

decreased risk <strong>of</strong> disease (Table 4. 13). Only feed<strong>in</strong>g maize silage <strong>in</strong> r<strong>in</strong>g feeders when<br />

<strong>an</strong>imals were housed was associated with all outcome variables. Feed<strong>in</strong>g maize silage<br />

ad libitum when <strong>an</strong>imals were housed was also associated with the outcome variables


with the exception <strong>of</strong> silage eye cases. Cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong> were associated<br />

with only two outcome variables (associated with overall <strong>an</strong>d nervous signs) <strong>an</strong>d the<br />

rest were associated with one outcome variable (Table 4. 13). 5 <strong>of</strong> the 7 variables were<br />

also signific<strong>an</strong>t <strong>in</strong> the univariate <strong>an</strong>alysis. However, the use straw bedd<strong>in</strong>g <strong>in</strong> this model<br />

was associated with a decreased risk <strong>of</strong> disease.<br />

Table 4. 13. The agreement between the different outcome variables.<br />

Predictor variables that O MC WC SE NS<br />

<strong>in</strong>creased the risk <strong>of</strong> disease<br />

r<strong>in</strong>g feeders for maize silage (<strong>in</strong>door)* + + + + +<br />

maize silage ad libitum (<strong>in</strong>door)* + + + - +<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> * + - - + -<br />

maize silage <strong>in</strong> complete diet (<strong>in</strong>door) - + - - -<br />

cases <strong>of</strong> Listeriosis <strong>in</strong> sheep* - - - - +<br />

decreased the risk <strong>of</strong> disease<br />

big bale straw bedd<strong>in</strong>g - - - + -<br />

straw bedd<strong>in</strong>g <strong>in</strong> cubicle* - + - - -<br />

MC milk<strong>in</strong>g cows, WC w<strong>in</strong>ter cases, SE silage eye, NS nervous signs, + association with outcome<br />

variables, - no association with outcome variables, * also statistically signific<strong>an</strong>t <strong>in</strong> univariate <strong>an</strong>alysis<br />

4. 4. Discussion:<br />

A statistically signific<strong>an</strong>t association was found between 19 predictor variables<br />

<strong>an</strong>d the outcome variables us<strong>in</strong>g 3 separate models. In the first model major risk factors<br />

were identified <strong>an</strong>d these were <strong>in</strong>vestigated <strong>in</strong> more details <strong>in</strong> subsequent models. When<br />

different outcomes were considered fewer predictor variables were associated with<br />

cases <strong>of</strong> Listeriosis show<strong>in</strong>g nervous signs th<strong>an</strong> other outcomes, this may be due to fact<br />

that a small number <strong>of</strong> farms reported cases <strong>of</strong> Listeriosis show<strong>in</strong>g nervous signs. Of<br />

these 19 variables 12 were also found to be signific<strong>an</strong>t <strong>in</strong> the univariate <strong>an</strong>alysis. Cases<br />

<strong>of</strong> Listeriosis <strong>in</strong> beef <strong>cattle</strong> <strong>an</strong>d sheep, use <strong>of</strong> a mower conditioner, maize silage feed<strong>in</strong>g,<br />

big bale silage, storage <strong>of</strong> big bale outside uncovered, <strong>in</strong>door feed<strong>in</strong>g grass silage <strong>in</strong> r<strong>in</strong>g


feeders, maize silage feed<strong>in</strong>g <strong>in</strong> r<strong>in</strong>g feeders <strong>an</strong>d ad libitum when <strong>an</strong>imals were housed,<br />

vacc<strong>in</strong>at<strong>in</strong>g <strong>an</strong>imals aga<strong>in</strong>st Leptospirosis, use <strong>of</strong> straw bedd<strong>in</strong>g <strong>in</strong> cubicles <strong>an</strong>d<br />

controll<strong>in</strong>g moles <strong>in</strong> the fields were associated with the disease <strong>in</strong> both multivariate <strong>an</strong>d<br />

univariate <strong>an</strong>alysis. The ways <strong>in</strong> which these variables may play a role <strong>in</strong> the occurrence<br />

<strong>of</strong> disease have already been dealt with <strong>in</strong> the previous chapter.<br />

In addition, 7 more variables were statistically associated with the outcome<br />

variables <strong>in</strong> the multivariate <strong>an</strong>alysis, 1 (graz<strong>in</strong>g sheep on the same pasture <strong>an</strong>d <strong>dairy</strong><br />

<strong>cattle</strong>) <strong>in</strong> the prelim<strong>in</strong>ary model, 4 variables (wilt<strong>in</strong>g grass prior to ensil<strong>in</strong>g, stor<strong>in</strong>g<br />

grass silage <strong>in</strong> the clamps, outdoor feed<strong>in</strong>g grass silage ad libitum <strong>an</strong>d not stor<strong>in</strong>g<br />

m<strong>an</strong>ure) <strong>in</strong> model 1 <strong>an</strong>d 2 variables (<strong>in</strong>door feed<strong>in</strong>g maize silage <strong>in</strong> a complete diet <strong>an</strong>d<br />

use <strong>of</strong> big bale straw as bedd<strong>in</strong>g) <strong>in</strong> model 2.<br />

In the previous chapter the import<strong>an</strong>ce <strong>of</strong> proper silage mak<strong>in</strong>g has been po<strong>in</strong>ted<br />

out. It is known that one <strong>of</strong> the most import<strong>an</strong>t components <strong>of</strong> perfect silage<br />

fermentation is the carbohydrate concentration <strong>of</strong> grass which ensures lower pH by<br />

allow<strong>in</strong>g Lactic acid bacteria (LAB) to outgrow other org<strong>an</strong>isms <strong>in</strong> the silage result<strong>in</strong>g<br />

<strong>in</strong> more production <strong>of</strong> lactic acids. Increases <strong>in</strong> dry matters me<strong>an</strong> <strong>an</strong> <strong>in</strong>crease <strong>in</strong><br />

carbohydrate concentration <strong>an</strong>d therefore <strong>in</strong> the number <strong>of</strong> LAB (Anon 1983, Fenlon<br />

<strong>an</strong>d others 1995b). One way <strong>of</strong> achiev<strong>in</strong>g <strong>an</strong> <strong>in</strong>crease <strong>in</strong> number <strong>of</strong> LAB is wilt<strong>in</strong>g grass<br />

prior to ensilage. In this <strong>study</strong> wilt<strong>in</strong>g grass was associated with a decreased risk <strong>of</strong><br />

disease.<br />

Storage <strong>of</strong> grass silage <strong>in</strong> clamps <strong>an</strong>d outdoor ad libitum feed<strong>in</strong>g grass silage<br />

were associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> silage eye. This may be<br />

expla<strong>in</strong>ed <strong>in</strong> several ways. Silage fed from the clamps may have conta<strong>in</strong>ed the top <strong>of</strong><br />

clamp where the growth <strong>of</strong> org<strong>an</strong>isms was enh<strong>an</strong>ced due to air exposure <strong>an</strong>d spoilage,<br />

or alternatively <strong>an</strong>imals may have had free access to the clamp where they may have<br />

eaten silage at the clamp face which as expla<strong>in</strong>ed <strong>in</strong> the previous chapter, may have


caused damage on the conjunctival membr<strong>an</strong>es allow<strong>in</strong>g L. monocytogenes to penetrate<br />

these membr<strong>an</strong>es. The latter assumption may f<strong>in</strong>d some support from the association<br />

found between outdoor ad libitum feed<strong>in</strong>g grass silage <strong>an</strong>d <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

report<strong>in</strong>g silage eye <strong>in</strong> this <strong>study</strong>. Another expl<strong>an</strong>ation for the effect <strong>of</strong> outdoor ad<br />

libitum feed<strong>in</strong>g may be that the quality <strong>of</strong> silage would be poorer due to exposure to air<br />

<strong>an</strong>d unfavourable weather conditions therefore the qu<strong>an</strong>tity <strong>of</strong> L. monocytogenes would<br />

be much higher th<strong>an</strong> at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> silage feed<strong>in</strong>g.<br />

Maize silage feed<strong>in</strong>g <strong>in</strong> a complete diet when <strong>an</strong>imals were housed was<br />

associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> report<strong>in</strong>g Listeriosis <strong>in</strong> milk<strong>in</strong>g cows. This may<br />

have been due to <strong>an</strong> <strong>in</strong>crease <strong>in</strong> the numbers <strong>of</strong> the org<strong>an</strong>ism <strong>in</strong> the diet because a<br />

complete diet conta<strong>in</strong>s several forages <strong>in</strong>clud<strong>in</strong>g hay, straw, grass silage.<br />

It is known that spread<strong>in</strong>g <strong>an</strong>imal waste on fields plays <strong>an</strong> import<strong>an</strong>t role <strong>in</strong><br />

environmental contam<strong>in</strong>ation with L. monocytogenes <strong>an</strong>d poses great a health hazard to<br />

<strong>an</strong>imals <strong>an</strong>d hum<strong>an</strong>s (Wray 1975, Jones 1980, Pell 1997). In this <strong>study</strong> there was a<br />

statistically signific<strong>an</strong>t association between not stor<strong>in</strong>g m<strong>an</strong>ure <strong>an</strong>d <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong><br />

disease (overall cases <strong>an</strong>d cases <strong>in</strong> milk<strong>in</strong>g cows). These farms may have spread m<strong>an</strong>ure<br />

on the fields where <strong>an</strong>imals were graz<strong>in</strong>g or grass <strong>an</strong>d maize silage, hay or straw was<br />

made. This variable was also <strong>in</strong>cluded <strong>in</strong> all the multivariate models but it was not<br />

signific<strong>an</strong>tly associated with <strong>an</strong>y <strong>of</strong> the outcome variables.<br />

An association was found between the use <strong>of</strong> big bale straw as a bedd<strong>in</strong>g<br />

material <strong>an</strong>d a decreased risk <strong>of</strong> report<strong>in</strong>g cases <strong>of</strong> silage eye. This was only signific<strong>an</strong>t<br />

<strong>in</strong> the models 2 where the <strong>an</strong>alysis was restricted to those who fed maize silage. It may<br />

be that bal<strong>in</strong>g reduced the exposure <strong>of</strong> straw to unfavourable weather conditions or<br />

extra contam<strong>in</strong>ation with L. monocytogenes orig<strong>in</strong>at<strong>in</strong>g from other sources, result<strong>in</strong>g <strong>in</strong><br />

the straw be<strong>in</strong>g free <strong>of</strong> L. monocytogenes or harbour<strong>in</strong>g very low numbers <strong>of</strong> the<br />

org<strong>an</strong>ism.


A contradictory f<strong>in</strong>d<strong>in</strong>g was made about the use <strong>of</strong> straw bedd<strong>in</strong>g <strong>in</strong> cubicles.<br />

This was associated with <strong>an</strong> <strong>in</strong>creased risk <strong>of</strong> disease <strong>in</strong> univariate <strong>an</strong>alysis <strong>an</strong>d <strong>in</strong> model<br />

1. However, it was associated with a decreased risk <strong>of</strong> report<strong>in</strong>g Listeriosis <strong>in</strong> milk<strong>in</strong>g<br />

cows <strong>in</strong> model 2. It may be speculated that the majority <strong>of</strong> farmers may have had better<br />

m<strong>an</strong>agement system or cubicle hous<strong>in</strong>g system on those farms who fed only maize<br />

silage.<br />

There was a negative association between graz<strong>in</strong>g sheep on the same field as<br />

<strong>dairy</strong> <strong>cattle</strong> <strong>an</strong>d the risk <strong>of</strong> disease. This may have been due to better pasture<br />

m<strong>an</strong>agement. It may be possible that sheep grazed on the pasture dur<strong>in</strong>g w<strong>in</strong>ter months<br />

when <strong>an</strong>imals were housed. Even if sheep excreted the org<strong>an</strong>ism dur<strong>in</strong>g this period, by<br />

the time that <strong>dairy</strong> <strong>cattle</strong> were turned out sheep had long been moved to other fields <strong>an</strong>d<br />

the org<strong>an</strong>ism may have decreased signific<strong>an</strong>tly <strong>in</strong> number. It is known that L.<br />

monocytogenes survives <strong>in</strong> sheep faeces for 3 months (reviewed by Radostits <strong>an</strong>d<br />

others 1994)<br />

The <strong>an</strong>alysis <strong>of</strong> the questionnaire data has enabled us to identify some import<strong>an</strong>t<br />

risk factors for cl<strong>in</strong>ical Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> at farm level. These factors are ma<strong>in</strong>ly<br />

related to the <strong>in</strong>fection pressure <strong>of</strong> the org<strong>an</strong>ism. The <strong>study</strong> has shown the import<strong>an</strong>ce <strong>of</strong><br />

proper silage mak<strong>in</strong>g, preservation <strong>an</strong>d methods <strong>of</strong> feed<strong>in</strong>g. It has also suggested the<br />

import<strong>an</strong>ce <strong>of</strong> better m<strong>an</strong>agement at hous<strong>in</strong>g (e.g. use <strong>of</strong> bedd<strong>in</strong>g, dung disposal) <strong>an</strong>d<br />

some general m<strong>an</strong>agement factors (e.g. control <strong>of</strong> moles <strong>in</strong> the fields, separation <strong>of</strong> sick<br />

<strong>an</strong>imals). However to reach a better underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> the disease L. monocytogenes<br />

<strong>in</strong>fection should also be <strong>in</strong>vestigated at <strong>in</strong>dividual <strong>an</strong>imal level. The next two chapters<br />

consider the <strong>in</strong>fection <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>an</strong>d its possible risk factors.


CHAPTER 5<br />

A pilot <strong>study</strong> <strong>of</strong> the bacteriological <strong>an</strong>d serological techniques<br />

used to determ<strong>in</strong>e the <strong>in</strong>fection <strong>of</strong> cows with Listeria<br />

5. 1. Introduction:<br />

monocytogenes<br />

Sensitive techniques for the isolation <strong>an</strong>d identification <strong>of</strong> L. monocytogenes are<br />

essential for the diagnosis <strong>of</strong> outbreaks <strong>an</strong>d sporadic cases <strong>of</strong> Listeriosis. They are<br />

also import<strong>an</strong>t <strong>in</strong> <strong>epidemiological</strong> <strong>in</strong>vestigations <strong>an</strong>d <strong>in</strong> assess<strong>in</strong>g the bacteriological<br />

safety <strong>of</strong> food.<br />

Listeria grow well on most <strong>of</strong> the commonly used bacteriological culture media<br />

after <strong>in</strong>itial isolation (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966). However <strong>in</strong>itial isolation from<br />

contam<strong>in</strong>ated materials has always been challeng<strong>in</strong>g (Murray <strong>an</strong>d others 1926, Farber<br />

<strong>an</strong>d Peterk<strong>in</strong> 1991). This difficulty stimulated a search for more selective methods <strong>of</strong><br />

isolation which was also fuelled by the <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> outbreaks <strong>of</strong> Listeriosis<br />

<strong>in</strong> people associated with the consumption <strong>of</strong> food contam<strong>in</strong>ated with L.<br />

monocytogenes. The aim <strong>of</strong> these developments was to detect small numbers <strong>of</strong> L.<br />

monocytogenes, <strong>in</strong> a shorter period <strong>of</strong> time <strong>an</strong>d also to <strong>in</strong>crease the probability <strong>of</strong><br />

recover<strong>in</strong>g <strong>in</strong>jured org<strong>an</strong>isms (Buch<strong>an</strong><strong>an</strong>, 1990). Several techniques were employed;<br />

direct plat<strong>in</strong>g on selective <strong>an</strong>d non-selective agar <strong>an</strong>d the use <strong>of</strong> selective <strong>an</strong>d non-<br />

129


selective enrichment broth, at refrigeration or higher temperatures, prior to plat<strong>in</strong>g<br />

(Curtis <strong>an</strong>d Lee 1995).<br />

Direct plat<strong>in</strong>g is rapid but unreliable. The limit <strong>of</strong> detection is <strong>of</strong>ten too low to<br />

recover L. monocytogenes from samples conta<strong>in</strong><strong>in</strong>g small number <strong>of</strong> bacteria <strong>an</strong>d L.<br />

monocytogenes is outgrown when heavily contam<strong>in</strong>ated samples such as faeces are<br />

exam<strong>in</strong>ed. This gave rise to a need for <strong>an</strong> enrichment step prior to plat<strong>in</strong>g.<br />

The first enrichment procedure used for Listeria was “cold enrichment”. This was<br />

first advocated by Gray <strong>an</strong>d others (1948) when they found that exposure <strong>of</strong> the<br />

Listeria negative samples <strong>of</strong> cow bra<strong>in</strong> <strong>in</strong> tryptose broth to refrigeration temperature<br />

(4 0 C) prior to plat<strong>in</strong>g resulted <strong>in</strong> growth <strong>of</strong> L. monocytogenes after a period <strong>of</strong> up to 3<br />

months. This procedure was the only enrichment procedure used for a number <strong>of</strong> years<br />

<strong>an</strong>d is still used successfully to exam<strong>in</strong>e cl<strong>in</strong>ical specimens such as bra<strong>in</strong> (Gray <strong>an</strong>d<br />

others 1950), milk (Larsen 1966) <strong>an</strong>d silage (Gray 1960b, Fenlon 1985). Its major<br />

drawback is that it takes months to reach <strong>an</strong>y conclusion. This makes it unsuitable for<br />

<strong>epidemiological</strong> <strong>in</strong>vestigations <strong>an</strong>d the microbiological exam<strong>in</strong>ation <strong>of</strong> food.<br />

The emergence <strong>of</strong> Listeria as a food borne pathogen resulted <strong>in</strong> the development<br />

<strong>of</strong> more rapid selective culture media. These culture media <strong>in</strong>corporated <strong>an</strong>tibiotics to<br />

which Listeria are resist<strong>an</strong>t. Polymix<strong>in</strong> B <strong>in</strong> tryptose phosphate broths (Bojsen-Moller<br />

1972) <strong>an</strong>d trypaflav<strong>in</strong> <strong>an</strong>d nalidixic acid <strong>in</strong> Levithal broth (Ralovich <strong>an</strong>d others 1972)<br />

were the first selective liquid media to be developed. Watk<strong>in</strong>s <strong>an</strong>d Sleath (1981) also<br />

developed <strong>an</strong> enrichment broth conta<strong>in</strong><strong>in</strong>g nalidixic acid <strong>an</strong>d thiocy<strong>an</strong>ate to recover<br />

listeria from sewage. Nalidixic acid was used <strong>in</strong> all selective enrichment broths to<br />

<strong>in</strong>hibit Gram negative bacteria. Acriflav<strong>in</strong> was also used for this purpose. Further<br />

developments were L-PALCAM (v<strong>an</strong> Netten <strong>an</strong>d others 1989) which conta<strong>in</strong>s<br />

polymix<strong>in</strong>, ceftazid<strong>in</strong>e <strong>an</strong>d lithium chloride <strong>in</strong> place <strong>of</strong> nalidixic acid <strong>an</strong>d Fraser`s<br />

Broth (Fraser <strong>an</strong>d Sperber 1988) <strong>in</strong> which Lithium bromide was <strong>in</strong>corporated <strong>in</strong><br />

130


addition to nalidixic acid. Lovett <strong>an</strong>d others (1987) <strong>in</strong>cluded cyclohexamide <strong>in</strong> the<br />

FDA (United States Food <strong>an</strong>d Drug Adm<strong>in</strong>istration) broth to <strong>in</strong>hibit yeast <strong>an</strong>d moulds.<br />

This orig<strong>in</strong>al formulation <strong>of</strong> Lovett <strong>an</strong>d others (1987) was further developed by USDA<br />

(United States Department <strong>of</strong> Agriculture) to trace Listeria <strong>in</strong> meat samples (McCla<strong>in</strong><br />

<strong>an</strong>d Lee 1988).<br />

In parallel to the development <strong>of</strong> selective enrichment broths, several selective<br />

agars were developed <strong>in</strong>corporat<strong>in</strong>g the same <strong>an</strong>tibiotics. Gray <strong>an</strong>d colleagues (1950)<br />

were aga<strong>in</strong> the first researchers to use selective agar by <strong>in</strong>clud<strong>in</strong>g potassium tellurate<br />

to <strong>in</strong>hibit Gram negative org<strong>an</strong>isms. McBride <strong>an</strong>d Girard (1960) developed a selective<br />

phenyl eth<strong>an</strong>ol agar conta<strong>in</strong><strong>in</strong>g lithium chloride, glyc<strong>in</strong>e <strong>an</strong>d blood. This was the only<br />

commercially available selective agar for a considerable time. A major problem was<br />

its <strong>in</strong>ability to <strong>in</strong>hibit enterococci. Lee <strong>an</strong>d McCla<strong>in</strong> (1986) later modified McBride<br />

agar by remov<strong>in</strong>g glyc<strong>in</strong>e <strong>an</strong>d blood, add<strong>in</strong>g moxalactam <strong>an</strong>d glyc<strong>in</strong>e <strong>an</strong>hydride <strong>an</strong>d<br />

<strong>in</strong>creas<strong>in</strong>g the concentration <strong>of</strong> lithium chloride. Ralovich <strong>an</strong>d colleagues (1971) also<br />

used trypaflav<strong>in</strong> <strong>an</strong>d nalidixic acid <strong>in</strong> a serum based agar.<br />

The discovery that Listeria org<strong>an</strong>isms were resist<strong>an</strong>t to higher concentrations <strong>of</strong><br />

lithium chloride led to development <strong>an</strong>d modification <strong>of</strong> m<strong>an</strong>y agars <strong>an</strong>d overcame the<br />

problem <strong>of</strong> enterococcal growth. Most <strong>of</strong> the agars currently used are a modification <strong>of</strong><br />

McBride (McBride <strong>an</strong>d Girard 1960) <strong>an</strong>d the Oxford formulation (Curtis <strong>an</strong>d others<br />

1989a). In addition to <strong>an</strong>tibiotics, one or more <strong>in</strong>dicators for Listeria were also<br />

<strong>in</strong>cluded <strong>in</strong> the medium such as aescul<strong>in</strong> <strong>in</strong> Oxford agar (Curtis <strong>an</strong>d others 1989),<br />

blood <strong>in</strong> enh<strong>an</strong>ced haemolysis agar (EHA, Cox <strong>an</strong>d others 1991) <strong>an</strong>d Fenlon Listeria<br />

agar (Fenlon 1985), m<strong>an</strong>nitol <strong>an</strong>d phenol red <strong>in</strong> PALCAM agar (v<strong>an</strong> Netten <strong>an</strong>d others<br />

1989) <strong>an</strong>d rhamnose <strong>in</strong> Modified Despeirres agar (Golden <strong>an</strong>d other 1988).<br />

Although the selectivity <strong>of</strong> media was <strong>in</strong>creased by <strong>in</strong>corporat<strong>in</strong>g <strong>an</strong>tibiotics <strong>in</strong> the<br />

culture medium it was noticed that highly selective media could also <strong>in</strong>hibit the<br />

131


growth <strong>of</strong> some stra<strong>in</strong>s <strong>of</strong> Listeria (Seeliger <strong>an</strong>d Jones 1986, Curtis <strong>an</strong>d other 1989b).<br />

To obta<strong>in</strong> maximum success <strong>in</strong> isolation <strong>of</strong> Listeria a three stage procedure was<br />

recommended (Curtis <strong>an</strong>d Lee 1995); (a) resuscitation or pre-enrichment (selective or<br />

non-selective) (b) selective enrichment <strong>an</strong>d (c) selective plat<strong>in</strong>g. This procedure has<br />

been used to isolate Listeria from food (Lewis <strong>an</strong>d Cory 1991, McLa<strong>in</strong> <strong>an</strong>d Lee,<br />

USDA method, 1988), sewage (Watk<strong>in</strong>s <strong>an</strong>d Sleath 1981), cl<strong>in</strong>ical samples (Eld <strong>an</strong>d<br />

others 1993) <strong>an</strong>d environmental samples (Fenlon 1985, Husu 1990).<br />

The difficulty <strong>in</strong> isolat<strong>in</strong>g L. monocytogenes me<strong>an</strong>s that bacteriological methods<br />

are not always satisfactory when attempt<strong>in</strong>g to determ<strong>in</strong>e the exposure <strong>of</strong> <strong>an</strong>imals to<br />

Listeria org<strong>an</strong>isms (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966) <strong>an</strong>d serological techniques have been<br />

used as supplementary tools for this purpose. Specific ELISA tests, employ<strong>in</strong>g cell<br />

products <strong>in</strong>volved <strong>in</strong> pathogenesis such as listeriolys<strong>in</strong> O, have been used <strong>in</strong><br />

experimental studies. No large scale use <strong>of</strong> these ELISA assays, <strong>in</strong>volv<strong>in</strong>g field studies<br />

has, yet been conducted (Berche <strong>an</strong>d others 1990, Low <strong>an</strong>d Donachie 1991, Low <strong>an</strong>d<br />

others 1992b, Gholizadeh <strong>an</strong>d others 1996).<br />

A pilot <strong>study</strong> <strong>in</strong>volv<strong>in</strong>g a <strong>dairy</strong> herd was carried out to develop <strong>an</strong>d st<strong>an</strong>dardise<br />

bacteriological <strong>an</strong>d serological techniques which would be used <strong>in</strong> a longitud<strong>in</strong>al<br />

survey <strong>of</strong> L. monocytogenes <strong>in</strong>fection.<br />

5. 2. Materials <strong>an</strong>d methods<br />

132


5. 2. 1. Study design :<br />

This pilot <strong>study</strong> was carried out over a 12 month period, between September 1994<br />

<strong>an</strong>d August 1995 <strong>an</strong>d <strong>in</strong>volved a <strong>dairy</strong> herd <strong>of</strong> 99 Holste<strong>in</strong> cows on the University <strong>of</strong><br />

Bristol’s farm.<br />

The herd was housed between October, 24th 1994 <strong>an</strong>d April, 12th 1995. Silage<br />

was fed to <strong>an</strong>imals from the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> September 1994 to 12th April 1995.<br />

The herd was visited monthly with the exception <strong>of</strong> February 1995. Rectal faeces<br />

samples were collected from the <strong>an</strong>imals available at the time <strong>of</strong> each visit us<strong>in</strong>g<br />

lubricated (Lubrel, Arnolds, UK) rectal gloves. The first visit was made on 5th<br />

September, 1994 <strong>an</strong>d the last visit was made on 16th August 1995. Samples <strong>of</strong> silage<br />

were also taken from the cutt<strong>in</strong>g face <strong>of</strong> the clamp on four occasions. The dates <strong>of</strong> the<br />

visits <strong>an</strong>d the number <strong>of</strong> samples collected are shown <strong>in</strong> Table 5. 1.<br />

Table 5. 1. Date <strong>of</strong> visits <strong>an</strong>d number <strong>of</strong> samples collected<br />

a) Indoor period b) Outdoor period<br />

Month Date N Month Date N<br />

November 17/11/1994 69 May 17/5/1995 77<br />

December 15/12/1994 74 June 13/6/1995 75<br />

J<strong>an</strong>uary* 31/1/1995 77 July 18/7/1995 67<br />

February* ND ND August 16/81995 57<br />

March* 7/3/1995 79<br />

April* 12/4/1995 74<br />

Total 373 Total 276<br />

ND not done, N number <strong>of</strong> <strong>an</strong>imals sampled, * silage samples were also collected<br />

On the 12th <strong>of</strong> April 1995 the milk<strong>in</strong>g cows present on the farm were bled. A total<br />

<strong>of</strong> 77 sera were prepared <strong>an</strong>d held at -20 0 C until use.<br />

133


5. 2. 2. Bacteriology :<br />

a) Culture procedure: (Appendix 3)<br />

A three stage procedure was used to isolate Listeria. This <strong>in</strong>volved cold<br />

enrichment followed by the use <strong>of</strong> selective broth culture <strong>an</strong>d selective solid medium at<br />

higher temperatures. This was adapted from the technique described by Fenlon (1985)<br />

<strong>an</strong>d Lewis <strong>an</strong>d Corry (1991).<br />

Samples were first cultured when fresh <strong>an</strong>d then held at 4 0 C for a period <strong>of</strong> up to<br />

7 weeks to enh<strong>an</strong>ce the probability <strong>of</strong> isolat<strong>in</strong>g Listeria by cold enrichment. Samples<br />

which were negative at first culture were re-cultured at predeterm<strong>in</strong>ed optimal times (at<br />

the 3rd <strong>an</strong>d 7th weeks <strong>of</strong> cold storage).<br />

An aliquot <strong>of</strong> the sample was placed <strong>in</strong>to Listeria Selective Enrichment Broth<br />

(LSEB) (Lovett <strong>an</strong>d others 1987) <strong>in</strong> a universal conta<strong>in</strong>er to give a f<strong>in</strong>al concentration<br />

<strong>of</strong> approximately 1/10 (w/v) <strong>an</strong>d <strong>in</strong>cubated for 24 or 48 hours at 30 0 C. One loopful <strong>of</strong><br />

this broth culture was streaked out on to Listeria Selective Agar (LSA) (Curtis <strong>an</strong>d<br />

others 1989a) <strong>an</strong>d <strong>in</strong>cubated at 30 0 C for 48 hours (Figure 5. 1).<br />

Faecal samples collected <strong>in</strong> September (30 samples) <strong>an</strong>d <strong>in</strong> October (70<br />

samples) were cultured without cold enrichment. Listeria spp. were isolated from 3 <strong>of</strong><br />

the 100 samples.<br />

To <strong>in</strong>vestigate the effect <strong>of</strong> cold enrichment on the number <strong>of</strong> isolates, 20<br />

samples were collected <strong>in</strong> October 1994 <strong>an</strong>d stored at 4 0 C <strong>an</strong>d cultured weekly for 7<br />

weeks <strong>an</strong>d then aga<strong>in</strong> on weeks 13, 14 <strong>an</strong>d 15.<br />

The effect <strong>of</strong> stor<strong>in</strong>g the samples at 4 0 C <strong>in</strong> three liquid media, -sal<strong>in</strong>e, LSEB <strong>an</strong>d<br />

NB,- on the growth qu<strong>an</strong>tity was compared. The results obta<strong>in</strong>ed us<strong>in</strong>g these media<br />

134


were also compared with those obta<strong>in</strong>ed at 4 0 C <strong>in</strong> the absence <strong>of</strong> medium. For this<br />

<strong>study</strong> the 20 faecal samples collected <strong>in</strong> October 1994 (20) <strong>an</strong>d <strong>an</strong> additional 79<br />

samples collected <strong>in</strong> March 1995 were used. Cold enrichment was carried out by<br />

keep<strong>in</strong>g samples <strong>in</strong> either sal<strong>in</strong>e, LSEB, nutrient broth (NB) or no medium at 4°C <strong>an</strong>d<br />

cultur<strong>in</strong>g periodically for up to 7 weeks. Isolation <strong>an</strong>d identification was carried out<br />

accord<strong>in</strong>g to the methods given below (Figure 5. 1).<br />

b) Identification procedure: (Appendix 3)<br />

At least five colonies <strong>of</strong> Listeria were picked <strong>of</strong>f the LSA plates <strong>an</strong>d sub-<br />

cultured on 5% Sheep Blood Agar (SBA) or Horse Blood Agar (HBA) plates at 37 0 C<br />

overnight. The follow<strong>in</strong>g tests were carried out to identify the isolates as Listeria<br />

species:- Gram sta<strong>in</strong><strong>in</strong>g, Catalase test, Motility test, Haemolytic activity, CAMP test<br />

<strong>an</strong>d Carbohydrate utilisation. Information provided <strong>in</strong> Table 1. 1. was used to aid<br />

identification.<br />

Fresh sample<br />

Re-culture after Cold enrichment<br />

3 weeks at 4 0 C for 7 weeks<br />

135


cultur<strong>in</strong>g negative<br />

LSEB (1/10w/v) samples at 4 week<br />

at 30 0 C for 48 h <strong>an</strong>d 7 weeks <strong>in</strong>tervals<br />

Plat<strong>in</strong>g on LSA<br />

at 30 0 C for 48 h Identification tests:<br />

Gram sta<strong>in</strong><strong>in</strong>g<br />

Catalase<br />

Oxidase<br />

Motility<br />

Sub-cultur<strong>in</strong>g Haemolytic<br />

on SBA CAMP<br />

at 37 0 C for 24h Sugar utilisation<br />

Figure 5. 1. Isolation <strong>an</strong>d identification procedure for Listeria spp.<br />

1) Gram sta<strong>in</strong><strong>in</strong>g: Bacterial colonies smeared onto a cle<strong>an</strong> microscope slide were air<br />

dried, fixed by pass<strong>in</strong>g through the Bunsen flame two or three times <strong>an</strong>d placed on a<br />

sta<strong>in</strong><strong>in</strong>g rack. The slides were flooded with Crystal violet for 1 m<strong>in</strong>ute, washed under a<br />

runn<strong>in</strong>g tap, sta<strong>in</strong>ed with Gram’s iod<strong>in</strong>e for 1 m<strong>in</strong>ute <strong>an</strong>d then washed a second time.<br />

The slides were then decolourised with acetone for 15 seconds, washed <strong>an</strong>d counter<br />

sta<strong>in</strong>ed with Safron<strong>in</strong> for 30 seconds. The slides were washed, dried <strong>an</strong>d then exam<strong>in</strong>ed<br />

under a light microscope. Listeria were identified as Gram positive rods with a purple-<br />

blue colour.<br />

2) Haemolytic test: The haemolytic activity <strong>of</strong> the bacteria was assessed visually after<br />

culture on 5% Sheep (Horse) Blood Agar. Some members <strong>of</strong> the genus Listeria <strong>in</strong>duce<br />

vary<strong>in</strong>g degrees <strong>of</strong> erythrocyte lysis (L. monocytogenes, L. iv<strong>an</strong>ovii more haemolytic,<br />

136


<strong>an</strong>d L. seeligeri less haemolytic). A haemolytic colony selected from the plate was<br />

<strong>in</strong>oculated <strong>in</strong>to sterile sal<strong>in</strong>e for further tests (CAMP test, Sugar fermentation test etc.)<br />

<strong>in</strong> order to identify the isolate at the species level.<br />

3) Catalase test: A colony was placed on a microscope slide <strong>an</strong>d a drop <strong>of</strong> 3% hydrogen<br />

peroxide was added. Listeria have a catalase enzyme which converts hydrogen peroxide<br />

to water <strong>an</strong>d oxygen caus<strong>in</strong>g air bubbles to appear on the slide. It is import<strong>an</strong>t to note<br />

that catalase negative stra<strong>in</strong>s <strong>of</strong> L. monocytogenes have recently been reported to be<br />

implicated <strong>in</strong> hum<strong>an</strong> Listeriosis (Swartz <strong>an</strong>d others 1991, Bubert <strong>an</strong>d others 1997).<br />

4) Motility test: The motility <strong>of</strong> Listeria was exam<strong>in</strong>ed at 25 0 C us<strong>in</strong>g a h<strong>an</strong>g<strong>in</strong>g-drop<br />

technique. A bacterial suspension was prepared by add<strong>in</strong>g 2-3 colonies <strong>of</strong> Listeria to<br />

sal<strong>in</strong>e. It was then left at room temperature for 1-2 hours. A drop <strong>of</strong> the bacterial<br />

suspension was placed on a cover-slip <strong>an</strong>d <strong>in</strong>verted over a glass r<strong>in</strong>g fixed to a<br />

microscope slide. The preparation was exam<strong>in</strong>ed under a microscope. Listeria showed a<br />

tumbl<strong>in</strong>g movement.<br />

5) CAMP test: An isolate <strong>of</strong> Staphylococcus aureus <strong>an</strong>d Rhodococcus equi was<br />

streaked <strong>in</strong> one direction on 5% SBA plates <strong>an</strong>d L. monocytogenes, L. seeligeri <strong>an</strong>d L.<br />

iv<strong>an</strong>ovii were streaked at 90 0 <strong>an</strong>gles to (but not touch<strong>in</strong>g) them. After overnight<br />

<strong>in</strong>cubation at 37 0 C the plate was exam<strong>in</strong>ed for haemolysis. Enh<strong>an</strong>ced haemolysis <strong>of</strong> L.<br />

monocytogenes <strong>an</strong>d L. seeligeri <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> S. aureus was observed while<br />

haemolysis <strong>of</strong> L. ivonavii was enh<strong>an</strong>ced (shovel-shaped haemolysis) <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong><br />

R. equi.<br />

137


6) Sugar tests: Listeria are capable <strong>of</strong> produc<strong>in</strong>g acid from some carbohydrates<br />

(Rhamnose, Glucose, Xylose, M<strong>an</strong>nitol,) <strong>an</strong>d reduc<strong>in</strong>g nitrate to nitrite. 1% sugar plates<br />

conta<strong>in</strong><strong>in</strong>g different carbohydrates were prepared (Appendix 3) <strong>an</strong>d divided <strong>in</strong>to four<br />

quarters. An isolate <strong>of</strong> Listeria was streaked out on each quarter <strong>an</strong>d <strong>in</strong>cubated at 37 0 C<br />

overnight. A ch<strong>an</strong>ge <strong>in</strong> the colour <strong>of</strong> medium from red to yellow due to acid production<br />

confirmed the presence <strong>of</strong> Listeria.<br />

7) Storage <strong>of</strong> isolates: All isolates identified as Listeria spp. were placed on<br />

preservative beads as <strong>in</strong>structed by the m<strong>an</strong>ufacturer (TSC, L<strong>an</strong>cashire, UK) <strong>an</strong>d kept<br />

at -20 0 C.<br />

c) Investigation <strong>of</strong> the limit <strong>of</strong> detection:<br />

The method <strong>of</strong> Miles-Misra (reviewed by Corry 1982) was used to determ<strong>in</strong>e the<br />

detection limit <strong>of</strong> the culture method used <strong>in</strong> this <strong>study</strong>. Briefly a colony <strong>of</strong> L.<br />

monocytogenes grown on SBA was <strong>in</strong>oculated <strong>in</strong>to 10ml <strong>of</strong> LSEB <strong>an</strong>d <strong>in</strong>cubated<br />

overnight at 30 0 C. Twelve tenfold dilutions were prepared. Four 20μl drops from each<br />

dilutions were spotted on quartered LSA plates <strong>in</strong>cubat<strong>in</strong>g at 37 0 C for 48 hours <strong>an</strong>d<br />

2ml <strong>in</strong>to 10 g <strong>of</strong> faeces, previously autoclaved. The mixture was held at 4 0 C <strong>an</strong>d<br />

cultured weekly for three successive weeks <strong>an</strong>d aga<strong>in</strong> at the 7th week to determ<strong>in</strong>e the<br />

effect <strong>of</strong> cold enrichment on the limit <strong>of</strong> detection. The number <strong>of</strong> colony form<strong>in</strong>g<br />

units <strong>in</strong> the orig<strong>in</strong>al suspension was calculated by select<strong>in</strong>g LSA plates on which<br />

colonies could be easily counted. The weighted me<strong>an</strong> <strong>of</strong> the number <strong>of</strong> colonies <strong>in</strong><br />

each quarter was then calculated for 4 different dilutions <strong>of</strong> the start<strong>in</strong>g <strong>in</strong>oculum<br />

us<strong>in</strong>g the follow<strong>in</strong>g formula:<br />

cx + cx+1 + cx+2 .+ cx+3..<br />

138


mx =<br />

nx + 10 1 nx+1 + 10 2 nx+2 .+10 3 nx+3..<br />

where cx <strong>an</strong>d nx refer to the counts <strong>an</strong>d number <strong>of</strong> plates at lowest dilution <strong>an</strong>d cx+1 <strong>an</strong>d<br />

cx+1 etc. refer to successively higher dilution. The best estimate <strong>of</strong> the me<strong>an</strong> count <strong>in</strong> the<br />

start<strong>in</strong>g <strong>in</strong>oculum was then calculated as below<br />

M= mx x 10 x x y<br />

where y is the number <strong>of</strong> drops per ml <strong>of</strong> the dropp<strong>in</strong>g pipette.<br />

The values calculated for the bacterial concentration <strong>in</strong> the orig<strong>in</strong>al <strong>in</strong>oculum were<br />

then used to calculate the limit <strong>of</strong> detection.<br />

1g <strong>of</strong> known Listeria - positive faeces sample was <strong>in</strong>oculated <strong>in</strong>to 9ml <strong>of</strong> LSEB<br />

<strong>an</strong>d <strong>in</strong>cubated at 37 0 C for 48 hours <strong>an</strong>d processed as above. The detection limit was<br />

determ<strong>in</strong>ed <strong>in</strong> a similar m<strong>an</strong>ner us<strong>in</strong>g the same method <strong>of</strong> calculation.<br />

5. 2. 3. Serology<br />

a) Antigen Preparation :<br />

Serum <strong>an</strong>tibody to L. monocytogenes was detected us<strong>in</strong>g <strong>an</strong> ELISA. The <strong>an</strong>tigen<br />

used <strong>in</strong> this test was cholesterol precipitated Listeriolys<strong>in</strong> O (CP-LLO).<br />

This was prepared accord<strong>in</strong>g to the method <strong>of</strong> Vazquaz-Bol<strong>an</strong>d <strong>an</strong>d others<br />

(1989b) <strong>an</strong>d Jagger (1993) <strong>an</strong>d is described below.<br />

L. monocytogenes serotype 4b was streaked out onto a Horse (Sheep) Blood<br />

Agar plate <strong>an</strong>d <strong>in</strong>cubated at 37ºC for 24 hours. A colony from the plate was <strong>in</strong>oculated<br />

<strong>in</strong>to 10ml Bra<strong>in</strong> Heart Infusion Broth (BHIB) <strong>an</strong>d <strong>in</strong>cubated at 37ºC for 24 hours. The<br />

growth was harvested by centrifug<strong>in</strong>g the BHIB at 2000g for 20 m<strong>in</strong>utes. The<br />

supernat<strong>an</strong>t was poured <strong>of</strong>f <strong>an</strong>d the pellet was washed twice <strong>in</strong> sterile phosphate<br />

139


uffered sal<strong>in</strong>e (PBS), pH 7.2, centrifug<strong>in</strong>g at 2000g for 20 m<strong>in</strong>utes. The supernat<strong>an</strong>t<br />

was discarded <strong>an</strong>d the pellet was re-suspended <strong>in</strong> 50ml PBS. This <strong>in</strong>oculum was placed<br />

with<strong>in</strong> a dialysis membr<strong>an</strong>e previously <strong>in</strong>serted <strong>in</strong>to 1 litre <strong>of</strong> BHIB <strong>an</strong>d <strong>in</strong>cubated<br />

overnight, on a shaker, at 37ºC. The contents <strong>of</strong> the dialysis tube were harvested, after<br />

check<strong>in</strong>g the broth for evidence <strong>of</strong> contam<strong>in</strong>ation, <strong>an</strong>d then centrifuged at 2800g for 20<br />

m<strong>in</strong>utes. The supernat<strong>an</strong>t was pipetted <strong>of</strong>f, filtered through a sterile 0.45µl filter unit<br />

<strong>an</strong>d diluted with <strong>an</strong> equal volume <strong>of</strong> 0.20µM L-cyste<strong>in</strong>e (Sigma, Dorset, UK), <strong>in</strong> PBS<br />

pH 6.0. For every 10ml <strong>of</strong> mixture 0.5ml <strong>of</strong> cholesterol (10mg <strong>in</strong>1ml <strong>of</strong> eth<strong>an</strong>ol)<br />

(Sigma, Dorset, UK), were added. The mixture was then <strong>in</strong>cubated at 37ºC for 30<br />

m<strong>in</strong>utes on a shaker. The mixture was centrifuged at 25,000g for 30 m<strong>in</strong>utes at 4ºC <strong>an</strong>d<br />

the supernat<strong>an</strong>t discarded. The pellet was washed twice <strong>in</strong> PBS pH 7.2, centrifuged at<br />

25,000xg for 30 m<strong>in</strong>utes at 4ºC <strong>an</strong>d f<strong>in</strong>ally re-suspended <strong>in</strong> 2ml <strong>of</strong> Carbonate-<br />

bicarbonate buffer <strong>an</strong>d frozen at -20ºC.<br />

The haemolytic activity <strong>of</strong> Listeriolys<strong>in</strong> O obta<strong>in</strong>ed above was determ<strong>in</strong>ed<br />

accord<strong>in</strong>g to the method <strong>of</strong> Kreft <strong>an</strong>d others (1989). Briefly 200µl <strong>of</strong> the Listeriolys<strong>in</strong> O<br />

was put <strong>in</strong>to a sterile tube <strong>an</strong>d diluted with equal volume <strong>of</strong> PBS pH 6.0. 10µl <strong>of</strong> 0.1M<br />

dithioerythritol (Sigma, Dorset, UK) <strong>an</strong>d 10µl <strong>of</strong> the washed sheep erythrocytes were<br />

added to this mixture <strong>an</strong>d it was <strong>in</strong>cubated at 37ºC for 30 m<strong>in</strong>utes on shaker. A positive<br />

result was one <strong>in</strong> which complete haemolysis was observed.<br />

b) ELISA assay procedure: (Appendix 3)<br />

The ELISA procedure was adapted from that described by Low <strong>an</strong>d others<br />

(1991) <strong>an</strong>d Jagger (1993) <strong>an</strong>d is described below.<br />

The Listeriolys<strong>in</strong> O (LLO) <strong>an</strong>tigen was sonicated for 1 m<strong>in</strong>ute <strong>an</strong>d diluted to a<br />

work<strong>in</strong>g dilution. 100 μl <strong>of</strong> <strong>an</strong>tigen diluted <strong>in</strong> Carbonate-bicarbonate buffer, pH 9.6,<br />

(1:50) was used to coat a 96 well microtitre plate (Gre<strong>in</strong>er Laboratories, Glasgow, UK).<br />

140


The plate was <strong>in</strong>cubated at 37ºC overnight. The plate was washed 6 times <strong>in</strong> PBS<br />

Tween 20, st<strong>an</strong>d<strong>in</strong>g for 5 m<strong>in</strong>utes at the last wash. 100µl volumes <strong>of</strong> block<strong>in</strong>g buffer<br />

(1% Fetal Calf Serum <strong>in</strong> PBS) were added to each well <strong>an</strong>d the plate was left at room<br />

temperature for 4-5 hours. The plate was then washed 6 times <strong>in</strong> PBS Tween <strong>an</strong>d 100µl<br />

<strong>of</strong> serum diluted 1:50 <strong>in</strong> PBS were added to each well <strong>an</strong>d <strong>in</strong>cubated at room<br />

temperature for 4-5 hours. The plate was then washed aga<strong>in</strong> 6 times <strong>an</strong>d 100µl <strong>of</strong><br />

Alkal<strong>in</strong>e phosphatase conjugated Rabbit α Bov<strong>in</strong>e IgG (Sigma, Dorset, UK) diluted<br />

1:5000 was added to each well. The plate was <strong>in</strong>cubated at 4 0 C overnight, washed 6<br />

times <strong>an</strong>d 100µl phosphatase substrate (Sigma, Dorset, UK) (1mg/ml <strong>in</strong> carbonate-<br />

bicarbonate buffer) was added to each well. After st<strong>an</strong>d<strong>in</strong>g for 15-20 m<strong>in</strong>utes the<br />

read<strong>in</strong>g was taken at 405nm absorb<strong>an</strong>ce us<strong>in</strong>g <strong>an</strong> ELISA reader (Dynex Tech.,<br />

Guernsey UK).<br />

c) Optimisation <strong>of</strong> the assay <strong>an</strong>d specificity:<br />

Determ<strong>in</strong>ation <strong>of</strong> the optimal <strong>an</strong>tigen <strong>an</strong>d serum: The optimal work<strong>in</strong>g dilution <strong>of</strong><br />

<strong>an</strong>tigen <strong>an</strong>d positive control serum was worked out us<strong>in</strong>g chequerboard titration <strong>in</strong><br />

which different two fold dilutions <strong>of</strong> the <strong>an</strong>tigen were tested aga<strong>in</strong>st goat hyper-<br />

immune serum. 100μl <strong>of</strong> coat<strong>in</strong>g buffer was put <strong>in</strong> to each well 100μl <strong>of</strong> the <strong>an</strong>tigen<br />

was added to the first row <strong>of</strong> the plate <strong>an</strong>d doubl<strong>in</strong>g dilutions were made from 1:2 to<br />

1:256. 100μl hyper-immune serum were put <strong>in</strong>to the first column <strong>of</strong> the plate <strong>an</strong>d<br />

doubl<strong>in</strong>g dilutions made from 1:2 to 1:4096.<br />

Determ<strong>in</strong>ation <strong>of</strong> coat<strong>in</strong>g conditions: Three different temperatures, 4 0 C, room<br />

temperature <strong>an</strong>d 37 0 C, were used to optimise coat<strong>in</strong>g. 100μl <strong>of</strong> LLO <strong>in</strong> carbonate<br />

bicarbonate buffer at 1:50 dilution was used to coat 3 identical plates. The ELISA was<br />

done as described earlier.<br />

141


Investigation <strong>of</strong> non-specific b<strong>in</strong>d<strong>in</strong>gs: This was done by <strong>in</strong>sert<strong>in</strong>g <strong>an</strong> extra step<br />

between coat<strong>in</strong>g <strong>an</strong>d add<strong>in</strong>g the sample serum <strong>in</strong> which Bov<strong>in</strong>e Serum Album<strong>in</strong><br />

(BSA), Fetal Calf Serum (FCS), dried skimmed milk (Marvel) <strong>an</strong>d Pig Album<strong>in</strong> were<br />

tested for their capacity to reduce non-specific b<strong>in</strong>d<strong>in</strong>g.<br />

Investigat<strong>in</strong>g the specificity <strong>of</strong> the ELISA: A bov<strong>in</strong>e serum sample <strong>an</strong>d goat hyper-<br />

immune serum were <strong>in</strong>cubated with LLO heat killed L. monocytogenes <strong>an</strong>d L.<br />

monocytogenes culture supernat<strong>an</strong>t to <strong>in</strong>vestigate whether <strong>an</strong>tibody <strong>in</strong> the serum was<br />

specific to the L. monocytogenes <strong>an</strong>tigen. LLO was prepared as mentioned before.<br />

The culture supernat<strong>an</strong>t was obta<strong>in</strong>ed from BHIB dur<strong>in</strong>g the process <strong>of</strong> mak<strong>in</strong>g LLO.<br />

Listeria org<strong>an</strong>isms were prepared as follows; L. monocytogenes was grown on a blood<br />

agar plate <strong>an</strong>d the growth obta<strong>in</strong>ed was suspended <strong>in</strong> 2ml sal<strong>in</strong>e. The mixture was<br />

exposed to heat at 65 0 C for 30 m<strong>in</strong>utes. An equal volume (0.5ml) <strong>of</strong> the serum was<br />

mixed with <strong>an</strong> equal volume (0.5ml) <strong>of</strong> the <strong>an</strong>tigen (LLO), heat killed L.<br />

monocytogenes <strong>an</strong>d culture supernat<strong>an</strong>t. The mixtures were <strong>in</strong>cubated at room<br />

temperature overnight <strong>an</strong>d centrifuged at 20,000 rpm for 50 m<strong>in</strong>utes. The supernat<strong>an</strong>t<br />

was poured <strong>in</strong>to a sterile test tube <strong>an</strong>d filtered through 0.45μl filter unit. The result<strong>in</strong>g<br />

supernat<strong>an</strong>t was used <strong>in</strong> the ELISA as described earlier.<br />

5. 2. 4. Statistical <strong>an</strong>alysis:<br />

Epi-<strong>in</strong>fo version 6 (De<strong>an</strong> <strong>an</strong>d others 1994) was used to <strong>an</strong>alyse the data. A<br />

Yates’ corrected chi squared test was used to compare the differences between<br />

proportions. A Kruskal-Wallis test was used to compare the differences between medi<strong>an</strong><br />

142


values (De<strong>an</strong> <strong>an</strong>d others 1994). A probability <strong>of</strong> P< 0.05 was accepted as statistically<br />

signific<strong>an</strong>t.<br />

5. 3. Results:<br />

5. 3. 1. Results <strong>of</strong> bacteriology:<br />

The effect <strong>of</strong> extend<strong>in</strong>g the <strong>in</strong>cubation period: There was no ch<strong>an</strong>ge <strong>in</strong> the frequency <strong>of</strong><br />

isolat<strong>in</strong>g Listeria with the extended <strong>in</strong>cubation period but it enh<strong>an</strong>ced the quality <strong>of</strong> the<br />

Listeria growth by reduc<strong>in</strong>g contam<strong>in</strong>ation on the plates.<br />

The effect <strong>of</strong> cold storage: The samples collected <strong>in</strong> September (30) <strong>an</strong>d October (70)<br />

were cultured without cold enrichment to detect the presence <strong>of</strong> the org<strong>an</strong>ism. Only 3 <strong>of</strong><br />

them were presumably positive for L. monocytogenes. The samples collected <strong>in</strong><br />

subsequent months were cold enriched.<br />

Cold enrichment <strong>in</strong>creased the frequency <strong>of</strong> isolation <strong>of</strong> Listeria spp especially<br />

after the 3rd week (Table 5. 2.). As the length <strong>of</strong> cold storage was extended the number<br />

<strong>of</strong> Listeria isolates <strong>in</strong>creased.<br />

After cold enrichment <strong>an</strong>d weekly culture for 15 weeks, Listeria spp. had been<br />

identified <strong>in</strong> 18 <strong>of</strong> the 20 samples. This was taken as a “gold st<strong>an</strong>dard” to evaluate the<br />

sensitivity <strong>of</strong> culture after cold enrichment for different lengths <strong>of</strong> time. The sensitivity<br />

<strong>of</strong> culture was 0.72 (13/18) after 3 weeks <strong>of</strong> cold enrichment <strong>an</strong>d was highest after 7<br />

weeks <strong>of</strong> cold enrichment (0.94, 17/18). Similar results were found for L.<br />

monocytogenes. The sensitivity <strong>of</strong> the test was 0.56 (10/18) after 3 weeks <strong>of</strong> cold<br />

enrichment <strong>an</strong>d 0.61 (11/18) after 7 weeks. When these results <strong>of</strong> culture after 3 <strong>an</strong>d 7<br />

weeks <strong>of</strong> cold enrichment were comb<strong>in</strong>ed the sensitivity was 1 for Listeria spp. (18/18)<br />

143


<strong>an</strong>d 0.94 for L. monocytogenes (17/18). The results are shown <strong>in</strong> the Table 5. 2. On the<br />

basis <strong>of</strong> these results it was decided to culture faecal samples immediately after<br />

collection, then after 3 <strong>an</strong>d 7 weeks <strong>of</strong> cold enrichment.<br />

Table 5. 2. Effect <strong>of</strong> cold enrichment on the growth qu<strong>an</strong>tity <strong>of</strong> Listeria spp.<br />

weeks <strong>of</strong> cold enrichment<br />

N = 20 0 1 2 3* 4 5 6 7* 13 14 15<br />

Listeria spp 0 4 9 13 13 12 14 17 15 16 15<br />

(%)<br />

(20) (45) (65) (65) (60) (85) (85) (75) (80) (75)<br />

Sensitivity 0 0.22 0.5 0.72 0.72 0.67 0.78 0.94 0.83 0.89 0.83<br />

monocytogenes 0 4 7 10 10 6 10 11 11 12 13<br />

(%)<br />

(20) (35) (50) (50) (30) (50) (55) (55) (60) (65)<br />

Sensitivity 0 0.22 0.39 0.56 0.56 0.33 0.56 0.61 0.61 0.67 0.72<br />

( ) percentage, 0 cultured when fresh,* high sensitivity <strong>an</strong>d number <strong>of</strong> isolates, N number <strong>of</strong> samples<br />

exam<strong>in</strong>ed<br />

The effect <strong>of</strong> different storage media dur<strong>in</strong>g cold enrichment: Sal<strong>in</strong>e had <strong>an</strong> adverse<br />

affect on the growth qu<strong>an</strong>tity <strong>of</strong> Listeria after cold enrichment when compared with<br />

those kept with no media (Table 5. 3.) but this effect was not statistically signific<strong>an</strong>t<br />

(P=0.7 for first culture, P=1 for second culture).<br />

Table 5. 3. Effect <strong>of</strong> sal<strong>in</strong>e the isolation <strong>of</strong> Listeria.<br />

Listeria spp<br />

Culture<br />

Samples <strong>in</strong> no media Samples <strong>in</strong> sal<strong>in</strong>e<br />

N=20 (%)<br />

N=20 (%)<br />

1 14 (70) 12 (60)<br />

2<br />

N number <strong>of</strong> samples tested<br />

16 (80) 15 (75)<br />

LSEB <strong>an</strong>d NB were used to <strong>in</strong>crease the ch<strong>an</strong>ce <strong>of</strong> obta<strong>in</strong><strong>in</strong>g the maximum<br />

number <strong>of</strong> isolates <strong>of</strong> L. monocytogenes. 79 samples (collected <strong>in</strong> March) were used <strong>in</strong><br />

this <strong>study</strong>. Culture was carried out weekly for the first 3 weeks then after 7 weeks <strong>of</strong><br />

cold enrichment. Although <strong>an</strong> <strong>in</strong>crease <strong>in</strong> number <strong>of</strong> isolates was observed after the 1st<br />

144


week <strong>of</strong> cold enrichment these liquid media did not signific<strong>an</strong>tly <strong>in</strong>crease the number <strong>of</strong><br />

isolates over time. These results are given <strong>in</strong> the table 5. 4.<br />

Table 5. 4. Effect <strong>of</strong> LSEB <strong>an</strong>d NB on the growth <strong>of</strong> L. monocytogenes.<br />

weeks <strong>of</strong> cold enrichment<br />

0 1 2 3 7<br />

n=79 LSEB NB LSEB NB LSEB NB LSEB NB<br />

Listeria spp.<br />

%<br />

monocytogenes<br />

%<br />

4<br />

5<br />

3<br />

3.7<br />

20<br />

25.3<br />

9<br />

11.3<br />

21<br />

26.5<br />

7<br />

8.8<br />

20<br />

25.3<br />

11<br />

13.9<br />

LSEB Listeria Selective Enrichment Broth, NB Nutrient Broth<br />

22<br />

27.8<br />

9<br />

11.3<br />

21<br />

26.5<br />

9<br />

11.3<br />

23<br />

29.1<br />

11<br />

13.9<br />

22<br />

27.8<br />

9<br />

11.3<br />

24<br />

30.4<br />

10<br />

12.6<br />

The overall results are shown <strong>in</strong> the Figure 5. 2. This <strong>in</strong>dicates that cold<br />

enrichment improved the detection <strong>of</strong> Listeria positive samples. For example <strong>in</strong><br />

December the proportion <strong>of</strong> samples <strong>in</strong> which Listeria were identified was 10.6 % after<br />

fresh cultur<strong>in</strong>g, <strong>an</strong>d 70% after 7weeks <strong>of</strong> cold enrichment.<br />

Figure 5. 2. Effect <strong>of</strong> cold enrichment on the growth <strong>of</strong> listeria.<br />

(J* <strong>an</strong>d A* not cultured at 3rd week <strong>of</strong> cold enrichment, F* not done)<br />

Percentage<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

fresh<br />

3 weeks<br />

7 weeks<br />

N D J* F* M A* M J J A<br />

Month<br />

Period <strong>of</strong><br />

cold enrichment<br />

145


Detection limit <strong>of</strong> the method: A s<strong>in</strong>gle colony <strong>in</strong>serted <strong>in</strong>to 10ml <strong>of</strong> LSEB resulted <strong>in</strong><br />

the growth <strong>of</strong> 3.17x10 7 cfu/ml from which 3.17 org<strong>an</strong>isms/ml were isolated by the<br />

culture media as the lowest concentration detected. The lowest concentration <strong>of</strong><br />

org<strong>an</strong>isms that could be isolated from the known Listeria positive faecal sample was 7<br />

org<strong>an</strong>isms/g. The faecal samples spiked with each dilution <strong>of</strong> L. monocytogenes <strong>an</strong>d<br />

subjected to refrigeration temperature were cultured weekly for the first three<br />

successive weeks <strong>an</strong>d then after 7 weeks <strong>of</strong> cold enrichment for the presence <strong>of</strong> L.<br />

monocytogenes. It was observed that the sample spiked with 3.17x10 -1 cfu/ml<br />

org<strong>an</strong>isms revealed growth after the second week <strong>of</strong> cold enrichment.<br />

Pattern <strong>an</strong>d rate <strong>of</strong> excretion: The results <strong>of</strong> monthly herd visits are shown <strong>in</strong> the Figure<br />

5. 2. A total <strong>of</strong> 99 milk<strong>in</strong>g cows were sampled over one year. All <strong>an</strong>imals shed Listeria<br />

spp. at least once dur<strong>in</strong>g the <strong>study</strong>, 92.9% (92/99) <strong>of</strong> the cows excreted L.<br />

monocytogenes <strong>in</strong> their faeces at some stage whilst 7.1% excreted other Listeria spp.,<br />

ma<strong>in</strong>ly L. <strong>in</strong>nocua <strong>an</strong>d on one occasion L. seeligeri.<br />

The proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g Listeria was calculated for each month<br />

(Table 5. 5). The highest proportion was observed <strong>in</strong> J<strong>an</strong>uary when 89.9% (69/77) <strong>of</strong><br />

the cows were shedd<strong>in</strong>g Listeria spp. It rema<strong>in</strong>ed high dur<strong>in</strong>g the w<strong>in</strong>ter months. The<br />

excretion level decreased <strong>in</strong> May (16/77, 20.8%) <strong>an</strong>d thereafter. Similarly for L.<br />

monocytogenes, the highest excretion level was <strong>in</strong> J<strong>an</strong>uary, 51/77 <strong>an</strong>imals (63.2%) were<br />

shedd<strong>in</strong>g the bacteria (Figure 5. 3). The difference between the months was statistically<br />

signific<strong>an</strong>t (P


November S 69 49 71 45 65.2 4 5.8<br />

December 74 57 77 49 66.2 8 10.8<br />

J<strong>an</strong>uary 77 69 89.6 51 66.2 18 23.4<br />

February ND ND ND ND ND ND ND<br />

March 79 41 51.9 28 35.4 13 16.5<br />

April 74 61 82.4 41 55.4 20 27<br />

May 77 16 20.8 16 20.8 0 0<br />

June 75 2 2.6 2 2.6 0 0<br />

July 67 4 6 4 6 0 0<br />

August 57 1 1.8 1 1.8 0 0<br />

NS number <strong>of</strong> samples, L spp Listeria spp., Lm L. monocytogenes, Li L. <strong>in</strong>nocua, * L. seeligeri on one<br />

occasion, ND not done, S statistically signific<strong>an</strong>t difference between months (P


Relationship between hous<strong>in</strong>g, silage feed<strong>in</strong>g <strong>an</strong>d excretion rates: Although the silage<br />

fed to the herd dur<strong>in</strong>g the w<strong>in</strong>ter months was generally <strong>of</strong> good quality (pH 3.9. DM<br />

26.6, Ash 6.7, ME 10.3) both L. monocytogenes <strong>an</strong>d L. <strong>in</strong>nocua were isolated from the<br />

samples <strong>of</strong> silage. The cows were not sampled before silage feed<strong>in</strong>g commenced. 89.9%<br />

(89/99) <strong>of</strong> the cows excreted Listeria spp. <strong>an</strong>d L. monocytogenes dur<strong>in</strong>g silage feed<strong>in</strong>g<br />

while 21.2% (21/99) excreted listeria after silage feed<strong>in</strong>g. This difference was<br />

statistically signific<strong>an</strong>t (OR 33.06, 95%CL 13.8-81.6, P


with the exception <strong>of</strong> March, younger <strong>an</strong>imals were more prone to shed L.<br />

monocytogenes (Table 5. 7).<br />

Table 5. 7. The relationship between age <strong>an</strong>d excretion <strong>of</strong> L. monocytogenes.<br />

L. monocytogenes<br />

A P<br />

Visits M (IR) (n) M (IR) (n) p value<br />

November S 6 (4-7) 20 5 (4-6) 45 0.1<br />

December 6 (4-6) 17 5 (4-7) 49 0.8<br />

J<strong>an</strong>uary 5 (3.5-6.5) 8 4 (4-6) 51 0.2<br />

March 4.5 (4-6) 38 5.5 (4-7) 28 0.7<br />

April 7 (5-8) 13 4 (3-6) 41 0.02*<br />

May 5 (4-7) 61 5 (4-8) 16 0.3<br />

June 5 (4-7) 73 4 (4-4) 2 0.4<br />

July 5 (4-7) 63 4.5 (3.5-5) 4 0.25<br />

August 5 (4-7) 56 4 (4-4) 1 0.5<br />

A negative for L. monocytogenes, P positive for L. monocytogenes, M medi<strong>an</strong> age IR <strong>in</strong>terquartale<br />

r<strong>an</strong>ge, n number <strong>of</strong> <strong>an</strong>imals, * statistically signific<strong>an</strong>t<br />

S<strong>in</strong>ce there were <strong>an</strong>imals excret<strong>in</strong>g the bacteria on more th<strong>an</strong> one occasion (the<br />

r<strong>an</strong>ge was from 1 to 7) the relationship between the age <strong>of</strong> <strong>an</strong>imals <strong>an</strong>d the maximum<br />

number <strong>of</strong> times Listeria was detected <strong>in</strong> faeces samples was also assessed. There was a<br />

negative correlation between age <strong>an</strong>d the maximum frequency <strong>of</strong> detection <strong>of</strong> Listeria<br />

spp.; the older the <strong>an</strong>imals were the less frequently they became positive, correlation<br />

coefficient was -0.82 (95% CL -2.1-0.6). This was statistically signific<strong>an</strong>t (P=0.003)<br />

(Table 5. 8).<br />

Table 5. 8. The effect <strong>of</strong> age on the frequency <strong>of</strong> <strong>an</strong>imals becom<strong>in</strong>g Listeria positive<br />

Frequency <strong>of</strong> positivity<br />

Age N 1 2 3 4 5 6 7<br />

3 20 5 1 5 6 3 0 0<br />

4 22 2 5 2 7 4 1 1<br />

149


5 13 3 3 1 3 1 1 1<br />

6 14 1 4 5 3 1 0 0<br />

7 11 2 2 2 5 0 0 0<br />

8 5 1 1 3 0 0 0 0<br />

9 8 1 1 1 3 2 0 0<br />

10 3 2 1 0 0 0 0 0<br />

11 2 1 1 0 0 0 0 0<br />

13 1 0 1 0 0 0 0 0<br />

Total 99 18 20 19 27 11 2 2<br />

N number <strong>of</strong> cows <strong>in</strong> each age category<br />

5. 3. 2. Results <strong>of</strong> serology:<br />

Coat<strong>in</strong>g regime: None <strong>of</strong> the plates <strong>in</strong>cubated at three temperatures, 4 0 C, room<br />

temperature or 37 0 C, gave rise to non-specific b<strong>in</strong>d<strong>in</strong>g with fetal calf serum but the<br />

plate <strong>in</strong>cubated at 37°C gave optical density (OD) value higher th<strong>an</strong> the others (Table<br />

5. 9).<br />

Table 5. 9. Effect <strong>of</strong> different coat<strong>in</strong>g temperature on the assay<br />

Sample serum * Goat hyper-immune serum<br />

B 4 0 C RT 37 0 C 4 0 C RT 37 0 C B<br />

0.052 0.472 0.527 0.711 0.511 0.567 0.732 0.644 0.841 0.727 0.052<br />

0.058 0.339 0.501 0.501 0.452 0.479 0.597 0.666 0.719 0.567 0.052<br />

0.059 0.250 0.411 0.386 0.333 0.369 0.437 0.505 0.512 0.522 0.054<br />

0.058 0.204 0.252 0.262 0.285 0.287 0.359 0.386 0.417 0.382 0.055<br />

0.057 0.134 0.199 0.176 0.204 0.248 0.300 0.337 0.318 0.279 0.054<br />

0.056 0.105 0.168 0.141 0.167 0.211 0.249 0.237 0.242 0.262 0.053<br />

0.054 0.086 0.124 0.112 0.051 0.053 0.052 0.052 0.069 0.069 0.054<br />

0.055 0.073 0.081 0.092 0.051 0.051 0.052 0.053 0.072 0.068 0.054<br />

RT room temperature, B bl<strong>an</strong>k<br />

Chequerboard Titration <strong>of</strong> CP-LLO : The optimum CP-LLO <strong>an</strong>d goat hyperimmune<br />

serum dilutions giv<strong>in</strong>g the highest OD were 1:64 <strong>an</strong>d 1:64 respectively.<br />

150


Investigat<strong>in</strong>g Non-specific B<strong>in</strong>d<strong>in</strong>gs : Some non-specific b<strong>in</strong>d<strong>in</strong>g was still detectable<br />

when BSA, Marvel or Pig Album<strong>in</strong> were used whereas this was not detectable when<br />

FCS was used. FCS was used <strong>in</strong> the block<strong>in</strong>g step <strong>in</strong> all subsequent tests.<br />

Investigat<strong>in</strong>g Specificity <strong>of</strong> ELISA: Absorption <strong>of</strong> hyper-immune serum to L.<br />

monocytogenes with CP-LLO <strong>an</strong>d culture supernat<strong>an</strong>t abolished the <strong>an</strong>tibody activity.<br />

Table 5. 10. <strong>in</strong>dicates that <strong>an</strong>tigen-<strong>an</strong>tibody b<strong>in</strong>d<strong>in</strong>g was specific.<br />

Table 5. 10. Plate pl<strong>an</strong> <strong>an</strong>d Optical densities<br />

SD B Sample serum St<strong>an</strong>dard Goat hyper-immune serum B<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

2 0.055 0.059 0.078 0.063 0.505 0.800 0.833 0.056 0.289 0.057 0.465 0.048<br />

4 0.055 0.058 0.068 0.060 0.554 0.696 0.736 0.058 0.236 0.055 0.406 0.049<br />

8 0.055 0.058 0.061 0.057 0.214 0.568 0.630 0.057 0.173 0.057 0.306 0.051<br />

16 0.055 0.058 0.061 0.058 0.163 0.523 0.493 0.057 0.115 0.057 0.271 0.052<br />

32 0.055 0.057 0.059 0.058 0.121 0.361 0.344 0.057 0.094 0.057 0.211 0.052<br />

64 0.055 0.058 0.058 0.058 0.090 0.268 0.239 0.055 0.075 0.055 0.150 0.052<br />

128 0.052 0.055 0.055 0.056 0.071 0.055 0.054 0.054 0.065 0.054 0.114 0.052<br />

256 0.054 0.055 0.055 0.054 0.062 0.054 0.054 0.054 0.061 0.056 0.86 0.050<br />

SD Serum dilution, B Bl<strong>an</strong>k, Columns 2 <strong>an</strong>d 8 treated with LLO, Columns 3 <strong>an</strong>d 9 treated with culture<br />

supernat<strong>an</strong>t, Columns 4 <strong>an</strong>d 10 heat killed Listeria org<strong>an</strong>isms, Columns 5 <strong>an</strong>d 11 untreated serum<br />

(control).<br />

Immune Status <strong>of</strong> the <strong>an</strong>imals (a field trial <strong>of</strong> the ELISA) : Blood samples were taken<br />

only once from 77 <strong>an</strong>imals. The OD values obta<strong>in</strong>ed were converted to Log values <strong>an</strong>d<br />

then the relationship between age, bacteriological results <strong>an</strong>d <strong>an</strong>tibody level was<br />

<strong>in</strong>vestigated. When <strong>an</strong>imals were grouped by the frequency <strong>of</strong> be<strong>in</strong>g positive for<br />

Listeria there was a negative correlation between the frequency <strong>of</strong> detection <strong>of</strong><br />

Listeria <strong>an</strong>d the concentration <strong>of</strong> the <strong>an</strong>tibody to Listeria. This was statistically<br />

signific<strong>an</strong>t (Pearson’s correlation coefficient = -0.35, 95% CL -0.54-0.13, P=0.03).<br />

Animals that became positive for Listeria on 6 <strong>an</strong>d 7 occasions were excluded because<br />

there were very small numbers <strong>in</strong> these groups (Table 5. 11).<br />

151


Table 5. 11. The relationship between frequency <strong>of</strong> becom<strong>in</strong>g positive for Listeria<br />

<strong>an</strong>d <strong>an</strong>tibody level<br />

Frequency N=77 EU (r<strong>an</strong>ge) S<br />

1 11 2.3 (1.8-2.7) 0.3<br />

2 12 2.12 (1.76-2.63) 0.29<br />

3 17 1.97 (1.36-2.7) 0.38<br />

4 23 1.97 (1.46-2.5) 0.25<br />

5 9 1.91 (1.08-2.4) 0.4<br />

6* 2 2.2 (2.14-2.3) 0.1<br />

7* 2 2.05(1.9-2.2) 0.2<br />

N number <strong>of</strong> cows tested, EU me<strong>an</strong> log ELISA Unit, S st<strong>an</strong>dard deviation, * the difference between the<br />

me<strong>an</strong> values were signific<strong>an</strong>t when these were excluded<br />

There was no association between age <strong>an</strong>d ELISA results (Table 5. 12). However,<br />

there was a non signific<strong>an</strong>t positive correlation between age <strong>an</strong>d <strong>an</strong>tibody level<br />

(Correlation coefficient 0.16, 95% CL -0.06-0.37). When <strong>an</strong>imals were grouped by<br />

age the <strong>an</strong>imals under the age 5 (47 <strong>of</strong> 77 <strong>an</strong>imals) had ELISA values <strong>of</strong> 2.02 (1.3-2.6)<br />

<strong>an</strong>d the <strong>an</strong>imals over the age <strong>of</strong> 5 (30 <strong>of</strong> 77 <strong>an</strong>imals) had similar ELISA values <strong>of</strong> 2.06<br />

(1.1-2.7).<br />

Table 5. 12. Relationship between age <strong>an</strong>d <strong>an</strong>tibody level<br />

Age N=77 EU* (r<strong>an</strong>ge) S<br />

3 15 1.92 (1.36-2.5) 0.3<br />

4 20 2.02 (1.48-2.6) 0.3<br />

5 12 2.2 (1.86-2.5) 0.2<br />

6 9 2.1 (1.6-2.7) 0.3<br />

7 9 2.04 (1.08-2.4) 0.3<br />

8 3 1.9 (1.76-2.15) 0.2<br />

9 6 1.9 (1.08-2.4) 0.5<br />

10 3 2.3 (2.05-2.73) 0.4<br />

N number <strong>of</strong> cows tested, EU* me<strong>an</strong> log ELISA Unit, S st<strong>an</strong>dard deviation<br />

5. 4. Discussion :<br />

152


The primary aim <strong>of</strong> this pilot <strong>study</strong> was to develop <strong>an</strong>d st<strong>an</strong>dardise techniques<br />

which would allow <strong>cattle</strong> <strong>in</strong>fected with L. monocytogenes to be detected <strong>in</strong> a<br />

longitud<strong>in</strong>al <strong>study</strong>.<br />

A three stage procedure, cold enrichment prior to LSEB (Lovett <strong>an</strong>d others<br />

1987) <strong>an</strong>d LSA (Curtis <strong>an</strong>d others 1989a) was used to identify <strong>an</strong>imals shedd<strong>in</strong>g<br />

Listeria spp. <strong>in</strong> their faeces. No comparison <strong>of</strong> LSEB <strong>an</strong>d LSA was made with <strong>an</strong>y other<br />

Listeria isolation media. However the superiority <strong>of</strong> LSEB <strong>an</strong>d especially LSA has been<br />

acknowledged by other researchers. LSA was found to be more effective <strong>in</strong> isolat<strong>in</strong>g L.<br />

monocytogenes from artificially seeded cl<strong>in</strong>ical specimen such as faeces <strong>an</strong>d vag<strong>in</strong>al<br />

swabs (Curtis <strong>an</strong>d others 1989a) <strong>an</strong>d from food (Tiwari <strong>an</strong>d Aldenrath 1990, Curtis <strong>an</strong>d<br />

Lee 1995) but less effective <strong>in</strong> isolat<strong>in</strong>g the bacteria from silage (Fern<strong>an</strong>dez-Garayzabal<br />

<strong>an</strong>d others 1992b) Cold enrichment was also reported to be <strong>in</strong>efficient <strong>in</strong> isolat<strong>in</strong>g L.<br />

monocytogenes from food (P<strong>in</strong>i <strong>an</strong>d Gilbert 1988), faecal samples (Hayes <strong>an</strong>d others<br />

1991) <strong>an</strong>d autopsy material (Eld <strong>an</strong>d others 1993) when compared with liquid selective<br />

enrichment at higher temperatures. The variability between the isolation techniques <strong>an</strong>d<br />

the failure <strong>of</strong> our attempts to isolate L. monocytogenes from faeces without exposure to<br />

cold storage led us to comb<strong>in</strong>e cold enrichment with selective enrichment <strong>an</strong>d selective<br />

plat<strong>in</strong>g at higher temperature. This application enabled us to identify more Listeria<br />

positive samples. This is <strong>in</strong> agreement with other f<strong>in</strong>d<strong>in</strong>gs. The successful use <strong>of</strong> cold<br />

enrichment followed by selective media <strong>an</strong>d plat<strong>in</strong>g at higher temperature for the<br />

isolation <strong>of</strong> L. monocytogenes from food by Lewis <strong>an</strong>d Corry (1991) <strong>an</strong>d cl<strong>in</strong>ical<br />

specimens by Gray (1948) <strong>an</strong>d Pittm<strong>an</strong> <strong>an</strong>d others (1967), <strong>an</strong>d for <strong>epidemiological</strong><br />

<strong>in</strong>vestigation by Husu (1990) has been reported.<br />

In conventional cold enrichment procedures a liquid medium (selective or non<br />

selective) has always been used (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966 <strong>an</strong>d Hayes <strong>an</strong>d others, 1991).<br />

The use <strong>of</strong> NB, Sal<strong>in</strong>e <strong>an</strong>d LSEB as cold enrichment media failed to improve the<br />

153


frequency <strong>of</strong> isolation <strong>of</strong> L. monocytogenes from faeces when compared with the<br />

samples held at 4 0 C without <strong>an</strong>y medium. Both NB <strong>an</strong>d LSEB <strong>in</strong>creased the number <strong>of</strong><br />

positive samples after the first week <strong>of</strong> cold enrichment but there was no further<br />

<strong>in</strong>crease dur<strong>in</strong>g the cold enrichment period. In contrast, the use <strong>of</strong> sal<strong>in</strong>e as a cold<br />

enrichment medium had <strong>an</strong> adverse effect on the growth <strong>of</strong> Listeria org<strong>an</strong>isms. A<br />

similar effect <strong>of</strong> sal<strong>in</strong>e was stated by Gray <strong>an</strong>d Kill<strong>in</strong>ger (1966).<br />

Our results <strong>in</strong>dicate that hold<strong>in</strong>g faecal samples at refrigeration temperature<br />

without <strong>an</strong>y liquid media was the better application. The duration <strong>of</strong> cold enrichment<br />

used by other researchers varied between 1 to several months (Gray 1948, Pittm<strong>an</strong> <strong>an</strong>d<br />

others 1967). We attempted to reduce this time by determ<strong>in</strong><strong>in</strong>g the sensitivity <strong>of</strong> the<br />

isolation technique at different times <strong>of</strong> cold enrichment. The best result was obta<strong>in</strong>ed<br />

after 7 weeks <strong>of</strong> cold enrichment when the sensitivity was 100% <strong>an</strong>d 94% for Listeria<br />

spp. <strong>an</strong>d L. monocytogenes respectively.<br />

Investigation <strong>of</strong> the lowest limit <strong>of</strong> detection revealed that it was 3.17 cfu/ml for<br />

broth spiked with Listeria org<strong>an</strong>isms <strong>an</strong>d 7 cfu/g for the known Listeria positive faeces<br />

sample. The difference between the two figures could be expla<strong>in</strong>ed with the nature <strong>of</strong><br />

samples as the faecal sample would conta<strong>in</strong> m<strong>an</strong>y more bacteria other th<strong>an</strong> Listeria.<br />

After the second week <strong>of</strong> cold enrichment <strong>of</strong> faecal samples <strong>in</strong>oculated with 3.17x10 -1<br />

cfu/ml <strong>of</strong> L. monocytogenes revealed growth. This supports the idea that cold<br />

enrichment favours the multiplication <strong>of</strong> Listeria org<strong>an</strong>isms (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966).<br />

This pilot <strong>study</strong> revealed some prelim<strong>in</strong>ary <strong>in</strong>formation about the behaviour <strong>of</strong><br />

Listeria spp. especially L. monocytogenes. Unlike other researchers we found a very<br />

high excretion level <strong>of</strong> Listeria spp. <strong>an</strong>d more import<strong>an</strong>tly L. monocytogenes (Skovgaar<br />

<strong>an</strong>d Morgen 1988, Husu 1990). There was also a seasonal pattern <strong>of</strong> excretion which<br />

co<strong>in</strong>cided with silage feed<strong>in</strong>g, hous<strong>in</strong>g <strong>an</strong>d the seasonal occurrence <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong><br />

(Chapter 2). This seasonal variation may have been the result <strong>of</strong> different feed<strong>in</strong>g<br />

154


practices dur<strong>in</strong>g the <strong>in</strong>door <strong>an</strong>d outdoor periods. Hous<strong>in</strong>g may have also played <strong>an</strong><br />

import<strong>an</strong>t role <strong>in</strong> the higher excretion rates. In this <strong>study</strong> it was impossible to<br />

differentiate the effect <strong>of</strong> these two practices. Both ch<strong>an</strong>ged at the same time.<br />

No apparent association between age <strong>an</strong>d monthly excretion rate was observed.<br />

However there was a statistically signific<strong>an</strong>t association between age <strong>an</strong>d frequency <strong>of</strong><br />

detection <strong>of</strong> the org<strong>an</strong>ism. Younger <strong>an</strong>imals shed the org<strong>an</strong>ism more frequently th<strong>an</strong><br />

older <strong>an</strong>imals. This concurs with experimental f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> which it has been shown that<br />

younger <strong>an</strong>imals excrete L. monocytogenes <strong>in</strong> their faeces for longer period th<strong>an</strong> older<br />

<strong>an</strong>imals (Miett<strong>in</strong>en <strong>an</strong>d Husu 1991).<br />

In this <strong>study</strong> the ELISA assay was optimised by carry<strong>in</strong>g out coat<strong>in</strong>g with<br />

different concentrations <strong>of</strong> <strong>an</strong>tigen <strong>an</strong>d at different temperatures <strong>an</strong>d <strong>in</strong>sert<strong>in</strong>g <strong>an</strong> extra<br />

step to avoid non-specific b<strong>in</strong>d<strong>in</strong>g. The specificity <strong>of</strong> the ELISA assay us<strong>in</strong>g different<br />

<strong>an</strong>tigens demonstrated that LLO <strong>an</strong>d <strong>an</strong>tibody b<strong>in</strong>d<strong>in</strong>g was specific; <strong>an</strong>tibody activity<br />

was absorbed us<strong>in</strong>g LLO, culture supernat<strong>an</strong>t <strong>an</strong>d heat killed org<strong>an</strong>isms. The absorption<br />

<strong>of</strong> <strong>an</strong>tibody activity us<strong>in</strong>g heat killed org<strong>an</strong>isms was surpris<strong>in</strong>g because LLO is not<br />

considered to be a cell associated <strong>an</strong>tigen. This result probably reflects the fact that the<br />

heat killed bacteria was prepared from unwashed org<strong>an</strong>isms which conta<strong>in</strong>ed LLO.<br />

In this <strong>study</strong> serum samples were collected once <strong>an</strong>d that was at the end <strong>of</strong> the<br />

silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g period. The results <strong>in</strong>dicate that all <strong>an</strong>imals tested seemed to<br />

have <strong>an</strong>tibodies to L. monocytogenes <strong>an</strong>d this supports the results <strong>of</strong> our bacteriological<br />

<strong>in</strong>vestigations. However, it was not possible to determ<strong>in</strong>e whether there were <strong>an</strong>imals<br />

exposed to L. monocytogenes before silage feed<strong>in</strong>g or w<strong>in</strong>ter hous<strong>in</strong>g commenced.<br />

In the follow<strong>in</strong>g chapter the optimised <strong>an</strong>d st<strong>an</strong>dardised culture <strong>an</strong>d ELISA<br />

techniques were used to identify <strong>an</strong>imals <strong>in</strong>fected with L. monocytogenes <strong>in</strong> a<br />

longitud<strong>in</strong>al survey.<br />

155


CHAPTER 6<br />

A <strong>study</strong> <strong>of</strong> the dynamic <strong>of</strong> <strong>in</strong>fection with Listeria<br />

6. 1. Introduction:<br />

monocytogenes, <strong>in</strong> herds <strong>of</strong> milk<strong>in</strong>g cows<br />

L. monocytogenes is ubiquitous <strong>in</strong> the environment <strong>an</strong>d it is frequently isolated<br />

from healthy or diseased <strong>in</strong>dividuals (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Farber <strong>an</strong>d Paterk<strong>in</strong>s<br />

1991). One <strong>of</strong> the routes <strong>of</strong> tr<strong>an</strong>smission <strong>of</strong> L. monocytogenes <strong>in</strong>fections <strong>in</strong> people is<br />

the <strong>in</strong>gestion <strong>of</strong> contam<strong>in</strong>ated food. M<strong>an</strong>y outbreaks <strong>an</strong>d sporadic cases <strong>of</strong> Listeriosis<br />

follow the consumption <strong>of</strong> contam<strong>in</strong>ated foodstuffs (Blenden <strong>an</strong>d others 1987, Ralovich<br />

1987, Lund 1990, Broome <strong>an</strong>d others 1990, Farber <strong>an</strong>d Paterk<strong>in</strong>s1991, McLauchl<strong>in</strong><br />

1996).<br />

Contam<strong>in</strong>ation c<strong>an</strong> occur at the primary production stage (at farm level), at the<br />

process<strong>in</strong>g stage (factories, slaughterhouses, etc.) or alternatively after the process<strong>in</strong>g<br />

stage (at home, retailers etc.). M<strong>an</strong>y studies have been carried out to determ<strong>in</strong>e the<br />

degree <strong>of</strong> contam<strong>in</strong>ation with L. monocytogenes <strong>an</strong>d its isolation pattern at all <strong>of</strong> these<br />

stages (Fenlon <strong>an</strong>d Wilson 1989, Carosella 1990, Husu <strong>an</strong>d others 1990b, Greenwood<br />

<strong>an</strong>d others 1991, Jacquet <strong>an</strong>d others 1993, Fenlon <strong>an</strong>d others 1995a, Fenlon <strong>an</strong>d others<br />

1996). Studies have also revealed that different stra<strong>in</strong>s <strong>of</strong> L. monocytogenes may be<br />

better adapted to different stages <strong>of</strong> production <strong>an</strong>d process<strong>in</strong>g (Greenwood <strong>an</strong>d others<br />

157


1991, Boerl<strong>in</strong> <strong>an</strong>d Piffaretti 1991, Norrung <strong>an</strong>d Skovgaard 1993, Fenlon <strong>an</strong>d others<br />

1996).<br />

At the primary production stage silage has long been associated with L.<br />

monocytogenes <strong>in</strong>fection <strong>an</strong>d is thought to be the source <strong>of</strong> the org<strong>an</strong>ism (Gill 1933,<br />

Gray 1960a, Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966, Fenlon 1985, Gitter 1989). The contam<strong>in</strong>ation <strong>of</strong><br />

the agricultural ecosystem with L. monocytogenes is well documented <strong>an</strong>d L.<br />

monocytogenes is thought to be a saprophytic org<strong>an</strong>ism liv<strong>in</strong>g <strong>in</strong> a pl<strong>an</strong>t-soil<br />

environment (Welshimer 1968, Welshimer <strong>an</strong>d Donker-Voet 1971, Welshimer 1975,<br />

Weis <strong>an</strong>d Seeliger 1975, Watk<strong>in</strong>s <strong>an</strong>d Sleath 1981, v<strong>an</strong> Renterghem <strong>an</strong>d others 1991,<br />

MacGow<strong>an</strong> <strong>an</strong>d others 1994). Carrier hum<strong>an</strong>s <strong>an</strong>d <strong>an</strong>imals are thought to play <strong>an</strong><br />

essential role <strong>in</strong> the contam<strong>in</strong>ation <strong>of</strong> their environment (vegetation, soil, water etc.) <strong>an</strong>d<br />

therefore foodstuffs. However the primary source <strong>of</strong> contam<strong>in</strong>ation is unknown<br />

although it has been the subject <strong>of</strong> research for m<strong>an</strong>y years.<br />

Research has been carried out to determ<strong>in</strong>e the excretion rate <strong>in</strong> hum<strong>an</strong>s<br />

(Kampelmacher <strong>an</strong>d v<strong>an</strong> Noorle-J<strong>an</strong>sen 1969, Lamont <strong>an</strong>d Postlethwaite 1986,<br />

MacGow<strong>an</strong> <strong>an</strong>d others 1991, Gray <strong>an</strong>d others 1993, MacGow<strong>an</strong> <strong>an</strong>d others 1994), sheep<br />

(Gronstol 1979b), wild <strong>an</strong>d domesticated birds, (Fenlon 1985, Skovgaard <strong>an</strong>d Morgen<br />

1988, Idia <strong>an</strong>d others 1991, Cas<strong>an</strong>ovas <strong>an</strong>d others 1995) pigs, cats, dogs (Iida <strong>an</strong>d others<br />

1991, v<strong>an</strong> Renterghem <strong>an</strong>d others 1991) <strong>an</strong>d <strong>cattle</strong> (Kampelmacher <strong>an</strong>d v<strong>an</strong> Noorle-<br />

J<strong>an</strong>sen 1969, H<strong>of</strong>er 1983, Skovgaard <strong>an</strong>d Morgen 1988, Husu 1990, Iiada <strong>an</strong>d others<br />

1991, v<strong>an</strong> Renterghem <strong>an</strong>d others 1991, Ueno <strong>an</strong>d others 1996,). These studies have<br />

reported considerable variation <strong>in</strong> the proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g L.<br />

monocytogenes <strong>in</strong> their faeces, from 0% <strong>in</strong> cats (Iida <strong>an</strong>d others 1991) to 64% <strong>in</strong> sheep<br />

(Gronstol 1979b). The proportions reported for <strong>cattle</strong> vary between 1.9% (Iida <strong>an</strong>d<br />

others 1991) <strong>an</strong>d 51% (Skovgaard <strong>an</strong>d Morgen 1988). However little attention has been<br />

paid to rigorous <strong>epidemiological</strong> sampl<strong>in</strong>g strategies <strong>in</strong> the design <strong>of</strong> these studies.<br />

158


There were no sample size calculations <strong>an</strong>d the studies <strong>in</strong>volved different <strong>study</strong><br />

populations. Some studies <strong>in</strong>volved sampl<strong>in</strong>g from slaughterhouses (H<strong>of</strong>er 1983, v<strong>an</strong><br />

Renterghem <strong>an</strong>d others 1991) others from freshly excreted cow pats on the farm<br />

(Skovgaard <strong>an</strong>d Morgen 1988). In only three studies was the source <strong>of</strong> the org<strong>an</strong>ism<br />

<strong>in</strong>vestigated (Skovgaard <strong>an</strong>d Morgen 1988, Husu 1990, Ueno <strong>an</strong>d others 1995) <strong>an</strong>d <strong>in</strong><br />

only two <strong>of</strong> these was it done by compar<strong>in</strong>g environmental <strong>an</strong>d <strong>an</strong>imal isolates <strong>of</strong> L.<br />

monocytogenes on the same farms us<strong>in</strong>g serotyp<strong>in</strong>g <strong>an</strong>d phagetyp<strong>in</strong>g methods. The<br />

same stra<strong>in</strong>s have been identified <strong>in</strong> both environmental <strong>an</strong>d <strong>an</strong>imal isolates (Skovgaard<br />

<strong>an</strong>d Morgen 1988 <strong>an</strong>d Ueno <strong>an</strong>d others 1995). But the usefulness <strong>of</strong> these techniques<br />

has already been disputed by some researchers (Seeliger <strong>an</strong>d Hohne 1979, Ralovich<br />

1993).<br />

Animal derived foodstuffs such as s<strong>of</strong>t cheese have been implicated <strong>in</strong> hum<strong>an</strong><br />

Listeriosis <strong>in</strong> Engl<strong>an</strong>d (McLauchl<strong>in</strong> 1996) <strong>an</strong>d studies have been carried out to<br />

determ<strong>in</strong>e the contam<strong>in</strong>ation <strong>of</strong> these products with L. monocytogenes (Greenwood <strong>an</strong>d<br />

others 1991, MacGow<strong>an</strong> <strong>an</strong>d others 1994). But there have been no studies to determ<strong>in</strong>e<br />

carriage rate <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d <strong>an</strong>d little<br />

is known about the contam<strong>in</strong>ation <strong>of</strong> their environment.<br />

In a pilot <strong>study</strong> carried out between September 1994-August 1995 <strong>in</strong>volv<strong>in</strong>g<br />

only one <strong>dairy</strong> farm, a large proportion <strong>of</strong> <strong>an</strong>imals were found to be excret<strong>in</strong>g Listeria<br />

spp. <strong>an</strong>d L. monocytogenes <strong>in</strong> their faeces (Chapter 5). However it is known that<br />

differences occur <strong>in</strong> excretion rate with<strong>in</strong> <strong>an</strong>d between farms (Kampelmacher <strong>an</strong>d v<strong>an</strong><br />

Noorle J<strong>an</strong>sen 1969, Skovgaard <strong>an</strong>d Morgen 1988). A longitud<strong>in</strong>al <strong>study</strong> was therefore<br />

designed to <strong>in</strong>clude five <strong>dairy</strong> farms <strong>in</strong> order to <strong>in</strong>vestigate the <strong>in</strong>fection rate <strong>of</strong> L.<br />

monocytogenes <strong>in</strong> <strong>in</strong>dividual milk<strong>in</strong>g cows over a 10 month period. Infection was<br />

assessed us<strong>in</strong>g bacteriological <strong>an</strong>d serological methods. Factors which might be<br />

159


associated with the <strong>in</strong>fection rate were measured <strong>an</strong>d <strong>in</strong>dividual isolates <strong>of</strong> L.<br />

monocytogenes were identified us<strong>in</strong>g molecular typ<strong>in</strong>g methods.<br />

6. 2. Materials <strong>an</strong>d Methods:<br />

6. 2. 1. Study Design:<br />

The <strong>dairy</strong> herds studied <strong>in</strong> this part <strong>of</strong> the project were selected from those<br />

served by the Farm Animal Practice <strong>of</strong> the Faculty <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e, University<br />

<strong>of</strong> Liverpool. Initially <strong>an</strong> expl<strong>an</strong>atory letter was written to all the <strong>dairy</strong> farmers <strong>in</strong> the<br />

practice (Appendix 5). Phone calls were made to the same clients to arr<strong>an</strong>ge a meet<strong>in</strong>g<br />

to expla<strong>in</strong> what the <strong>study</strong> would <strong>in</strong>volve, to discuss the project <strong>in</strong> more details <strong>an</strong>d to<br />

obta<strong>in</strong> <strong>in</strong>formation about their farm<strong>in</strong>g practices such as herd size, milk<strong>in</strong>g rout<strong>in</strong>es,<br />

feed<strong>in</strong>g regimes, hous<strong>in</strong>g, <strong>an</strong>d h<strong>an</strong>dl<strong>in</strong>g facilities. After this process five <strong>dairy</strong> herds<br />

were selected for the <strong>study</strong>.<br />

6. 2. 2. Farm M<strong>an</strong>agement:<br />

All five farms had similar farm<strong>in</strong>g practices; (Table 6. 1) all kept Holste<strong>in</strong><br />

milk<strong>in</strong>g cows which were milked twice a day (morn<strong>in</strong>g <strong>an</strong>d even<strong>in</strong>g) <strong>an</strong>d milk was<br />

stored <strong>in</strong> a bulk t<strong>an</strong>k until collection. Milk was collected daily on all farms. The <strong>cattle</strong><br />

were housed <strong>in</strong> w<strong>in</strong>ter <strong>in</strong> cubicle houses on straw bedd<strong>in</strong>g. Pastures were only grazed by<br />

cows. Grass silage was fed to <strong>an</strong>imals on all farms. On Farms B <strong>an</strong>d E it was fed all<br />

year around <strong>an</strong>d on Farms A, B, <strong>an</strong>d E maize silage was also fed. The cows were also<br />

fed concentrates at milk<strong>in</strong>g.<br />

The farmers were <strong>in</strong>terviewed us<strong>in</strong>g a questionnaire (Appendix 5) <strong>in</strong> order to<br />

f<strong>in</strong>d out more details about their <strong>an</strong>imals <strong>an</strong>d to record ch<strong>an</strong>ges <strong>in</strong> m<strong>an</strong>agement practices<br />

which took place dur<strong>in</strong>g the <strong>study</strong>.<br />

160


4 <strong>of</strong> the farms had their silage <strong>an</strong>alysed (Table 6. 2). Information on the age <strong>of</strong><br />

milk<strong>in</strong>g cows was available for three farms (Farms A, B <strong>an</strong>d C) (Table 6. 3).<br />

Table 6. 1. The m<strong>an</strong>agement practices followed by the five farms<br />

Farm A Farm B Farm C Farm D Farm E<br />

type <strong>of</strong> herd closed closed closed open open<br />

herd size a 110 90 60 130 160<br />

time <strong>of</strong> calv<strong>in</strong>g all year all year all year all year all year<br />

type <strong>of</strong> hous<strong>in</strong>g cubicles<br />

straw yard<br />

cubicles cubicles cubicles cubicles<br />

start <strong>of</strong> grass silage 21.9.96 all year 5.10.96 10.11.96 b all year<br />

start <strong>of</strong> maize<br />

silage<br />

4.1.97 14.10.96 NF NF 30.10.96<br />

start <strong>of</strong> hous<strong>in</strong>g 15.10.96 8.11.96 30.10.96 24.11.96 30.10.96<br />

end <strong>of</strong> grass silage 30.4.97 all year 30.4.97 1.4.97 all year<br />

end <strong>of</strong> maize silage 31.3.97 cont<strong>in</strong>ued d NF NF 30.3.97<br />

end <strong>of</strong> hous<strong>in</strong>g 31.3.97 23.4.97 30.4.97 12.4.97 30.3.97<br />

storage <strong>of</strong> silage clamp clamp clamp clamp clamp<br />

additives <strong>in</strong> silage N Y Y Y Y<br />

dung c Y Y Y Y Y<br />

history <strong>of</strong><br />

<strong>listeriosis</strong><br />

Y N Y N N<br />

a the numbers ch<strong>an</strong>ged over the period <strong>of</strong> <strong>study</strong>, b mix <strong>of</strong> grass silage <strong>an</strong>d whole wheat crops <strong>an</strong>d bought<br />

<strong>in</strong> grass silage <strong>in</strong> February, c dung spread on the field where <strong>an</strong>imals grazed or silage was made from, d<br />

still be<strong>in</strong>g fed when the <strong>study</strong> f<strong>in</strong>ished, NF not fed, Y yes, N no<br />

Table 6. 2. Results <strong>of</strong> forage <strong>an</strong>alysis<br />

Farm A* Farm B Farm C Farm E<br />

GS MS MS C1 C2 C1 C2 GS MS<br />

pH 4.3 4.0 3.5 3.5 3.4 4.3 4.4 4.4 4.0<br />

Ash (%) 7.7 3.5 NK 11.1 8.2 7.0 8.1 9 10<br />

161


DM (%) 23.8 46.0 25.9 21.1 23.2 27.5 27.4 39.5 34.0<br />

D (%) 65.1 78.9 NK 65.8 71.0 NK NK 62.9 69.4<br />

ME (MJ/kg) 10.4 12.4 12.7 11.4 11.4 10.4 10.1 10.1 10.9<br />

GS grass silage, MS maize silage, C1 first cut, C2 second cut, DM dry matter, D digestibilty value, ME<br />

metabolisable energy,* no data available for the Farm D, NK not known.<br />

Table 6. 3. Age distribution <strong>of</strong> <strong>an</strong>imals on the farms A, B <strong>an</strong>d C<br />

Age* Farm A<br />

Number <strong>of</strong> <strong>an</strong>imals<br />

Farm B* Farm C*<br />

2 5 5 6<br />

3 25 30 1<br />

4 26 24 1<br />

5 13 15 6<br />

6 12 12 4<br />

7 18 9 5<br />

8 6 3 5<br />

9 5 3 3<br />

10 6 1 4<br />

11 4 4 1<br />

12 1 3 1<br />

13 @ 3 1 4<br />

* age records were not available for some <strong>an</strong>imals <strong>an</strong>d for the farm D <strong>an</strong>d E , @ 13 <strong>an</strong>d greater<br />

6. 2. 3. Sample size:<br />

The sample size required to detect the m<strong>in</strong>imum level <strong>of</strong> excretion was<br />

calculated from the figure obta<strong>in</strong>ed dur<strong>in</strong>g our pilot <strong>study</strong> where the lowest excretion<br />

rate was 1.8%. As nearly as all the <strong>an</strong>imals on the farms needed to be sampled <strong>in</strong> order<br />

to detect this excretion rate with 95% confidence limit (C<strong>an</strong>on <strong>an</strong>d Roe 1982), it was<br />

decided, for convenience, to sample the whole milk<strong>in</strong>g herd.<br />

6. 2. 4. Sampl<strong>in</strong>g procedure:<br />

162


a) Faecal samples: Faecal samples were collected freshly from the rectum <strong>of</strong> <strong>an</strong>imals<br />

<strong>an</strong>d immediately tr<strong>an</strong>sferred to sterile 60ml universal conta<strong>in</strong>ers (Steril<strong>in</strong>, Staffordshire,<br />

UK). Individual disposable rectal exam<strong>in</strong>ation gloves (Arnolds, Shropshire UK) <strong>an</strong>d a<br />

lubric<strong>an</strong>t (Lubrel, Arnolds, Shropshire UK) were used for each sampl<strong>in</strong>g. Samples were<br />

taken monthly from all milk<strong>in</strong>g cows <strong>an</strong>d dry cows present at the time <strong>of</strong> visit (Table 6.<br />

4). S<strong>in</strong>ce cows were leav<strong>in</strong>g <strong>an</strong>d enter<strong>in</strong>g the milk<strong>in</strong>g herd on all farms dur<strong>in</strong>g the<br />

survey the frequency <strong>of</strong> sampl<strong>in</strong>g is given <strong>in</strong> the Table 6. 5.<br />

Table 6. 4. Date <strong>of</strong> visits <strong>an</strong>d number <strong>of</strong> <strong>an</strong>imals sampled<br />

Farm A Farm B Farm C Farm D Farm E<br />

Visit D N D N D N D N D N<br />

1 12/8/96 111 14/8/96 90 19/8/96 58 16/8/96 126 21/8/96 141<br />

2 9/9/96 110 11/9/96 96 20/9/96 58 13/9/96 124 19/9/96 138<br />

3 15/10/96 110 9/10/96 95 18/10/96 57 11/10/96 126 17/10/96 155<br />

4 18/11/96 83 13/11/96 78 25/11/96 53 15/11/96 128 27/11/96 145<br />

5 13/12/96 83 11/12/96 79 18/12/96 57 16/12/96 121 20/12/96 139<br />

6 13/1/97 83 15/1/97 80 16/1/97 56 20/1/97 135 23/1/97 128<br />

7 10/2/97 89 12/2/97 81 13/2/97 53 17/2/97 132 20/2/97 135<br />

8 10/3/97 85 12/3/97 80 13/3/97 53 17/3/97 120 20/3/97 155<br />

9 14/4/97 84 16/4/97 81 24/4/97 53 21/4/97 111 1/5/97 158<br />

10 12/5/97 91 14/5/97 78 15/5/97 55 19/5/97 102 ND ND<br />

D = date <strong>of</strong> visit, N= number <strong>of</strong> <strong>an</strong>imals sampled, ND = not done<br />

Table 6. 5. Number <strong>of</strong> <strong>an</strong>imals tested on more th<strong>an</strong> one occasion<br />

Frequency <strong>of</strong> Number <strong>of</strong> <strong>an</strong>imals tested<br />

Sampl<strong>in</strong>g Farm A Farm B Farm C Farm D Farm E<br />

1 8 2 2 17 11<br />

2 0 5 0 25 13<br />

3 27 18 7 26 12<br />

4 6 5 1 13 15<br />

5 0 0 1 12 21<br />

6 0 8 5 10 29<br />

163


7 4 1 2 21 31<br />

8 1 8 2 9 42<br />

9 0 9 6 10 37<br />

10 78 60 41 59 ND<br />

Total 124 111 67 202 211<br />

ND =not done<br />

b) Environmental samples: Samples <strong>of</strong> soil, grass, water, silage, bedd<strong>in</strong>g <strong>an</strong>d milk were<br />

collected monthly from each farm. Samples <strong>of</strong> soil <strong>an</strong>d grass were collected from<br />

pastures where <strong>an</strong>imals grazed <strong>an</strong>d where silage was made us<strong>in</strong>g the sampl<strong>in</strong>g scheme<br />

shown <strong>in</strong> the Figure 6. 1. Dur<strong>in</strong>g pasture sampl<strong>in</strong>g maximum care was taken to avoid<br />

cross-contact between grass <strong>an</strong>d soil. The samples were placed <strong>in</strong> separate bags.<br />

Silage samples were taken from the clamp face us<strong>in</strong>g the same sampl<strong>in</strong>g<br />

procedure as that for soil <strong>an</strong>d grass. An <strong>in</strong>dividual rectal glove was used for each<br />

sample.<br />

Dur<strong>in</strong>g the hous<strong>in</strong>g period bedd<strong>in</strong>g samples were also collected monthly from<br />

the cubicles <strong>an</strong>d straw yards.<br />

Water samples were collected monthly from troughs located <strong>in</strong> the houses, yards<br />

<strong>an</strong>d fields. Monthly bulk t<strong>an</strong>k milk samples were also taken. Sterile 60 ml pots were<br />

used to take water <strong>an</strong>d milk samples.<br />

Figure 6. 1. The scheme followed for the collection <strong>of</strong> environmental samples<br />

3 7 11<br />

• • •<br />

•2 • 4 • 6 • 8 •10<br />

164


• • •<br />

1 5 9<br />

6. 2. 5. Sample preparation <strong>an</strong>d process<strong>in</strong>g:<br />

Soil, grass, bedd<strong>in</strong>g <strong>an</strong>d silage samples were treated as follows; each sample was<br />

first pooled <strong>in</strong> a sterile bag <strong>an</strong>d mixed well then homogenised <strong>in</strong> LSEB us<strong>in</strong>g a<br />

stomacher (Seward Medical, London, UK) at normal speed for 2 m<strong>in</strong>utes <strong>an</strong>d then the<br />

mixture was tr<strong>an</strong>sferred to at least three sterile pots. The samples were cultured<br />

immediately <strong>an</strong>d stored at refrigeration temperatures for further cultur<strong>in</strong>g as expla<strong>in</strong>ed<br />

<strong>in</strong> the Chapter 5.<br />

6. 2. 6. Measurement <strong>of</strong> serum <strong>an</strong>tibody to Listeria monocytogenes<br />

An ELISA was used to measure serum <strong>an</strong>tibody as described <strong>in</strong> Chapter 5. Cows<br />

were bled dur<strong>in</strong>g the first, 5th <strong>an</strong>d last visit i.e. at the start, <strong>in</strong> the middle <strong>an</strong>d at the end<br />

<strong>of</strong> the <strong>study</strong> period. The date <strong>of</strong> the visits <strong>an</strong>d number <strong>of</strong> samples taken are given <strong>in</strong> the<br />

Table 6. 6. The three samples <strong>of</strong> serum collected from each <strong>an</strong>imal were tested on the<br />

same plate at a 1:50 dilution. Doubl<strong>in</strong>g dilutions <strong>of</strong> a positive (st<strong>an</strong>dard) control (goat<br />

hyperimmun serum) <strong>an</strong>d a negative control (fetal calf serum) were used for each plate at<br />

dilutions from 1:50 to 1:6400. A serum sample was considered positive if the optical<br />

density value at 405nm was equal to or greater th<strong>an</strong> three times that <strong>of</strong> the negative<br />

control serum.<br />

The difference <strong>in</strong> <strong>an</strong>tibody level between first <strong>an</strong>d second, first <strong>an</strong>d third <strong>an</strong>d<br />

second <strong>an</strong>d third collections was <strong>in</strong>vestigated <strong>in</strong> the follow<strong>in</strong>g way. The differences<br />

between the OD values measured at each po<strong>in</strong>t were calculated for each <strong>an</strong>imal.<br />

165


Negative values (i.e. a decrease <strong>in</strong> OD values) <strong>an</strong>d positive values (i.e. <strong>an</strong> <strong>in</strong>crease <strong>in</strong><br />

OD values between the two sampl<strong>in</strong>g po<strong>in</strong>ts) were obta<strong>in</strong>ed. The maximum positive or<br />

negative ch<strong>an</strong>ges <strong>in</strong> OD on each farm were then selected <strong>an</strong>d the lower <strong>of</strong> these was<br />

taken as the cut <strong>of</strong>f po<strong>in</strong>t. Animals with values above this cut <strong>of</strong>f po<strong>in</strong>t were then<br />

considered to have undergone a ch<strong>an</strong>ge <strong>in</strong> <strong>an</strong>tibody level. Antibody levels <strong>in</strong>creased on<br />

some farms <strong>an</strong>d decreased on others.<br />

The plate lay out <strong>an</strong>d the ELISA results are presented <strong>in</strong> the appendix 6.<br />

Table 6. 6. Dates <strong>an</strong>d numbers <strong>of</strong> blood samples collected<br />

farm A Farm B Farm C Farm D Farm E<br />

date n date n date n date n date n<br />

1 12/8/96 109 14/8/96 96 19/8/96 61 16/8/96 122 21/8/96 141<br />

2 13/12/96 83 11/12/96 78 18/12/96 55 16/12/98 119 20/12/96 136<br />

3 12/5/97 85 14/5/97 81 15/5/97 54 19/5/97 106 1/5/97 157<br />

n number <strong>of</strong> samples<br />

6. 2. 7. Investigation <strong>of</strong> source <strong>of</strong> the bacteria :<br />

R<strong>an</strong>dom amplified polymorphic DNA (RAPD) technique was used to identify<br />

<strong>in</strong>dividual isolates <strong>of</strong> L. monocytogenes. This method was adapted from that described<br />

by MacGow<strong>an</strong> <strong>an</strong>d others (1993) <strong>an</strong>d O`Donoghue <strong>an</strong>d others (1995). The method was<br />

st<strong>an</strong>dardised by us<strong>in</strong>g a s<strong>in</strong>gle bacterial colony for the DNA extraction, st<strong>an</strong>dardis<strong>in</strong>g<br />

the DNA extraction method, test<strong>in</strong>g the primers ability to differentiate the different<br />

species <strong>an</strong>d f<strong>in</strong>ally test<strong>in</strong>g the repeatability <strong>of</strong> RAPD.<br />

(i) Selection <strong>of</strong> isolates for RAPD:<br />

166


A total <strong>of</strong> 944 isolates <strong>of</strong> L. monocytogenes were obta<strong>in</strong>ed over the <strong>study</strong><br />

period, because <strong>of</strong> limitations <strong>of</strong> time <strong>an</strong>d resources it was impossible to exam<strong>in</strong>e all<br />

isolates. A selected number <strong>of</strong> isolates were therefore tested. All the isolates <strong>of</strong> L.<br />

monocytogenes from environmental samples (soil, grass, water, bedd<strong>in</strong>g, silage) <strong>an</strong>d<br />

milk which were recovered follow<strong>in</strong>g storage were exam<strong>in</strong>ed. Faecal isolates recovered<br />

from the first three visits were exam<strong>in</strong>ed to determ<strong>in</strong>e the “stra<strong>in</strong>s” present prior to<br />

hous<strong>in</strong>g. A representative number <strong>of</strong> isolates obta<strong>in</strong>ed at the visit when the highest<br />

number <strong>of</strong> <strong>an</strong>imals excreted L. monocytogenes (10% <strong>of</strong> isolates were r<strong>an</strong>domly selected<br />

where the number <strong>of</strong> isolates exceeded 10) was taken to determ<strong>in</strong>e the isolates present<br />

at the peak <strong>of</strong> <strong>in</strong>fection. The number <strong>an</strong>d the orig<strong>in</strong> <strong>of</strong> the <strong>an</strong>imal isolates exam<strong>in</strong>ed are<br />

given <strong>in</strong> Table 6. 19.<br />

(ii) L. monocytogenes isolates <strong>an</strong>d culture conditions<br />

All L. monocytogenes isolates used <strong>in</strong> RAPD were ma<strong>in</strong>ta<strong>in</strong>ed on preservative<br />

beads (TSC, L<strong>an</strong>cashire, UK) at -20 0 C. Listeria cultures were prepared by <strong>in</strong>oculat<strong>in</strong>g<br />

1-2 beads <strong>in</strong>to 5ml <strong>of</strong> non-selective broth (peptone water (PW) or LEB with no<br />

<strong>an</strong>tibiotic supplement, Appendix 3) to allow <strong>in</strong>jured org<strong>an</strong>isms to recover <strong>an</strong>d<br />

<strong>in</strong>cubat<strong>in</strong>g at 37 0 C overnight. This mixture was tr<strong>an</strong>sferred to LSEB <strong>an</strong>d <strong>in</strong>cubated<br />

overnight at 37 0 C. A loopful <strong>of</strong> this broth was then streaked on to 5% SBA <strong>an</strong>d the<br />

plates were <strong>in</strong>cubated at 37 0 C overnight <strong>in</strong> order to recheck the haemolytic activity <strong>of</strong><br />

isolates. A colony was sub-cultured on SBA at 37 0 C overnight. The purity <strong>of</strong> the plate<br />

was evaluated by further sub-cultur<strong>in</strong>g a s<strong>in</strong>gle haemolytic colony on to SBA at 37 0 C<br />

for 24 hours.<br />

(iii) DNA extraction:<br />

167


A s<strong>in</strong>gle colony was picked <strong>of</strong>f a culture plate <strong>an</strong>d put <strong>in</strong>to 5ml <strong>of</strong> sterile LEB<br />

with no <strong>an</strong>tibiotic supplement <strong>an</strong>d <strong>in</strong>cubated at 37 0 C overnight. The culture was<br />

harvested by centrifugation for 5 m<strong>in</strong>utes at 2500 g. The pellet was washed twice with<br />

sterile distilled water <strong>an</strong>d then suspended <strong>in</strong> 150μl sterile distilled water, boiled for 4<br />

m<strong>in</strong>utes <strong>an</strong>d centrifuged at 1300xg for 30 seconds. The supernat<strong>an</strong>t was used as<br />

template DNA. No attempt was made to qu<strong>an</strong>tify the amount <strong>of</strong> DNA but the total<br />

number <strong>of</strong> bacteria used to extract DNA was calculated as approximately 4x10 7 cfu/ml.<br />

This was calculated as expla<strong>in</strong>ed earlier. The same culture conditions <strong>an</strong>d methods were<br />

used prior to DNA extraction so as to st<strong>an</strong>dardise the number <strong>of</strong> bacteria used for<br />

extraction.<br />

(iv) DNA primers:<br />

The primers (primer Universal, 2, 3, 4, 5 <strong>an</strong>d 6) were obta<strong>in</strong>ed from the<br />

Department <strong>of</strong> Medical Microbiology, Southmead Health Services NHS Trust, Bristol.<br />

The primers <strong>an</strong>d their DNA sequence are given below.<br />

Primer -mer DNA Sequence<br />

universal 21 TTATGTAAAACGACGGCCACT<br />

primer 2 21 ATCTGCAGCTGAACGGTCTGG<br />

primer 3 20 CAGAATTCATGCCACGTCCC<br />

primer 4 20 GGGCGTTGTCGGTGTTCATG<br />

primer 5 20 ACAGGTCCAACAAAAGCTGG<br />

primer 6 19 AACAGCACTCTGTTCAGGC<br />

(v) RAPD amplification conditions:<br />

DNA amplification reactions were performed <strong>in</strong> a reaction mixture conta<strong>in</strong><strong>in</strong>g;<br />

10mM Tris-HCl, pH 9.0, 1.5mM MgCl2, 50mM KCl, gelat<strong>in</strong> 0.1% w/v, Triton X100<br />

0.1% w/v, 200μM each <strong>of</strong> dATP, dGTP, dTTP <strong>an</strong>d dCTP (Pharmacia, Hertfordshire,<br />

168


UK), 0.5μM DNA primer, 1 unit Supertaq DNA polymerase (Stratech Scientific,<br />

Cambridge, UK) <strong>an</strong>d 10μl <strong>of</strong> cell supernat<strong>an</strong>t (f<strong>in</strong>al volume 50μl). S<strong>in</strong>gle primer<br />

(Cruachem Ltd., Glasgow UK), at concentration <strong>of</strong> 25μM, was added to each reaction<br />

mixture which was then overlaid with 3-4 drops <strong>of</strong> liquid paraff<strong>in</strong>. The mixture was<br />

then placed <strong>in</strong> a PCR Thermal Reactor (Hybaid, Middlesex, UK) with temperature<br />

programm<strong>in</strong>g as follows;<br />

-one cycle at 94 0 C for 3 m<strong>in</strong>utes to denature template DNA,<br />

-four low str<strong>in</strong>gency cycles at 94 0 C for 45 seconds, 26 0 C for 2 m<strong>in</strong>utes, <strong>an</strong>d 72 0 C for 2<br />

m<strong>in</strong>utes with ramp sett<strong>in</strong>g <strong>of</strong> 2, to <strong>an</strong>neal template DNA <strong>an</strong>d primer,<br />

-thirty cycles at 94 0 C for 45 seconds, 36 0 C for 1 m<strong>in</strong>ute, 72 0 C for 2m<strong>in</strong>utes with ramp<br />

default sett<strong>in</strong>g,<br />

-f<strong>in</strong>ally one cycle at 72 0 C for 5 m<strong>in</strong>utes to extend the reaction with Taq polymerase.<br />

(vi) Test repeatability:<br />

The repeatability <strong>of</strong> the test was evaluated by us<strong>in</strong>g 2 isolates <strong>of</strong> L.<br />

monocytogenes <strong>an</strong>d 1 isolate <strong>of</strong> L. <strong>in</strong>nocua <strong>in</strong> the test on two occasion us<strong>in</strong>g the same<br />

procedure.<br />

(vii) Analysis <strong>of</strong> PCR product:<br />

The PCR products were <strong>an</strong>alysed by electrophoresis <strong>in</strong> 1% w/v agarose with<br />

TBE buffer (0.089M Tris base, 0.089M orthoboric acid, 0.002M EDTA, pH8.0). 2μl <strong>of</strong><br />

load<strong>in</strong>g buffer (conta<strong>in</strong><strong>in</strong>g bromophenol blue 0.25% w/v <strong>an</strong>d sucrose 40% w/v <strong>in</strong><br />

distilled water) was added to 10μl <strong>of</strong> f<strong>in</strong>al PCR product <strong>an</strong>d mixed well. 10μl <strong>of</strong> this<br />

mixture was loaded onto the gel <strong>an</strong>d run at 100-115 volts for about 2-3 hours. The gel<br />

was then soaked <strong>in</strong> ethidium bromide (0.5mg/L) for about 30 m<strong>in</strong>utes the b<strong>an</strong>ds<br />

169


visualised over a UV-Tr<strong>an</strong>sillum<strong>in</strong>ator. Results were recorded on Polaroid type 665<br />

<strong>in</strong>st<strong>an</strong>t positive/negative film (Polaroid, Hertfordshire, UK).<br />

6. 2. 8. Data <strong>an</strong>alysis:<br />

In estimat<strong>in</strong>g the effect <strong>of</strong> silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g on the overall excretion <strong>of</strong><br />

Listeria spp. <strong>an</strong>d L. monocytogenes, all <strong>an</strong>imals exam<strong>in</strong>ed (i.e. <strong>an</strong>imals left or entered<br />

the milk<strong>in</strong>g herd <strong>in</strong>cluded) before, dur<strong>in</strong>g <strong>an</strong>d after silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g were<br />

taken <strong>in</strong>to account <strong>an</strong>d then the proportions <strong>of</strong> <strong>an</strong>imals positive for the org<strong>an</strong>ism before,<br />

dur<strong>in</strong>g <strong>an</strong>d after hous<strong>in</strong>g <strong>an</strong>d silage feed<strong>in</strong>g were estimated <strong>an</strong>d compared.<br />

All data were entered onto a database (Micros<strong>of</strong>t Access 2, Simpson 1994) <strong>an</strong>d<br />

<strong>an</strong>alysed us<strong>in</strong>g Epi-<strong>in</strong>fo version 6 (De<strong>an</strong> <strong>an</strong>d others 1994). A Yates corrected chi<br />

squared test was used to compare the differences between proportions. A Kruskal-<br />

Wallis test was used to compare the differences between medi<strong>an</strong> values (De<strong>an</strong> <strong>an</strong>d<br />

others 1994). A probability <strong>of</strong> P< 0.05 was accepted as statistically signific<strong>an</strong>t.<br />

6. 3. Results:<br />

6. 3. 1. Bacteriology :<br />

Farm A:<br />

a) Faecal samples:<br />

A total <strong>of</strong> 124 milk<strong>in</strong>g cows were exam<strong>in</strong>ed on this farm. Of these, 72.6%<br />

(90/124) shed L. monocytogenes <strong>an</strong>d 1.6% (2/124) other species <strong>of</strong> Listeria. Animals<br />

170


entered <strong>an</strong>d left the herd over the <strong>study</strong> period, so that only 78 (62.9%) <strong>an</strong>imals were<br />

exam<strong>in</strong>ed at all visits <strong>an</strong>d the rest (37.1%) were either removed from or <strong>in</strong>cluded <strong>in</strong> the<br />

herd at different times dur<strong>in</strong>g the survey (Table 6. 5). All 78 milk<strong>in</strong>g cows shed L.<br />

monocytogenes at some stage dur<strong>in</strong>g the <strong>study</strong>.<br />

The proportion <strong>of</strong> milk<strong>in</strong>g cows excret<strong>in</strong>g Listeria spp. varied between 1% <strong>in</strong><br />

September to 96.5% <strong>in</strong> March (Figure 6. 2). The highest frequencies <strong>of</strong> excretion were<br />

observed between November <strong>an</strong>d April <strong>in</strong>clusive. A similar pattern <strong>of</strong> excretion was<br />

observed for L. monocytogenes (1% <strong>in</strong> September <strong>an</strong>d 90% <strong>in</strong> February). The<br />

proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g L. <strong>in</strong>nocua gradually <strong>in</strong>creased <strong>an</strong>d reached the highest<br />

level <strong>in</strong> December (Figure 6. 2).<br />

The difference between the months was statistically signific<strong>an</strong>t (P


100<br />

%<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

L.spp Lm<br />

Li Ls<br />

A S O N D J F M A M<br />

172


Table 6. 7. Monthly frequency <strong>of</strong> excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes <strong>in</strong> milk<strong>in</strong>g cows.<br />

Visits<br />

L spp<br />

(%)<br />

August (A) 5/111<br />

(4.5)<br />

September (S) 1/110<br />

(1)<br />

October (O) 9/110<br />

(8.2)<br />

November (N) 33/83<br />

(39.8)<br />

December (D) 67/83<br />

(80.7)<br />

J<strong>an</strong>uary (J) 76/83<br />

(91.6)<br />

February (F) 85/89<br />

(95.5)<br />

March (M) 82/85<br />

(96.5)<br />

April (A) 80/84<br />

(95.2)<br />

May (M) 15/91<br />

(16.5)<br />

Farm A Farm B Farm C Farm D Farm E<br />

L. m<br />

(%)<br />

5/111<br />

(4.5)<br />

1/110<br />

(1)<br />

5/110<br />

(4.5)<br />

11/83<br />

(13.3)<br />

21/83<br />

(25.3)<br />

54/83<br />

(65.1)<br />

80/89<br />

(89.9)<br />

67/85<br />

(78.8)<br />

71/84<br />

(84.5)<br />

13/91<br />

(14.3)<br />

L spp<br />

(%)<br />

12/90<br />

(13.3)<br />

10/96<br />

(11.4)<br />

48/95<br />

(50.5)<br />

66/78<br />

(84.6)<br />

43/79<br />

(54.4)<br />

77/80<br />

(96.3)<br />

78/81<br />

(96.3)<br />

61/80<br />

(76.3)<br />

40/81<br />

(49.4)<br />

47/78<br />

(60.2)<br />

L. m<br />

(%)<br />

7/90<br />

(7.7)<br />

6/96<br />

(7.3)<br />

2/95<br />

(2.1)<br />

39/78<br />

(50)<br />

7/79<br />

(8.9)<br />

45/80<br />

(56.3)<br />

69/81<br />

(81.5)<br />

11/80<br />

(13.9)<br />

17/81<br />

(20.9)<br />

11/78<br />

(14.1)<br />

L spp<br />

(%)<br />

3/58<br />

(5.1)<br />

4/58<br />

(6.9)<br />

3/57<br />

(5.3)<br />

28/53<br />

(52.8)<br />

10/57<br />

(17.5)<br />

9/56<br />

(16.1)<br />

4/53<br />

(7.5)<br />

20/53<br />

(37.7)<br />

19/55<br />

(34.5)<br />

1/55<br />

(1.9)<br />

L. m<br />

(%)<br />

1/58<br />

(1.7)<br />

4/58<br />

(6.9)<br />

1/57<br />

(1.8)<br />

1/53<br />

(1.9)<br />

1/57<br />

(1.8)<br />

1/56<br />

(1.9)<br />

L. spp<br />

(%)<br />

2/126<br />

(1.6)<br />

10/128<br />

(8.1)<br />

30/126<br />

(23.8)<br />

1/128<br />

(0.8)<br />

1/121<br />

(0.8)<br />

0 2/132<br />

(1.5)<br />

18/53<br />

(33.9)<br />

1/55<br />

(1.9)<br />

L. m<br />

(%)<br />

L spp<br />

(%)<br />

0 20/141<br />

(14.2)<br />

9/128<br />

(7.0)<br />

27/126<br />

(21.4)<br />

7/138<br />

(5.1)<br />

18/155<br />

(11.6)<br />

0 125/145<br />

(86.2)<br />

1/121<br />

(0.8)<br />

130/139<br />

(93.5)<br />

0 0 107/128<br />

(83.6)<br />

52/120<br />

(43.3)<br />

30/111<br />

(27)<br />

0 6/102<br />

(5.9)<br />

1/132<br />

(0.8)<br />

24/120<br />

(20)<br />

2/111<br />

(2.7)<br />

101/135<br />

(74.8)<br />

123/155<br />

(79.4)<br />

44/158<br />

(27.8)<br />

L. m<br />

(%)<br />

11/141<br />

(7.8)<br />

3/138<br />

(2.2)<br />

6/155<br />

(3.9)<br />

49/145<br />

(33.8)<br />

93/139<br />

(66.9)<br />

62/128<br />

(48.3)<br />

34 (25.4)<br />

40/155<br />

(25.8)<br />

13/158<br />

(8.2)<br />

0 ND ND<br />

P value*


On this farm, grass silage was <strong>in</strong>troduced <strong>in</strong> September 12 days after the visit<br />

(9/9/1996). By the October visit the proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g Listeria spp. <strong>an</strong>d L.<br />

monocytogenes had <strong>in</strong>creased slightly but was similar to that seen <strong>in</strong> August before<br />

silage feed<strong>in</strong>g. The cows were housed on the same day as the October visit <strong>an</strong>d by the<br />

November visit the proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g Listeria spp. had <strong>in</strong>creased<br />

signific<strong>an</strong>tly. This was ma<strong>in</strong>ly due to <strong>an</strong> <strong>in</strong>crease <strong>in</strong> the number <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g L.<br />

<strong>in</strong>nocua. The proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g L. monocytogenes cont<strong>in</strong>ued to <strong>in</strong>crease<br />

<strong>in</strong> December <strong>an</strong>d showed a signific<strong>an</strong>t <strong>in</strong>crease <strong>in</strong> J<strong>an</strong>uary 9 days after the <strong>in</strong>troduction<br />

<strong>of</strong> maize silage. Maize silage feed<strong>in</strong>g ended at the end <strong>of</strong> March, 14 days before the<br />

April visit <strong>an</strong>d this was also the time when <strong>an</strong>imals were turned out. The proportion <strong>of</strong><br />

<strong>an</strong>imals shedd<strong>in</strong>g L. monocytogenes was still high <strong>in</strong> April but it dramatically<br />

decreased <strong>in</strong> May 12 days after grass silage feed<strong>in</strong>g ended.<br />

The total proportion <strong>of</strong> exam<strong>in</strong>ed <strong>an</strong>imals excret<strong>in</strong>g Listeria spp. before (5.4%,<br />

6/111) <strong>an</strong>d after (16.5%, 15/91) grass silage feed<strong>in</strong>g was signific<strong>an</strong>tly lower th<strong>an</strong> the<br />

proportion obta<strong>in</strong>ed dur<strong>in</strong>g grass silage feed<strong>in</strong>g (76.9%, 90/117) (p


Table 6. 8. The relationship between silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g on the overall excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes.<br />

Listeria spp. L monocytogenes<br />

Farm A before dur<strong>in</strong>g after P value before dur<strong>in</strong>g after P value<br />

grass silage 6/111 (5.4) 90/117 (76.9) 15/91 (16.5)


The me<strong>an</strong> age <strong>of</strong> herd was 5.6 (r<strong>an</strong>ge 2-14). The relationship between age <strong>an</strong>d<br />

Listeria excretion was <strong>in</strong>vestigated by compar<strong>in</strong>g the me<strong>an</strong> age <strong>of</strong> cows excret<strong>in</strong>g<br />

Listeria <strong>in</strong> their faeces with non-excretors. Age had no effect on faecal excretion each<br />

month (Table 6. 9) but the cows excret<strong>in</strong>g Listeria spp. were always younger th<strong>an</strong> non-<br />

excretors. When all the <strong>an</strong>imals exam<strong>in</strong>ed dur<strong>in</strong>g the <strong>study</strong> were taken <strong>in</strong>to account<br />

there was a signific<strong>an</strong>t effect <strong>of</strong> age on Listeria excretion. The me<strong>an</strong> age <strong>of</strong> Listeria<br />

shedders was 5 years while it was 7.5 years <strong>in</strong> non-shedders. This difference was<br />

statistically signific<strong>an</strong>t (p


(MA) me<strong>an</strong> age, (n) number, (R) r<strong>an</strong>ge, NA not applicable.<br />

Table 6. 10. The effect <strong>of</strong> age on the excretion <strong>of</strong> Listeria spp. <strong>an</strong>d Listeria<br />

monocytogenes.<br />

Farm A<br />

N MA (years) R<strong>an</strong>ge P Value<br />

Listeria spp. +ve 32 7.5 2-14<br />

-ve 92 5 3-9


Table 6. 11. Isolation <strong>of</strong> Listeria spp. from the environment on Farm A.<br />

Months<br />

Samples A S O N D J F M A M<br />

Soil 0 0 0 0 Li 0 Li 0 0 0<br />

Grass 0 0 Lm Lm Li 0 Lm 0 Lm Lm<br />

Water 0 0 Lm Li Lm Lm Lm Lm Lm 0<br />

Milk 0 0 0 0 0 Li Li Lm Lm ND<br />

G. Silage NF NF Li 0 Li Li Lm Lm Lm NF<br />

M. Silage NF NF NF NF NF Lm Lm Ls Lm NF<br />

Bedd<strong>in</strong>g NH NH NH Lm Lm Li Lm Lm Lm NH<br />

Lm L. monocytogenes, Li L. <strong>in</strong>nocua, Ls L. seeligeri, ND not done, NF not fed, NH not housed.<br />

Farm B:<br />

a) Faecal samples:<br />

A total <strong>of</strong> 111 <strong>an</strong>imals were exam<strong>in</strong>ed throughout the <strong>study</strong> period. 79.3%<br />

(88/111) <strong>of</strong> the <strong>an</strong>imals excreted L. monocytogenes, 7.2% (8/111) other Listeria spp.<br />

<strong>an</strong>d the rest did not shed Listeria (14.4%, 15/111) dur<strong>in</strong>g their participation <strong>in</strong> the <strong>study</strong>.<br />

Only 54.1% (60/111) <strong>of</strong> the milk<strong>in</strong>g cows were exam<strong>in</strong>ed at all visits. When only these<br />

<strong>an</strong>imals were taken <strong>in</strong>to account, the proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g L. monocytogenes<br />

was 98.3% (59/60). The rema<strong>in</strong><strong>in</strong>g <strong>an</strong>imal shed <strong>an</strong>other species <strong>of</strong> Listeria.<br />

The monthly proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g Listeria spp. varied from 11.4 % <strong>in</strong><br />

September to 96.3% <strong>in</strong> J<strong>an</strong>uary. A higher proportion <strong>of</strong> <strong>an</strong>imals were shedd<strong>in</strong>g Listeria<br />

org<strong>an</strong>isms <strong>in</strong> their faeces between October <strong>an</strong>d May with a peak <strong>of</strong> 96.3% <strong>in</strong> J<strong>an</strong>uary<br />

<strong>an</strong>d February. For L. monocytogenes <strong>an</strong>d L. <strong>in</strong>nocua there was a fluctuat<strong>in</strong>g rise. The<br />

highest proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g L. monocytogenes <strong>an</strong>d L. <strong>in</strong>nocua was <strong>in</strong><br />

February (81.8%) <strong>an</strong>d March (62.5%) respectively. The proportion decreased thereafter<br />

(Figure 6. 3). There was statistically a signific<strong>an</strong>t difference between the monthly<br />

178


frequency <strong>of</strong> excretion (P


housed for 5 days. The proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g Listeria spp. fell <strong>in</strong> December<br />

<strong>an</strong>d this was ma<strong>in</strong>ly due to the decl<strong>in</strong>e <strong>in</strong> cows shedd<strong>in</strong>g L. monocytogenes. It rose<br />

aga<strong>in</strong> <strong>in</strong> J<strong>an</strong>uary associated with <strong>an</strong> <strong>in</strong>crease <strong>in</strong> the proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g L.<br />

monocytogenes. The latter reached a peak <strong>in</strong> February <strong>an</strong>d fell to low level <strong>in</strong> March<br />

This fall preceded the end <strong>of</strong> w<strong>in</strong>ter hous<strong>in</strong>g. Maize silage cont<strong>in</strong>ued beyond the end <strong>of</strong><br />

the <strong>study</strong>.<br />

The effect <strong>of</strong> age on excretion was similar to the Farm A (Table 6. 9). The me<strong>an</strong><br />

age <strong>of</strong> cows that were excret<strong>in</strong>g Listeria spp. was lower th<strong>an</strong> non-excretors (Table 6.<br />

10).<br />

b) Environmental samples:<br />

Both L. <strong>in</strong>nocua <strong>an</strong>d L. monocytogenes were isolated from all environmental<br />

samples <strong>an</strong>d milk. L. monocytogenes was isolated from one environmental sample each<br />

month with the exception <strong>of</strong> October. In February L monocytogenes was detected <strong>in</strong> all<br />

the environmental samples except grass silage <strong>an</strong>d milk. This was also the time when<br />

the highest proportion <strong>of</strong> <strong>an</strong>imals were excret<strong>in</strong>g L. monocytogenes (Table 6. 12).<br />

Table 6. 12. Isolation <strong>of</strong> Listeria spp. from the environment on Farm B.<br />

VISITS<br />

Samples A S O N D J F M A M<br />

Soil 0 0 0 0 Li 0 Lm Li Lm Lm<br />

Grass 0 Lm 0 Li Li 0 Lm Li 0 Lm<br />

Water 0 Lm Li 0 Lm Li Lm Li 0 Li<br />

Milk Lm Li 0 0 0 0 0 0 0 0<br />

G. Silage 0 Lm Li Li Li Li Li Li Li ND<br />

M. Silage NF NF NF Li 0 Lm Lm Lm Lm ND<br />

Bedd<strong>in</strong>g NH NH Li Lm Li Lm Lm Li Lm NH<br />

Lm L. monocytogenes, Li L. <strong>in</strong>nocua, Ls L. seeligeri, ND not done, NF not fed, NH not housed.<br />

180


There was no evidence from this farm that grass silage feed<strong>in</strong>g alone was<br />

associated with a high frequency <strong>of</strong> faecal shedd<strong>in</strong>g <strong>of</strong> Listeria. Grass silage was fed all<br />

year round <strong>an</strong>d <strong>in</strong> October L. monocytogenes was isolated from it at a time when the<br />

proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g this org<strong>an</strong>ism was low.<br />

There was a dramatic <strong>in</strong>crease <strong>in</strong> the proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g L.<br />

monocytogenes <strong>in</strong> November but it was difficult to attribute this to <strong>an</strong>y one<br />

m<strong>an</strong>agement factor as both the <strong>in</strong>troduction <strong>of</strong> maize silage feed<strong>in</strong>g <strong>an</strong>d hous<strong>in</strong>g had<br />

occurred. L. monocytogenes was only isolated from bedd<strong>in</strong>g at the November visit.<br />

The peak prevalence <strong>of</strong> L. monocytogenes excretion <strong>in</strong> February corresponded<br />

with the highest frequency <strong>of</strong> recovery from food <strong>an</strong>d environmental samples This was<br />

also the case for L. <strong>in</strong>nocua <strong>in</strong> March.<br />

The proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g L. monocytogenes decl<strong>in</strong>ed <strong>in</strong> March at a<br />

time when maize silage from which L. monocytogenes had been isolated was still be<strong>in</strong>g<br />

fed. This cont<strong>in</strong>ued to be the case <strong>in</strong> April.<br />

this farm.<br />

Farm C:<br />

L. monocytogenes was isolated from the liver <strong>of</strong> <strong>an</strong> aborted foetus <strong>in</strong> J<strong>an</strong>uary on<br />

a) Faecal samples:<br />

67 milk<strong>in</strong>g cows were exam<strong>in</strong>ed. 37.3% (25/67) <strong>of</strong> them shed L.<br />

monocytogenes, 25.4% (17/67) L. <strong>in</strong>nocua <strong>an</strong>d 6.0% (4/67) L. seeligeri. Listeria spp.<br />

were not isolated from the rema<strong>in</strong>der (31.3%, 21/67) dur<strong>in</strong>g their stay <strong>in</strong> the herd. When<br />

the <strong>an</strong>imals that left or entered the herd dur<strong>in</strong>g the <strong>study</strong> were excluded only 41 (61.2%)<br />

<strong>an</strong>imals were consistently tested. Of these 46.3% (19/41) shed L. monocytogenes,<br />

181


24.4% (10/41) L. <strong>in</strong>nocua <strong>an</strong>d 9.7% (4/41) L. seeligeri. No Listeria were isolated from<br />

the rema<strong>in</strong><strong>in</strong>g 24.4% (10/41).<br />

The proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g Listeria spp. <strong>an</strong>d L. monocytogenes<br />

varied between 1.9% to 52.8% <strong>an</strong>d 0 to 33.3% respectively. The highest proportion <strong>of</strong><br />

cows excret<strong>in</strong>g Listeria spp. <strong>an</strong>d L. monocytogenes was <strong>in</strong> November <strong>an</strong>d March<br />

respectively (Figure 6. 4). Grass silage was <strong>in</strong>troduced 13 days before the October visit<br />

but the proportion <strong>of</strong> <strong>an</strong>imals shedd<strong>in</strong>g Listeria spp. rema<strong>in</strong>ed low. The <strong>cattle</strong> were<br />

housed 26 days before the November visit <strong>an</strong>d by this time the proportion <strong>of</strong> <strong>an</strong>imals<br />

shedd<strong>in</strong>g Listeria spp. had <strong>in</strong>creased to 52.8% (28/53). However the proportion <strong>of</strong><br />

<strong>an</strong>imals shedd<strong>in</strong>g L. monocytogenes rema<strong>in</strong>ed low throughout the w<strong>in</strong>ter months.<br />

(Table 6. 1). The proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g L. monocytogenes <strong>in</strong> March was<br />

signific<strong>an</strong>tly higher (P


) Environmental samples:<br />

Both L. <strong>in</strong>nocua <strong>an</strong>d L. monocytogenes were isolated from environmental<br />

samples but not from milk. L. monocytogenes <strong>an</strong>d L. <strong>in</strong>nocua were also isolated from<br />

grass <strong>an</strong>d soil dur<strong>in</strong>g the period when <strong>an</strong>imals were housed (Table 6. 13).<br />

Figure 6. 4. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes on<br />

Farm C.<br />

100<br />

%<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

L.spp Lm<br />

Li Ls<br />

A S O N D J F M A M<br />

Table 6. 13. Isolation <strong>of</strong> Listeria spp. from the environment on Farm C.<br />

VISITS<br />

Samples A S O N D J F M A M<br />

Soil 0 0 0 Li Lm 0 0 Li 0 0<br />

Grass Lm 0 0 Li Li 0 Lm 0 0 0<br />

Water 0 0 0 0 Li 0 Lm 0 0 Lm<br />

Milk 0 0 0 0 0 0 0 0 0 0<br />

Grass silage NF NF 0 Lm Lm Li Li Li 0 NF<br />

Bedd<strong>in</strong>g NH NH NH Li Lm 0 Lm Li Li NH<br />

Lm L. monocytogenes, Li L. <strong>in</strong>nocua, Ls L. seeligeri, ND not done, NF not fed, NH not housed.<br />

Farm D:<br />

183


a) Faecal samples:<br />

A total <strong>of</strong> 202 milk<strong>in</strong>g cows were exam<strong>in</strong>ed on this farm. Of these 28.2%<br />

(57/202) shed L. monocytogenes, 18.3 (37/202) L. <strong>in</strong>nocua, 1.5% (3) L. seeligeri <strong>an</strong>d<br />

52% (105/202) no Listeria spp. Dur<strong>in</strong>g the period <strong>of</strong> the <strong>study</strong> only 29.2% (59/202)<br />

milk<strong>in</strong>g cows were consistently sampled at each visit. The rest (70.2%, 143/202) were<br />

either removed from or <strong>in</strong>cluded <strong>in</strong> the milk<strong>in</strong>g herd dur<strong>in</strong>g the survey, therefore were<br />

sampled less frequently (Table 6. 5). Of these 59 <strong>an</strong>imals, 40.7% shed L.<br />

monocytogenes (24/59) 20.3% L <strong>in</strong>nocua (12/59), 3.4% L. seeligeri (2/59) <strong>an</strong>d the rest<br />

(35.6% 21/59) did not excrete <strong>an</strong>y species <strong>of</strong> Listeria.<br />

When the frequency <strong>of</strong> excretion was estimated for each month the lowest rates<br />

were observed between November <strong>an</strong>d February <strong>in</strong>clusive, around 1% <strong>of</strong> <strong>an</strong>imals shed<br />

Listeria spp. <strong>an</strong>d L. monocytogenes (Figure 6. 5). The highest proportion <strong>of</strong> <strong>an</strong>imals<br />

excret<strong>in</strong>g Listeria spp. <strong>an</strong>d L. monocytogenes were detected <strong>in</strong> March (43.3%, 52/120)<br />

<strong>an</strong>d October (21.4%, 27/126) respectively. These figures were signific<strong>an</strong>tly higher th<strong>an</strong><br />

those obta<strong>in</strong>ed <strong>in</strong> other months (P


monocytogenes. By April the proportion <strong>of</strong> cows excret<strong>in</strong>g L. monocytogenes had<br />

fallen whereas the proportion excret<strong>in</strong>g L. <strong>in</strong>nocua was similar to that seen <strong>in</strong> March.<br />

Grass silage feed<strong>in</strong>g ended 20 days before the April sampl<strong>in</strong>g <strong>an</strong>d w<strong>in</strong>ter hous<strong>in</strong>g also<br />

ended 9 days before this visit (Table 6. 8). This farm had bought <strong>in</strong> silage three weeks<br />

before the 8th visit (17/3/1997).<br />

b) Environmental samples:<br />

Listeria was not isolated from soil but L. <strong>in</strong>nocua was isolated from water, grass<br />

<strong>an</strong>d bedd<strong>in</strong>g <strong>an</strong>d L. monocytogenes was also isolated from grass, silage, bedd<strong>in</strong>g <strong>an</strong>d<br />

milk. Milk samples collected between October <strong>an</strong>d March were persistently positive for<br />

L. monocytogenes. L. seeligeri was isolated from bedd<strong>in</strong>g materials on one occasion.<br />

(Table 6. 14). Concentrate bulk feed stored <strong>in</strong> a shed was sampled on one occasion <strong>an</strong>d<br />

L. monocytogenes was isolated from it.<br />

Figure 6. 5. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes on<br />

Farm D.<br />

185


%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

L.spp Lm<br />

Li Ls<br />

A S O N D J F M A M<br />

Table 6. 14. Isolation <strong>of</strong> Listeria spp. from the environment on Farm D.<br />

Visits<br />

Samples A S O N D J F M A M<br />

Soil 0 0 0 0 0 0 0 0 0 0<br />

Grass 0 0 Lm Lm 0 0 0 0 0 Li<br />

Water Li 0 0 0 0 0 0 0 0 0<br />

Milk 0 0 Lm Lm Lm Lm Lm Lm 0 0<br />

Grass silage NF Lm 0 Lm 0 0 0 Lm NF NF<br />

Bedd<strong>in</strong>g NH NH NH NH 0 Lm 0 Li Ls NH<br />

Lm L. monocytogenes, Li L. <strong>in</strong>nocua, Ls L. seeligeri, ND not done, NF not fed, NH not housed.<br />

Farm E:<br />

a) Faecal samples:<br />

186


A total <strong>of</strong> 211 milk<strong>in</strong>g cows were exam<strong>in</strong>ed. 10.9% (23/211) <strong>of</strong> the <strong>an</strong>imals did<br />

not excrete <strong>an</strong>y species <strong>of</strong> Listeria, 73.9% (156/211) shed L. monocytogenes, 12.8%<br />

(27/211) L. <strong>in</strong>nocua <strong>an</strong>d 2.4% (5/211) L. seeligeri dur<strong>in</strong>g their participation <strong>in</strong> the<br />

<strong>study</strong>. When the <strong>an</strong>imals exam<strong>in</strong>ed at all visits were taken <strong>in</strong>to account only 37 <strong>an</strong>imals<br />

were tested, the rest either left or entered the <strong>study</strong> or not tested at some visits. Of these<br />

37, L. monocytogenes was excreted by 35 milk<strong>in</strong>g cows <strong>an</strong>d 2 <strong>an</strong>imals shed L.<br />

<strong>in</strong>nocua.<br />

There was difference <strong>in</strong> the frequency <strong>of</strong> excretion each month. The frequency<br />

<strong>of</strong> excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes varied from 5% <strong>in</strong> September to<br />

95.6% <strong>in</strong> November (P


was higher dur<strong>in</strong>g these practices. Similar results were found for L. monocytogenes<br />

(Table 6. 8).<br />

b) Environmental samples:<br />

L. <strong>in</strong>nocua was isolated from all environmental samples <strong>in</strong>clud<strong>in</strong>g milk on one<br />

occasion but not from maize silage. L. seeligeri was isolated from soil, grass <strong>an</strong>d on one<br />

occasion from maize silage. L. monocytogenes was isolated from soil, grass, water,<br />

grass silage, maize silage <strong>an</strong>d bedd<strong>in</strong>g but not from milk. In December when the highest<br />

frequency <strong>of</strong> excretion was seen, only L. monocytogenes was isolated from<br />

environmental samples (water, grass silage, maize silage <strong>an</strong>d bedd<strong>in</strong>g) (Table 6. 15).<br />

Concentrate bulk feed stored <strong>in</strong> a shed was also sampled once <strong>an</strong>d L. monocytogenes<br />

was isolated.<br />

Figure 6. 6. The monthly faecal excretion <strong>of</strong> Listeria spp. <strong>an</strong>d L. monocytogenes on<br />

Farm E.<br />

188


100<br />

%<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

L.spp Lm<br />

Li Ls<br />

A S O N D J F M A<br />

Table 6. 15. Isolation <strong>of</strong> Listeria spp. from the environment on Farm E.<br />

Visits<br />

Samples A S O N D J F M M<br />

Soil 0 0 Li Ls 0 Ls Lm 0 0<br />

Grass 0 0 Li Li 0 Li Ls Li Lm<br />

Water 0 0 0 Lm Lm Li Lm Li Li<br />

Milk 0 0 0 0 0 0 0 Li 0<br />

Grass silage 0 0 Lm Lm Lm Li 0 0 Lm<br />

Maize<br />

silage<br />

NF NF NF Ls Lm 0 Lm 0 NF<br />

Bedd<strong>in</strong>g NH NH NH Lm Lm Lm Lm Li Lm<br />

Lm L. monocytogenes, Li L. <strong>in</strong>nocua, Ls L. seeligeri, ND not done, NF not fed, NH not housed.<br />

Overall:<br />

189


The overall proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g Listeria spp. <strong>an</strong>d L. monocytogenes<br />

varied between the farms. The overall proportion <strong>of</strong> <strong>an</strong>imals excret<strong>in</strong>g Listeria spp. was<br />

signific<strong>an</strong>tly higher on farm A, (74.2%, 92/124), B (86.5%, 96/111) <strong>an</strong>d E (89.1%,<br />

188/211) th<strong>an</strong> on farm C (68.7%, 46/67) <strong>an</strong>d D (48%, 97/202) (P


The number <strong>of</strong> new cases each month <strong>an</strong>d the monthly <strong>in</strong>cidence rate (i.e. the<br />

number <strong>of</strong> new cases per 100 <strong>an</strong>imal-months at risk) were calculated separately for each<br />

farm (Table 6. 16 <strong>an</strong>d Figure 6. 7).<br />

On Farm A there was a gradual <strong>in</strong>crease <strong>in</strong> <strong>in</strong>cidence rate until all <strong>an</strong>imals had<br />

become <strong>in</strong>fected. The maximum number <strong>of</strong> cases <strong>in</strong> <strong>an</strong>y month occurred <strong>in</strong> J<strong>an</strong>uary.<br />

On Farm B there were two peaks; for the <strong>in</strong>cidence rate these occurred <strong>in</strong><br />

November <strong>an</strong>d February <strong>an</strong>d for the number <strong>of</strong> new cases November <strong>an</strong>d J<strong>an</strong>uary.<br />

December.<br />

On Farm E there was a peak <strong>in</strong> the <strong>in</strong>cidence rate <strong>an</strong>d number <strong>of</strong> new cases <strong>in</strong><br />

On Farm C the <strong>in</strong>cidence rate showed a small peak <strong>in</strong> March. The number <strong>of</strong><br />

new cases was small with a slight <strong>in</strong>crease <strong>in</strong> September <strong>an</strong>d highest <strong>in</strong> March.<br />

On Farm D the <strong>in</strong>cidence rate showed peaks <strong>in</strong> October <strong>an</strong>d March <strong>an</strong>d the<br />

number <strong>of</strong> new cases follows a similar pattern.<br />

When compared with m<strong>an</strong>agement variables the data provide further support for<br />

the association between maize silage feed<strong>in</strong>g <strong>an</strong>d faecal shedd<strong>in</strong>g seen us<strong>in</strong>g the<br />

prevalence data. The <strong>in</strong>troduction <strong>of</strong> maize silage <strong>in</strong> October on Farms B <strong>an</strong>d E is<br />

associated with rapid rise <strong>in</strong> the number <strong>of</strong> faecal shedders <strong>an</strong>d <strong>in</strong>cidence rate. On farm<br />

A where maize silage was <strong>in</strong>troduced <strong>in</strong> J<strong>an</strong>uary the epidemic curve is less steep<br />

between hous<strong>in</strong>g <strong>an</strong>d the <strong>in</strong>troduction <strong>of</strong> maize silage<br />

Table 6. 16. Incidence rate <strong>of</strong> L. monocytogenes <strong>in</strong>fection by month.<br />

Visit Farm A (%) Farm B (%) Farm C (%) Farm D (%) Farm E (%)<br />

191


August 5/111 (4.5) 7/90 (7.8) 1/58 (1.7) 0/126 (0) 11/141 (7.8)<br />

September 1/105 (1) 7/89 (7.9) 4/57 (7) 9/124 (7.3) 3/129 (2.3)<br />

October 3/104 (2.9) 1/82 (1.2) 0/52 (0) 26/118 (22) 6/141 (4.2)<br />

November 10/75 (13.3) 33/65 (50.8) 1/48 (2.1) 0/99 (0) 44/128 (34.3)<br />

December 16/65 (24.6) 2/37 (5.4) 1/51 (1.9) 1/96 (1) 58/87 (66.7)<br />

J<strong>an</strong>uary 33/49 (67.3) 20/36 (55.6) 1/49 (2) 0/110 (0) 15/28 (53.6)<br />

February 18/22 (81.8) 13/18 (72.2) 0/45 (0) 0/107 (0) 8/29 (27.5)<br />

March 2/3 (66.7) 0/8 (0) 16/46 (34.8) 19/97 (19.6) 5/37 (13.5)<br />

April 1/1 (100) 2/10 (20) 0/31 (0) 2/70 (2.9) 5/40 (12.5)<br />

May 1/7 (14.3) 2/7 (28.6) 0/31 (0) 0/65 (0) ND<br />

ND= not done<br />

Figure 6. 7. Monthly <strong>in</strong>cidence rate <strong>of</strong> L. monocytogenes <strong>in</strong>fection.<br />

%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Farm A<br />

Farm B<br />

Farm C<br />

Farm D<br />

Farm E<br />

A S O N D J F M A M<br />

Environment:<br />

Listeria spp. were isolated from the samples <strong>of</strong> soil, grass, water, grass silage,<br />

maize silage <strong>an</strong>d bedd<strong>in</strong>g on all farms with the exception <strong>of</strong> soil on farm D. L.<br />

192


monocytogenes was also isolated from these samples with the exception <strong>of</strong> soil on<br />

farms A <strong>an</strong>d D <strong>an</strong>d water on farm D.<br />

Listeria spp. were isolated from bulk milk t<strong>an</strong>k on 4 <strong>of</strong> the 5 farms <strong>an</strong>d L.<br />

monocytogenes was isolated from 3 farms (Farm A, B <strong>an</strong>d D). L. monocytogenes was<br />

persistently isolated from the bulk milk t<strong>an</strong>k between October <strong>an</strong>d March on farm D.<br />

6. 3. 2. Serology<br />

The results <strong>of</strong> ELISA assays for each farm are presented <strong>in</strong> the appendix 6.<br />

There were only few <strong>an</strong>imals that were seronegative at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the <strong>study</strong>. 0.9%<br />

(1/109), 1% (1/96) <strong>an</strong>d 1.6% (2/122) <strong>of</strong> <strong>an</strong>imals were seronegative on farms A, B <strong>an</strong>d D<br />

respectively. There were no seronegative <strong>an</strong>imals on farms C <strong>an</strong>d E. The number <strong>of</strong><br />

<strong>an</strong>imals that had <strong>in</strong>creased or decreased level <strong>of</strong> <strong>an</strong>tibodies to L. monocytogenes is<br />

presented <strong>in</strong> the table 6. 17. A signific<strong>an</strong>t number <strong>of</strong> <strong>an</strong>imals had <strong>in</strong>creased <strong>an</strong>tibodies<br />

on the farm A after the first <strong>an</strong>d second sampl<strong>in</strong>g <strong>an</strong>d only few <strong>an</strong>imals were found to<br />

have <strong>in</strong>creased or decreased <strong>an</strong>tibodies on the other farms (Table 6.17).<br />

Table 6. 17. Antibody ch<strong>an</strong>ges dur<strong>in</strong>g the period <strong>of</strong> the <strong>study</strong><br />

difference between<br />

collections<br />

first <strong>an</strong>d second 32.9%<br />

(27/82) i<br />

second <strong>an</strong>d third 30.8%<br />

(24/78)i<br />

first <strong>an</strong>d third 42.8%<br />

(33/77)i<br />

Farm A Farm B Farm C Farm D Farm E<br />

1.4%<br />

(1/71)d<br />

1.4%<br />

(1/72)i<br />

1.5%<br />

(1/67)i<br />

3.8%<br />

(2/53)d<br />

15.4%<br />

(8/52)d<br />

9.4%<br />

(5/53)d<br />

9.1%<br />

(7/77)d<br />

5.2%<br />

(5/97)i<br />

1.6<br />

(1/64)d<br />

1.1%<br />

(1/87)i<br />

1.5%<br />

(1/65)d<br />

2.2%<br />

(2/93)d<br />

i number <strong>of</strong> <strong>an</strong>imals that had <strong>in</strong>creased <strong>an</strong>tibodies, d number <strong>of</strong> <strong>an</strong>imals that had decreased <strong>an</strong>tibodies<br />

6. 3. 3. RAPD:<br />

193


Repeatability <strong>of</strong> RAPD was evaluated by repeat<strong>in</strong>g the procedure on two<br />

separate occasions. L. monocytogenes (2 stra<strong>in</strong>s) <strong>an</strong>d L. <strong>in</strong>nocua (1 stra<strong>in</strong>) were used.<br />

As it is shown <strong>in</strong> the Figure 6. 8 the same results were obta<strong>in</strong>ed on both occasions. The<br />

ability <strong>of</strong> RAPD to differentiate between different species was also evaluated. For this 2<br />

isolates <strong>of</strong> L. monocytogenes <strong>an</strong>d <strong>an</strong> isolate <strong>of</strong> L. <strong>in</strong>nocua were tested. The result<br />

<strong>in</strong>dicated that the two species were dist<strong>in</strong>ct from each other (Figure 6. 8). The results<br />

obta<strong>in</strong>ed with all primers used <strong>in</strong> this <strong>study</strong> were the same, therefore only the results<br />

obta<strong>in</strong>ed with the primer 5 are presented here (Figure 6. 9).<br />

194


Table 6. 18 The isolates, their orig<strong>in</strong> <strong>an</strong>d their RAPD patterns with the primer 5.<br />

Farm A visit* RAPD<br />

Water 3 1<br />

Grass 1 4 2<br />

Maize silage 6 3<br />

Milk 9 4<br />

Grass silage 9 4<br />

Animal 1 1 5<br />

Animal 2 1 5<br />

Animal 3 2 1<br />

Animal 4 3 2<br />

Animal 5 3 5<br />

Animal 6 3 1<br />

Animal 7 7 5<br />

Animal 8 7 3<br />

Animal 1 7 1<br />

Animal 11 7 5<br />

Animal 12 7 6<br />

Animal 13 7 6<br />

Farm B<br />

Milk 1 1<br />

Grass silage 2 6<br />

Grass 1 2 5<br />

Soil 1 7 1<br />

Grass 2 7 5<br />

Bedd<strong>in</strong>g 1 7 5<br />

Water 7 7<br />

Maize silage 9 1<br />

Bedd<strong>in</strong>g 2 9 6<br />

Soil 2 9 5<br />

Animal 1 1 6<br />

Animal 2 1 1<br />

Animal 3 1 1<br />

Animal 4 1 1<br />

Animal 5 1 6<br />

Animal 6 1 6<br />

Animal 7 2 6<br />

Animal 8 3 2<br />

Animal 9 3 6<br />

Animal 10 3 5<br />

Animal 11 7 1<br />

Animal 12 7 5<br />

Animal 13 7 1<br />

Animal 14 7 1<br />

Silage 1 4 1 2<br />

Soil 5 1 3<br />

Water 1 5 8 4<br />

Silage 2 5 1 5<br />

Bedd<strong>in</strong>g 7 9 6<br />

water 2 10 5 7<br />

Animal 1 2 1 8<br />

Animal 1 3 1 9<br />

Animal 2 8 1 10<br />

Animal 3 8 1 11<br />

Animal 4 8 1 12<br />

Animal 5 8 2 13<br />

Farm D L<strong>an</strong>e #<br />

Silage 1 2 5 2<br />

Grass 4 6 3<br />

Milk 1 3 5 4<br />

Feed 4 6 5<br />

Milk 2 4 5 6<br />

Silage 2 4 6 7<br />

Milk 3 8 5 8<br />

Silage 3 8 5 9<br />

Milk 4 9 5 10<br />

Milk 5 7 5 11<br />

Animal 1 2 2 2<br />

Animal 2 2 1 3<br />

Animal 3 2 1 4<br />

Animal 4 2 2 5<br />

Animal 5 2 1 6<br />

Animal 6 2 5 7<br />

Animal 7 2 2 8<br />

Animal 8 2 10 9<br />

Animal 9 3 10 10<br />

Animal 10 3 10 11<br />

Animal 11 3 10 12<br />

Animal 12 5 5 13<br />

Animal 12 7 11 14<br />

Animal 13 9 5 15<br />

Animal 14 9 6 16<br />

Animal 15 9 2 17<br />

Animal 16 8 1 18<br />

Animal 17 8 1 19<br />

Animal 18 8 1 20<br />

Animal 19 8 1 21<br />

Animal 20 8 6 22<br />

Animal 21 8 1 23<br />

Farm C visit* RAPD L<strong>an</strong>e @ Farm E visit* RAPD<br />

195


Bedd<strong>in</strong>g 1 4 6<br />

Water 1 4 6<br />

Feed 5 1<br />

Maize silage 5 1<br />

Water 2 5 1<br />

Bedd<strong>in</strong>g 2 6 6<br />

Bedd<strong>in</strong>g 3 6 7<br />

Water 3 7 1<br />

Grass silage 9 1<br />

Animal 1 1 7<br />

Animal 2 1 7<br />

Animal 3 1 7<br />

Animal 4 1 12<br />

Farm E visit* RAPD<br />

Animal 5 1 5<br />

Animal 6 1 7<br />

Animal 7 1 7<br />

Animal 8 1 7<br />

Animal 9 2 12<br />

Animal 10 2 7<br />

Animal 11 3 1<br />

Animal 12 3 1<br />

Animal 13 3 7<br />

Animal 14 3 7<br />

Animal 15 5 6<br />

Animal 16 5 5<br />

Animal 17 5 5<br />

Animal 18 5 1<br />

Animal 19 5 5<br />

* visit on which isolate was made from the environment <strong>an</strong>d faeces, @ Figure 6. 11, # Figure 6. 12a <strong>an</strong>d<br />

12b.<br />

A total <strong>of</strong> 113 isolates <strong>of</strong> L. monocytogenes (40 environmental <strong>an</strong>d 73 faecal<br />

isolates) were exam<strong>in</strong>ed (Table 6. 18). 12 dist<strong>in</strong>ct patterns were obta<strong>in</strong>ed. 9 different<br />

patterns were detected <strong>in</strong> environmental isolates <strong>an</strong>d 9 <strong>in</strong> faecal isolates. 6 patterns were<br />

common to both.<br />

Patterns 1, 5, 6 <strong>an</strong>d 7 were sequentially the most commonly identified <strong>in</strong> both<br />

samples (Table 6. 19). Patterns 10, 11 <strong>an</strong>d 12 were not detected <strong>in</strong> environmental<br />

isolates <strong>an</strong>d patterns 4, 8 <strong>an</strong>d 9 were not detected <strong>in</strong> faecal isolates.<br />

On farms, a maximum 4 environmental patterns <strong>an</strong>d 6 faecal patterns were<br />

identified. Pattern 1 was the most common <strong>in</strong> environmental (30%) <strong>an</strong>d faecal isolates<br />

(34%). It shared this proportion with pattern 5 <strong>in</strong> environmental samples (30%). There<br />

were differences between the farms. Pattern 1 was most frequent on farms C <strong>an</strong>d D. The<br />

predom<strong>in</strong><strong>an</strong>t patterns on farms A, B <strong>an</strong>d E were different. On farm A pattern 5 was most<br />

common, on farm B pattern 6 <strong>an</strong>d 1 were present <strong>in</strong> similar proportions <strong>an</strong>d on farm E<br />

pattern 7 was predom<strong>in</strong><strong>an</strong>t (Table 6. 19).<br />

196


Table 6. 19. The distribution <strong>of</strong> the RAPD patterns by their orig<strong>in</strong> <strong>an</strong>d the farms.<br />

RAPD patterns<br />

O N 1 2 3 4 5 6 7 8 9 10 11 12<br />

Farm A E 5 1 1 1 2 0 0 0 0 0 0 0 0<br />

A 12 3 1 1 0 5 2 0 0 0 0 0 0<br />

Farm B E 10 3 0 0 0 4 2 1 0 0 0 0 0<br />

A 14 6 1 0 0 2 5 0 0 0 0 0 0<br />

Farm C E 6 3 0 0 0 1 0 0 1 1 0 0 0<br />

A 6 5 1 0 0 0 0 0 0 0 0 0 0<br />

Farm D E 10 0 0 0 0 7 3 0 0 0 0 0 0<br />

A 22 8 4 0 3 2 0 0 0 0 4 1 0<br />

Farm E E 9 5 0 0 0 0 3 1 0 0 0 0 0<br />

A 19 3 0 0 0 4 1 9 0 0 0 0 2<br />

Total E 40 12 (30) 1 (2.5) 1 (2.5) 2 (5) 12 (30) 8 (20) 2 (5) 1 (2.5) 1 (2.5) 0 0 0<br />

A 73 25 (34) 7 (9.6) 1 (1.4) 0 14 (19) 10 (14) 9 (12.3) 0 0 4 (5.5) 1 (1.4) 2 (2.8)<br />

113 37 (33) 8 (7) 2 (1.8) 2 (1.8) 26 (23) 18 (16) 11 (9.7) 1 (0.9) 1 (0.9) 4 (3.6) 1 (0.9) 2 (3.9)<br />

O orig<strong>in</strong>, N number <strong>of</strong> isolates exam<strong>in</strong>ed, E environment, A <strong>an</strong>imals (faecal isolates), ( ) proportions.<br />

197


All environmental samples were exam<strong>in</strong>ed <strong>in</strong> order to compare the RAPD<br />

patterns with those found <strong>in</strong> faecal isolates. A comparison <strong>of</strong> environmental <strong>an</strong>d faecal<br />

isolates obta<strong>in</strong>ed at the first three visits <strong>an</strong>d the visit when the highest prevalence <strong>of</strong><br />

<strong>in</strong>fection observed is given <strong>in</strong> the table 6. 20.<br />

Table 6. 20. Comparison <strong>of</strong> environmental <strong>an</strong>d <strong>an</strong>imals isolates obta<strong>in</strong>ed at<br />

different visits.<br />

RAPD patterns obta<strong>in</strong>ed at<br />

first three visits peak prevalence<br />

environment <strong>an</strong>imal environment <strong>an</strong>imal<br />

Farm A 1, 2 1 2 , 2, 5 3 3, 4 1, 3, 5 2 , 6 2<br />

Farm B 1, 5, 6 1 3 , 2, 5, 6 5 1 2 , 5 3 , 6, 7 1 3 , 5<br />

Farm C 1 1 2 1 2 , 5, 8, 9 1 3 , 2<br />

Farm D 5 3 ,6 3 1 3 , 2 3 ,5,10 4 5 4 1 5 , 2, 5, 6 2 , 11<br />

Farm E 6 2 1 2 , 5, 7 9 , 12 2 1 4 , 6, 7 1, 5 3 , 6<br />

number refers to the pattern, superscript number refers to the number <strong>of</strong> times a pattern was detected.<br />

Exam<strong>in</strong>ation <strong>of</strong> these isolates failed to reveal <strong>an</strong>y obvious relationship between<br />

environmental <strong>an</strong>d faecal isolates or between faecal isolates present before or at hous<strong>in</strong>g<br />

<strong>an</strong>d those at peak excretion (Table 6. 20).<br />

On farm A patterns 1 <strong>an</strong>d 2 were present <strong>in</strong> <strong>an</strong>imals <strong>an</strong>d the environment at the<br />

first three visits (before hous<strong>in</strong>g) <strong>an</strong>d pattern 5 was also present <strong>in</strong> <strong>an</strong>imals. At the<br />

highest prevalence <strong>of</strong> <strong>in</strong>fection patterns 1 <strong>an</strong>d 5 were still present <strong>in</strong> faecal isolates, 2<br />

was not detected <strong>an</strong>d the patterns 3 <strong>an</strong>d 6 had appeared. Patterns 1 <strong>an</strong>d 2 were no longer<br />

present, but 3 <strong>an</strong>d 4 were detected.<br />

On farm B patterns 1, 5, 6 were present <strong>in</strong> the environment <strong>an</strong>d faeces prior to<br />

hous<strong>in</strong>g <strong>an</strong>d pattern 2 was also detected <strong>in</strong> faecal isolates. At the highest prevalence <strong>of</strong><br />

<strong>in</strong>fection patterns 1 <strong>an</strong>d 5 were still present <strong>in</strong> faecal isolates, 1, 5 <strong>an</strong>d 6 were still<br />

present <strong>in</strong> the environment <strong>an</strong>d pattern 7 was also detected <strong>in</strong> the environment.<br />

198


On farm C pattern 1 was detected <strong>in</strong> the faecal <strong>an</strong>d environmental isolates before<br />

hous<strong>in</strong>g. This pattern was still common at the highest prevalence <strong>of</strong> <strong>in</strong>fection but pattern<br />

2 <strong>in</strong> faeces had appeared. In addition to pattern 1, patterns 5, 8 <strong>an</strong>d 9 were also detected<br />

<strong>in</strong> the environment.<br />

On farm D pattern 5 was identified <strong>in</strong> <strong>an</strong>imals <strong>an</strong>d the environment prior to<br />

hous<strong>in</strong>g. Pattern 6 was also detected <strong>in</strong> the environment, <strong>an</strong>d patterns 1, 2 <strong>an</strong>d 10 <strong>in</strong><br />

faeces. At the highest prevalence <strong>of</strong> <strong>in</strong>fection, patterns 1, 2, 5 <strong>an</strong>d 6 were detected <strong>in</strong><br />

faeces along with pattern 11. Pattern 5 was the only one detected <strong>in</strong> the environment.<br />

On farm E, there was no common pattern <strong>in</strong> the environment <strong>an</strong>d faeces prior to<br />

hous<strong>in</strong>g. Pattern 6 <strong>in</strong> the environment <strong>an</strong>d pattern 1, 5, 7 <strong>an</strong>d 12 <strong>in</strong> faeces. At the peak<br />

prevalence <strong>of</strong> <strong>in</strong>fection, patterns 1 <strong>an</strong>d 5 were still present <strong>in</strong> <strong>an</strong>imals <strong>an</strong>d pattern 6 had<br />

also appeared. Pattern 6 was still present <strong>in</strong> the environment <strong>an</strong>d patterns 1 <strong>an</strong>d 7 were<br />

also detected.<br />

evaluated.<br />

Repeat faecal <strong>an</strong>d environmental isolates obta<strong>in</strong>ed from the farms were also<br />

On farm A, repeat isolates from the same <strong>an</strong>imal (<strong>an</strong>imal 1) on 2 different visits,<br />

6 visits apart (visit 1 <strong>an</strong>d 7), had different patterns (pattern 5 <strong>an</strong>d 1 respectively). 8<br />

isolates obta<strong>in</strong>ed from two persistently L. monocytogenes positive <strong>an</strong>imals (4 isolates<br />

from each) were tested <strong>in</strong> <strong>an</strong> attempt to determ<strong>in</strong>e if the <strong>an</strong>imals were excret<strong>in</strong>g the<br />

same stra<strong>in</strong>s. One <strong>an</strong>imal had the same pattern but the second <strong>an</strong>imal had 3 different<br />

patterns (Figure 6. 10).<br />

On farm B, 2 isolates from grass (visits 2 <strong>an</strong>d 7) had the same pattern, pattern 5,<br />

whereas 2 soil isolates (visit 7 <strong>an</strong>d 9) <strong>an</strong>d 2 isolates from bedd<strong>in</strong>g (visit 7 <strong>an</strong>d 9) had<br />

different patterns (1 <strong>an</strong>d 5 <strong>an</strong>d 5 <strong>an</strong>d 6 respectively).<br />

On farm C, repeat isolates from the same <strong>an</strong>imal on consecutive visits (visits 2<br />

<strong>an</strong>d 3) had the same pattern, pattern 1. 2 isolates from silage (visits 4 <strong>an</strong>d 5) also had the<br />

199


same pattern, pattern 1, while 2 isolates from water (visits 5 <strong>an</strong>d 10) had different<br />

patterns, patterns 8 <strong>an</strong>d 9 respectively (Figure 6. 11).<br />

On farm D, 2 different patterns were obta<strong>in</strong>ed from the repeat isolates from<br />

silage (visits 2, 4 <strong>an</strong>d 8), pattern 5 <strong>in</strong> silage collected at visits 2 <strong>an</strong>d 8 <strong>an</strong>d pattern 6 <strong>in</strong><br />

silage collected at visit 4. Repeat isolates from the same <strong>an</strong>imal (<strong>an</strong>imal 12) on 2<br />

different visits, 2 visits apart (visits 5 <strong>an</strong>d 7), had two different patterns, patterns 5 <strong>an</strong>d<br />

11 respectively. (Figure 12a <strong>an</strong>d 12b).<br />

On the farm E, 2 different patterns were detected <strong>in</strong> repeat isolates from water,<br />

pattern 6 <strong>in</strong> the isolate from water collected at visit 4 <strong>an</strong>d pattern 1 <strong>in</strong> isolates from<br />

water collected at visits 5 <strong>an</strong>d 7. The pattern 6 was detected <strong>in</strong> bedd<strong>in</strong>g collected at<br />

visits 4 <strong>an</strong>d 6 <strong>an</strong>d pattern 7 <strong>in</strong> bedd<strong>in</strong>g collected at visit 7.<br />

L. monocytogenes was isolated from milk on 3 farms (A, B <strong>an</strong>d D). Three<br />

different patterns were obta<strong>in</strong>ed from the milk samples, pattern 4 was <strong>in</strong> milk samples<br />

collected from farm A, pattern 1 <strong>in</strong> milk from farm B. On farm D the same pattern<br />

(pattern 5) was detected <strong>in</strong> all <strong>of</strong> the isolates from milk samples exam<strong>in</strong>ed. This pattern<br />

was also detected <strong>in</strong> 2 <strong>of</strong> the 5 environmental samples <strong>an</strong>d only 3 <strong>of</strong> the 22 faecal<br />

samples.<br />

200


Figure 6. 8. The repeatability <strong>of</strong> RAPD <strong>an</strong>d discrim<strong>in</strong>ation <strong>of</strong> different species <strong>of</strong><br />

Listeria<br />

L<strong>an</strong>e 1; λ DNA Marker L<strong>an</strong>e 3; L. monocytogenes 1, 4; L. monocytogenes 2, 5; L.<br />

<strong>in</strong>nocua, 8; L. monocytogenes 1, 9; L. monocytogenes 2, 10; L. <strong>in</strong>nocua, (universal<br />

primer)<br />

201


Figure 6. 9. The discrim<strong>in</strong>ation <strong>of</strong> isolates <strong>of</strong> L. monocytogenes with different<br />

primers<br />

L<strong>an</strong>e 1; λ DNA Marker, L<strong>an</strong>e 2; Lm1, 4; Lm3, 5; Lm4, 6; Lm5 <strong>an</strong>d 7; Lm6 (primer 2).<br />

L<strong>an</strong>e 8; Lm1, 9: Lm2, 10; Lm3, 11; Lm4, 12; Lm5 <strong>an</strong>d 13; Lm6 (primer 3).<br />

L<strong>an</strong>e 14; Lm1, 15; Lm2, 16; Lm3, 17; Lm4 <strong>an</strong>d 18; Lm5 (primer 5).<br />

202


Figure 6. 10. The distribution <strong>of</strong> stra<strong>in</strong>s <strong>in</strong> two persistently <strong>in</strong>fected <strong>an</strong>imals on<br />

farm A (primer 3).<br />

L<strong>an</strong>e 4 <strong>an</strong>d 8; λ DNA Marker, L<strong>an</strong>e 1; <strong>an</strong>imal 1(visit 5), 2; <strong>an</strong>imal 1 (visit 6), 3; <strong>an</strong>imal<br />

1 (visit 8), 5; <strong>an</strong>imal 1 (visit 9), 6; <strong>an</strong>imal 2 (visit 4), 7; <strong>an</strong>imal 2 (visit 6), 9; <strong>an</strong>imal 2<br />

(visit 7), 10; <strong>an</strong>imal 2 (visit 8) <strong>an</strong>d 11; <strong>an</strong>imal 2 (visit 9).<br />

203


Figure 6. 11. The RAPD pattern obta<strong>in</strong>ed from environmental <strong>an</strong>d faecal isolates<br />

on farm C (primer 5).<br />

L<strong>an</strong>e 1; λ DNA Marker, L<strong>an</strong>e 2, 3, 4, 5, 6 <strong>an</strong>d 7; L. monocytogenes from silage1, soil,<br />

water1, silage2, bedd<strong>in</strong>g <strong>an</strong>d water2 respectively <strong>an</strong>d L<strong>an</strong>e 8, 9, 10, 11, 12 <strong>an</strong>d 13; L.<br />

monocytogenes from <strong>an</strong>imal 1, 1, 2, 3, 4 <strong>an</strong>d 5 (Table 6. 18).<br />

204


Figure 6. 12a. The RAPD pattern obta<strong>in</strong>ed from the environmental isolates on<br />

farm D (primer 5).<br />

L<strong>an</strong>e 1; λ DNA Marker, L<strong>an</strong>e 2, 4, 5, 6, 7, 8, 9, 10 <strong>an</strong>d 11; L. monocytogenes isolates<br />

from silage1, grass, milk1, feed, milk2, silage2, milk3, silage3, milk4, milk5<br />

respectively (Table 6. 18).<br />

205


Figure 6. 12b. The RAPD patterns obta<strong>in</strong>ed from faecal isolates on farm D<br />

(primer 5)<br />

L<strong>an</strong>e 1; λ DNA Marker, L<strong>an</strong>e 2, 4, 5, 6 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,<br />

21, 22, <strong>an</strong>d 23; L. monocytogenes isolates from <strong>an</strong>imals 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11,<br />

12, 12, 13, 14, 15, 16, 17, 18, 19, 20 <strong>an</strong>d 21 respectively (Table 6. 18).<br />

6. 4. Discussion:<br />

The aims <strong>of</strong> this <strong>study</strong> were to <strong>in</strong>vestigate the dynamics <strong>of</strong> L. monocytogenes<br />

<strong>in</strong>fection <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>an</strong>d the distribution <strong>of</strong> the stra<strong>in</strong>s <strong>of</strong> the org<strong>an</strong>ism present <strong>in</strong> the<br />

environment <strong>an</strong>d <strong>in</strong> faecal samples. These were achieved by conduct<strong>in</strong>g a longitud<strong>in</strong>al<br />

<strong>study</strong> <strong>of</strong> five <strong>dairy</strong> farms <strong>in</strong> Northwest <strong>of</strong> Engl<strong>an</strong>d. Five farms were chosen because this<br />

was the maximum number that could be studied with<strong>in</strong> the constra<strong>in</strong>ts <strong>of</strong> the project.<br />

Listeria are widespread <strong>in</strong> the environment <strong>an</strong>d have been isolated from a variety<br />

<strong>of</strong> <strong>an</strong>imal species <strong>an</strong>d people (Gray <strong>an</strong>d Kill<strong>in</strong>ger 1966). Faecal excretion <strong>of</strong> Listeria<br />

spp. <strong>an</strong>d L. monocytogenes has been studied <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong> <strong>an</strong>d differences <strong>in</strong> the<br />

frequency <strong>of</strong> excretion have been reported between studies <strong>an</strong>d between farms. Reports<br />

vary from a small proportion to 67% for Listeria spp. <strong>in</strong> different studies<br />

(Kampelmacher <strong>an</strong>d v<strong>an</strong> Noorle J<strong>an</strong>sen 1969, Ralovich 1987, Skovgaar <strong>an</strong>d Morgen<br />

206


1988, Husu 1990) <strong>an</strong>d from zero to all <strong>an</strong>imals on different farms (Skovgaar <strong>an</strong>d<br />

Morgen 1988, Husu 1990). The use <strong>of</strong> different culture techniques <strong>an</strong>d media has been<br />

suggested as a reason for these different frequencies (Husu 1990) <strong>an</strong>d the difference<br />

between the farms has been attributed to different feed<strong>in</strong>g practices (Skovgaar <strong>an</strong>d<br />

Morgen 1988, Husu 1990).<br />

In this <strong>study</strong> too, there were differences between the farms <strong>in</strong> the proportion <strong>of</strong><br />

<strong>an</strong>imals positive for Listeria spp. <strong>an</strong>d L. monocytogenes. It varied from 48% <strong>of</strong> cows on<br />

farm D to 89.1% on farm E for Listeria spp. <strong>an</strong>d from 28.2% <strong>of</strong> cows on farm D to<br />

79.3% on farm B for L. monocytogenes. Similarly differences <strong>in</strong> the monthly frequency<br />

<strong>of</strong> excretion were also observed between the farms <strong>in</strong> this <strong>study</strong>. The monthly frequency<br />

<strong>of</strong> excretion reported here showed a seasonal pattern but there were two dist<strong>in</strong>ct patterns<br />

<strong>of</strong> excretion. The first pattern seen on farms A, B <strong>an</strong>d E was characterised by the high<br />

frequency <strong>of</strong> excretion between October <strong>an</strong>d May. This was similar to the pattern<br />

observed <strong>in</strong> our pilot <strong>study</strong> (Chapter 5). This seasonality is also similar to that reported<br />

for cl<strong>in</strong>ical <strong>listeriosis</strong> (Chapter 2). A similar seasonality <strong>of</strong> excretion <strong>of</strong> Listeria spp. <strong>an</strong>d<br />

L. monocytogenes <strong>in</strong> faeces was also reported by Husu (1990). However the frequency<br />

<strong>of</strong> excretion reported <strong>in</strong> our <strong>study</strong> was much higher th<strong>an</strong> those observed by Husu<br />

(1990), where the excretion rates for L. monocytogenes were 0.9 % (3.5% for Listeria<br />

spp.) <strong>in</strong> September <strong>an</strong>d 16.1% <strong>in</strong> December (19.4% for Listeria spp.).<br />

In contrast to the first group <strong>of</strong> the farms, the excretion rates on farms C <strong>an</strong>d D<br />

were lower especially between October <strong>an</strong>d April. The use <strong>of</strong> different culture<br />

techniques would not expla<strong>in</strong> the differences seen between the farms <strong>in</strong> this <strong>study</strong><br />

because the same culture technique was used throughout the <strong>study</strong>. There are a number<br />

<strong>of</strong> possible expl<strong>an</strong>ations for these differences between farms. They may be related to the<br />

stra<strong>in</strong>s <strong>of</strong> org<strong>an</strong>ism, the systems <strong>of</strong> husb<strong>an</strong>dry or the proportion <strong>of</strong> susceptible <strong>an</strong>imals.<br />

The difference <strong>in</strong> frequency <strong>of</strong> excretion may also be expla<strong>in</strong>ed by the absence <strong>of</strong> some<br />

207


<strong>of</strong> the factors required to <strong>in</strong>itiate or susta<strong>in</strong> <strong>an</strong> epidemic on some farms <strong>in</strong> this <strong>study</strong>.<br />

The presence <strong>of</strong> the <strong>in</strong>fectious agent <strong>in</strong> a sufficient qu<strong>an</strong>tity <strong>an</strong>d sufficient proportion <strong>of</strong><br />

susceptible <strong>an</strong>imals with close contact are major requirements for <strong>an</strong> epidemic to occur<br />

(Thrusfield 1995).<br />

On the farms studied the farm<strong>in</strong>g practices were similar but there were some<br />

import<strong>an</strong>t differences. Grass silage was fed all year round on two farms (farms B <strong>an</strong>d E)<br />

<strong>an</strong>d seasonally on the others (farms A, C <strong>an</strong>d D). Maize silage was not fed on 2 farms<br />

(farm C <strong>an</strong>d D) <strong>an</strong>d the start <strong>an</strong>d f<strong>in</strong>ish dates <strong>of</strong> maize silage feed<strong>in</strong>g were also different<br />

on farms A, B <strong>an</strong>d E. Farm D was a fly<strong>in</strong>g herd i.e. there was no <strong>in</strong>ternal breed<strong>in</strong>g <strong>of</strong><br />

replacement cows. Cows were bought <strong>in</strong>, milked <strong>an</strong>d then sold at the end <strong>of</strong> lactation.<br />

Farm E was also <strong>an</strong> open herd but this farm bought <strong>in</strong> only 10% <strong>of</strong> their replacement<br />

heifers <strong>an</strong>d the movement <strong>of</strong> <strong>an</strong>imals <strong>in</strong> <strong>an</strong>d out <strong>of</strong> the herd was more restricted <strong>an</strong>d<br />

controlled. Farm C had the smallest number <strong>of</strong> <strong>an</strong>imals <strong>in</strong> their herd.<br />

The frequency <strong>of</strong> isolation <strong>of</strong> Listeria org<strong>an</strong>isms from the faeces has been<br />

associated with the prevalence <strong>of</strong> the org<strong>an</strong>ism <strong>in</strong> feed (Husu 1990). In this <strong>study</strong> no<br />

measure was made <strong>of</strong> the number <strong>of</strong> org<strong>an</strong>isms <strong>in</strong> the feed but the major difference<br />

between the farms with a high <strong>an</strong>d low monthly prevalence <strong>of</strong> L. monocytogenes<br />

excretion was <strong>in</strong> the feed<strong>in</strong>g <strong>of</strong> maize silage. The farms with a low monthly prevalence<br />

<strong>of</strong> excretion did not feed maize silage. Maize silage feed<strong>in</strong>g was also identified as a risk<br />

factor for cl<strong>in</strong>ical Listeriosis <strong>in</strong> the questionnaire survey <strong>an</strong>d this provides support<strong>in</strong>g<br />

evidence for the role <strong>of</strong> this factor <strong>in</strong> Listeria <strong>in</strong>fection.<br />

The exact m<strong>an</strong>ner <strong>in</strong> which maize silage may have played a role <strong>in</strong> the excretion<br />

<strong>of</strong> the org<strong>an</strong>ism is not known. It may have had a direct effect either because <strong>of</strong> the<br />

numbers <strong>of</strong> Listeria org<strong>an</strong>isms it conta<strong>in</strong>ed or because <strong>of</strong> alterations <strong>in</strong> the gut flora <strong>of</strong><br />

the cow which may have <strong>in</strong>itiated faecal shedd<strong>in</strong>g <strong>of</strong> L. monocytogenes. It may have<br />

contributed <strong>in</strong>directly by a build up <strong>of</strong> L. monocytogenes <strong>in</strong> the environment. It has<br />

208


experimentally been shown that there is a relationship between the excretion <strong>of</strong> the<br />

org<strong>an</strong>ism <strong>in</strong> faeces <strong>an</strong>d <strong>in</strong>fectious dose. Lhopital <strong>an</strong>d colleagues (1993) reported that<br />

sheep challenged orally with 6x10 6 did not excrete the org<strong>an</strong>ism <strong>in</strong> <strong>an</strong>y samples<br />

exam<strong>in</strong>ed (blood, buccal <strong>an</strong>d nasal swabs <strong>an</strong>d faeces) but those challenged with 6x10 10<br />

shed the org<strong>an</strong>ism <strong>in</strong> the samples, <strong>in</strong>clud<strong>in</strong>g faeces. Although this could not be proved<br />

<strong>in</strong> our <strong>study</strong>, the <strong>in</strong>clusion <strong>of</strong> maize silage <strong>in</strong> the diet may have <strong>in</strong>creased the qu<strong>an</strong>tity <strong>of</strong><br />

Listeria org<strong>an</strong>isms <strong>in</strong> the diet, as the org<strong>an</strong>ism was isolated more frequently from maize<br />

silage th<strong>an</strong> grass silage on farms A, B <strong>an</strong>d E. An alternative expl<strong>an</strong>ation may be that the<br />

stra<strong>in</strong>s <strong>of</strong> L. monocytogenes obta<strong>in</strong>ed from maize silage were responsible for the<br />

epidemics. However, when the stra<strong>in</strong>s obta<strong>in</strong>ed from maize silage were compared with<br />

those detected <strong>in</strong> <strong>an</strong>imals at the highest peak <strong>of</strong> <strong>in</strong>fection it was difficult to support this.<br />

The stra<strong>in</strong>s detected <strong>in</strong> maize silage were not predom<strong>in</strong><strong>an</strong>t <strong>in</strong> faecal isolates obta<strong>in</strong>ed at<br />

the peak prevalence <strong>of</strong> <strong>in</strong>fection on farms A <strong>an</strong>d E <strong>an</strong>d the stra<strong>in</strong> detected <strong>in</strong> maize<br />

silage <strong>an</strong>d <strong>an</strong>imals on farm B were also predom<strong>in</strong><strong>an</strong>t <strong>in</strong> the isolates from faeces on farm<br />

C <strong>an</strong>d D.<br />

It is also possible that the stra<strong>in</strong>s <strong>of</strong> L. monocytogenes on these 2 farms (farm C<br />

<strong>an</strong>d D) may have not been capable <strong>of</strong> propagat<strong>in</strong>g <strong>in</strong> the environment, feed or cows.<br />

This is unlikely. Pattern 1 was predom<strong>in</strong><strong>an</strong>t <strong>in</strong> faecal samples on farms B, C <strong>an</strong>d D <strong>an</strong>d<br />

<strong>in</strong> the environment on farm C.<br />

The absence <strong>of</strong> a high prevalence <strong>of</strong> <strong>in</strong>fection on farms C <strong>an</strong>d D may also have<br />

been due to demographic features <strong>of</strong> these herds. Farm C was the smallest herd <strong>an</strong>d<br />

therefore the number <strong>of</strong> contacts with susceptible <strong>an</strong>imals might have been too low to<br />

<strong>in</strong>itiate <strong>an</strong> epidemic. Farm D was a fly<strong>in</strong>g herd which by its nature would conta<strong>in</strong> a<br />

small proportion <strong>of</strong> young <strong>an</strong>imals. There was a negative association between age <strong>an</strong>d<br />

faecal excretion on the farms where ages were available. This was also a feature <strong>of</strong> the<br />

pilot <strong>study</strong>. It was reflected also <strong>in</strong> the much higher <strong>in</strong>cidence <strong>of</strong> cl<strong>in</strong>ical Listeriosis<br />

209


eported <strong>in</strong> heifers <strong>in</strong> the questionnaire survey (Chapter 2). Although the <strong>in</strong>fluence <strong>of</strong><br />

age on cl<strong>in</strong>ical Listeriosis is controversial younger <strong>an</strong>imals have been reported to be<br />

more susceptible (Barlow <strong>an</strong>d McGorum 1985, Nash <strong>an</strong>d others 1995). In this <strong>study</strong><br />

younger <strong>an</strong>imals were more likely to excrete the org<strong>an</strong>ism <strong>in</strong> their faeces th<strong>an</strong> the older<br />

<strong>an</strong>imals. This f<strong>in</strong>d<strong>in</strong>g contradicts with the f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> H<strong>of</strong>er (1983) where the org<strong>an</strong>ism<br />

was more frequently isolated from beef <strong>cattle</strong> older th<strong>an</strong> 5 years. However, <strong>in</strong> the <strong>study</strong><br />

<strong>of</strong> H<strong>of</strong>er the sampl<strong>in</strong>g was not statistically based <strong>an</strong>d samples were collected from <strong>an</strong><br />

abattoir. It is possible that stress <strong>in</strong>duced shedd<strong>in</strong>g contributed to this f<strong>in</strong>d<strong>in</strong>g or that the<br />

older <strong>an</strong>imals had taken longer to reach slaughter weight because <strong>of</strong> <strong>in</strong>tercurrent<br />

disease.<br />

This negative association suggests that <strong>an</strong>imals may became immune to<br />

<strong>in</strong>fection follow<strong>in</strong>g repeated exposure to Listeria org<strong>an</strong>isms. In our <strong>study</strong> measurement<br />

<strong>of</strong> serum <strong>an</strong>tibody <strong>in</strong>dicated that almost all <strong>an</strong>imals had been exposed to Listeria<br />

<strong>in</strong>fection prior to the <strong>study</strong>. It has experimentally been demonstrated that <strong>an</strong>ti-LLO<br />

<strong>an</strong>tibodies develop after oral challenge (Low <strong>an</strong>d Donachie 1991, Low <strong>an</strong>d others<br />

1992b, Miett<strong>in</strong>en <strong>an</strong>d Husu 1991) <strong>an</strong>d that <strong>an</strong>tibodies developed aga<strong>in</strong>st L.<br />

monocytogenes could susta<strong>in</strong> at higher levels for as long as 4 (Lhopital <strong>an</strong>d others<br />

1993) or 6 (Miett<strong>in</strong>en <strong>an</strong>d Husu 1991) or 7.5 months after <strong>in</strong>itial exposure (Baetz <strong>an</strong>d<br />

Wesley 1995). This long last<strong>in</strong>g nature <strong>of</strong> <strong>an</strong>ti-LLO <strong>an</strong>tibodies may expla<strong>in</strong> the<br />

seropositivity <strong>of</strong> almost all <strong>an</strong>imals at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> this <strong>study</strong>. Whilst the<br />

measurement <strong>of</strong> serum <strong>an</strong>tibody may not correlate with protection aga<strong>in</strong>st <strong>in</strong>fection<br />

because Listeria is <strong>an</strong> <strong>in</strong>tracellular org<strong>an</strong>ism, it may however be considered as a<br />

measure <strong>of</strong> exposure to <strong>in</strong>fection or re-<strong>in</strong>fection.<br />

On only one <strong>of</strong> the farms, farm A, was there <strong>an</strong> <strong>in</strong>crease <strong>in</strong> serum <strong>an</strong>tibody<br />

between August <strong>an</strong>d December <strong>an</strong>d December <strong>an</strong>d April. This <strong>in</strong>crease showed a broad<br />

agreement with the proportion <strong>of</strong> new faecal excretors observed dur<strong>in</strong>g these two<br />

210


periods. However, on farms B <strong>an</strong>d E there was little ch<strong>an</strong>ge <strong>in</strong> serum <strong>an</strong>tibody <strong>an</strong>d the<br />

patterns <strong>of</strong> the epidemics on both <strong>of</strong> these farms were different to farm A. The <strong>in</strong>cidence<br />

rate on farm A cont<strong>in</strong>ued to rise throughout the <strong>study</strong> whereas on farms B <strong>an</strong>d E it<br />

peaked <strong>in</strong> November <strong>an</strong>d February <strong>an</strong>d December respectively <strong>an</strong>d then fell <strong>in</strong> spite <strong>of</strong><br />

the presence <strong>of</strong> susceptible <strong>an</strong>imals. It is possible that this occurred because <strong>of</strong> the<br />

higher level <strong>of</strong> herd immunity on these farms.<br />

On farms C <strong>an</strong>d D, there was a fall <strong>in</strong> serum <strong>an</strong>tibody between August <strong>an</strong>d<br />

December. On farm D this co<strong>in</strong>cided with a small <strong>in</strong>crease <strong>in</strong> the frequency <strong>of</strong> faecal<br />

shedd<strong>in</strong>g although there were differences <strong>in</strong> the proportions; 9.1% <strong>of</strong> <strong>an</strong>imals showed a<br />

decrease <strong>in</strong> serum <strong>an</strong>tibody <strong>an</strong>d 26% <strong>of</strong> <strong>an</strong>imals showed new <strong>in</strong>fections; on farm C 12%<br />

<strong>of</strong> <strong>an</strong>imals became faecal excretors for the first time dur<strong>in</strong>g this period <strong>an</strong>d 3. 8%<br />

showed a decrease <strong>in</strong> serum <strong>an</strong>tibody.<br />

In the period between December <strong>an</strong>d April there was a further decrease <strong>in</strong> serum<br />

<strong>an</strong>tibody <strong>in</strong> 15% <strong>of</strong> <strong>an</strong>imals on farm C. This co<strong>in</strong>cided with 29% <strong>of</strong> <strong>an</strong>imals becom<strong>in</strong>g<br />

faecal excretors for the first time.<br />

It is difficult to expla<strong>in</strong> how <strong>in</strong>fection might be associated with a decrease <strong>in</strong><br />

<strong>an</strong>tibody titers unless it was a reflection <strong>of</strong> the immunosuppressive process which<br />

<strong>in</strong>creased the susceptibility to <strong>in</strong>fection. It is more likely that this is a ch<strong>an</strong>ce<br />

observation as on farm D the new cases occurr<strong>in</strong>g between December <strong>an</strong>d April were<br />

associated with <strong>an</strong> <strong>in</strong>crease <strong>in</strong> serum <strong>an</strong>tibody.<br />

Serum <strong>an</strong>tibody measurements were <strong>in</strong>cluded <strong>in</strong> this <strong>study</strong> because <strong>of</strong> concerns<br />

that the presence <strong>of</strong> L. monocytogenes <strong>in</strong> faeces represented “<strong>in</strong>test<strong>in</strong>al tr<strong>an</strong>sient” rather<br />

th<strong>an</strong> true colonisation. The <strong>in</strong>crease <strong>in</strong> serum <strong>an</strong>tibody on farm A <strong>in</strong>dicates that<br />

<strong>in</strong>fection did occur <strong>an</strong>d the association between the start <strong>of</strong> maize silage feed<strong>in</strong>g <strong>an</strong>d<br />

faecal shedd<strong>in</strong>g, but the cont<strong>in</strong>uation <strong>of</strong> faecal shedd<strong>in</strong>g beyond the feed<strong>in</strong>g <strong>of</strong> maize<br />

silage suggest that this is true <strong>in</strong>fection rather th<strong>an</strong> simple tr<strong>an</strong>sient. A relationship<br />

211


etween <strong>in</strong>creased <strong>an</strong>ti-LLO <strong>an</strong>tibodies <strong>an</strong>d faecal excretion has also been suggested <strong>in</strong><br />

<strong>an</strong> experimental <strong>in</strong>fection <strong>of</strong> L. monocytogenes (Miet<strong>in</strong>nen <strong>an</strong>d others 1991).<br />

The sources <strong>of</strong> <strong>in</strong>fection on these farms were <strong>in</strong>vestigated us<strong>in</strong>g RAPD test. One<br />

criticism <strong>of</strong> RAPD is its lack <strong>of</strong> reproducibility (Wernars <strong>an</strong>d others 1996). The RAPD<br />

technique used <strong>in</strong> this <strong>study</strong> had been validated <strong>in</strong> <strong>an</strong>other laboratory (O’Donoghue <strong>an</strong>d<br />

others 1995). The use <strong>of</strong> 6 primers allowed <strong>in</strong>ternal validation <strong>an</strong>d the experiments<br />

showed that the technique was repeatable. Similar results were reported by other<br />

researchers (Mazurier <strong>an</strong>d Wernars 1992, MacGow<strong>an</strong> <strong>an</strong>d others 1993, O’Donoghue<br />

<strong>an</strong>d others 1995). Alternative typ<strong>in</strong>g methods such as serotyp<strong>in</strong>g, ribotyp<strong>in</strong>g, restriction<br />

enzyme <strong>an</strong>alysis (REA) multilocus enzyme electrophoresis (MEE) <strong>an</strong>d pulsed field gel<br />

electrophoresis (PFGE), have been used for L. monocytogenes (Ralovich 1993) <strong>an</strong>d a<br />

comparison with RAPD has also been made (Boerl<strong>in</strong> <strong>an</strong>d others 1995, Louie <strong>an</strong>d others<br />

1996). RAPD was compared with serotyp<strong>in</strong>g, ribotyp<strong>in</strong>g, MEE <strong>an</strong>d REA by Boerl<strong>in</strong> <strong>an</strong>d<br />

others (1995). They acknowledged the superiority <strong>of</strong> RAPD. RAPD was also compared<br />

with ribotyp<strong>in</strong>g <strong>an</strong>d PFGE. RAPD <strong>an</strong>d PFGE were found to be the most discrim<strong>in</strong>at<strong>in</strong>g<br />

typ<strong>in</strong>g methods <strong>an</strong>d their ability to differentiate between stra<strong>in</strong>s was comparable (Louie<br />

<strong>an</strong>d others 1996). However PFGE may take several days, it is costly <strong>an</strong>d sophisticated<br />

laboratory equipment is required to perform it. RAPD, on the other h<strong>an</strong>d, is cheap, rapid<br />

(results are obta<strong>in</strong>ed with<strong>in</strong> several hours) <strong>an</strong>d easy to perform (O’Donoghue <strong>an</strong>d others<br />

1995, Louie <strong>an</strong>d others 1996).<br />

The wide diversity <strong>of</strong> L. monocytogenes found on five <strong>study</strong> farms makes it<br />

difficult to l<strong>in</strong>k environmental stra<strong>in</strong>s with faecal stra<strong>in</strong>s. Because <strong>of</strong> the lack <strong>of</strong><br />

underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> the population dynamics <strong>of</strong> stra<strong>in</strong>s <strong>of</strong> L. monocytogenes it is also not<br />

known if temporal distribution <strong>of</strong> stra<strong>in</strong>s occurs (Low <strong>an</strong>d Donachie 1997). This was<br />

also the case <strong>in</strong> this <strong>study</strong>.<br />

212


A large number <strong>of</strong> L. monocytogenes isolates were obta<strong>in</strong>ed from the<br />

environment <strong>an</strong>d <strong>an</strong>imals. It was impossible to exam<strong>in</strong>e all the isolates because <strong>of</strong> time<br />

<strong>an</strong>d f<strong>in</strong><strong>an</strong>cial constra<strong>in</strong>ts. However the limited results obta<strong>in</strong>ed <strong>in</strong> this <strong>study</strong> provide<br />

some <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>formation. A total <strong>of</strong> 12 “stra<strong>in</strong>s” were identified but on <strong>in</strong>dividual<br />

farms this was limited to 5 or 6 different “stra<strong>in</strong>s”. The maximum number <strong>in</strong><br />

environmental samples was 4 <strong>an</strong>d <strong>in</strong> faecal samples it was 6. This diversity with<strong>in</strong> the<br />

stra<strong>in</strong>s <strong>of</strong> L. monocytogenes is <strong>in</strong> accord<strong>an</strong>ce with the results reported by other<br />

researchers (Boerl<strong>in</strong> <strong>an</strong>d Piffaretti 1991, Fenlon <strong>an</strong>d others 1996, Wiedm<strong>an</strong>n <strong>an</strong>d others<br />

1996).<br />

In <strong>in</strong>terpret<strong>in</strong>g the difference between the isolates made at different times care<br />

has to be taken because <strong>of</strong> the potential <strong>in</strong>fluence <strong>of</strong> the sampl<strong>in</strong>g procedure.<br />

Competition between the stra<strong>in</strong>s <strong>in</strong>variably takes place dur<strong>in</strong>g the enrichment procedure<br />

<strong>an</strong>d the selection <strong>of</strong> only 5 colonies from a plate me<strong>an</strong>s that only “stra<strong>in</strong>s” present at a<br />

prevalence <strong>of</strong> 50% will be detected.<br />

However, given these constra<strong>in</strong>ts the results suggest that the predom<strong>in</strong><strong>an</strong>t faecal<br />

isolates may vary with time. It is possible that the epidemic curves observed for L.<br />

monocytogenes are composite results from a large number <strong>of</strong> “stra<strong>in</strong>s” related epidemic<br />

curves. If this is the case then <strong>an</strong>y potential vacc<strong>in</strong>e aga<strong>in</strong>st L. monocytogenes <strong>in</strong>fection<br />

would need to <strong>in</strong>corporate immunogens from a number <strong>of</strong> different “stra<strong>in</strong>s”.<br />

The isolates from milk <strong>in</strong> the bulk t<strong>an</strong>k on three farms (farm A, B <strong>an</strong>d D)<br />

revealed that each farm had different patterns; the pattern 4 on farm A, 1 on farm B <strong>an</strong>d<br />

5 on farm D. Except for the pattern 4, this pattern 4 was not detected <strong>in</strong> <strong>an</strong>y other<br />

samples. Both pattern 1 <strong>an</strong>d 5 were also detected <strong>in</strong> the environmental <strong>an</strong>d faecal<br />

isolates on these farms. This may suggest that milk was contam<strong>in</strong>ated with the org<strong>an</strong>ism<br />

either by <strong>an</strong>imals excret<strong>in</strong>g it <strong>in</strong> milk or the org<strong>an</strong>ism got <strong>in</strong>to the t<strong>an</strong>k via<br />

environmental contam<strong>in</strong>ation where the refrigeration temperature allowed the org<strong>an</strong>ism<br />

213


to propagate. The latter may have been the case on the farm D because the “stra<strong>in</strong>”<br />

detected <strong>in</strong> the isolates obta<strong>in</strong>ed from milk samples was detected <strong>in</strong> 2 <strong>of</strong> 5<br />

environmental samples but only <strong>in</strong> 3 <strong>of</strong> 22 <strong>an</strong>imal isolates.<br />

The “stra<strong>in</strong>s” detected <strong>in</strong> bedd<strong>in</strong>g, water, soil <strong>an</strong>d grass were also seen <strong>in</strong> faeces<br />

<strong>an</strong>d grass <strong>an</strong>d maize silage on some farms. This is <strong>in</strong> agreement with the results <strong>of</strong> other<br />

studies (Skovgaar <strong>an</strong>d Morgen 1988, Ueno <strong>an</strong>d others 1995).<br />

This <strong>study</strong> has demonstrated that a large proportion <strong>of</strong> <strong>cattle</strong> c<strong>an</strong> become<br />

<strong>in</strong>fected <strong>an</strong>d shed L. monocytogenes <strong>in</strong> their faeces without <strong>an</strong>y apparent cl<strong>in</strong>ical<br />

symptom. L. monocytogenes was isolated from the liver <strong>of</strong> <strong>an</strong> aborted foetus on farm B<br />

but this isolate was not typed. In spite <strong>of</strong> the <strong>in</strong>conclusive <strong>an</strong>alysis <strong>of</strong> the stra<strong>in</strong>s, it also<br />

suggested that environmental contam<strong>in</strong>ation <strong>an</strong>d <strong>in</strong>fection <strong>of</strong> <strong>an</strong>imals with L.<br />

monocytogenes may have been a cont<strong>in</strong>u<strong>in</strong>g cycle as illustrated <strong>in</strong> the figure 6. 13.<br />

grass<br />

faeces<br />

grass silage<br />

soil maize silage<br />

water<br />

Milk<br />

ANIMAL<br />

bedd<strong>in</strong>g<br />

214


Figure 6. 13. Animal-environment cycle <strong>of</strong> L. monocytogenes<br />

215


CHAPTER 7<br />

Conclusion<br />

The aim <strong>of</strong> this <strong>study</strong> was to identify risk factors at both the farm level <strong>an</strong>d the<br />

<strong>in</strong>dividual <strong>an</strong>imal level which were associated with Listeriosis <strong>an</strong>d L. monocytogenes<br />

<strong>in</strong>fection <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>. An ultimate aim <strong>of</strong> <strong>epidemiological</strong> studies is to control<br />

disease. This c<strong>an</strong> be achieved by a better underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> the factors associated with<br />

<strong>in</strong>fection <strong>an</strong>d cl<strong>in</strong>ical disease.<br />

In this <strong>study</strong> two observational studies, cross-sectional <strong>an</strong>d longitud<strong>in</strong>al, were<br />

conducted to determ<strong>in</strong>e:<br />

a) the frequency <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>, its cl<strong>in</strong>ical characteristic <strong>an</strong>d risk<br />

factors associated with disease at farm level;<br />

b) the <strong>in</strong>fection rate <strong>in</strong> <strong>in</strong>dividual <strong>an</strong>imals, risk factors associated with it, the degree <strong>of</strong><br />

environmental contam<strong>in</strong>ation <strong>an</strong>d the source <strong>of</strong> <strong>in</strong>fection.<br />

In the cross sectional <strong>study</strong>, a postal survey, was carried out. 12% <strong>of</strong> <strong>dairy</strong><br />

farmers reported cl<strong>in</strong>ical Listeriosis <strong>an</strong>d on these farms around 5 out <strong>of</strong> 100 <strong>cattle</strong> were<br />

at risk <strong>of</strong> contract<strong>in</strong>g the disease each year (Chapter 2). The most frequently reported<br />

cl<strong>in</strong>ical sign was silage eye. This corresponds with the recent <strong>in</strong>creased number <strong>of</strong> field<br />

reports <strong>of</strong> this disease. However there is a need for a detailed <strong>in</strong>vestigation to establish<br />

the exact relationship between silage eye <strong>an</strong>d L. monocytogenes <strong>an</strong>d the dynamics <strong>of</strong><br />

this relationship.<br />

215


Some import<strong>an</strong>t farm<strong>in</strong>g practices were identified as risk factors for cl<strong>in</strong>ical<br />

<strong>listeriosis</strong>. These were ma<strong>in</strong>ly forage <strong>an</strong>d forage related practices (Chapter 3 <strong>an</strong>d 4).<br />

This <strong>study</strong> demonstrated that the methods <strong>of</strong> mak<strong>in</strong>g <strong>an</strong>d feed<strong>in</strong>g grass silage are <strong>an</strong><br />

import<strong>an</strong>t component <strong>of</strong> the association between silage feed<strong>in</strong>g <strong>an</strong>d Listeriosis. Cl<strong>in</strong>ical<br />

Listeriosis was associated with the time <strong>an</strong>d stage <strong>of</strong> harvest (number <strong>of</strong> cuts made to<br />

grass for grass silage), soil contam<strong>in</strong>ation (presence <strong>of</strong> mole hills <strong>in</strong> the fields, control <strong>of</strong><br />

moles, use <strong>of</strong> mower conditioner), type <strong>of</strong> harvesters (mower conditioner), wilt<strong>in</strong>g,<br />

storage <strong>of</strong> grass silage (clamp, big bale silage <strong>an</strong>d storage <strong>of</strong> big bales outside<br />

uncovered). These factors are also believed to be <strong>in</strong>volved <strong>in</strong> the production <strong>of</strong> good<br />

quality silage. These have been discussed <strong>in</strong> the relev<strong>an</strong>t chapters.<br />

As import<strong>an</strong>t as silage quality are the method or methods <strong>of</strong> feed<strong>in</strong>g silage.<br />

Some cl<strong>in</strong>ical forms <strong>of</strong> Listeriosis (encephalitis, iritis) have been attributed to physical<br />

<strong>in</strong>juries <strong>of</strong> mucosal membr<strong>an</strong>es such as buccal or conjunctival membr<strong>an</strong>es caused by<br />

rough forages. In addition to the factors stated above methods <strong>of</strong> feed<strong>in</strong>g grass silage<br />

were also associated with disease. These were the feed<strong>in</strong>g <strong>of</strong> grass silage both <strong>in</strong> r<strong>in</strong>g<br />

feeders <strong>an</strong>d ad libitum feed<strong>in</strong>g dur<strong>in</strong>g the <strong>in</strong>door or outdoor period.<br />

This <strong>study</strong> has also established <strong>an</strong> association between maize silage feed<strong>in</strong>g <strong>an</strong>d<br />

disease. Although we gathered <strong>in</strong>formation about the preparation <strong>of</strong> maize silage <strong>an</strong>d its<br />

quality, we failed to identify risk factors <strong>in</strong> the preparation <strong>of</strong> maize silage. The methods<br />

<strong>of</strong> maize silage feed<strong>in</strong>g were signific<strong>an</strong>tly associated with disease; maize silage feed<strong>in</strong>g<br />

ad libitum, <strong>in</strong> r<strong>in</strong>g feeders or <strong>in</strong> a complete diet dur<strong>in</strong>g the <strong>in</strong>door or outdoor period.<br />

Maize silage feed<strong>in</strong>g is <strong>an</strong> <strong>in</strong>creas<strong>in</strong>g practice <strong>in</strong> the UK. There is a need for more<br />

research to establish the factor or factors that <strong>in</strong>fluence its quality.<br />

In the second part <strong>of</strong> the <strong>study</strong> a longitud<strong>in</strong>al <strong>study</strong>, employ<strong>in</strong>g bacteriological,<br />

serological <strong>an</strong>d molecular techniques, was carried out. This <strong>study</strong> demonstrated that a<br />

large proportion <strong>of</strong> <strong>an</strong>imals excrete L. monocytogenes dur<strong>in</strong>g the w<strong>in</strong>ter months without<br />

216


show<strong>in</strong>g signs <strong>of</strong> disease. Although the <strong>an</strong>alysis <strong>of</strong> data collected <strong>in</strong> this <strong>study</strong> is not<br />

conclusive some farm<strong>in</strong>g practices were associated with the excretion <strong>of</strong> the org<strong>an</strong>ism.<br />

A signific<strong>an</strong>t number <strong>of</strong> isolates <strong>of</strong> L. monocytogenes were obta<strong>in</strong>ed from <strong>an</strong>imals <strong>an</strong>d<br />

the environment over a 10 month period. A complete <strong>an</strong>alysis <strong>of</strong> these isolates with the<br />

use <strong>of</strong> newer molecular typ<strong>in</strong>g methods (e.g. RAPD) could have provided <strong>in</strong>formation<br />

on temporal distribution <strong>of</strong> the stra<strong>in</strong>s <strong>of</strong> L. monocytogenes <strong>an</strong>d its relation with the<br />

<strong>in</strong>fection <strong>in</strong> <strong>an</strong>imals but this was not possible because <strong>of</strong> the time <strong>an</strong>d f<strong>in</strong><strong>an</strong>cial<br />

constra<strong>in</strong>ts. However the limited number <strong>of</strong> isolates exam<strong>in</strong>ed provided some<br />

<strong>in</strong>formation about the distribution <strong>of</strong> stra<strong>in</strong>s obta<strong>in</strong>ed from the faeces <strong>an</strong>d the<br />

environment.<br />

The use <strong>of</strong> <strong>an</strong>imal waste on agricultural l<strong>an</strong>d is known to help ma<strong>in</strong>ta<strong>in</strong> the<br />

existence <strong>of</strong> the org<strong>an</strong>ism <strong>in</strong> the farm environment. The import<strong>an</strong>ce <strong>of</strong> dung<br />

m<strong>an</strong>agement was demonstrated <strong>in</strong> both the cross-sectional <strong>an</strong>d the longitud<strong>in</strong>al <strong>study</strong>.<br />

In this part <strong>of</strong> the <strong>study</strong> there were two dist<strong>in</strong>ct patterns <strong>of</strong> excretion on the<br />

farms. The first pattern fitted well with the seasonal occurrence <strong>of</strong> cl<strong>in</strong>ical Listeriosis <strong>in</strong><br />

the northern hemisphere but the second pattern was dist<strong>in</strong>ct (Chapter 6). As expla<strong>in</strong>ed<br />

earlier it was difficult to establish why this difference occurred. The ma<strong>in</strong> factor<br />

associated with this difference was the feed<strong>in</strong>g <strong>of</strong> maize silage but it is possible that this<br />

was a confounder. It may have been that different “stra<strong>in</strong>s” <strong>of</strong> L. monocytogenes were<br />

<strong>in</strong>volved <strong>in</strong> <strong>in</strong>fection on these farms. This could only be expla<strong>in</strong>ed if all the isolates<br />

made dur<strong>in</strong>g the <strong>study</strong> were <strong>an</strong>alysed.<br />

Control <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> is complex due to scarcity <strong>of</strong> representative<br />

field data <strong>an</strong>d a lack <strong>of</strong> underst<strong>an</strong>d<strong>in</strong>g <strong>of</strong> its epidemiology. This <strong>study</strong> <strong>in</strong>dicates that a<br />

large proportion <strong>of</strong> <strong>cattle</strong> may excrete the org<strong>an</strong>ism without show<strong>in</strong>g overt nervous<br />

signs or silage eye. It is possible that there were more subtle cl<strong>in</strong>ical signs <strong>an</strong>d the<br />

217


ch<strong>an</strong>ce f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> L. monocytogenes <strong>in</strong> the only 1 <strong>of</strong> the abortion samples exam<strong>in</strong>ed<br />

supports this.<br />

L. monocytogenes is also known to be associated with mastitis <strong>an</strong>d the<br />

observation that “stra<strong>in</strong>s” <strong>of</strong> L. monocytogenes which were found <strong>in</strong> faecal samples<br />

were also found <strong>in</strong> the bulk t<strong>an</strong>k merits further <strong>in</strong>vestigation <strong>of</strong> udder <strong>in</strong>fection <strong>an</strong>d the<br />

presence <strong>of</strong> L. monocytogenes <strong>in</strong> milk.<br />

The isolates collected <strong>in</strong> this <strong>study</strong> have partially been identified. Further<br />

<strong>an</strong>alysis <strong>of</strong> these stra<strong>in</strong>s will allow a more detailed <strong>an</strong>alysis <strong>of</strong> the stra<strong>in</strong> specific<br />

patterns <strong>of</strong> <strong>in</strong>fection <strong>in</strong> these herds. The data obta<strong>in</strong>ed dur<strong>in</strong>g the longitud<strong>in</strong>al <strong>study</strong> will<br />

also provide empirical data which will be <strong>of</strong> value <strong>in</strong> develop<strong>in</strong>g theoretical models <strong>of</strong><br />

the disease process.<br />

In conclusion, this <strong>study</strong> has identified farm level risk factors which may be<br />

utilised to try <strong>an</strong>d reduce the <strong>in</strong>cidence <strong>of</strong> cl<strong>in</strong>ical disease. It has provided <strong>in</strong>formation<br />

<strong>of</strong> the longitud<strong>in</strong>al pattern <strong>of</strong> <strong>in</strong>fection <strong>in</strong> <strong>dairy</strong> herds <strong>an</strong>d has raised a number <strong>of</strong><br />

questions about the <strong>in</strong>ter-relationship between stra<strong>in</strong>s <strong>an</strong>d between <strong>in</strong>fection <strong>an</strong>d<br />

disease.<br />

218


REFERENCES<br />

Abramson, J.H. (1988) Survey Methods <strong>in</strong> Community Medic<strong>in</strong>e: An <strong>in</strong>troduction to<br />

<strong>epidemiological</strong> <strong>an</strong>d evaluative studies. Ed<strong>in</strong>burgh, Churchill Liv<strong>in</strong>gstone.<br />

pp. 136.<br />

Alex<strong>an</strong>der, A.V., Walker, R. L., Johnson, B. J., Charlton, B. R. <strong>an</strong>d Woods, L. W.<br />

(1992). Bov<strong>in</strong>e abortions attributable to Listeria iv<strong>an</strong>ovii: four cases (1988-<br />

1990). Journal <strong>of</strong> Americ<strong>an</strong> Medical Association; 200: 711-714.<br />

Al-Ghazali, M.R. <strong>an</strong>d Al-Azawi, S.K. (1986) Detection <strong>an</strong>d enumeration <strong>of</strong> Listeria<br />

monocytogenes <strong>in</strong> a sewage treatment pl<strong>an</strong>t <strong>in</strong> Iraq. Journal <strong>of</strong> Applied<br />

Bacteriology, 60, 251-254.<br />

Anon (1983) Grass Bullet<strong>in</strong> No. 2. Silage. M<strong>in</strong>istry <strong>of</strong> Agriculture, Fisheries <strong>an</strong>d Food,<br />

Liscombe, Experimental Husb<strong>an</strong>dry Farm, Dulverton, Somerset, UK.<br />

Arbeit, R.D. (1995) Laboratory procedure for <strong>epidemiological</strong> <strong>an</strong>alysis <strong>of</strong><br />

microorg<strong>an</strong>isms. In Murray, P.R., Baron, E.J.O., Pfaller, M.A., Tenover, F.C.<br />

<strong>an</strong>d Yolken, R.H. (ed.) M<strong>an</strong>ual <strong>of</strong> Cl<strong>in</strong>ical Microbiology, 6th edn. pp. 190-<br />

208.<br />

Archer, D.L. (1996) Listeria monocytogenes: The science <strong>an</strong>d policy. Food Control, 7<br />

(4-5), 181-182.<br />

Armitage, P. <strong>an</strong>d Berry,G. (1988). Statistical methods <strong>in</strong> Medical Research. Edn 2.<br />

Blackwell Scientific Publications. pp.205, pp.372.<br />

Asahi, O. (1963) Present situation <strong>of</strong> Listeria vacc<strong>in</strong>e for <strong>an</strong>imal use. In Gray, M.L.<br />

(ed.) Second Symposium <strong>of</strong> Listeric <strong>in</strong>fection, Mont<strong>an</strong>a State College,<br />

Bozem<strong>an</strong>, pp 49-56.<br />

219


Asahi, O., Hosoda, T. <strong>an</strong>d Akuyama, Y. (1957) Studies on the mech<strong>an</strong>ism <strong>of</strong> <strong>in</strong>fection<br />

<strong>of</strong> the bra<strong>in</strong> with Listeria monocytogenes. Americ<strong>an</strong> Journal Of Veter<strong>in</strong>ary<br />

Research 18, 147-157.<br />

Asl<strong>an</strong>, V., Turgut, K., Kaya, O. <strong>an</strong>d Sev<strong>in</strong>c, M. (1991) Cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> <strong>cattle</strong>.<br />

Hayv<strong>an</strong>cilik Arastimalar Dergisi; 1 (1): 37-39.<br />

Baetz, A.L. <strong>an</strong>d Wesley, I.V. (1995) Detection <strong>of</strong> <strong>an</strong>ti-Listeriolys<strong>in</strong>-O <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong><br />

experimentally <strong>in</strong>fected with Listeria monocytogenes. Journal <strong>of</strong> Veter<strong>in</strong>ary<br />

Diagnostic Investigation, 7 (1), 82-86.<br />

Baptista , P.J. H. P.(1979) Infectious bov<strong>in</strong>e keratoconjunctivites: A review. British<br />

Veter<strong>in</strong>ary Journal, 135, 225-242.<br />

Barlow, R.M. <strong>an</strong>d McGorum, B. (1985) Ov<strong>in</strong>e listerial encephalitis: Analysis,<br />

hypothesis <strong>an</strong>d synthesis. The Veter<strong>in</strong>ary Record, 116, 233-236.<br />

Baxter, F., Wright, F., Chalmers, R.M., Low, J.C., Donachie, W. (1993)<br />

Characterization by multilocus enzyme electrophoresis <strong>of</strong> Listeria<br />

monocytogenes isolates <strong>in</strong>volved <strong>in</strong> ov<strong>in</strong>e <strong>listeriosis</strong> outbreaks <strong>in</strong> Scotl<strong>an</strong>d<br />

from 1989 to 1991 Applied <strong>an</strong>d Environmental Microbiology, 59, (9), 3126-<br />

3129<br />

Bee, D.J. (1993) Ov<strong>in</strong>e iritis (letter). The Veter<strong>in</strong>ary Record, 132, 200.<br />

Benedict, R. C. (1990) Listeria monocytogenes: Physiology <strong>an</strong>d metabolism. In Miller,<br />

A.J.,. Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.) Foodborne <strong>listeriosis</strong>. Society for<br />

Industrial Microbiology. Elsevier Science Publish<strong>in</strong>g, Inc. New York. pp 13-<br />

24.<br />

Berche, P., Reich, K.A., Bonnichon, M., Beretti, J.L., Ge<strong>of</strong>froy, C., Raveneau, J.,<br />

Cossart, P., Gaillard, J.L., Gesl<strong>in</strong>, P., Kreis, H. <strong>an</strong>d Veron, M. (1990)<br />

Detection <strong>of</strong> <strong>an</strong>ti-Listeriolys<strong>in</strong>-O for serodiagnosis <strong>of</strong> hum<strong>an</strong> <strong>listeriosis</strong>.<br />

L<strong>an</strong>cet, 335 (8690), 624-627.<br />

220


Beuchat, L.R. (1996) Listeria monocytogenes; - <strong>in</strong>cidence on vegetables. Food<br />

Control, 7 (4-5),.223-228.<br />

Bibb, W.F., Gell<strong>in</strong>, B.G., Weaver, R., Schwartz, B., Plikaytis, B.D., Reeves, M.W.,<br />

P<strong>in</strong>ner, R.W. <strong>an</strong>d Broome, C.Y. (1990) Analysis <strong>of</strong> cl<strong>in</strong>ical <strong>an</strong>d food-borne<br />

isolates <strong>of</strong> Listeria monocytogenes <strong>in</strong> the United States by multilocus enzyme<br />

electrophoresis <strong>an</strong>d application <strong>of</strong> the method to epidemiologic<br />

<strong>in</strong>vestigations. Applied <strong>an</strong>d Environmental Microbiology, 56 (7), 2133-2141.<br />

Blenden, D.C., Gates, G.A. <strong>an</strong>d Kh<strong>an</strong>, M.S. (1968) Growth <strong>of</strong> Listeria monocytogenes<br />

<strong>in</strong> a corn silage extract medium. Americ<strong>an</strong> Journal <strong>of</strong> Medical Association,<br />

29 (11), 2237-2242.<br />

Blenden, D.C., Kampelmacher, E.H. <strong>an</strong>d Torres-Anjel, M.J. (1987) Listeriosis. Journal<br />

<strong>of</strong> Americ<strong>an</strong> Medical Association, 191 (12) 1546-1549.<br />

Boerl<strong>in</strong>, P. <strong>an</strong>d Piffaretti, J.C. (1991) Typ<strong>in</strong>g <strong>of</strong> hum<strong>an</strong>, <strong>an</strong>imal, food, <strong>an</strong>d<br />

environmental isolates <strong>of</strong> Listeria monocytogenes by multilocus enzyme<br />

electrophoresis. Applied <strong>an</strong>d Environmental Microbiology, 57 (6), 1624-<br />

1629.<br />

Boerl<strong>in</strong>, P., B<strong>an</strong>nerm<strong>an</strong> E., Ischer, F., Rocourt, J, <strong>an</strong>d Bille, J. (1995) Typ<strong>in</strong>g Listeria<br />

monocytogenes: A comparison <strong>of</strong> r<strong>an</strong>dom amplification <strong>of</strong> polymorphic DNA<br />

with 5 other methods Research In Microbiology, 146, (1), 35-49<br />

Boerl<strong>in</strong>, P., Boerl<strong>in</strong>-Petzold, F., B<strong>an</strong>nerm<strong>an</strong>, E., Bille, J. <strong>an</strong>d Jemmi, T. (1997) Typ<strong>in</strong>g<br />

Listeria monocytogenes isolates from fish products <strong>an</strong>d hum<strong>an</strong> <strong>listeriosis</strong><br />

cases. Applied <strong>an</strong>d Environmental Microbiology, 63 (4), 1338-1343.<br />

Bojsen-Moller, J. (1972) Hum<strong>an</strong> Listeriosis. Diagnostic, <strong>epidemiological</strong>, <strong>an</strong>d cl<strong>in</strong>ical<br />

studies. Acta Pathologica Microbiologica Sc<strong>an</strong>d<strong>in</strong>avia, 229 (Suppl. B), 1-<br />

157.<br />

221


Bourry, A. <strong>an</strong>d Poutrel, B. (1996) Bov<strong>in</strong>e mastitis caused by Listeria monocytogenes:<br />

k<strong>in</strong>etics <strong>of</strong> <strong>an</strong>tibody responses <strong>in</strong> serum <strong>an</strong>d milk after experimental <strong>in</strong>fection.<br />

Journal <strong>of</strong> Dairy Science,79 (12), 2189-2195<br />

Bourry, A., Cochard, T. <strong>an</strong>d Poutrel, B. (1997) Serological diagnosis <strong>of</strong> bov<strong>in</strong>e, capr<strong>in</strong>e,<br />

<strong>an</strong>d ov<strong>in</strong>e mastitis caused by Listeria monocytogenes by us<strong>in</strong>g <strong>an</strong> enzyme-<br />

l<strong>in</strong>ked immunosorbent assay. Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology, 35 (6), 1606-<br />

1608.<br />

Bourry, A., Poutrel, B. <strong>an</strong>d Rocourt, J. (1995) Bov<strong>in</strong>e mastitis caused by Listeria<br />

monocytogenes - Characteristics <strong>of</strong> natural <strong>an</strong>d experimental <strong>in</strong>fections<br />

Journal <strong>of</strong> Medical Microbiology, 43, (2), 125-132<br />

Bracegirdle, P., West, A.A., Lever, M.S., Fitzgeorge,R.B., Baskerville, A. (1994) A<br />

comparison <strong>of</strong> aerosol <strong>an</strong>d <strong>in</strong>tragastric routes <strong>of</strong> <strong>in</strong>fection with Listeria spp.<br />

Epidemiology <strong>an</strong>d Infection, 112 (1), 69-79.<br />

Brombacher, F. <strong>an</strong>d Kopf, M. (1996) Innate versus acquired immunity <strong>in</strong> <strong>listeriosis</strong>.<br />

Research <strong>in</strong> Immunology 147 (8-9), 505-511.<br />

Broome, C.V. Gell<strong>in</strong>, B. <strong>an</strong>d Schwartz, B. (1990) Epidemiology <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> the<br />

Unites States. In Miller, A.J.,. Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.) Foodborne<br />

<strong>listeriosis</strong>. Society for Industrial Microbiology. Elsevier Science Publish<strong>in</strong>g,<br />

Inc. New York. pp. 61-65.<br />

Brosch, R., Chen, J.C. <strong>an</strong>d Luch<strong>an</strong>sky, J.B. (1994) Pulsed-field f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g <strong>of</strong><br />

Listeriae - Identification <strong>of</strong> genomic divisions for Listeria monocytogenes <strong>an</strong>d<br />

their correlation with serovar. Applied <strong>an</strong>d Environmental Microbiology, 60<br />

(7), 2584-2592.<br />

Bubert, A., Riebe, J., Schnitzler, N., Schonberg, A., Goebel, W. <strong>an</strong>d Schubert, P. (1997)<br />

Isolation <strong>of</strong> catalase-negative Listeria monocytogenes stra<strong>in</strong>s from <strong>listeriosis</strong><br />

222


patients <strong>an</strong>d their rapid identification by <strong>an</strong>ti-p60 <strong>an</strong>tibodies <strong>an</strong>d/or PCR.<br />

Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology, 35 (1), 179-183.<br />

Buch<strong>an</strong><strong>an</strong>, R.L. (1990) Adv<strong>an</strong>ces <strong>in</strong> cultural methods for the detection <strong>of</strong> Listeria<br />

monocytogenes. In Miller, A.J.,. Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.)<br />

Foodborne <strong>listeriosis</strong>. Society for Industrial Microbiology. Elsevier Science<br />

Publish<strong>in</strong>g, Inc. New York. pp 85-95.<br />

Buch<strong>an</strong><strong>an</strong>, R.L., Stahl, H.G. <strong>an</strong>d Whit<strong>in</strong>g, R.C. (1989) Effects <strong>an</strong>d <strong>in</strong>teractions <strong>of</strong><br />

temperature, pH, atmosphere, sodium chloride <strong>an</strong>d sodium nitrite on the<br />

growth <strong>of</strong> Listeria monocytogenes. Journal <strong>of</strong> Food Protection 52 (12), 844-<br />

851.<br />

Camilli, A., Goldf<strong>in</strong>e, H. <strong>an</strong>d Portnoy, D.A. (1991) Listeria monocytogenes mut<strong>an</strong>ts<br />

lack<strong>in</strong>g phosphatidyl<strong>in</strong>ositol-specific phospholipase-c are avirulent. Journal<br />

<strong>of</strong> Experimental Medic<strong>in</strong>e, 173 (3), 751-754.<br />

C<strong>an</strong>non, R.M. <strong>an</strong>d Roe, R.T. (1982). Livestock Disease Surveys: A field M<strong>an</strong>ual for<br />

Veter<strong>in</strong>ari<strong>an</strong>s. C<strong>an</strong>berra, Australi<strong>an</strong> Bureau <strong>of</strong> Animal Health. pp. 21<br />

Carosella, J.M. (1990) Occurrence <strong>of</strong> Listeria monocytogenes <strong>in</strong> meat <strong>an</strong>d poultry. In<br />

Miller, A.J.,. Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.) Foodborne <strong>listeriosis</strong>.<br />

Society for Industrial Microbiology. Elsevier Science Publish<strong>in</strong>g, Inc. New<br />

York. pp 165-173.<br />

Cas<strong>an</strong>ovas, L., Desimon, M., Ferrer, M.D., Arques, J. <strong>an</strong>d Monzon, G. (1995) Intest<strong>in</strong>al<br />

carriage <strong>of</strong> Campylobacters, Salmonellas, Yers<strong>in</strong>ias <strong>an</strong>d Listerias <strong>in</strong> pigeons<br />

<strong>in</strong> the city <strong>of</strong> Barcelona. Journal <strong>of</strong> Applied Bacteriology, 78 (1), 11-13.<br />

Cet<strong>in</strong>kaya, B. Erdog<strong>an</strong>, H.M. <strong>an</strong>d Morg<strong>an</strong>, K.L. (1996) Prevalence, <strong>in</strong>cidence <strong>an</strong>d<br />

geographical distribution <strong>of</strong> Johne’s disease <strong>in</strong> <strong>cattle</strong> <strong>in</strong> Engl<strong>an</strong>d <strong>an</strong>d Wales<br />

border. The Veter<strong>in</strong>ary Record, (<strong>in</strong> press).<br />

223


Chakraborty, T., Ebel, F., Wehl<strong>an</strong>d, J., Dufrenne, J. <strong>an</strong>d Noterm<strong>an</strong>s, S. (1994) Naturally<br />

occurr<strong>in</strong>g virulence attenuated isolates <strong>of</strong> Listeria monocytogenes capable <strong>of</strong><br />

<strong>in</strong>duc<strong>in</strong>g long term protection aga<strong>in</strong>st <strong>in</strong>fection by virulent stra<strong>in</strong>s <strong>of</strong><br />

homologous <strong>an</strong>d heterologous serotypes. FEMS Immunology <strong>an</strong>d Medical<br />

Microbiology, 10 (1), 1-9.<br />

Charpentier, E., Gerbaud, G., Jacquet, C., Rocourt, J. <strong>an</strong>d Courval<strong>in</strong>, P. (1995)<br />

Incidence <strong>of</strong> <strong>an</strong>tibiotic resist<strong>an</strong>ce <strong>in</strong> listeria species Journal <strong>of</strong> Infectious<br />

Diseases, 172, (1), 277-281.<br />

Christie, R., Atk<strong>in</strong>s, N.E. <strong>an</strong>d Munch-Petersen, N.E. (1944) A note on a lytic<br />

phenomenon shown by group B Streptococci. Australi<strong>an</strong> Journal <strong>of</strong><br />

Experiments <strong>in</strong> Biology <strong>an</strong>d Medical Science, 22, 197-200.<br />

Ciesielski, C.A., Hightower, A.W., Parsons, S.K. <strong>an</strong>d Broome, C.V. (1988) Listeriosis<br />

<strong>in</strong> the United States: 1980-1982. Archive <strong>in</strong> Internal Medic<strong>in</strong>e, 148, 1416-<br />

1419.<br />

Cooper, J. <strong>an</strong>d Walker, R.D. (1998) Listeriosis. Veter<strong>in</strong>ary Cl<strong>in</strong>ics <strong>of</strong> North America-<br />

Food Animal Practice, 14 (1), 113-125<br />

Core , M.R., Zamora, E., Leon, L., Cuello, F., Sal<strong>in</strong>as, J., Megias, D., Cubero, M.J.<br />

<strong>an</strong>d Contreras, A. (1990) Isolation <strong>an</strong>d identification <strong>of</strong> Listeria<br />

monocytogenes <strong>in</strong> vegetable byproduct silage conta<strong>in</strong><strong>in</strong>g preservative<br />

additives <strong>an</strong>d dest<strong>in</strong>ed for <strong>an</strong>imal feed<strong>in</strong>g. Animal Feed Science <strong>an</strong>d<br />

Technology 31, 285-291.<br />

Corry, J.E.L. (1982) Quality assessment <strong>of</strong> culture media by the Miles-Misra method. In<br />

"Quality Assur<strong>an</strong>ce And Quality Control Of Microbiological Culture Media.<br />

Git Verlag-Ernst Giebels, Darmstad. pp 21-37.<br />

224


Cossart, P. <strong>an</strong>d Mengaud, J. (1989) Listeria monocytogenes - A model system for the<br />

molecular <strong>study</strong> <strong>of</strong> <strong>in</strong>tracellular parasitism. Molecular Biology <strong>an</strong>d Medic<strong>in</strong>e,<br />

6 (5), 463-474.<br />

Cox, L.J. Siebenga, A. Pedrazz<strong>in</strong>i, C. <strong>an</strong>d Moreton, J. (1991). Enh<strong>an</strong>ced Haemolysis<br />

Agar (EHA) <strong>an</strong> improved selective <strong>an</strong>d differential medium for isolation <strong>of</strong><br />

Listeria monocytogenes. Food Microbiology.8:37-49.<br />

Curtis, G.D.W. <strong>an</strong>d Lee, W.H. (1995) Culture media <strong>an</strong>d methods for the isolation <strong>of</strong><br />

Listeria monocytogenes. International Journal <strong>of</strong> Food Microbiology, 26 (1),<br />

1-13.<br />

Curtis, G.D.W., Mitchell, R.G, K<strong>in</strong>g, A.F. <strong>an</strong>d Griff<strong>in</strong>, E.J. (1989a) A selective<br />

differential medium for the isolation <strong>of</strong> Listeria monocytogenes. Letters <strong>in</strong><br />

Applied Microbiology, 8 95-98.<br />

Curtis, G.D.W., Nichols, W.W. <strong>an</strong>d Falla, T.J. (1989b) Selective agents for Listeria c<strong>an</strong><br />

<strong>in</strong>hibit their growth. Letters <strong>in</strong> Applied Microbiology, 8 (5), 169-172.<br />

Dalton, C.B., Aust<strong>in</strong>, C.C., Sobel, J., Hayes, P.S., Bibb, W.F., Graves, L.M.,<br />

Swam<strong>in</strong>ath<strong>an</strong>, B., Proctor, M.E. <strong>an</strong>d Griff<strong>in</strong>, P.M. (1997) An outbreak <strong>of</strong><br />

gastroenteritis <strong>an</strong>d fever due to Listeria monocytogenes <strong>in</strong> milk. New<br />

Engl<strong>an</strong>d Journal <strong>of</strong> Medic<strong>in</strong>e, 336 (2), 100-105.<br />

Datta, A.R., Wentz, B.A, Russell, J. (1990) Clon<strong>in</strong>g <strong>of</strong> the Listeriolys<strong>in</strong>-O gene <strong>an</strong>d<br />

development <strong>of</strong> specific gene probes for Listeria monocytogenes. Applied<br />

<strong>an</strong>d Environmental Microbiology, 56 (12), 3874-3877.<br />

De<strong>an</strong>, A.G., De<strong>an</strong>, J.A., Coulombier, D., Brendel, K.A., Smith, D.C., Burton, A.H.,<br />

Dicker, R.C., Sulliv<strong>an</strong>, K.M., Fag<strong>an</strong>, R.F. <strong>an</strong>d Arner, T.G. (1994). Epi-Info,<br />

Version 6: A word process<strong>in</strong>g, database <strong>an</strong>d statistics program for<br />

epidemiology on microcomputers. Center for disease control <strong>an</strong>d prevention,<br />

Atl<strong>an</strong>ta, Georgia, U.S.A.<br />

225


delGarso, L. <strong>an</strong>d Wallop, W. (1975) Questionnaire development: 1. Formulation.<br />

C<strong>an</strong>adi<strong>an</strong> Medical Association Journal, 136, 583-585.<br />

Dennis, S.M. (1993) Listeriosis (Circl<strong>in</strong>g Disease, Silage Sickness) In Forward, J.L.<br />

(ed.). Current Veter<strong>in</strong>ary Therapy-Food Animal Practice 2nd ed. W. B.<br />

Saunders Co. Philadelphia. pp 580-583.<br />

Destro, M.T., Leitao, M.F.F. <strong>an</strong>d Farber, J.M. (1996) Use <strong>of</strong> molecular typ<strong>in</strong>g methods<br />

to trace the dissem<strong>in</strong>ation <strong>of</strong> Listeria monocytogenes <strong>in</strong> a shrimp process<strong>in</strong>g<br />

pl<strong>an</strong>t. Applied <strong>an</strong>d Environmental Microbiology, 62 (5),1852-1853.<br />

Dijkstra, R.G. (1975) Recent experience on the survival <strong>of</strong> Listeria bacteria <strong>in</strong><br />

suspensions <strong>of</strong> bra<strong>in</strong>, tissue, silage, faeces <strong>an</strong>d milk. In Woodb<strong>in</strong>e, M.<br />

Proceed<strong>in</strong>g <strong>of</strong> the 6th International Symposium on the Problems <strong>of</strong><br />

Listeriosis, Nott<strong>in</strong>gham, Leicester University Press, Engl<strong>an</strong>d. pp 71-73.<br />

Dijkstra, R.G. (1986). A fifteen years survey <strong>of</strong> isolations <strong>of</strong> Listeria monoctyogenes<br />

out <strong>of</strong> <strong>an</strong>imals <strong>an</strong>d the environment <strong>in</strong> the Northern Netherl<strong>an</strong>ds. In Cortieu,<br />

A.L., Espaze, E.P. <strong>an</strong>d Reynaud, A.E. Proceed<strong>in</strong>g <strong>of</strong> the 9th International<br />

Symposium on the Problems <strong>of</strong> Listeriosis, N<strong>an</strong>tes, University <strong>of</strong> N<strong>an</strong>tes,<br />

Fr<strong>an</strong>ce. pp 291-293.<br />

Divers, T.J. (1996). Penicill<strong>in</strong> Therapy <strong>in</strong> Bov<strong>in</strong>e Practice .The compendium. 18<br />

(6):703-709.<br />

Dom<strong>in</strong>go, M., Ramos, J.A., Dom<strong>in</strong>guez, L., Ferrer, L. <strong>an</strong>d Marco, A. (1986)<br />

Demonstration <strong>of</strong> Listeria monocytogenes with the PAP technique <strong>in</strong> formal<strong>in</strong><br />

fixed <strong>an</strong>d paraff<strong>in</strong> embedded tissues <strong>of</strong> experimentally <strong>in</strong>fected mice. Journal<br />

<strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e Series B-Infectious Diseases Immunology Food<br />

Hygiene Veter<strong>in</strong>ary Public Health-Zentralblatt Fur Veter<strong>in</strong>armediz<strong>in</strong> Reihe<br />

B, 33 (7), 537-542.<br />

226


Donachie, W. <strong>an</strong>d Low, J.C. (1995) Ov<strong>in</strong>e <strong>listeriosis</strong>. In Raw, M.E. <strong>an</strong>d Park<strong>in</strong>son, T.J.<br />

The Veter<strong>in</strong>ary Annual. Blackwell Sci. Pub. Cambridge. Vol. 35, pp.304-312.<br />

Donachie, W., Low, J.C., Chalmers, R.M., McLauchl<strong>in</strong>, J. Freem<strong>an</strong>, R. <strong>an</strong>d Sisson, P.R.<br />

(1992) Characterisation <strong>of</strong> Listeria monocytogenes stra<strong>in</strong>s isolated from<br />

sheep <strong>an</strong>d silage by serotyp<strong>in</strong>g, multilocus enzyme electrophoresis <strong>an</strong>d<br />

pyrolysis mass spectrometry In: Proceed<strong>in</strong>g <strong>of</strong> the 11th International<br />

Symposium on the Problems <strong>of</strong> Listeriosis, Copenhagen, Denmark. pp 64-65.<br />

Donald, A.S., Fenlon, D.R. <strong>an</strong>d Seddon, B. (1995) The relationship between<br />

ecophysiology, <strong>in</strong>digenous micr<strong>of</strong>lora <strong>an</strong>d growth <strong>of</strong> Listeria-monocytogenes<br />

<strong>in</strong> grass-silage. Journal <strong>of</strong> Applied Bacteriology, 79 (2), 141-148.<br />

Donker-Voet, J. (1972) Listeria monocytogenes: some biochemical <strong>an</strong>d serological<br />

aspects.Acta Microbiologica Academiae Scientiarum Hungaricae, 19, 287-<br />

291.<br />

Dramsi, S., Dehoux, P., Lebrun, M., Goossens, P.L. <strong>an</strong>d Cossart, P. (1997)<br />

Identification <strong>of</strong> four new members <strong>of</strong> the <strong>in</strong>ternal<strong>in</strong> multigene family <strong>of</strong><br />

Listeria monocytogenes EGD. Infection <strong>an</strong>d Immunity, 65 (5), 1615-1625.<br />

Dramsi, S., Lebrun, M. <strong>an</strong>d Cossart, P. (1996) Molecular <strong>an</strong>d genetic-determ<strong>in</strong><strong>an</strong>ts<br />

<strong>in</strong>volved <strong>in</strong> <strong>in</strong>vasion <strong>of</strong> mammali<strong>an</strong>-cells by Listeria monocytogenes. Current<br />

Topics <strong>in</strong> Microbiology <strong>an</strong>d Immunology, 209, 61-77.<br />

EGRET (1993) Epidemiological Graphic Estimation <strong>an</strong>d Test<strong>in</strong>g Package. Statistics <strong>an</strong>d<br />

Epidemiology Research Corp. Wash<strong>in</strong>gton, Seattle, WA.<br />

Eld, K., D<strong>an</strong>ielssontham, M.L., Gunnarsson, A. <strong>an</strong>d Tham, W. (1993) Comparison <strong>of</strong> a<br />

cold enrichment method <strong>an</strong>d the IDF method for isolation <strong>of</strong> Listeria<br />

monocytogenes from <strong>an</strong>imal autopsy material. Veter<strong>in</strong>ary Microbiology, 36<br />

(1-2), 185-189.<br />

227


Evel<strong>an</strong>d, W.C. (1963) Demonstration <strong>of</strong> Listeria monocytogenes <strong>in</strong> direct exam<strong>in</strong>ation<br />

<strong>of</strong> sp<strong>in</strong>al fluid by fluorescent <strong>an</strong>tibody technique. Journal <strong>of</strong> Bacteriology, 59,<br />

617-619.<br />

Fac<strong>in</strong>elli, B., Giov<strong>an</strong>etti, E., Varaldo, P.E., Casolari, P. <strong>an</strong>d Fabio, U. (1991) Antibiotic<br />

resist<strong>an</strong>ce <strong>in</strong> foodborne Listeria. L<strong>an</strong>cet, 338 (8777) 1272.<br />

Fac<strong>in</strong>elli, B., Varaldo, P.E., Toni, M., Casolari, C. <strong>an</strong>d Fabio, U. (1989) Ignor<strong>an</strong>ce<br />

about Listeria. British Medical Journal, 299 (6701), 738.<br />

Farber, J.M. <strong>an</strong>d Peterk<strong>in</strong>, P.I. (1991) Listeria monocytogenes, a foodborne pathogen.<br />

Microbiological Reviews; 55, 476-511.<br />

Fenlon, D.R. (1986a) Growth <strong>of</strong> naturally occurr<strong>in</strong>g Listeria spp. <strong>in</strong> silage: A<br />

comparative <strong>study</strong> <strong>of</strong> laboratory <strong>an</strong>d farm ensiled grass. Grass <strong>an</strong>d Forage<br />

Science; 41, 375-378.<br />

Fenlon D.R. (1986b) Rapid qu<strong>an</strong>titative assessment <strong>of</strong> the distribution <strong>of</strong> Listeria <strong>in</strong><br />

silage implicated <strong>in</strong> a suspected outbreak <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> calves. The<br />

Veter<strong>in</strong>ary Record; 118, 240-242.<br />

Fenlon D.R. (1986c) Silage as <strong>an</strong> enrichment medium for Listeria: The implications for<br />

big bale silage. In Cortieu, A.L., Espaze, E.P. <strong>an</strong>d Reynaud, A.E. Proceed<strong>in</strong>g<br />

<strong>of</strong> the 9th International Symposium on the Problems <strong>of</strong> Listeriosis, N<strong>an</strong>tes,<br />

University <strong>of</strong> N<strong>an</strong>tes, Fr<strong>an</strong>ce. pp 313-316.<br />

Fenlon D.R. (1988) Listeriosis. In Stark, B.A. <strong>an</strong>d Wilk<strong>in</strong>son, J.M. (ed.). Silage <strong>an</strong>d<br />

Health. Chalcombe Publications, Aberystwyth. pp 7-19.<br />

Fenlon, D.R. (1985) Wild birds <strong>an</strong>d silage as reservoirs <strong>of</strong> Listeria <strong>in</strong> the agricultural<br />

environment. Journal <strong>of</strong> Applied Bacteriology, 59 (6), 537-543.<br />

Fenlon, D.R. <strong>an</strong>d Wilson, J. (1989) The <strong>in</strong>cidence <strong>of</strong> Listeria monocytogenes <strong>in</strong> farm<br />

bulk milks <strong>in</strong> NE Scotl<strong>an</strong>d. Acta Microbiologica Hungarica, 36 (2-3), 255-<br />

258.<br />

228


Fenlon, D.R., Stewart, T. <strong>an</strong>d Donachie, W. (1995a) The <strong>in</strong>cidence, numbers <strong>an</strong>d types<br />

<strong>of</strong> Listeria monocytogenes isolated from farm bulk t<strong>an</strong>k milks. Letters In<br />

Applied Microbiology, 20 (1), 57-60.<br />

Fenlon, D.R., Henderson, A.R. <strong>an</strong>d Rooke, J.A. (1995b) The fermentative preservation<br />

<strong>of</strong> grasses <strong>an</strong>d forage crops. Journal <strong>of</strong> Applied Bacteriology, 79, 118S-131S.<br />

Fenlon, D.R., Wilson, J. <strong>an</strong>d Donachie, W. (1996) The <strong>in</strong>cidence <strong>an</strong>d level <strong>of</strong> Listeria<br />

monocytogenes contam<strong>in</strong>ation <strong>of</strong> food sources at primary production <strong>an</strong>d<br />

<strong>in</strong>itial process<strong>in</strong>g. Journal <strong>of</strong> Applied Bacteriology, 81 (6), 641-650.<br />

Fenlon, D.R., Wilson, J. <strong>an</strong>d Weddel, J.R. (1989) The relationship between spoilage <strong>an</strong>d<br />

Listeria monocytogenes contam<strong>in</strong>ation <strong>in</strong> bagged <strong>an</strong>d wrapped big bale<br />

silage. Grass <strong>an</strong>d Forage Science; 44 ,97-100.<br />

Fern<strong>an</strong>dez-Garayzabal, J.F. Delgado, C., Bl<strong>an</strong>co, M., Vazquez-Bol<strong>an</strong>d, J.A., Briones,<br />

V., Suarez, G. <strong>an</strong>d Dom<strong>in</strong>guez, L. (1992a) Role <strong>of</strong> potassium tellurite <strong>an</strong>d<br />

bra<strong>in</strong> heart <strong>in</strong>fusion <strong>in</strong> expression <strong>of</strong> the hemolytic phenotype <strong>of</strong> Listeria spp<br />

on agar plates. Applied <strong>an</strong>d Environmental Microbiology, 58 (1), 434-438.<br />

Fern<strong>an</strong>dez-Garayzabal, J.F., Bl<strong>an</strong>co, M., Vazquezbol<strong>an</strong>d, J.A., Briones, V., Garcia, J.A.,<br />

Delgado, C., Dom<strong>in</strong>go, M., Marco, J. <strong>an</strong>d Dom<strong>in</strong>guez, L: (1992b) A direct<br />

plat<strong>in</strong>g method for monitor<strong>in</strong>g the contam<strong>in</strong>ation <strong>of</strong> Listeria-monocytogenes<br />

<strong>in</strong> silage. Journal <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e Series B-Zentralblatt fur<br />

Veter<strong>in</strong>armediz<strong>in</strong> Reihe B-Infectious Diseases Immunobiology Food Hygiene<br />

Public Health, 39 (7), 513-518.<br />

Fiedler, F. <strong>an</strong>d Seger, J. (1983) The mure<strong>in</strong> types <strong>of</strong> Listeria grayi, Listeria murrayi<br />

<strong>an</strong>d Listeria denitrific<strong>an</strong>s. Systematic <strong>an</strong>d Applied Microbiology, 4 (4), 444-<br />

450.<br />

229


Fraser, J.A. <strong>an</strong>d Sperber, W.H. (1988) Rapid detection <strong>of</strong> Listeria spp <strong>in</strong> food <strong>an</strong>d<br />

environmental samples by escul<strong>in</strong> hydrolysis. Journal <strong>of</strong> Food Protection, 51<br />

(10), 762-765.<br />

Freem<strong>an</strong>, R. Goodfellow, M., Gould, F.K. <strong>an</strong>d Hudson, S.J. (1990) Pyrolysis mass<br />

spectrometry (PyMS) for the rapid <strong>epidemiological</strong> typ<strong>in</strong>g <strong>of</strong> cl<strong>in</strong>ically<br />

signific<strong>an</strong>t bacterial pathogens. Journal <strong>of</strong> Medical Microbiology, 32, 283-<br />

286.<br />

Freem<strong>an</strong>, R., Sisson, P.R., Lightfoot, N.F. <strong>an</strong>d McLauchl<strong>in</strong>, J. (1991) Analysis <strong>of</strong><br />

epidemic <strong>an</strong>d sporadic stra<strong>in</strong>s <strong>of</strong> Listeria monocytogenes by pyrolysis mass-<br />

spectrometry. Letters <strong>in</strong> Applied Microbiology, 12 (4), 133-136.<br />

French, N.P., Wall, P., Cripps, P.J. <strong>an</strong>d Morg<strong>an</strong>, K.L. (1992) Prevalence, regional<br />

distribution <strong>an</strong>d control <strong>of</strong> blowfly strike <strong>in</strong> Engl<strong>an</strong>d <strong>an</strong>d Wales. The<br />

Veter<strong>in</strong>ary Record, 131, 337-342.<br />

Furrer, B., C<strong>an</strong>dri<strong>an</strong>, U., Hoefele<strong>in</strong>, C. <strong>an</strong>d Luethy, J. (1991) Detection <strong>an</strong>d<br />

identification <strong>of</strong> Listeria monocytogenes <strong>in</strong> cooked sausage products <strong>an</strong>d <strong>in</strong><br />

milk by <strong>in</strong> vitro amplification <strong>of</strong> hemolys<strong>in</strong> gene fragments. Journal <strong>of</strong><br />

Applied Bacteriology, 70 (5), .372-379.<br />

Gates, G.A., Blenden, D.C. <strong>an</strong>d Knither, L.D. (1967) Listeric myelitis <strong>in</strong> sheep. Journal<br />

<strong>of</strong> the Americ<strong>an</strong> Veter<strong>in</strong>ary Medical Association; 150, 200-204.<br />

Gell<strong>in</strong>, B.G. <strong>an</strong>d Broome, C.V. (1989) Listeriosis. Journal <strong>of</strong> Americ<strong>an</strong> Medical<br />

Association, 261 (9), 1313-1320.<br />

Gholizadeh, Y., Poyart, C., Juv<strong>in</strong>, M., Beretti, J.L., Croize, J., Berche, P. <strong>an</strong>d Gaillard,<br />

J. (1996) Serodiagnosis <strong>of</strong> <strong>listeriosis</strong> based upon detection <strong>of</strong> <strong>an</strong>tibodies<br />

aga<strong>in</strong>st recomb<strong>in</strong><strong>an</strong>t truncated forms <strong>of</strong> Listeriolys<strong>in</strong>-O. Journal <strong>of</strong> Cl<strong>in</strong>ical<br />

Microbiology, 34 (6), 1391-1395.<br />

230


Gill, A.D. (1933) Circl<strong>in</strong>g Disease: A men<strong>in</strong>go-encephalitis <strong>of</strong> sheep <strong>in</strong> New Zeal<strong>an</strong>d.<br />

Notes on a new species <strong>of</strong> pathogenic org<strong>an</strong>isms. Veter<strong>in</strong>ary Journal, 89,<br />

258-270.<br />

Gill, A.D. (1937) Ov<strong>in</strong>e bacterial encephalitis (circl<strong>in</strong>g disease) <strong>an</strong>d genus Listerella.<br />

The Australi<strong>an</strong> Veter<strong>in</strong>ary Journal; 13, 46- 57.<br />

Gitter, M. (1986) A ch<strong>an</strong>g<strong>in</strong>g pattern <strong>of</strong> ov<strong>in</strong>e Listeriosis <strong>in</strong> Gt. Brita<strong>in</strong>. In Cortieu,<br />

A.L., Espaze, E.P. <strong>an</strong>d Reynaud, A.E. Proceed<strong>in</strong>g <strong>of</strong> the 9th International<br />

Symposium on the Problems <strong>of</strong> Listeriosis, N<strong>an</strong>tes, University <strong>of</strong> N<strong>an</strong>tes,<br />

Fr<strong>an</strong>ce. pp 294-299.<br />

Gitter, M. (1989) Veter<strong>in</strong>ary aspects <strong>of</strong> <strong>listeriosis</strong>. PHLS Microbiology Digest; 6(2), 38-<br />

42.<br />

Gitter, M. <strong>an</strong>d Terlecki, S. (1965) An outbreak <strong>of</strong> visceral <strong>an</strong>d cerebral Listeriosis <strong>in</strong> a<br />

flock <strong>of</strong> sheep <strong>in</strong> South East <strong>of</strong> Engl<strong>an</strong>d. The Veter<strong>in</strong>ary Record, 77, 11-15.<br />

Gitter, M., Richardson, C. <strong>an</strong>d Boughton, E. (1986a) Experimental <strong>in</strong>fection <strong>of</strong> pregn<strong>an</strong>t<br />

ewes with Listeria monocytogenes. The Veter<strong>in</strong>ary Record, 118 (21), 575-<br />

578.<br />

Gitter, M. Stebb<strong>in</strong>g, R. Morris, J.A., H<strong>an</strong>nam, D. <strong>an</strong>d Harris, C. (1986b) Relationship<br />

between ov<strong>in</strong>e <strong>listeriosis</strong> <strong>an</strong>d silage feed<strong>in</strong>g. The Veter<strong>in</strong>ary Record, 118,<br />

207-208.<br />

Gitter, M., Bradley, R. <strong>an</strong>d Blampied, P.H. (1980) Listeria monocytogenes <strong>in</strong>fection <strong>in</strong><br />

bov<strong>in</strong>e mastitis. The Veter<strong>in</strong>ary Record; 107, 390-393.<br />

Goebel, W., Kathariu, S., Kuhn, M., Sokoloivc, Z., Kreft, J., Kohler, S., Funke, D.,<br />

Chakraborty, T. <strong>an</strong>d Leimeister-Wacher, M. (1988) Haemolys<strong>in</strong> from Listeria<br />

-Biochemistry, genetics <strong>an</strong>d function <strong>in</strong> pathogenesis. Infection 16 (S2),<br />

S149-S156.<br />

231


Golden, D.A, Beuchat, L.R. <strong>an</strong>d Brackett, R.E. (1988) Direct plat<strong>in</strong>g technique for<br />

enumeration <strong>of</strong> Listeria monocytogenes <strong>in</strong> foods. Journal <strong>of</strong> The Association<br />

<strong>of</strong> Official Analytical Chemists, 71 (3), 647-650.<br />

Graves, L.M., Swam<strong>in</strong>ath<strong>an</strong>, B., Reeves, M.W. <strong>an</strong>d Wenger, J. (1991) Ribosomal DNA<br />

f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g <strong>of</strong> Listeria monocytogenes us<strong>in</strong>g a digoxigen<strong>in</strong> labelled DNA<br />

probe. Europe<strong>an</strong> Journal <strong>of</strong> Epidemiology, 7 (1), 77-82.<br />

Gray, J.W., Barrett, J.F.R., Pedler, S.J. <strong>an</strong>d L<strong>in</strong>d, T. (1993) Fecal carriage <strong>of</strong> Listeria<br />

dur<strong>in</strong>g pregn<strong>an</strong>cy. British Journal <strong>of</strong> Obstetrics <strong>an</strong>d Gynaecology, 100 (9),<br />

873-874.<br />

Gray, M. L. (1960a). A possible l<strong>in</strong>k <strong>in</strong> the relationship between silage feed<strong>in</strong>g <strong>an</strong>d<br />

Listeriosis. Journal <strong>of</strong> Americ<strong>an</strong> Veter<strong>in</strong>ary Medical Association, 136, 205-<br />

208.<br />

Gray, M.L. (1960b). Isolation <strong>of</strong> Listeria monocytogenes from oat silage. Science.<br />

132:1767-1768.<br />

Gray, M.L. <strong>an</strong>d Kill<strong>in</strong>ger, A.H. (1966) Listeria monocytogenes <strong>an</strong>d listeric <strong>in</strong>fections.<br />

Bacteriological Reviews. 30, 309-382.<br />

Gray, M.L., Stafseth, H.J. <strong>an</strong>d Thorp, F.Jr. (1950). The use <strong>of</strong> potassium tellurite,<br />

sodium azide <strong>an</strong>d acetic acid <strong>in</strong> a selective medium for the isolation <strong>of</strong><br />

Listeria monocytogenes. Journal <strong>of</strong> Bacteriology, 59, 443-444.<br />

Gray, M.L., Stafsth, H.J., Thorp, F., Jr., Sholl, L.B. <strong>an</strong>d Riley., W.F., Jr. (1948) A new<br />

technique for isolat<strong>in</strong>g Listerellae from the bov<strong>in</strong>e bra<strong>in</strong>. Journal <strong>of</strong><br />

Bacteriology, 55, 471-476.<br />

Green, L.E. <strong>an</strong>d Morg<strong>an</strong>, K.L. (1994) Descriptive epidemiology <strong>of</strong> listerial<br />

men<strong>in</strong>goenchephilitis <strong>in</strong> housed lambs. Preventive Veter<strong>in</strong>ary Medic<strong>in</strong>e; 18,<br />

79-87.<br />

232


Greenwood, M.H., Roberts, D. <strong>an</strong>d Burden, P. (1991) The occurrence <strong>of</strong> Listeria<br />

species <strong>in</strong> milk <strong>an</strong>d <strong>dairy</strong> products: A national survey <strong>in</strong> Engl<strong>an</strong>d <strong>an</strong>d Wales.<br />

International Journal <strong>of</strong> Food Microbiology, 12 (2-3), 197-206.<br />

Gronstol, H. (1979a) Listeriosis <strong>in</strong> sheep: Isolation <strong>of</strong> Listeria monocytogenes from<br />

grass silage. Acta Veter<strong>in</strong>aria Sc<strong>an</strong>d<strong>in</strong>avia; 20, 492-497.<br />

Gronstol, H (1979b) Listeriosis <strong>in</strong> sheep. Listeria monocytogenes excretion <strong>an</strong>d<br />

immunological state <strong>in</strong> healthy sheep. Acta Veter<strong>in</strong>aria Sc<strong>an</strong>d<strong>in</strong>avia; 20, 168-<br />

179.<br />

Gronstol, H. (1980a) Listeriosis <strong>in</strong> sheep. Listeria monocytogenes <strong>in</strong> sheep fed hay or<br />

grass silage dur<strong>in</strong>g pregn<strong>an</strong>cy. Immunological state, white blood cell, total<br />

serum prote<strong>in</strong> <strong>an</strong>d serum iron. Acta Veter<strong>in</strong>aria Sc<strong>an</strong>d<strong>in</strong>avia; 21, 1-10.<br />

Gronstol, H. (1980b) Listeriosis <strong>in</strong> sheep. Isolation <strong>of</strong> Listeria monocytogenes from<br />

org<strong>an</strong>s <strong>of</strong> slaughtered <strong>an</strong>imals <strong>an</strong>d dead <strong>an</strong>imals submitted for post-mortem<br />

exam<strong>in</strong>ation. Acta Veter<strong>in</strong>aria Sc<strong>an</strong>d<strong>in</strong>avia, 21, 11-17.<br />

Gronstol, H. (1986) Listeria. In Gyles, C.L. <strong>an</strong>d Thoen, O.C. (eds.) Pathogenesis <strong>of</strong><br />

Bacterial Infection <strong>in</strong> Animals. Iowa State Univ. Press. pp 49-55.<br />

Gudd<strong>in</strong>g, L., Nesse, L.L. <strong>an</strong>d Gronstol, H. (1989) Immunisation aga<strong>in</strong>st <strong>in</strong>fection<br />

caused by Listeria monocytogenes <strong>in</strong> sheep; The Veter<strong>in</strong>ary Record, 125,<br />

111-114.<br />

Hayes, P.S., Graves, L.M., Ajello, G.W., Swam<strong>in</strong>ath<strong>an</strong>, B., Weaver, R.E., Wenger, J.D.,<br />

Schuchat, A. <strong>an</strong>d Broome, C.V (1991) Comparison <strong>of</strong> cold enrichment <strong>an</strong>d<br />

United States Department <strong>of</strong> Agriculture methods for isolat<strong>in</strong>g Listeria<br />

monocytogenes from naturally contam<strong>in</strong>ated foods. Applied <strong>an</strong>d<br />

Environmental Microbiology, 57 (8), 2109-2113.<br />

Hird, D.W. <strong>an</strong>d Genigeorgis, C. (1990). Listeriosis <strong>in</strong> food <strong>an</strong>imals: cl<strong>in</strong>ical signs <strong>an</strong>d<br />

livestock as a potential source <strong>of</strong> direct (non food-borne) <strong>in</strong>fection for<br />

233


hum<strong>an</strong>s. In Miller, A.J.,. Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.) Foodborne<br />

<strong>listeriosis</strong>. Society for Industrial Microbiology. Elsevier Science Publish<strong>in</strong>g,<br />

Inc. New York. pp 31-39.<br />

H<strong>of</strong>, H. (1991) Therapeutic activities <strong>of</strong> <strong>an</strong>tibiotics <strong>in</strong> <strong>listeriosis</strong>. Infection, 19 (S4),<br />

S229-S233.<br />

H<strong>of</strong>er, E. (1983) Bacteriologic <strong>an</strong>d epidemiologic studies on the occurrence <strong>of</strong> Listeria<br />

monocytogenes <strong>in</strong> healthy <strong>cattle</strong>. Zentralblatt fur Bakteriologie<br />

Mikrobiologie und Hygiene Series A-Medical Microbiology Infectious<br />

Diseases Virology Parasitology, 256 (2), 175-183.<br />

Husu, J.R. (1990) Epidemiologic studies on the occurrence <strong>of</strong> Listeria monocytogenes<br />

<strong>in</strong> the faeces <strong>of</strong> <strong>dairy</strong>-<strong>cattle</strong>. Journal <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e Series B-<br />

Zentralblatt fur Veter<strong>in</strong>armediz<strong>in</strong> Reihe B -Infectious Diseases<br />

Immunobiology Food Hygiene Public Health, 37 (4), 276-282.<br />

Husu, J.R., Sivela, S.K. <strong>an</strong>d Rauramaa, A.L. (1990a) Prevalence <strong>of</strong> Listeria species as<br />

related to chemical quality <strong>of</strong> farm ensiled grass. Grass <strong>an</strong>d Forage Science,<br />

45 (3), 309-314.<br />

Husu, J.R., Sepp<strong>an</strong>en, J.T., Sivela, S.K. <strong>an</strong>d Rauramaa, A.L. (1990b) Contam<strong>in</strong>ation <strong>of</strong><br />

raw-milk by Listeria monocytogenes on <strong>dairy</strong> farms. Journal <strong>of</strong> Veter<strong>in</strong>ary<br />

Medic<strong>in</strong>e Series B-Zentralblatt fur Veter<strong>in</strong>armediz<strong>in</strong> Reihe B-Infectious<br />

Diseases Immunobiology Food Hygiene Public Health, 37 (4), 268-275.<br />

Hyslop, N.St.G. (1975) Epidemiologic <strong>an</strong>d immunologic factors <strong>in</strong> <strong>listeriosis</strong>. problem<br />

<strong>of</strong> <strong>listeriosis</strong>. In Woodb<strong>in</strong>e, M. Proceed<strong>in</strong>g <strong>of</strong> the 6th International<br />

Symposium on the Problems <strong>of</strong> Listeriosis, Nott<strong>in</strong>gham, Leicester University<br />

Press, Engl<strong>an</strong>d. pp 94-105.<br />

234


Iida, T., K<strong>an</strong>zaki, M., Maruyama, T., Inoue, S. <strong>an</strong>d K<strong>an</strong>euchi, C. (1991) Prevalence <strong>of</strong><br />

Listeria monocytogenes <strong>in</strong> <strong>in</strong>test<strong>in</strong>al content <strong>of</strong> healthy <strong>an</strong>imals <strong>in</strong> Jap<strong>an</strong>.<br />

Journal <strong>of</strong> Veter<strong>in</strong>ary Medical Science, 53 (5) 873-875.<br />

Irv<strong>in</strong>, A.D. (1968) The effect <strong>of</strong> pH on the multiplication <strong>of</strong> Listeria monocytogenes <strong>in</strong><br />

grass silage media. The Veter<strong>in</strong>ary Record, 82, 115-116.<br />

Iv<strong>an</strong>ov, I., Grag<strong>an</strong>ov, M. <strong>an</strong>d Dikova, T. (1979) Study on the active immunoprophylaxis<br />

<strong>of</strong> sheep <strong>listeriosis</strong>. In Iv<strong>an</strong>ov, I. (ed.) Proceed<strong>in</strong>g <strong>of</strong> the Seventh International<br />

Symposium on the Problems <strong>of</strong> Listeriosis. pp 324-333. S<strong>of</strong>ia, National<br />

Agro<strong>in</strong>dustrial Union, Centre for Scientific Information.<br />

Jacquet, C., Rocourt, J., <strong>an</strong>d Reynaud, A. (1993) A <strong>study</strong> <strong>of</strong> Listeria monocytogenes<br />

contam<strong>in</strong>ation <strong>in</strong> a <strong>dairy</strong> pl<strong>an</strong>t <strong>an</strong>d characterisation <strong>of</strong> the stra<strong>in</strong>s isolated<br />

International Journal <strong>of</strong> Food Microbiology, 20, (1), 13-22.<br />

Jagger, T.D. (1993) Cl<strong>in</strong>ical <strong>an</strong>d immune responses <strong>of</strong> lambs <strong>in</strong>fected with Listeria<br />

monocytogenes. MSc thesis. University <strong>of</strong> Ed<strong>in</strong>burgh.<br />

Jay, J.M. (1996) Prevalence <strong>of</strong> Listeria spp <strong>in</strong> meat <strong>an</strong>d poultry products. Food Control,<br />

7 (4-5), 209-214.<br />

Johnson, G.C., Fales, W.H., Maddox, C.W. <strong>an</strong>d Ramosvara, J.A. (1995) Evaluation <strong>of</strong><br />

laboratory tests for confirm<strong>in</strong>g the diagnosis <strong>of</strong> encephalitic <strong>listeriosis</strong> <strong>in</strong><br />

rum<strong>in</strong><strong>an</strong>ts. Journal <strong>of</strong> Veter<strong>in</strong>ary Diagnostic Investigation, 7 (2), 223-228.<br />

Johnson, G.C., Maddox, C., Fales, W., Wolff, W.A., R<strong>an</strong>dle, R., Ramos, J., Schwartz,<br />

H., Heise, K., Baetz, A.L., Wesley, I.V. <strong>an</strong>d Wagner, D. (1996)<br />

Epidemiologic evaluation <strong>of</strong> encephalitic Listeriosis <strong>in</strong> goats. Journal <strong>of</strong> the<br />

Americ<strong>an</strong> Veter<strong>in</strong>ary Medical Association, 208 (10), 1695-1699.<br />

Johnson, J.L., Doyle, M.P. <strong>an</strong>d Cassens, R.G. (1990) Listeria monocytogenes <strong>an</strong>d other<br />

Listeria spp <strong>in</strong> meat <strong>an</strong>d meat products: A review. Journal <strong>of</strong> Food<br />

Protection, 53 (1), 81-91.<br />

235


Jones, F.S. <strong>an</strong>d Little, R.B. (1934) Sporadic encephalitis <strong>in</strong> cows. Archive <strong>in</strong> Pathology,<br />

18, 580-581.<br />

Jones, P.W. (1980) Animal health today-Problems <strong>of</strong> large livestock units. Disease<br />

hazard associated with slurry disposal. British Veter<strong>in</strong>ary Journal, 136, 529-<br />

542.<br />

Juntilla, J.R., Neimele, S.I. <strong>an</strong>d Hirn, J. (1988) M<strong>in</strong>imum growth temperature <strong>of</strong> Listeria<br />

monocytogenes <strong>an</strong>d non-haemolytic Listeria. Journal <strong>of</strong> Applied<br />

Bacteriology; 65, 321-327.<br />

Jurado, R.L., Farley, M.M., Pereira, E., Harvey, R.C., Schuchat, A., Wenger, J.D.,<br />

Stephens, D.S. (1993) Increased risk <strong>of</strong> men<strong>in</strong>gitis <strong>an</strong>d bacteremia due to<br />

Listeria monocytogenes <strong>in</strong> patients with hum<strong>an</strong> immunodeficiency virus<br />

<strong>in</strong>fection. Cl<strong>in</strong>ical Infectious Diseases, 17 (2), 224-227.<br />

Kalac, P. <strong>an</strong>d Woolford, M.K. (1982) A review <strong>of</strong> some aspects <strong>of</strong> possible association<br />

between the feed<strong>in</strong>g <strong>of</strong> silage <strong>an</strong>d <strong>an</strong>imal health. British Veter<strong>in</strong>ary Journal,<br />

138, 305-320.<br />

Kampelmacher, E.H. <strong>an</strong>d v<strong>an</strong> Noorle-J<strong>an</strong>sen, M.L. (1969) Isolation <strong>of</strong> Listeria<br />

monocytogenes from faeces <strong>of</strong> cl<strong>in</strong>ically healthy hum<strong>an</strong>s <strong>an</strong>d <strong>an</strong>imals.<br />

Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. Abt. 1: Orig<strong>in</strong>ale.<br />

Reihe A, 211, 353-359.<br />

Kampelmacher, E.H. <strong>an</strong>d v<strong>an</strong> Noorle-J<strong>an</strong>sen, M.L. (1975), Occurrence <strong>of</strong> L.<br />

monocytogenes <strong>in</strong> effluents. In Woodb<strong>in</strong>e, M. Proceed<strong>in</strong>g <strong>of</strong> the 6th<br />

International Symposium on the Problems <strong>of</strong> Listeriosis, Nott<strong>in</strong>gham,<br />

Leicester University Press, Engl<strong>an</strong>d. pp 66-70.<br />

K<strong>an</strong>uk, L. <strong>an</strong>d Berenson, C. (1975) Mail surveys <strong>an</strong>d response rates: A literature<br />

review. Journal <strong>of</strong> Market<strong>in</strong>g Research, 12, 440-453.<br />

236


Kaufm<strong>an</strong>n, S.H.E. (1990) Immunity to bacteria. Current op<strong>in</strong>ion <strong>in</strong> Immunology, 2,<br />

353-359.<br />

Kaufm<strong>an</strong>n, S.H.E. (1993) Immunity to <strong>in</strong>tracellular bacteria. Annual Review <strong>of</strong><br />

Immunology, 11, 129-163.<br />

Kh<strong>an</strong>, M.A., Seam<strong>an</strong>, A. <strong>an</strong>d Woodb<strong>in</strong>e, M. (1975) Synergic drug treatment <strong>in</strong><br />

experimental Listeriosis. In Woodb<strong>in</strong>e, M. Proceed<strong>in</strong>g <strong>of</strong> the 6th<br />

International Symposium on the Problems <strong>of</strong> Listeriosis, Nott<strong>in</strong>gham,<br />

Leicester University Press, Engl<strong>an</strong>d. pp 52-57.<br />

Kirkwood, B.R. (1988) Essentials <strong>of</strong> Medical Statistics. Blackwell Scientific<br />

Publications, London. pp. 161.<br />

Kozak, J., Balmer, T., Byrne, R. <strong>an</strong>d Fisher, K. (1996) Prevalence <strong>of</strong> Listeria<br />

monocytogenes <strong>in</strong> foods; - <strong>in</strong>cidence <strong>in</strong> <strong>dairy</strong>-products. Food Control, 7 (4-<br />

5), 215-221.<br />

Kreft, J., Funke, D., Haas, A., Lottspeich, F. <strong>an</strong>d Goebel, W. (1989) Production,<br />

purification <strong>an</strong>d characterisation <strong>of</strong> haemolys<strong>in</strong> from Listeria iv<strong>an</strong>ovii <strong>an</strong>d<br />

Listeria monocytogenes Sv 4b. FEMS Microbiology Letters; 57, 197-202.<br />

Kuhn, M. <strong>an</strong>d Goebel, W. (1997) Responses by mur<strong>in</strong>e macrophages <strong>in</strong>fected with<br />

Listeria monocytogenes crucial for the development <strong>of</strong> immunity to this<br />

pathogen. Immunological Reviews, 158 57-67.<br />

Kummeneje, K. <strong>an</strong>d Mikkelsen, T. (1975) Isolation <strong>of</strong> Listeria monocytogenes type 04<br />

from cases <strong>of</strong> keratoconjunctivates <strong>in</strong> <strong>cattle</strong> <strong>an</strong>d sheep. Nordisk<br />

Veter<strong>in</strong>aermedic<strong>in</strong>, 27, 144-149.<br />

Ladds, P.D., Dennis, S.M. <strong>an</strong>d Njoku, C.O. (1974) Pathology <strong>of</strong> listeric <strong>in</strong>fection <strong>in</strong><br />

domestic <strong>an</strong>imals. The Veter<strong>in</strong>ary Bullet<strong>in</strong>; 44, 68-74.<br />

Lammerd<strong>in</strong>g, A.M., Glass, K.A., Gendronfitzpatrick, A.<strong>an</strong>d Doyle, M.P.(1992)<br />

Determ<strong>in</strong>ation <strong>of</strong> virulence <strong>of</strong> different stra<strong>in</strong>s <strong>of</strong> Listeria monocytogenes <strong>an</strong>d<br />

237


Listeria <strong>in</strong>nocua by oral <strong>in</strong>oculation <strong>of</strong> pregn<strong>an</strong>t mice. Applied <strong>an</strong>d<br />

Environmental Microbiology, 58 (12), 3991-4000.<br />

Lamont, R.J. <strong>an</strong>d Postlethwaite, R. (1986) Carriage <strong>of</strong> Listeria monocytogenes <strong>an</strong>d<br />

related species <strong>in</strong> pregn<strong>an</strong>t <strong>an</strong>d non-pregn<strong>an</strong>t women <strong>in</strong> Aberdeen, Scotl<strong>an</strong>d.<br />

Journal <strong>of</strong> Infection, 13, (2), 187-193.<br />

Larsen, H.E. (1966) Isolation techniques for Listeria monocytogenes: primary<br />

cultivation <strong>an</strong>d cold <strong>in</strong>cubation technique. Proceed<strong>in</strong>g <strong>of</strong> the Third<br />

International Symposium on Listeriosis. Bilthoven, The Netherl<strong>an</strong>ds. pp 43-<br />

48.<br />

Larsen, S.A., Feeley, J.C. <strong>an</strong>d Jones, W.L. (1974) Immune response to Listeria<br />

monocytogenes <strong>in</strong> rabbits <strong>an</strong>d hum<strong>an</strong>s. Applied Microbiology 27, 1005-1013.<br />

Lawrence, L.M. <strong>an</strong>d Gilmour, A.(1995) Characterization <strong>of</strong> Listeria monocytogenes<br />

isolated from poultry products <strong>an</strong>d from the poultry-process<strong>in</strong>g environment<br />

by r<strong>an</strong>dom amplification <strong>of</strong> polymorphic DNA <strong>an</strong>d multilocus enzyme<br />

electrophoresis. Applied <strong>an</strong>d Environmental Microbiology, 61 (6), 2139-<br />

2144.<br />

Lee, W.H. <strong>an</strong>d McCla<strong>in</strong>, D. (1986) Improved Listeria monocytogenes selective agar.<br />

Applied <strong>an</strong>d Environmental Microbiology, 52 (5), 1215-1217.<br />

Lewis, S.J. <strong>an</strong>d Corry, J.E.L. (1991) Comparison <strong>of</strong> a cold enrichment <strong>an</strong>d the fda<br />

method for isolat<strong>in</strong>g Listeria monocytogenes <strong>an</strong>d other Listeria spp from<br />

ready-to-eat food on retail sale <strong>in</strong> the UK. International Journal <strong>of</strong> Food<br />

Microbiology, 12 (2-3), 281-286.<br />

Lhopital, S., Marly, J., Pardon,P. <strong>an</strong>d Berche, P. (1993) K<strong>in</strong>etics <strong>of</strong> <strong>an</strong>tibody production<br />

aga<strong>in</strong>st Listeriolys<strong>in</strong>-O <strong>in</strong> sheep with <strong>listeriosis</strong>. Journal <strong>of</strong> Cl<strong>in</strong>ical<br />

Microbiology, 31 (6), 1537-1540.<br />

238


L<strong>in</strong>de, K., Fthenakis, G.C, Lippm<strong>an</strong>n, R., K<strong>in</strong>ne, J. <strong>an</strong>d Abraham, A. (1995) The<br />

efficacy <strong>of</strong> a live Listeria monocytogenes comb<strong>in</strong>ed serotype 1/2a <strong>an</strong>d<br />

serotype 4b vacc<strong>in</strong>e. Vacc<strong>in</strong>e, 13 (10), 923-926.<br />

L<strong>in</strong>n<strong>an</strong>, M.J., Mascola, L., Lou, X.D., Goulet, V., May, S., Salm<strong>in</strong>en, C., Hird, D.W.,<br />

Yonekura, M.L., Hayes, P., Weaver, R., Audurier, A., Plikaytis, B.D., F<strong>an</strong>n<strong>in</strong>,<br />

S.L., Kleks, A. <strong>an</strong>d Broome, C.V.(1988) Epidemic <strong>listeriosis</strong> associated with<br />

Mexic<strong>an</strong>-style cheese. New Engl<strong>an</strong>d Journal <strong>of</strong> Medic<strong>in</strong>e, 319 (13) 823-828.<br />

Lorber, B. (1990) Cl<strong>in</strong>ical <strong>listeriosis</strong> -Implications for pathogenesis. In Miller, A.J.,.<br />

Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.) Foodborne <strong>listeriosis</strong>. Society for<br />

Industrial Microbiology. Elsevier Science Publish<strong>in</strong>g, Inc. New York. pp 41-<br />

49<br />

Louie, M., Jayaratne, P., Luchs<strong>in</strong>ger, I., Devenish, J., Yao, J, Schlech, W. <strong>an</strong>d Simor, A.<br />

(1996) Comparison <strong>of</strong> ribotyp<strong>in</strong>g, arbitrarily primed PCR, <strong>an</strong>d pulsed-field<br />

gel-electrophoresis for molecular typ<strong>in</strong>g <strong>of</strong> Listeria monocytogenes. Journal<br />

<strong>of</strong> Cl<strong>in</strong>ical Microbiology, 34 (1), 15-19.<br />

Lovett, J. (1990) Taxonomy <strong>an</strong>d general characteristics <strong>of</strong> Listeria spp. In Miller, A.J.,.<br />

Smith, J.L <strong>an</strong>d Somkuti G.A. (ed.) Foodborne <strong>listeriosis</strong>. Society for<br />

Industrial Microbiology. Elsevier Science Publish<strong>in</strong>g, Inc. New York. pp 9-<br />

12.<br />

Lovett, J., Fr<strong>an</strong>cis, D.W. <strong>an</strong>d Hunt, J.M. (1987) Listeria monocytogenes <strong>in</strong> raw-milk<br />

detection, <strong>in</strong>cidence, <strong>an</strong>d pathogenicity. Journal <strong>of</strong> Food Protection, 50 (3),<br />

188-192.<br />

Low, J.C. <strong>an</strong>d Donachie, W. (1991) Cl<strong>in</strong>ical <strong>an</strong>d serum <strong>an</strong>tibody responses <strong>of</strong> lambs to<br />

<strong>in</strong>fection by Listeria monocytogenes. Research <strong>in</strong> Veter<strong>in</strong>ary Science; 51,<br />

185-192.<br />

239


Low, J.C. <strong>an</strong>d Donachie, W.A. (1997) Review <strong>of</strong> Listeria monocytogenes <strong>an</strong>d <strong>listeriosis</strong><br />

The Veter<strong>in</strong>ary Journal, 153, (1), 9-29.<br />

Low, J.C. <strong>an</strong>d Renton, C.P.(1985) Septicemia, encephalitis <strong>an</strong>d abortion <strong>in</strong> a housed<br />

flock <strong>of</strong> sheep caused by Listeria monocytogenes type 1/2. The Veter<strong>in</strong>ary<br />

Record; 116, 147-150.<br />

Low, J.C., Chalmers, R.M., Donachie, W., Freem<strong>an</strong>, R., Mclauchl<strong>in</strong>, J. <strong>an</strong>d Sisson, P.R.<br />

(1992a) Pyrolysis mass-spectrometry <strong>of</strong> Listeria monocytogenes isolates from<br />

sheep Research <strong>in</strong> Veter<strong>in</strong>ary Science, 53, (1), 64-67.<br />

Low, J.C., Davies, R.C. <strong>an</strong>d Donachie, W. (1992b) Purification <strong>of</strong> listeriolys<strong>in</strong> O <strong>an</strong>d<br />

development <strong>of</strong> <strong>an</strong> immunoassay for diagnosis <strong>of</strong> listeric <strong>in</strong>fections <strong>in</strong> sheep.<br />

Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology; 30 (10), 2705-2708.<br />

Low. C. <strong>an</strong>d L<strong>in</strong>klater, K. (1985) Listeriosis <strong>in</strong> sheep. In Practice, 7, 66-67.<br />

Lund, B.M. (1990) The prevention <strong>of</strong> foodborne Listeriosis. British Food Journal, 92,<br />

13-22<br />

MacDonald, T.T. <strong>an</strong>d Carter, P.B. (1980) Cell-mediated immunity to <strong>in</strong>test<strong>in</strong>al<br />

<strong>in</strong>fection. Infection <strong>an</strong>d Immunity, 28 (2), 516-523.<br />

MacGow<strong>an</strong>, A.P., Holt, H.A., Bywater, M.J. <strong>an</strong>d Reeves, D.S. (1990a) Invitro<br />

<strong>an</strong>timicrobial susceptibility <strong>of</strong> Listeria-monocytogenes isolated <strong>in</strong> the UK <strong>an</strong>d<br />

other Listeria species. Europe<strong>an</strong> Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology &<br />

Infectious Diseases, 9 (10), 767-770.<br />

MacGow<strong>an</strong>, A. P, Reeves, D.S. <strong>an</strong>d Mclauchl<strong>in</strong>, J. (1990b) Antibiotic resist<strong>an</strong>ce <strong>of</strong><br />

Listeria monocytogenes. L<strong>an</strong>cet, 336 (8713) 513-514.<br />

MacGow<strong>an</strong>, A.P., Bowker, K., Mclauchl<strong>in</strong>, J., Bennett, P.M. <strong>an</strong>d Reeves, D.S. (1994)<br />

The occurrence <strong>an</strong>d seasonal-ch<strong>an</strong>ges <strong>in</strong> the isolation <strong>of</strong> Listeria spp <strong>in</strong> shop<br />

bought food stuffs, hum<strong>an</strong> feces, sewage <strong>an</strong>d soil from urb<strong>an</strong> sources.<br />

International Journal <strong>of</strong> Food Microbiology, 21 (4), 325-334.<br />

240


MacGow<strong>an</strong>, A.P., Marshall, R.J., MacKay, I.M. <strong>an</strong>d Reeves, D.S. (1991) Listeria fecal<br />

carriage by renal-tr<strong>an</strong>spl<strong>an</strong>t recipients, hemodialysis-patients <strong>an</strong>d patients <strong>in</strong><br />

general practice its relation to season, drug therapy, foreign travel, <strong>an</strong>imal<br />

exposure <strong>an</strong>d diet. Epidemiology And Infection, 106 (1), 157-166.<br />

Macgow<strong>an</strong>, A.P., O’Donaghue, K., Nicholls, S., Mclauchl<strong>in</strong>, J., Bennett, P.M. <strong>an</strong>d<br />

Reeves, D.S (1993) Typ<strong>in</strong>g <strong>of</strong> Listeria spp by r<strong>an</strong>dom amplified polymorphic<br />

DNA (RAPD) <strong>an</strong>alysis. Journal <strong>of</strong> Medical Microbiology, 38, (5), 322-327.<br />

Mack<strong>an</strong>ess, G.B. (1962) Cellular resist<strong>an</strong>ce to <strong>in</strong>fection. Journal <strong>of</strong> Experimental<br />

Medic<strong>in</strong>e, 116, 381-406.<br />

Marco, A., Ramos, J.A., Dom<strong>in</strong>guez, L., Dom<strong>in</strong>go, M <strong>an</strong>d Gonzalez, L. (1988)<br />

Immunocytochemical detection <strong>of</strong> Listeria monocytogenes <strong>in</strong> tissue with the<br />

peroxidase-<strong>an</strong>tiperoxidase technique. Veter<strong>in</strong>ary Pathology, 25 (5), 385-387.<br />

Marco, A.J., Prats, N., Ramos, J.A., Briones, V., Bl<strong>an</strong>co, M., Dom<strong>in</strong>guez, L. <strong>an</strong>d<br />

Dom<strong>in</strong>go, M. (1992) A microbiological, histopathological <strong>an</strong>d<br />

immunohistological <strong>study</strong> <strong>of</strong> the <strong>in</strong>tragastric <strong>in</strong>oculation <strong>of</strong> Listeria<br />

monocytogenes <strong>in</strong> mice. Journal <strong>of</strong> Comparative Pathology, 107 (1), 1-9.<br />

Maslow, N.J., Mullig<strong>an</strong>, M.E. <strong>an</strong>d Arbeit, R.D. (1993) Molecular epidemiology:<br />

Application <strong>of</strong> Contemporary Techniques to the Typ<strong>in</strong>g <strong>of</strong> Microorg<strong>an</strong>isms.<br />

Cl<strong>in</strong>ical Infectious Disease, 17, 153-164.<br />

Mazurier, S.I. <strong>an</strong>d Wernars, K. (1992) Typ<strong>in</strong>g <strong>of</strong> Listeria stra<strong>in</strong>s by r<strong>an</strong>dom<br />

amplification <strong>of</strong> polymorphic DNA. Research <strong>in</strong> Microbiology, 143 (5), 499-<br />

505.<br />

Mazurier, S.I., Audurier, A., Marquetv<strong>an</strong>dermee, N., Noterm<strong>an</strong>s, S. <strong>an</strong>d Wernars, K.<br />

(1992) A comparative-<strong>study</strong> <strong>of</strong> r<strong>an</strong>domly amplified polymorphic DNA<br />

<strong>an</strong>alysis <strong>an</strong>d conventional phage typ<strong>in</strong>g for epidemiologic studies <strong>of</strong> listeria-<br />

monocytogenes isolates. Research <strong>in</strong> Microbiology, 143 (5), 507-512.<br />

241


McBride, M.E. <strong>an</strong>d Girard, K.F. (1960) A selective method for the isolation <strong>of</strong> Listeria<br />

monocytogenes from mixed bacterial populations. Journal <strong>of</strong> Laboratory<br />

Cl<strong>in</strong>ical Medic<strong>in</strong>e, 55, 153-157.<br />

McCla<strong>in</strong>, D. <strong>an</strong>d Lee, W.H. (1988) Development <strong>of</strong> USDA-FSIS method for isolation<br />

<strong>of</strong> Listeria monocytogenes from raw meat <strong>an</strong>d poultry. Journal <strong>of</strong> The<br />

Association <strong>of</strong> Official Analytical Chemists, 71 (3) 660-664.<br />

McKellar, R.C. (1993) Novel mech<strong>an</strong>ism for the camp reaction between Listeria<br />

monocytogenes <strong>an</strong>d Corynebacterium equi. International Journal <strong>of</strong> Food<br />

Microbiology, 18, 77-82.<br />

McLauchl<strong>in</strong>, J. (1987) Listeria monocytogenes, recent adv<strong>an</strong>ces <strong>in</strong> the taxonomy <strong>an</strong>d<br />

epidemiology <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> hum<strong>an</strong>s. Journal <strong>of</strong> Applied Bacteriology,. 63<br />

(1), 1-11.<br />

McLauchl<strong>in</strong>, J. (1996) the relationship between Listeria <strong>an</strong>d Listeriosis. Food Control,<br />

7 (4-5), 187-193.<br />

McLauchl<strong>in</strong>, J. <strong>an</strong>d Low, C.J. (1994) Primary cut<strong>an</strong>eous <strong>listeriosis</strong> <strong>in</strong> adults: <strong>an</strong><br />

occupational disease <strong>of</strong> veter<strong>in</strong>ari<strong>an</strong>s <strong>an</strong>d farmers. The Veter<strong>in</strong>ary<br />

Record,135, 615-617.<br />

McLauchl<strong>in</strong>, J., Audurier, A. <strong>an</strong>d Taylor, A.G. (1986) The evaluation <strong>of</strong> a phage-typ<strong>in</strong>g<br />

system for Listeria monocytogenes for use <strong>in</strong> <strong>epidemiological</strong>-studies.<br />

Journal <strong>of</strong> Medical Microbiology, 22 (4), 357-365.<br />

McLauchl<strong>in</strong>, J., Hall, S.M., Vel<strong>an</strong>i, S.K. <strong>an</strong>d Gilbert, R.J. (1991) Hum<strong>an</strong> <strong>listeriosis</strong> <strong>an</strong>d<br />

pate - a possible association. British Medical Journal, 303 (6805), 773-775.<br />

McLauchl<strong>in</strong>, J., Samuel, D. <strong>an</strong>d Taylor, A.G. (1989) The use <strong>of</strong> monoclonal-<strong>an</strong>tibodies<br />

to demonstrate Listeria monocytogenes <strong>in</strong> post mortem tissue us<strong>in</strong>g a direct<br />

immun<strong>of</strong>luorescence technique, <strong>an</strong>d to detect a soluble <strong>an</strong>tigen <strong>in</strong> CSF<br />

242


supernat<strong>an</strong>ts us<strong>in</strong>g <strong>an</strong> ELISA. Acta Microbiologica Hungarica, 36 (2-3), 303-<br />

308.<br />

Mee, J.F. <strong>an</strong>d Rea, M. (1989) Baled silage associated with uveitis <strong>in</strong> cows (letter). The<br />

Veter<strong>in</strong>ary Record, 124, 25.<br />

Meredith, C.D. <strong>an</strong>d Schneider, D. J.(1984) An outbreak <strong>of</strong> ov<strong>in</strong>e <strong>listeriosis</strong> associated<br />

with poor m<strong>an</strong>agement practice. Journal <strong>of</strong> the South Afric<strong>an</strong> Veter<strong>in</strong>ary<br />

Association; 55, 55-56.<br />

Miett<strong>in</strong>en, A. <strong>an</strong>d Husu, J. (1991) Antibodies to Listeriolys<strong>in</strong>-O reflect the acquired<br />

resist<strong>an</strong>ce to Listeria monocytogenes <strong>in</strong> experimentally <strong>in</strong>fected goats. FEMS<br />

Microbiology Letters, 77 (2-3), 181-186.<br />

Miett<strong>in</strong>en, A., Husu, J. <strong>an</strong>d Tuam, J.(1990) Serum <strong>an</strong>tibody response to Listeria<br />

monocytogenes, Listerial excretion <strong>an</strong>d cl<strong>in</strong>ical characteristics <strong>in</strong><br />

experimentally <strong>in</strong>fected goats. Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology, 28(2), 340-<br />

343.<br />

M<strong>in</strong>istry <strong>of</strong> Agriculture, Fisheries And Food (MAFF) (1994) 1994 Census. MAFF<br />

Agricultural Census Br<strong>an</strong>ch.<br />

Morg<strong>an</strong>, J.H. (1977) Infectious keratoconjunctivitis <strong>in</strong> <strong>cattle</strong> associated with Listeria<br />

monocytogenes. The Veter<strong>in</strong>ary Record; 100, 113-114.<br />

Murray, E.G.D., Webb, R.A. <strong>an</strong>d Sw<strong>an</strong>n, M.B.R. (1926) A disease <strong>of</strong> rabbits<br />

characterised by a hitherto undescribed Bacillus bacterium monocytogenes<br />

(n.sp.). Journal Of Pathology; 29, 407-439.<br />

Nash, M.L., Hungerford, L.L., Nash, T.G. <strong>an</strong>d Z<strong>in</strong>n, G.M. (1995) Epidemiology <strong>an</strong>d<br />

economics <strong>of</strong> cl<strong>in</strong>ical <strong>listeriosis</strong> <strong>in</strong> a sheep flock. Preventive Veter<strong>in</strong>ary<br />

Medic<strong>in</strong>e, 24 (3), 147-156.<br />

243


Niem<strong>an</strong>, R.E. <strong>an</strong>d Lorber, B. (1980) Listeriosis <strong>in</strong> adults: A ch<strong>an</strong>g<strong>in</strong>g pattern. Report <strong>of</strong><br />

eight cases <strong>an</strong>d review <strong>of</strong> the literature, 1968-1978. Review <strong>of</strong> Infectious<br />

Diseases, 2, 207-227.<br />

Njoku, C.O. <strong>an</strong>d Dennis, S.M. (1973) Listeric abortion studies <strong>in</strong> sheep. IV<br />

Histopathologic comparison <strong>of</strong> natural <strong>an</strong>d experimental <strong>in</strong>fection. Cornell<br />

Veter<strong>in</strong>ari<strong>an</strong>, 63, 211-219.<br />

Nocera, D., Altwegg, M., Lucch<strong>in</strong>i, G.M., B<strong>an</strong>nerm<strong>an</strong>, E., Ischer, F., Rocourt, J. <strong>an</strong>d<br />

Bille, J. (1993) Characterization <strong>of</strong> Listeria stra<strong>in</strong>s from a foodborne<br />

<strong>listeriosis</strong> outbreak by rDNA gene restriction patterns compared to 4 other<br />

typ<strong>in</strong>g methods Europe<strong>an</strong> Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology & Infectious<br />

Diseases, 12 (3), 162-169.<br />

Nocera, D., B<strong>an</strong>nerm<strong>an</strong>, E., Rocourt, J., Jatonogay, K. <strong>an</strong>d Bille, J.(1990)<br />

Characterisation by DNA restriction endonuclease <strong>an</strong>alysis <strong>of</strong> Listeria<br />

monocytogenes stra<strong>in</strong>s related to the Swiss epidemic <strong>of</strong> <strong>listeriosis</strong>. Journal <strong>of</strong><br />

Cl<strong>in</strong>ical Microbiology, 28,(10), 2259-2263.<br />

Norrung, B. <strong>an</strong>d Gernersmidt, P. (1993) Comparison <strong>of</strong> multilocus enzyme<br />

electrophoresis (MEE), ribotyp<strong>in</strong>g, restriction enzyme <strong>an</strong>alysis (REA) <strong>an</strong>d<br />

phage typ<strong>in</strong>g for typ<strong>in</strong>g <strong>of</strong> Listeria monocytogenes. Epidemiology <strong>an</strong>d<br />

Infection, 111 (1), 71-79.<br />

Norrung, B. <strong>an</strong>d Skovgaard, N. (1993) Application <strong>of</strong> multilocus enzyme<br />

electrophoresis <strong>in</strong> studies <strong>of</strong> the epidemiology <strong>of</strong> Listeria monocytogenes <strong>in</strong><br />

Denmark. Applied <strong>an</strong>d Environmental Microbiology, 59 (9), 2817-2822.<br />

North, R.J. <strong>an</strong>d Conl<strong>an</strong>, J.W. (1998) Immunity to Listeria monocytogenes. Chemical<br />

Immunology, 70, 1-20.<br />

O’Donoghue, K., Bowker, K., McLauchl<strong>in</strong>, J., Reeves, D.S., Bennett, P.M. <strong>an</strong>d<br />

MacGow<strong>an</strong>, A.P.(1995) Typ<strong>in</strong>g <strong>of</strong> Listeria monocytogenes by r<strong>an</strong>dom<br />

244


amplified polymorphic DNA (RAPD) <strong>an</strong>alysis. International Journal <strong>of</strong> Food<br />

Microbiology, 27 (2-3), 245-252.<br />

Ohshima, K., Mira, S., Mumakunai, S. <strong>an</strong>d Chihaya, Y.A. (1974) Case <strong>of</strong> bov<strong>in</strong>e<br />

cerebral <strong>listeriosis</strong> with ocular lesions. Jap<strong>an</strong>ese Journal <strong>of</strong> Veter<strong>in</strong>ary<br />

Science; 36, 183-185.<br />

Osebold, J.W. (1963a) Some aspects <strong>of</strong> the pathogenesis <strong>of</strong> Listeriosis. In Gray, M.L.<br />

(ed.) Second Symposium <strong>of</strong> Listeric <strong>in</strong>fection, Mont<strong>an</strong>a State College,<br />

Bozem<strong>an</strong>, pp 109-113.<br />

Osebold J.W. (1963b) Some thoughts on the epidemiology <strong>of</strong> Listeriosis. In Gray, M.L.<br />

(ed.) Second Symposium <strong>of</strong> Listeric <strong>in</strong>fection, Mont<strong>an</strong>a State College,<br />

Bozem<strong>an</strong>, pp 141-144.<br />

Osebold, J.W., Kendrick, J.W. <strong>an</strong>d Njoku-Obi, A. (1960) Cattle abortion associated<br />

with natural Listeria monocytogenes <strong>in</strong>fection. Journal <strong>of</strong> the Americ<strong>an</strong><br />

Veter<strong>in</strong>ary Medical Association, 137, 221-226.<br />

Pallson, P.L. (1963) Relation <strong>of</strong> silage feed<strong>in</strong>g to Listeric <strong>in</strong>fection <strong>in</strong> sheep. In Gray,<br />

M.L. (ed.) Second Symposium <strong>of</strong> Listeric <strong>in</strong>fection, Mont<strong>an</strong>a State College,<br />

Bozem<strong>an</strong>, pp 73-84.<br />

Paterson, J.S. (1940) The <strong>an</strong>tigenic structure <strong>of</strong> org<strong>an</strong>isms <strong>of</strong> the genus Listerella.<br />

Journal <strong>of</strong> Pathology <strong>an</strong>d Bacteriology, 51, 427-436.<br />

Peel, M. (1987) A <strong>study</strong> <strong>of</strong> the prote<strong>in</strong> <strong>an</strong>tigens <strong>of</strong> Listeria monocytogenes. PhD Thesis.<br />

Faculty <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e, Royal (Dick) School <strong>of</strong> Veter<strong>in</strong>ary Studies.<br />

University <strong>of</strong> Ed<strong>in</strong>burgh.<br />

Pell, A.N. (1997) M<strong>an</strong>ure <strong>an</strong>d Microbes: Public <strong>an</strong>d Animal Health Problem. Journal <strong>of</strong><br />

Dairy Science, 80, 2673-2681.<br />

Perez-Diaz, J.C, Vicente, M.F. <strong>an</strong>d Baquero, F. (1982) Plasmids <strong>in</strong> Listeria. Plasmid, 8,<br />

(2), 112-118.<br />

245


Peters, M., Pohlenz, J., Jaton, K., N<strong>in</strong>et, B. <strong>an</strong>d Bille, J. (1995) Studies <strong>of</strong> the detection<br />

<strong>of</strong> Listeria monocytogenes by culture <strong>an</strong>d PCR <strong>in</strong> cerebrosp<strong>in</strong>al fluid samples<br />

from rum<strong>in</strong><strong>an</strong>ts with listeric encephalitis. Journal <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e<br />

Series B-Zentralblatt Fur Veter<strong>in</strong>armediz<strong>in</strong> Reihe B-Infectious Diseases <strong>an</strong>d<br />

Veter<strong>in</strong>ary Public Health.. 42 (2), 84-88.<br />

Picard-Bonnaud, F., Cott<strong>in</strong>, J. <strong>an</strong>d Carbonnelle, B. (1989) Persistence <strong>of</strong> Listeria-<br />

monocytogenes <strong>in</strong> 3 sorts <strong>of</strong> soil. Acta Microbiologica Hungarica, 36 (2-3),<br />

263-267.<br />

P<strong>in</strong>i, P.N., Gilbert, R.J. (1988) A comparison <strong>of</strong> 2 procedures for the isolation <strong>of</strong><br />

Listeria monocytogenes from raw chickens <strong>an</strong>d s<strong>of</strong>t cheeses. International<br />

Journal <strong>of</strong> Food Microbiology, 7 (4), 331-337.<br />

P<strong>in</strong>ner, R.W., Schuchat, A., Swam<strong>in</strong>ath<strong>an</strong>, B., Hayes, P.S., Deaver, K.A., Weaver, R.E.,<br />

Plikaytis, B.D., Reeves, M., Broome, C.V. <strong>an</strong>d Wenger, J.D. (1992) Role <strong>of</strong><br />

foods <strong>in</strong> sporadic Listeriosis. 2. Microbiologic <strong>an</strong>d epidemiologic<br />

<strong>in</strong>vestigation. JAMA-Journal <strong>of</strong> the Americ<strong>an</strong> Medical Association, 267 (15),<br />

2046-2050.<br />

Pirie, J.H.H. (1940) Listeria: ch<strong>an</strong>ge <strong>of</strong> name for a genus <strong>of</strong> bacteria. Nature, 145, 264.<br />

Pittm<strong>an</strong>, B. <strong>an</strong>d Cherry, B.W. (1967) Isolation <strong>of</strong> Listeria monocytogenes from bra<strong>in</strong>s <strong>of</strong><br />

Rabies-negative <strong>an</strong>imals. Americ<strong>an</strong> Journal <strong>of</strong> Veter<strong>in</strong>ary Research, 28 (124)<br />

779-785.<br />

Pohj<strong>an</strong>virta, R. <strong>an</strong>d Huttunen, T. (1985) Some aspects <strong>of</strong> mur<strong>in</strong>e experimental<br />

<strong>listeriosis</strong>. Acta Veter<strong>in</strong>aria Sc<strong>an</strong>d<strong>in</strong>avica, 26, 563-580.<br />

Portnoy, A.D., Jacks, P.S. <strong>an</strong>d H<strong>in</strong>rich, D.J. (1988) Role <strong>of</strong> haemolys<strong>in</strong> for the<br />

<strong>in</strong>tracellular growth <strong>of</strong> Listeria monocytogenes. Journal Of Experimental<br />

Medic<strong>in</strong>e; 167, 1459-1471.<br />

246


Portnoy, D.A. (1992) Innate immunity to a facultative <strong>in</strong>tracellular bacterial<br />

pathogen.Current Op<strong>in</strong>ion <strong>in</strong> Immunology, 4 (1), 20-24.<br />

Portnoy, D.A., Chakraborty, T., Goebel, W. <strong>an</strong>d Cossart, P. (1992) Molecular<br />

determ<strong>in</strong><strong>an</strong>ts <strong>of</strong> Listeria monocytogenes pathogenesis. Infection <strong>an</strong>d<br />

Immunity, 60 (4), 1263-1267.<br />

Poyart-Salmeron, C., Carlier, C., Trieucuot, P., Courtieu, A.L. <strong>an</strong>d Courval<strong>in</strong>, P.(1990)<br />

Tr<strong>an</strong>sferable plasmid-mediated <strong>an</strong>tibiotic-resist<strong>an</strong>ce <strong>in</strong> Listeria<br />

monocytogenes. L<strong>an</strong>cet, 335 (8703), 1422-1426.<br />

Price, H.H. (1975) Outbreak <strong>of</strong> septicemic <strong>listeriosis</strong> <strong>in</strong> a <strong>dairy</strong> herd. Veter<strong>in</strong>ary<br />

Medic<strong>in</strong>e/Small Animal Cl<strong>in</strong>ici<strong>an</strong>; 76 (1), 73-74.<br />

Quent<strong>in</strong>, C., Thibaut, M.C., Horovitz, J. <strong>an</strong>d Bebear, C. (1990) Multiresist<strong>an</strong>t stra<strong>in</strong> <strong>of</strong><br />

Listeria monocytogenes <strong>in</strong> septic abortion. L<strong>an</strong>cet, 336, (8711), 375.<br />

Racz, P., Tenner, K. <strong>an</strong>d Mero, E. (1972) Experimental Listeria enteritis. I. An electron<br />

microscopic <strong>study</strong> <strong>of</strong> the epithelial phase <strong>in</strong> experimental Listeria <strong>in</strong>fection.<br />

Laboratory Investigation, 26, 694-700.<br />

Radostits, O.M., Blood, D.C. <strong>an</strong>d Gay, C.C. (1994) Veter<strong>in</strong>ary Medic<strong>in</strong>e 8th Ed.<br />

Bailliare T<strong>in</strong>dall, Philadelphia, London. pp 660-666.<br />

Ralovich, B. (1992) Data for the properties <strong>of</strong> Listeria stra<strong>in</strong>s. Acta Microbiologica<br />

Hungarica; 39 (2), 105-132.<br />

Ralovich, B. (1993) Detection <strong>an</strong>d <strong>epidemiological</strong> typ<strong>in</strong>g <strong>of</strong> Listeria stra<strong>in</strong>s-Diagnostic<br />

methods for Listeria <strong>in</strong>fection. Acta Microbiologica Hungarica 40 (1), 3-38.<br />

Ralovich, B., Emody, L., Malovics, I., Mero, E. <strong>an</strong>d Forray, A. (1972). Methods to<br />

isolate L. monocytogenes from different materials. Acta Microbiologica<br />

Academiae Scientiarum Hungaricae, 19, 367-369.<br />

Ralovich, B., Forray, A., Mero, E., Malovics, I. <strong>an</strong>d Szazados, I. (1971). New selective<br />

medium for isolation <strong>of</strong> Listeria monocytogenes. Zentralblatt für<br />

247


Bakteriologie, Mikrobiologie und Hygiene. Abt. 1: Orig<strong>in</strong>ale. Reihe A.<br />

216:88-89.<br />

Ralovich, B.S. (1987).Epidemiology <strong>an</strong>d signific<strong>an</strong>ce <strong>of</strong> Listeriosis <strong>in</strong> the Europi<strong>an</strong><br />

countries. In Schonberg, A.(ed.) “Listeriosis jo<strong>in</strong>t WHO/ROI consultation on<br />

prevention <strong>an</strong>d control”.pp:21-55. Instut fur Veterimediz<strong>in</strong> Des Bundes.<br />

Berl<strong>in</strong>.<br />

Rea, M.C., Cogen, T.M. <strong>an</strong>d Tob<strong>in</strong>, S.(1992) Incidence <strong>of</strong> pathogenic bacteria <strong>in</strong> raw<br />

milk <strong>in</strong> Irel<strong>an</strong>d. Journal Of Applied Bacteriology; 73, 331-336.<br />

Rebhun, C.W. <strong>an</strong>d deLahunta, A. (1982) Diagnosis <strong>an</strong>d treatment <strong>of</strong> bov<strong>in</strong>e <strong>listeriosis</strong>.<br />

Journal <strong>of</strong> the Americ<strong>an</strong> Veter<strong>in</strong>ary Medical Association, 180 (4), 395-398.<br />

Rebhun, W.C. (1987) Listeriosis. Veter<strong>in</strong>ary Cl<strong>in</strong>ics North America: Food Animal<br />

Practice; 3, 75-83.<br />

Reuter, R., Bowden, M. <strong>an</strong>d Palmer, M. (1989) Ov<strong>in</strong>e <strong>listeriosis</strong> <strong>in</strong> south coastal<br />

Western Australia. Australi<strong>an</strong> Veter<strong>in</strong>ary Journal; 66, 223-224.<br />

Rocourt, J. (1996) Risk factors for <strong>listeriosis</strong>. Food Control, 7, (4-5), 195-202.<br />

Rocourt, J. <strong>an</strong>d, Grimont, P.A.D. (1983) Listeria welshimeri sp. nov. <strong>an</strong>d Listeria<br />

seeligeri sp. nov. International Journal <strong>of</strong> Systematic Bacteriology, 33 (4),<br />

866-869.<br />

Rocourt, J., Grimont, F., Grimont, P.A.D. <strong>an</strong>d Seeliger, P.R. (1982) DNA relatedness<br />

among serovars <strong>of</strong> Listeria monocytogenes-sensu lato. Current<br />

Microbiology, 7, (6), 383-388.<br />

Rocourt, J., Wehmeyer, U., Cossart, P. <strong>an</strong>d Stackebr<strong>an</strong>dt, E. (1987) Proposal to reta<strong>in</strong><br />

Listeria murrayi <strong>an</strong>d Listeria grayi <strong>in</strong> the genus Listeria. International<br />

Journal <strong>of</strong> Systematic Bacteriology, 37 (3), 298-300.<br />

Sargison, N. (1993) Health hazard associated with the feed<strong>in</strong>g <strong>of</strong> big bale silage. In<br />

Practice; 2, 291-297.<br />

248


Scheld, W.M., Fletcher, D.D., F<strong>in</strong>k, F.N. <strong>an</strong>d S<strong>an</strong>de, M.A. (1979). Response to Therapy<br />

<strong>in</strong> <strong>an</strong> Experimental Rabbit Model <strong>of</strong> Men<strong>in</strong>gitis Due to Listeria<br />

monocytogenes .The Journal <strong>of</strong> Infectious diseases.140 (3):287-294.<br />

Schlech, W.F. (1991) Listeriosis: - Epidemiology, virulence <strong>an</strong>d the signific<strong>an</strong>ce <strong>of</strong><br />

contam<strong>in</strong>ated foodstuffs. Journal <strong>of</strong> Hospital Infection, 19 (4), 211-224.<br />

Schlech, W.F. (1993) An <strong>an</strong>imal model <strong>of</strong> foodborne Listeria monocytogenes virulence<br />

effect <strong>of</strong> alterations <strong>in</strong> local <strong>an</strong>d systemic immunity on <strong>in</strong>vasive <strong>in</strong>fection.<br />

Cl<strong>in</strong>ical <strong>an</strong>d Investigative Medic<strong>in</strong>e-Medec<strong>in</strong>e Cl<strong>in</strong>ique et Experimentale, 16<br />

(3), 219-225.<br />

Schuchat, A., Deaver, K.A., Wenger, J.D., Plikaytis, B.D., Mascola, L., P<strong>in</strong>ner, R.W.,<br />

Re<strong>in</strong>gold, A., Broome, C.V. <strong>an</strong>d the Listeria group. (1992) Role <strong>of</strong> foods <strong>in</strong><br />

sporadic Listeriosis. 1. Case-control <strong>study</strong> <strong>of</strong> dietary risk factors. JAMA-<br />

Journal <strong>of</strong> the Americ<strong>an</strong> Medical Association, 267 (15), 2041-2045.<br />

Schuchat, A., Swam<strong>in</strong>ath<strong>an</strong>, B. <strong>an</strong>d Broome, C.V. (1991) Epidemiology <strong>of</strong> hum<strong>an</strong><br />

Listeriosis. Cl<strong>in</strong>ical Microbiology Reviews, 4 (2), 169-183.<br />

Schwartz, J.C. (1967) Incidence <strong>of</strong> Listeriosis <strong>in</strong> Pennsylv<strong>an</strong>ia livestock. Journal <strong>of</strong><br />

Americ<strong>an</strong> Veter<strong>in</strong>ary Medical Association, 151 (11), 1435-1437.<br />

Scott, P.R. (1992) Analysis <strong>of</strong> cerebrosp<strong>in</strong>al fluid from field cases <strong>of</strong> some common<br />

ov<strong>in</strong>e neurological diseases. British Veter<strong>in</strong>ary Journal, 148 (1), 15-22.<br />

Scott, P.R. (1993) A field <strong>study</strong> <strong>of</strong> ov<strong>in</strong>e Listerial men<strong>in</strong>goencephalitis with particular<br />

reference to cerebrosp<strong>in</strong>al fluid <strong>an</strong>alysis as <strong>an</strong> aid to diagnosis <strong>an</strong>d prognosis.<br />

British Veter<strong>in</strong>ary Journal, 149 (2), 165-170.<br />

Seamen, J.T., Carrig<strong>an</strong>, M.J., Cockram, F.A. <strong>an</strong>d Carter, G.L. (1990) An outbreak <strong>of</strong><br />

listerial myelitis <strong>in</strong> sheep. Australi<strong>an</strong> Veter<strong>in</strong>ary Journal; 67(4), 142-143.<br />

249


Seeliger, H.P.R. (1981) Apathogenic Listeria: L. <strong>in</strong>nocua sp. n. (Seeliger <strong>an</strong>d Schoop,<br />

1977). Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. Abt. 1:<br />

Orig<strong>in</strong>ale. Reihe A, 249, 487-493.<br />

Seeliger, H.P.R. (1984) Modern taxonomy <strong>of</strong> the Listeria group relationship to its<br />

pathogenicity. Cl<strong>in</strong>ical <strong>an</strong>d Investigative Medic<strong>in</strong>e-Medec<strong>in</strong>e Cl<strong>in</strong>ique Et<br />

Experimentale, 7, (4) 217-221.<br />

Seeliger, H.P.R. (1989) Listeriosis, m<strong>an</strong>-made? Acta Microbiologica Hungarica, 36 (2-<br />

3) 107-111.<br />

Seeliger, H.P.R. <strong>an</strong>d Hohne, K. (1979) Serotyp<strong>in</strong>g <strong>of</strong> Listeria monocytogenes. In<br />

Bergen, T. nad Norris, J.R. (ed.) Methods <strong>in</strong> Microbiology, Vol.13, pp.31-49.<br />

New York, Academic Press.<br />

Seeliger, H.P.R. <strong>an</strong>d Jones, D. (1986) Genus Listeria Pierie 1940. In: Sneath, Mair,<br />

Sharpe <strong>an</strong>d Holt (eds). Bergey’s M<strong>an</strong>ual <strong>of</strong> Systemic Bacteriology. Williams<br />

& Wilk<strong>in</strong>s, Baltimore 2, p.1235-1245.<br />

Seeliger, H.P.R., Rocourt, J., Schrettenbrunner, A., Grimont, P.A.D. <strong>an</strong>d Jones, D.<br />

(1984) Listeria iv<strong>an</strong>ovii sp. nov. International Journal <strong>of</strong> Systematic<br />

Bacteriology, 34 (3), 336-337.<br />

Seimiya, Y., Ohshima, K. Itoh., H. <strong>an</strong>d Murakami, R. (1992) Listeric septicemia with<br />

men<strong>in</strong>gitis <strong>in</strong> neonatal calf. Journal <strong>of</strong> Veter<strong>in</strong>ary Medical Science, 54 (6),<br />

1205-1207.<br />

Serge<strong>an</strong>t, E.S.G., Love, S.C.T. <strong>an</strong>d McInnes, A. (1991) Abortions <strong>in</strong> sheep due to<br />

Listeria iv<strong>an</strong>ovii. Australi<strong>an</strong> Veter<strong>in</strong>ary Journal; 68(1), 39.<br />

Sheeh<strong>an</strong>, B. Kocks, C., Dramsi, E., Gou<strong>in</strong>, A.D. Klarsfeld Mengaud, J. <strong>an</strong>d Cossart, P.<br />

(1994) Molecular <strong>an</strong>d genetic determ<strong>in</strong><strong>an</strong>ts <strong>of</strong> the Listeria monocytogenes<br />

<strong>in</strong>fectious process. Current Topics <strong>in</strong> Microbiology <strong>an</strong>d Immunology, 192,<br />

184-216.<br />

250


Simpson, A. (1994) Micros<strong>of</strong>t Access 2. 2nd ed. Sybex Inc. S<strong>an</strong> Fr<strong>an</strong>cisco.<br />

Sizmur, K. <strong>an</strong>d Walker, C.W. (1988) Listeria <strong>in</strong> prepacked salads. L<strong>an</strong>cet, 1 (8595),<br />

1167.<br />

Skalka, B. <strong>an</strong>d Smola, J. (1982) Hemolytic properties <strong>of</strong> exosubst<strong>an</strong>ce <strong>of</strong> serovar 5<br />

Listeria monocytogenes compared with beta-tox<strong>in</strong> <strong>of</strong> Staphylococcus aureus<br />

Zentralblatt fur bakteriologie mikrobiologie und hygiene series a-medical<br />

microbiology <strong>in</strong>fectious diseases virology parasitology, 252 (1), 17-25.<br />

Skovgaard, N. <strong>an</strong>d Morgen, C.A. (1988) Detection <strong>of</strong> Listeria spp <strong>in</strong> feces from<br />

<strong>an</strong>imals, <strong>in</strong> feeds, <strong>an</strong>d <strong>in</strong> raw foods <strong>of</strong> <strong>an</strong>imal orig<strong>in</strong>. International Journal <strong>of</strong><br />

Food Microbiology, 6 (3), 229-242.<br />

Southwick, F.S. <strong>an</strong>d Purich, D.L. (1996) Intracellular pathogenesis <strong>of</strong> <strong>listeriosis</strong>. New<br />

Engl<strong>an</strong>d Journal <strong>of</strong> Medic<strong>in</strong>e. 334 (12), 770-776.<br />

Stuart, S.E. <strong>an</strong>d Welshimer, H.J. (1973) Intrageneric relatedness <strong>of</strong> Listeria Pirie.<br />

International Journal <strong>of</strong> Systemic Bacteriology, 23, 8-14.<br />

Stuart, S.E. <strong>an</strong>d Welshimer, H.J. (1974) Taxonomic reexam<strong>in</strong>ation <strong>of</strong> Listeria Pirie <strong>an</strong>d<br />

tr<strong>an</strong>sfer <strong>of</strong> Listeria grayi <strong>an</strong>d Listeria murrayi to new genus, Murraya.<br />

International Journal <strong>of</strong> Systemic Bacteriology, 24, 8-14.<br />

Swartz, M.A., Welch, D.F., Naray<strong>an</strong><strong>an</strong>, R.P. <strong>an</strong>d Greenfield, R.A. (1991) Catalase<br />

negative Listeria monocytogenes caus<strong>in</strong>g men<strong>in</strong>gitis <strong>in</strong> <strong>an</strong> adult - cl<strong>in</strong>ical <strong>an</strong>d<br />

laboratory features. Americ<strong>an</strong> Journal <strong>of</strong> Cl<strong>in</strong>ical Pathology, 96 (1), 130-133.<br />

Szemeredi, G.Y. <strong>an</strong>d Pad<strong>an</strong>yi, M. (1989), A ten year’s experience with <strong>in</strong>activated<br />

vacc<strong>in</strong>e aga<strong>in</strong>st Listeriosis <strong>of</strong> sheep. Acta Microbiologica Hungarica,36 (2-3)<br />

327-330.<br />

Thomson, R.G. (1988) Special Veter<strong>in</strong>ary Pathology. B. C. Decker Inc. Philadelphia.<br />

Thrusfield, M. (1995) Veter<strong>in</strong>ary Epidemiology. 2nd ed. Blackwell Scientific<br />

Publications, London.<br />

251


Tilney, L.G. <strong>an</strong>d Portnoy, D.A. (1989) Act<strong>in</strong>-filaments <strong>an</strong>d the growth, movement, <strong>an</strong>d<br />

spread <strong>of</strong> the <strong>in</strong>tracellular bacterial parasite Listeria monocytogenes. Journal<br />

<strong>of</strong> Cell Biology, 109 (4), 1597-1608.<br />

Tilney, L.G. <strong>an</strong>d Tilney, M.S. (1993) The wily ways <strong>of</strong> parasite: <strong>in</strong>duction <strong>of</strong> act<strong>in</strong><br />

assembly by Listeria. Trends <strong>in</strong> Microbiology, 1, 25-31.<br />

Tiwari, N.P. <strong>an</strong>d Aldenrath, S.G. (1990) Isolation <strong>of</strong> Listeria monocytogenes from<br />

food-products on 4 selective plat<strong>in</strong>g media. Journal <strong>of</strong> Food Protection, 53<br />

(5), 382-385.<br />

Tsakris, A. Papa, A. Douboyas, L. <strong>an</strong>d Antoniadis, A. (1997) Neonatal men<strong>in</strong>gitis due<br />

to multi-resist<strong>an</strong>t Listeria monocytogenes. Journal <strong>of</strong> Antimicrobial<br />

Chemotherapy, 39, 553-554.<br />

Ueno, H., Yokota, K., Arai, T., Muramatsu, Y., T<strong>an</strong>iyama, H., Lida, T. <strong>an</strong>d Morita, C.<br />

(1996) The prevalence <strong>of</strong> Listeria monocytogenes <strong>in</strong> the environment <strong>of</strong><br />

<strong>dairy</strong> farms. Microbiology <strong>an</strong>d Immunology, 40 (2), 121-124.<br />

Vaill<strong>an</strong>court, J.P., Mart<strong>in</strong>eau, G., Morrow, M. Marsh, W. <strong>an</strong>d Rob<strong>in</strong>son, A. (1991)<br />

Construction <strong>of</strong> questionnaires <strong>an</strong>d their use <strong>in</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e.<br />

Proceed<strong>in</strong>g <strong>of</strong> the Society <strong>of</strong> Veter<strong>in</strong>ary Epidemiology <strong>an</strong>d Preventive<br />

Medic<strong>in</strong>e, London. pp. 94.<br />

V<strong>an</strong> Renterghem, B., Huysm<strong>an</strong>, F., Rygole, R. <strong>an</strong>d Verstraete, W. (1991) Detection <strong>an</strong>d<br />

prevalence <strong>of</strong> Listeria monocytogenes <strong>in</strong> the agricultural ecosystem. Journal<br />

<strong>of</strong> Applied Bacteriology, 71 (3), 211-217.<br />

V<strong>an</strong>degraaff, R., Borl<strong>an</strong>d, N.A. <strong>an</strong>d Brown<strong>in</strong>g, J. W. (1981) An outbreak <strong>of</strong> listerial<br />

men<strong>in</strong>go-encephlitis <strong>in</strong> sheep. Australi<strong>an</strong> Veter<strong>in</strong>ary Journal; 57, 94-96.<br />

V<strong>an</strong>Netten, P., Perales, I., V<strong>an</strong>demoosdijk, A., Curtis, G.D.W. <strong>an</strong>d Mossel, D.A.A.<br />

(1989) Liquid <strong>an</strong>d solid selective differential media for the detection <strong>an</strong>d<br />

252


enumeration <strong>of</strong> L. monocytogenes <strong>an</strong>d other Listeria spp. International<br />

Journal <strong>of</strong> Food Microbiology, 8 (4), 299-316.<br />

Vazquez-Bol<strong>an</strong>d, J.A., Dom<strong>in</strong>gez, L., Rodriguez-Ferri, E.F. <strong>an</strong>d Suarez, G. (1989a)<br />

Purification <strong>an</strong>d characterisation <strong>of</strong> two Listeria iv<strong>an</strong>ovii cytolys<strong>in</strong>, a<br />

sph<strong>in</strong>gomyel<strong>in</strong>ase C <strong>an</strong>d a thiol-activated tox<strong>in</strong> (Ivonolys<strong>in</strong> O). Infection <strong>an</strong>d<br />

Immunity; 57(12), 3928-3935.<br />

Vazquez-Bol<strong>an</strong>d, J.A., Dom<strong>in</strong>guez, L, Rodriguez-Ferri, E.F., Fern<strong>an</strong>dez-Garayzabal,<br />

J.F. <strong>an</strong>d Suarez, G. (1989b) Prelim<strong>in</strong>ary evidence that different doma<strong>in</strong>s are<br />

<strong>in</strong>volved <strong>in</strong> cytolytic activity <strong>an</strong>d receptor (cholesterol) b<strong>in</strong>d<strong>in</strong>g <strong>in</strong><br />

Listeriolys<strong>in</strong>-O, the Listeria monocytogenes thiol-activated tox<strong>in</strong>. FEMS<br />

Microbiology Letters, 65, (1-2), 95-99.<br />

Vazquez-Bol<strong>an</strong>d, J.A., Dom<strong>in</strong>guez, L., Bl<strong>an</strong>co, M., Rocourt, J., Fern<strong>an</strong>dez-Garayzabal,<br />

J.F., Gutierrez, C.B., Tascon, R.I. <strong>an</strong>d Rodriguezferri, E.F. (1992)<br />

Epidemiological <strong>in</strong>vestigation <strong>of</strong> a silage-associated epizootic <strong>of</strong> ov<strong>in</strong>e<br />

listeric encephalitis, us<strong>in</strong>g a new Listeria selective enumeration medium <strong>an</strong>d<br />

phage typ<strong>in</strong>g. Americ<strong>an</strong> Journal <strong>of</strong> Veter<strong>in</strong>ary Research, 53 (3), 368-371.<br />

Vazquez-Bol<strong>an</strong>d, J.A., Dom<strong>in</strong>guez, L., Fern<strong>an</strong>dez, J.F., Rodriguezferri, E.F., Briones,<br />

V., Bl<strong>an</strong>co, M. <strong>an</strong>d Suarez, G. (1990) Revision <strong>of</strong> the validity <strong>of</strong> CAMP tests<br />

for Listeria identification - Proposal <strong>of</strong> <strong>an</strong> alternative method for the<br />

determ<strong>in</strong>ation <strong>of</strong> hemolytic-activity by Listeria stra<strong>in</strong>s. Acta Microbiologica<br />

Hungarica, 37 (2), 201-206.<br />

Von Koenig, C.H.W. <strong>an</strong>d F<strong>in</strong>ger, H. (1982) Failure <strong>of</strong> killed Listeria monocytogenes<br />

vacc<strong>in</strong>e to produce protective immunity. Nature, 297 (5863) 233-234.<br />

Walker, J.K. <strong>an</strong>d Morg<strong>an</strong>, J.H. (1993) Ov<strong>in</strong>e ophtalmitis associated with Listeria<br />

monocytogenes. The Veter<strong>in</strong>ary Record, 132, 636.<br />

253


Walker, J.K., Morg<strong>an</strong>, J.H., McLauchl<strong>in</strong>, J., Gr<strong>an</strong>t, K.A. <strong>an</strong>d Shallcross, J.A. (1994)<br />

Listeria <strong>in</strong>nocua isolated from a case <strong>of</strong> ov<strong>in</strong>e men<strong>in</strong>goencephalitis.<br />

Veter<strong>in</strong>ary Microbiology; 42, 245-253.<br />

Watk<strong>in</strong>s, J. <strong>an</strong>d Sleath, K.P. (1981) Isolation <strong>an</strong>d enumeration <strong>of</strong> Listeria<br />

monocytogenes from sewage, sewage sludge <strong>an</strong>d river water. Journal <strong>of</strong><br />

Applied Bacteriology; 50, 1-9.<br />

Watson, C.L. (1989) Bov<strong>in</strong>e iritis (letter). The Veter<strong>in</strong>ary Record, 124, 411.<br />

Weis J. (1975) Incidence <strong>of</strong> Listeria monocytogenes on pl<strong>an</strong>ts <strong>an</strong>d <strong>in</strong> soil. In Woodb<strong>in</strong>e,<br />

M. Proceed<strong>in</strong>g <strong>of</strong> the 6th International Symposium on the Problems <strong>of</strong><br />

Listeriosis, Nott<strong>in</strong>gham, Leicester University Press, Engl<strong>an</strong>d. pp 61-65.<br />

Weis, J. <strong>an</strong>d Seeliger, H.P.R. (1975) Incidence <strong>of</strong> Listeria monocytogenes <strong>in</strong> nature.<br />

Applied Microbiology, 30 (1) 29-32.<br />

Welchm<strong>an</strong>, D.D., Hooton, J.K. <strong>an</strong>d Low, J.C. (1997) Ocular disease associated with<br />

silage feed<strong>in</strong>g <strong>an</strong>d Listeria monocytogenes <strong>in</strong> fallow deer. The Veter<strong>in</strong>ary<br />

Record, 140 (26), 684-685.<br />

Welshimer, H.J. (1968) Isolation <strong>of</strong> Listeria monocytogenes from vegetation. Journal <strong>of</strong><br />

Bacteriology, 95 (2), 300-303.<br />

Welshimer, H.J. (1975) Listeria <strong>in</strong> nature. In Woodb<strong>in</strong>e, M. Proceed<strong>in</strong>g <strong>of</strong> the 6th<br />

International Symposium on the Problems <strong>of</strong> Listeriosis, Nott<strong>in</strong>gham,<br />

Leicester University Press, Engl<strong>an</strong>d. pp. 59-60.<br />

Welshimer, H.J. <strong>an</strong>d Donker-Voet, J. (1971) Listeria monocytogenes <strong>in</strong> nature. Applied<br />

Microbiology, 21 (3), 516-519.<br />

Wernars, K., Boerl<strong>in</strong>, P., Audurier, A., Russell, E.G., Curtis, G.D.W., Herm<strong>an</strong>, L. <strong>an</strong>d<br />

V<strong>an</strong>dermeemarquet, N. (1996) The WHO multicenter <strong>study</strong> on Listeria<br />

monocytogenes subtyp<strong>in</strong>g -R<strong>an</strong>dom amplification <strong>of</strong> polymorphic DNA<br />

(RAPD). International Journal <strong>of</strong> Food Microbiology, 32 (3), .325-341.<br />

254


Wiedm<strong>an</strong>n, M., Arvik, T., Bruce, J.L., Neubauer, J., delPiero, F., Smith, M.C., Hurley,<br />

J., Mohammed, H.O. <strong>an</strong>d Batt, C.A. (1997) Investigation <strong>of</strong> a <strong>listeriosis</strong><br />

epizootic <strong>in</strong> sheep <strong>in</strong> New York state. Americ<strong>an</strong> Journal <strong>of</strong> Veter<strong>in</strong>ary<br />

Research, 58 (7), 733-737.<br />

Wiedm<strong>an</strong>n, M., Bruce, J.L., Knorr, R., Bodis, M., Cole, E.M., Mcdowell, C.I.,<br />

McDonough, P.L. <strong>an</strong>d Batt, C.A. (1996) Ribotype diversity <strong>of</strong> Listeria<br />

monocytogenes stra<strong>in</strong>s associated with outbreaks <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> rum<strong>in</strong><strong>an</strong>ts:<br />

Journal <strong>of</strong> Cl<strong>in</strong>ical Microbiology, 34 (5), 1086-1090.<br />

Wiedm<strong>an</strong>n, M., Czajka, J., Bsat, N., Bodis, M., Smith, M.C., Divers, T.J. <strong>an</strong>d Batt, C.A.<br />

(1994) Diagnosis <strong>an</strong>d epidemiologic association <strong>of</strong> Listeria monocytogenes<br />

stra<strong>in</strong>s <strong>in</strong> 2 outbreaks <strong>of</strong> listerial encephalitis <strong>in</strong> small rum<strong>in</strong><strong>an</strong>ts. Journal <strong>of</strong><br />

Cl<strong>in</strong>ical Microbiology, 32 (4), 991-996.<br />

Wilesmith, J.W. <strong>an</strong>d Gitter, M. (1986) Epidemiology <strong>of</strong> ov<strong>in</strong>e <strong>listeriosis</strong> <strong>in</strong> Great<br />

Brita<strong>in</strong>. The Veter<strong>in</strong>ary Record; 119, 467-470.<br />

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. <strong>an</strong>d T<strong>in</strong>gey, S.V. (1990)<br />

DNA polymorphisms amplified by arbitrary primers are useful as genetic-<br />

markers. Nucleic Acids Research, 18 (22), 6531-6535.<br />

Woolford, M.K. (1990) A review: The detrimental effects <strong>of</strong> air on silage. Journal <strong>of</strong><br />

Applied Bacteriology, 68, 101-116.<br />

Wray, C. (1975) Survival <strong>an</strong>d spread <strong>of</strong> pathogenic bacteria <strong>of</strong> veter<strong>in</strong>ary import<strong>an</strong>ce<br />

with<strong>in</strong> the environment. The Veter<strong>in</strong>ary Bullet<strong>in</strong>, 45 (8), 543-550.<br />

255


APPENDIX 3<br />

PREPARATION OF BACTERIOLOGICAL MEDIUM:


LSEB (Listeria Selective Enrichment Broth):<br />

Listeria enrichment broth base (Oxoid, code:CM862) 18g<br />

Sterile Distilled Water<br />

500ml<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Cool to 50 0 C<br />

Dissolve a vial <strong>of</strong> Listeria selective enrichment supplement (Oxoid, code:SR141E) <strong>in</strong><br />

2ml <strong>of</strong> eth<strong>an</strong>ol or distilled water <strong>an</strong>d add to 500ml <strong>of</strong> LEAB<br />

Dispense <strong>in</strong>to 30ml sterile universal conta<strong>in</strong>ers<br />

LSA (Listeria Selective Agar, Oxford formulation):<br />

Listeria agar base (Oxoid, code:CM856) 28g<br />

Sterile Distilled Water<br />

500ml<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Cool to 50 0 C<br />

Dissolve a vial <strong>of</strong> Listeria selective supplement (oxford formulation) (Oxoid,<br />

code:SR140E) <strong>in</strong> 2ml <strong>of</strong> eth<strong>an</strong>ol or distilled water <strong>an</strong>d add to 500ml <strong>of</strong> LAB.<br />

Pour 20ml <strong>in</strong>to sterile petri dishes<br />

Sugar Plates (SP):<br />

Solution A:<br />

Nutrient Agar Base (Oxoid, code: CM3) 12.6g<br />

Sterile Distilled Water 450ml<br />

Phenol red (Sigma, code:P-4633) 0.2% w/w<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Cool to 50 0 C<br />

Solution B:<br />

Sugars* 5g (2%v/w)<br />

Sterile Distilled Water 50ml<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

(except for Xylose which should be filter sterilised)


Cool to 50 0 C<br />

Mix Solution A with Solution B <strong>an</strong>d then pour 20ml <strong>in</strong>to petri dishes.<br />

* Sugars used <strong>in</strong> fermentation test are Glucose (BDH, code: 10117), Rhamnose (BDH,<br />

code: 38057), M<strong>an</strong>nitol (BDH, code: 10330) <strong>an</strong>d Xylose (BDH, code:103723A)<br />

Blood Agar (5%):<br />

Sheep Blood Agar Base (Oxoid, code:CM854) 20g<br />

Sterile Distilled Water 500ml<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Cool to 50 0 C<br />

Add 5% sheep blood or horse blood <strong>an</strong>d pour 20ml <strong>in</strong>to petri dishes.<br />

Bra<strong>in</strong> Heart Infusion Broth (BHIB):<br />

Bra<strong>in</strong> Heart Infusion Broth Base (Oxoid, code:CM225) 37g<br />

Sterile Distilled Water 1000ml<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Cool to 50 0 C<br />

Peptone Water (PW):<br />

Peptone Water (Oxoid, code:CM9) 15g<br />

Sterile Distilled Water 1000ml<br />

Dispense <strong>in</strong> to 5ml test tubes.<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Store at 4 0 C until use<br />

Liquid growth medium for RAPD:<br />

Listeria enrichment broth base (Oxoid, code:CM862) 18g<br />

Sterile Distilled Water 500ml<br />

Dispense 5 ml <strong>in</strong>to 5ml test tubes<br />

Autoclave at 115atm for 20 m<strong>in</strong>utes<br />

Store at 4 0 C until use.


APPENDIX 4<br />

PREPARATION OF SOLUTION FOR SEROLOGY:


Phosphate buffered sal<strong>in</strong>e (PBS; 10x concentrate), pH<br />

NaCl 80g<br />

KCl 2g<br />

Na2HPO4 11.5g<br />

KH2PO4 2g<br />

Sterile Distilled Water 1000ml<br />

PBS Tween 20<br />

PBS 10x concentrate 500ml<br />

Tween 20 2.5ml<br />

Sterile Distilled Water 5000ml<br />

Coat<strong>in</strong>g Buffer (pH 9.8):<br />

Na2C03 1.59g<br />

NaHC03 2.93g<br />

Sterile Distilled Water 1000ml


APPENDIX 1<br />

THE QUESTIONNAIRE, COVERING LETTERS AND REMINDERS USED IN<br />

THE CROSS-SECTIONAL STUDY


APPENDIX 2<br />

THE OVERALL RESULTS OF UNIVARIATE ANALYSIS


Abbreviations:<br />

n<br />

number <strong>of</strong> <strong>an</strong>imals,<br />

R<br />

reference category,<br />

X X 2 for trend,<br />

Outcome variable be<strong>in</strong>g “overall” cases<br />

Y number <strong>of</strong> farmers report<strong>in</strong>g cases,<br />

N number <strong>of</strong> farm not report<strong>in</strong>g cases,<br />

OR, (95% CL) Odds Ratio with 95% confidence limit,<br />

*statistically signific<strong>an</strong>t,<br />

M medi<strong>an</strong>,<br />

IR, <strong>in</strong>terquartale r<strong>an</strong>ge,<br />

NF number <strong>of</strong> farms.<br />

Herd size: Milk<strong>in</strong>g cows<br />

June 1995 July 1994<br />

Herd Size n Y N OR p Y N OR p<br />

100 31 141 3.26


Grass silage<br />

Y N OR (95% CL) p Value<br />

fed 93 761 ? 0.05*<br />

source<br />

home made 89 750 0.3 (0.1-1.3) 0.1<br />

purchased 9 27 2.9 (1.2-6.8) 0.01*<br />

outdoor feed<strong>in</strong>g<br />

fed 77 567 1.7 (0.9-3.0) 0.1<br />

ad libitum 9 50 1.4 (0.6-3.1) 0.5<br />

on the ground 1 18 0.4 (0.0-2.9) 0.5<br />

<strong>in</strong> complete diet 9 71 0.9 (0.4-2.0) 0.9<br />

<strong>in</strong> r<strong>in</strong>g feeders 55 352 1.5 (0.9-2.7) 0.14<br />

<strong>in</strong> troughs 16 157 0.7 (0.4-1.3) 0.25<br />

<strong>in</strong> hay racks NA<br />

<strong>of</strong>f the field 2 23 0.6 (0.1-2.9) 0.7<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed 92 750 1.4 (0.2-28.7) 0.8<br />

ad libitum 17 107 1.4 (0.7-2.5) 0.35<br />

at the clamp face 23 158 1.3 (7-2.1) 0.46<br />

on the floor 2 67 0.2 (0.04-0.97) 0.04*<br />

<strong>in</strong> complete diet 12 89 1.1 (0.6-2.2) 0.8<br />

<strong>in</strong> r<strong>in</strong>g feeders 53 310 1.9 (1.2-3.1) 0.004*<br />

<strong>in</strong> troughs 27 242 0.9 (0.5-1.4) 0.6<br />

<strong>in</strong> hay racks NA<br />

<strong>of</strong>f the field NA<br />

duration <strong>of</strong> feed<strong>in</strong>g<br />

6 months 52 288 1.78<br />

All year 14 70 1.97 0.03*<br />

Grass silage


Month <strong>of</strong> mak<strong>in</strong>g<br />

Y N OR (95% CL) p Value<br />

May <strong>an</strong>d before 59 411 1.00<br />

June 23 250 0.64<br />

July <strong>an</strong>d after 6 64 0.63 0.08 X<br />

number <strong>of</strong> cuts<br />

type <strong>of</strong> harvester<br />

1 R 13 145 1.00<br />

2 43 382 1.26<br />

3 27 180 1.67<br />

4 2 9 2.48 0.09 X<br />

forage harvester 58 468 1.0 (0.7-1.7) 0.9<br />

discs <strong>an</strong>d drums 33 287 0.9 (0.6-1.5) 0.75<br />

mower conditioner 68 437 2.0 (1.2-3.4) 0.005*<br />

comb<strong>in</strong>e harvester 2 3 5.6 (0.6-42) 0.16<br />

wilt<strong>in</strong>g<br />

wilted 89 749 0.40 (0.1-1.5) 0.22<br />

additive use<br />

days 0 R 4 12 1.00<br />

1 61 487 0.38<br />

2 23 181 0.38<br />

3 5 78 0.19 0.12 X<br />

used 34 267 1.1 (0.7-1.7) 0.8<br />

<strong>in</strong>ocul<strong>an</strong>t 10 73 0.9 (0.4-1.99) 0.9<br />

<strong>in</strong>ocul<strong>an</strong>t <strong>an</strong>d<br />

enzyme<br />

16 84 1.7 (0.9-3.1) 0.1<br />

enzyme 0 14 0.0 (0.0-3.4) 0.4<br />

acid <strong>an</strong>d salt 5 73 0.5 (0.2-1.4) 0.25<br />

comb<strong>in</strong>ations 3 23 1.07 (0.3-3.8) 0.8<br />

Grass silage


storage<br />

Y N OR (95% CL) p Value<br />

clamp 76 585 1.3 (0.8-2.4) 0.35<br />

silo 2 15 1.1 (0.0-5.2) 0.7<br />

big bale 71 453 2.2 (1.3-3.8) 0.002*<br />

storage <strong>of</strong> big bale<br />

<strong>in</strong> covered barn 2 11 1.2 (0.0-5.8) 0.8<br />

outside covered 11 83 0.8 (0.4-1.7) 0.68<br />

outside uncovered 57 332 1.5 (0.8-2.9) 0.26<br />

floor <strong>of</strong> stor<strong>in</strong>g area<br />

compacted soil 1 9 0.9 (0.0-6.8) 0.7<br />

concrete 69 534 0.9 (0.4-2.4) 0.9<br />

clamp use<br />

separate clamp 38 252 1.4 (0.9-2.2) 0.16<br />

seal<strong>in</strong>g clamp 33 312 0.8 (0.5-1.3) 0.36<br />

Forage <strong>an</strong>alysis<br />

Grass silage: Clamp 1<br />

NF Medi<strong>an</strong> IR p Value<br />

pH no cases 178 4.1 3.9-4.4<br />

cases 23 4.0 3.9-4.2 0.08<br />

DM no cases 183 26.7 23.8-32.3<br />

cases 23 26.0 22.9-29.9 0.4<br />

Ash no cases 138 8.0 6.8-9.1<br />

cases 19 7.9 7.1-8.9 0.8<br />

ME no cases 181 11.0 10.5-11.4<br />

Grass silage: Clamp 2<br />

cases 23 10.8 10.4-11.0 0.2<br />

NF Medi<strong>an</strong> IR p Value


pH no cases 82 4.1 3.9-4.3<br />

cases 11 4.1 3.9-4.5 0.8<br />

DM no cases 82 28.6 24.6-31.9<br />

cases 11 30.5 21.9-34.1 0.6<br />

Ash no cases 69 7.9 6.9-8.8<br />

cases 11 8.0 7.5-8.4 0.6<br />

ME no cases 80 10.9 10.6-11.3<br />

Grass silage: Clamp 3<br />

cases 11 10.6 10.3-11.0 0.2<br />

NF Medi<strong>an</strong> IR p Value<br />

pH no cases 19 4.1 3.9-4.4<br />

cases 4 4.3 4.1-4.5 0.4<br />

DM no cases 20 30.2 24.4-34.8<br />

cases 4 26.5 23.9-28.9 0.3<br />

Ash no cases 17 8.0 7.3-8.9<br />

cases 4 8.4 7.4-10.0 0.7<br />

ME no cases 20 11.0 10.8-11.2<br />

Grass silage: Big bale<br />

cases 4 10.5 10.2-10.5 0.003*<br />

NF Medi<strong>an</strong> IR p Value<br />

pH no cases 16 4.9 4.3-5.3<br />

cases 2 4.6 4.2-4.9 0.5<br />

DM no cases 18 34.2 30.0-45.0<br />

cases 2 31.2 27.5-34.9 0.4<br />

Ash no cases 12 7.2 3.9-8.5<br />

cases 2 8.0 6.5-9.5 0.5<br />

ME no cases 18 10.5 10.1-10.8<br />

Maize silage<br />

cases 2 10.1 9.3-10.9 0.9<br />

Y N OR (95% CL) p Value<br />

fed 39 185 2.4 (1.5-3.9)


source<br />

home made 38 182 0.6 (0.1-16.3) 0.8<br />

purchased 0 6 0.0 (0.0-4.6) 0.5<br />

outdoor feed<strong>in</strong>g<br />

fed 24 104 1.3 (0.6-2.7) 0.6<br />

ad libitum 1 7 0.6 (0.0-5.4) 1.0<br />

on the ground 0 1 0.0 (0.0-79.3) 0.3<br />

<strong>in</strong> complete diet 7 37 0.8 (0.3-2.2) 0.7<br />

<strong>in</strong> r<strong>in</strong>g feeders 16 32 4.5 (1.6-13.0) 0.002*<br />

<strong>in</strong> troughs 5 39 0.4 (0.1-1.4) 0.2<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed 38 175 0.7 (0.2-3.4) 0.8<br />

ad libitum 5 11 2.4 (0.7-8.3) 0.2<br />

at the clamp face 2 11 0.9 (0.0-4.6) 0.8<br />

on the floor 0 14 0.0 (0.0-1.8) 0.16<br />

<strong>in</strong> complete diet 10 51 0.9 (0.4-2.2) 0.9<br />

<strong>in</strong> r<strong>in</strong>g feeders 23 46 4.9 (2.2-11.5)


discs <strong>an</strong>d drums 2 2 4.9 (0.5-51.9) 0.28<br />

mower conditioner 0 4 0.0 (0.0-7.6) 0.8<br />

comb<strong>in</strong>e harvester 0 2 0.0 (0.0-20.2) 0.8<br />

additive use<br />

used 20 99 0.97 (0.5-2.1) 0.9<br />

<strong>in</strong>ocul<strong>an</strong>t 9 35 1.3 (0.5-3.2) 0.7<br />

<strong>in</strong>ocul<strong>an</strong>t <strong>an</strong>d<br />

enzyme<br />

5 38 0.6 (0.2-1.7) 0.3<br />

enzyme 3 20 0.7 (0.2-2.6) 0.7<br />

acid <strong>an</strong>d salt 2 3 3.3 (0.2-29.5) 0.5<br />

comb<strong>in</strong>ations 1 3 1.6 (0.0-20.5) 0.8<br />

storage<br />

clamp 38 168 3.85 (0.5-81.2) 0.28<br />

silo 1 2 2.4 (0.0-35.7) 0.9<br />

big bale NA<br />

floor <strong>of</strong> stor<strong>in</strong>g area<br />

compacted soil 2 9 0.98 (0.0-5.3) 0.7<br />

concrete 33 145 1.1 (0.3-3.4) 0.8<br />

Forage <strong>an</strong>alysis: Maize silage<br />

NF Medi<strong>an</strong> IR p Value<br />

pH no cases 36 3.9 3.8-5.5<br />

cases 2 4.7 3.5-5.8 0.9<br />

DM no cases 38 30.8 27.1-34.4<br />

cases 2 26.9 23.5-30.2 0.3<br />

Ash no cases 25 5.0 3.8-6.2<br />

cases 2 3.8 3.5-4.1 0.2<br />

ME no cases 36 11.0 10.7-11.3<br />

Hay<br />

cases 2 10.8 10.7-10.9 0.5<br />

Y N OR (95% CL) p Value<br />

fed 40 391 0.8 (0.5-1.3) 0.9


source<br />

home made 34 345 0.8 (0.3-2.1) 0.7<br />

purchased 7 60 1.2 (0.5-2.95) 0.8<br />

outdoor feed<strong>in</strong>g<br />

fed 26 223 1.3 (0.6-2.7) 0.6<br />

ad libitum 0 9 0.0 (0.0-5.5) 0.6<br />

on the ground 4 31 1.2 (0.3-4.0) 0.9<br />

<strong>in</strong> complete diet 2 6 3.2 (0.4-19.1) 0.4<br />

<strong>in</strong> r<strong>in</strong>g feeders 19 111 2.98 (1.1-8.2) 0.02*<br />

<strong>in</strong> troughs 3 32 0.8 (0.2-3.1) 0.9<br />

<strong>in</strong> hay racks 4 65 0.5 (0.1-1.5) 0.25<br />

<strong>of</strong>f the field 1 13 0.7 (0.0-5.4) 0.9<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed 33 336 0.8 (0.3-2.0) 0.7<br />

ad libitum 0 7 0.0 (0.0-8.4) 0.8<br />

on the floor 0 52 0.0 (0.0-0.85) 0.03*<br />

<strong>in</strong> complete diet 1 10 1.0 (0.0-8.3) 0.6<br />

<strong>in</strong> r<strong>in</strong>g feeders 22 109 4.2 (1.8-9.6)


July 9 105 0.86<br />

after July 10 72 1.39 0.5 X<br />

number <strong>of</strong> cuts<br />

type <strong>of</strong> harvester<br />

1 R 36 292 1.00<br />

2 3 7 3.48<br />

3 0 3 0.00 0.4 X<br />

discs <strong>an</strong>d drums 19 223 1.0 (0.5-2.3) 0.3<br />

mower conditioner 14 117 1.3 (0.6-2.6) 0.6<br />

wilt<strong>in</strong>g<br />

wilted 34 335 0.9 (0.3-2.5) 0.9<br />

storage<br />

days 0 R 6 52 1.00<br />

1 0 3 0.00<br />

2 1 7 1.24<br />

3 33 325 0.88 0.8 X<br />

<strong>in</strong> covered barn 35 365 0.5 (0.2-1.6) 0.3<br />

outside covered 3 5 6.3 (1.1-32.1) 0.03*<br />

outside uncovered 2 7 2.9 (0.0-16.2) 0.4<br />

Straw<br />

Y N OR (95% CL) p Value<br />

fed 44 378 1.0 (0.6-1.6) 0.9<br />

type


source<br />

barley 27 251 0.93(0.6-1.6) 0.8<br />

barley <strong>an</strong>d wheat 6 34 1.6 (0.6-4.6) 0.5<br />

wheat 5 40 1.2 (0.4-3.5) 0.9<br />

comb<strong>in</strong>ations 6 53 1.1(0.4-2.9) 0.9<br />

home made 18 156 0.99 (0.5-1.95) 0.9<br />

purchased 26 235 0.9 (0.4-1.8)<br />

outdoor feed<strong>in</strong>g<br />

fed 25 220 0.9 (0.5-1.9) 0.9<br />

ad libitum 4 17 2.3 (0.6-8.2) 0.3<br />

on the ground 1 19 0.4 (0.0-3.4) 0.7<br />

<strong>in</strong> complete diet 2 25 0.7 (0.1-3.3) 0.8<br />

<strong>in</strong> r<strong>in</strong>g feeders 20 114 3.7 (1.3-11.9) 0.01*<br />

<strong>in</strong> troughs 1 40 0.2 (0.0-1.4) 0.1<br />

<strong>in</strong> hay racks 3 28 0.9 (0.2-3.6) 0.8<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed 28 31 0.4 (0.2-0.8) 0.006<br />

ad libitum 2 10 1.8 (0.0-9.9) 0.7<br />

on the floor 4 67 0.7 (0.2-2.4) 0.8<br />

<strong>in</strong> complete diet 2 31 0.8 (0.3-2.4) 0.8<br />

<strong>in</strong> r<strong>in</strong>g feeders 10 95 1.3 (0.5-3.0) 0.8<br />

<strong>in</strong> troughs 4 66 0.6 (0.2-1.99) 0.5<br />

<strong>in</strong> hay racks 6 48 1.5 (0.5-4.2) 0.5<br />

Straw<br />

duration <strong>of</strong> feed<strong>in</strong>g<br />

Y N OR (95% CL) p Value<br />


6 months 5 99 0.32<br />

All year 5 35 0.89 0.13 X<br />

Month <strong>of</strong> mak<strong>in</strong>g<br />

July <strong>an</strong>d before 6 58 1.00<br />

August 8 116 0.67<br />

September 3 26 1.12 0.5 X<br />

type <strong>of</strong> harvester<br />

comb<strong>in</strong>e harvester 1.2 (0.6-2.3)<br />

dry<strong>in</strong>g<br />

dried 21 178 1.02 (0.52-2.0) 0.9<br />

storage<br />

days 0 R 23 199 1.00<br />

1 12 78 1.33<br />

2 6 49 1.06<br />

3 3 51 0.51 0.5 X<br />

<strong>in</strong> covered barn 30 295 0.6 (0.3-1.3) 0.2<br />

outside covered 6 21 2.68 (0.9-7.67) 0.08<br />

outside uncovered 3 29 0.9 (0.2-3.25) 0.9<br />

Root crops<br />

Y N OR (95% CL) p Value<br />

fed 16 116 1.2 (0.7-2.3) 0.6<br />

type<br />

beet type 5 49 0.5 (0.1-1.9) 0.4


source<br />

potatoes 2 11 1.4 (0.-7.7) 0.9<br />

brassica type 2 31 0.4 (0.1-1.9) 0.4<br />

kale 3 10 2.5 (0.5-11.6) 0.4<br />

comb<strong>in</strong>ations 4 15 2.5 (0.6-10) 0.3<br />

home made 14 74 3.97 (0.8-27.0) 0.1<br />

purchased 2 32 0.4 (0.1-1.9) 0.3<br />

outdoor feed<strong>in</strong>g<br />

fed 13 64 3.5 (0.9-16.7) 0.08<br />

ad libitum 2 1 11.5 (0.7-358.3) 0.1<br />

on the ground 1 11 0.4 (0.0-3.6) 0.7<br />

<strong>in</strong> complete diet 1 5 0.98 (0.0-10.5) 0.61<br />

<strong>in</strong> r<strong>in</strong>g feeders 1 5 0.98 (0.0-10.5) 0.6<br />

<strong>in</strong> troughs 3 14 1.1 (0.2-5.2) 0.8<br />

<strong>of</strong>f the field 8 28 2.1 (0.5-8.4) 0.4<br />

<strong>in</strong>door feed<strong>in</strong>g<br />

fed 7 64 0.6 (0.2-2.0) 0.5<br />

on the floor 0 15 0.0 (0.0-2.7) 0.3<br />

<strong>in</strong> complete diet 1 8 1.2 (0.0-12.8) 0.6<br />

<strong>in</strong> r<strong>in</strong>g feeders 1 6 1.6 (0.0-19) 0.8<br />

<strong>in</strong> troughs 5 32 2.5 (0.4-20.6) 0.5<br />

Root crops<br />

duration <strong>of</strong> feed<strong>in</strong>g<br />

Y N OR (95% CL) p Value<br />

6 months 2 121 1.27


All year 1 3 2.53 0.3 X<br />

storage<br />

clamp 5 27 1.5 (0.4-5.3) 0.7<br />

silo 0 2 0.0 (0.0-32.4) 0.6<br />

Hous<strong>in</strong>g<br />

Y N OR (95% CL) p Value<br />

housed 91 775 1.5 (0.3-9.6) 0.8<br />

duration <strong>of</strong> hous<strong>in</strong>g<br />

not housed 2 26 1.00<br />

6 months 23 269 1.11<br />

all year 1 9 1.44 0.26 X<br />

Bedd<strong>in</strong>g: Sawdust<br />

Y N OR (95% CL) p Value<br />

used 12 146 0.6 (0.3-1.3) 0.2<br />

source<br />

home made 0 1 0.0 (0.0-234.8) 0.1<br />

purchased 12 135 ? 0.6<br />

storage<br />

<strong>in</strong> a covered barn 11 121 2.5 (0.3-53.9) 0.6<br />

outside covered 0 10 0.0 (0.0-7.1) 0.75<br />

Bedd<strong>in</strong>g: Straw<br />

Y N OR (95% CL) p Value<br />

used 85 668 2.2 (0.9-5.7) 0.09<br />

source<br />

home made 34 257 1.1 (0.7-1.7) 0.9<br />

purchased 56 472 0.8 (0.5-1.3) 0.4<br />

storage


<strong>in</strong> a covered barn 73 595 0.8 (0.4-1.5) 0.5<br />

outside covered 6 55 0.9 (0.3-2.2) 0.9<br />

outside uncovered 13 85 1.2 (0.6-2.4) 0.6<br />

month <strong>of</strong> mak<strong>in</strong>g<br />

dry<strong>in</strong>g<br />

July 8 63 1.00<br />

August 28 193 1.14<br />

September 3 41 0.58 0.5 X<br />

dried 34 264 1.02 (0.62-1.6) 0.9<br />

days 0 R 51 396 1.00<br />

1 7 73 0.74<br />

2 11 82 1.04<br />

3 16 109 1.14 0.7 X<br />

big bale straw 26 163 1.4 (0.8-2.3) 0.3<br />

type <strong>of</strong> straw<br />

wheat 18 110 1.34 (0.7-2.5) 0.4<br />

barley 10 106 0.77 (0.35-1.66) 0.6<br />

comb<strong>in</strong>ations 12 85 1.2 (0.57-2.47) 0.7<br />

Type <strong>of</strong> hous<strong>in</strong>g: Cubicles<br />

Y N OR (95% CL) p Value<br />

used 77 608 1.5 (0.8-2.9) 0.2<br />

type <strong>of</strong> floor<br />

earth 13 88 1.2 (0.6-2.4) 0.7<br />

hard core 6 62 0.7 (0.3-1.9) 0.6<br />

concrete 55 461 0.8 (0.5-1.4) 0.5


slatted 0 21 0.0 (0.0-1.9) 0.2<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust 12 122 0.7 (0.4-1.5) 0.4<br />

straw 70 484 2.6 (1.1-6.3) 0.02*<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g fresh bedd<strong>in</strong>g 77 584 ? 0.15<br />

remov<strong>in</strong>g dirty bedd<strong>in</strong>g 70 521 1.9 (0.8-5.1) 0.2<br />

cle<strong>an</strong><strong>in</strong>g out 15 165 0.7 (0.3-1.2) 0.2<br />

Type <strong>of</strong> hous<strong>in</strong>g: Loose yards<br />

Y N OR (95% CL) p Value<br />

used 31 221 1.3 (0.8-2.1) 0.3<br />

type <strong>of</strong> floor<br />

earth 5 20 1.9 (0.6-6.2) 0.36<br />

hard core 5 42 0.8 (0.3-2.5) 0.9<br />

concrete 21 162 0.8 (0.3-1.9) 0.66<br />

type <strong>of</strong> bedd<strong>in</strong>g<br />

sawdust 0 7 0.0 (0.0-5.8) 0.8<br />

straw 31 193 ? 0.07<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g fresh bedd<strong>in</strong>g 30 199 3.3 (0.4-69.6) 0.4<br />

remov<strong>in</strong>g dirty bedd<strong>in</strong>g 5 60 0.7 (0.2-1.8) 0.6<br />

cle<strong>an</strong><strong>in</strong>g out 20 161 0.7 (0.3-1.6) 0.45<br />

Type <strong>of</strong> hous<strong>in</strong>g: Others<br />

Y N OR (95% CL) p Value<br />

used 1 65 0.12 (0.0-0.83) 0.02*<br />

type <strong>of</strong> floor<br />

earth 0 3 0.0 (0.0-527) 0.02*<br />

hard core 0 1 0.0 (0.0-7248)


sawdust 0 16 0.0 (0.0-2.73) 0.3<br />

straw 0 56 0.0 (0.0-0.7) 0.01*<br />

use <strong>of</strong> bedd<strong>in</strong>g<br />

add<strong>in</strong>g fresh bedd<strong>in</strong>g 0 57 0.0 (0.0-2.8) 0.3<br />

remov<strong>in</strong>g dirty bedd<strong>in</strong>g 0 56 0.0 (0.0-3.2) 0.3<br />

cle<strong>an</strong><strong>in</strong>g out 0 37 0.0 (0.0-14.1) 0.9<br />

Dung disposal: Solid m<strong>an</strong>ure<br />

Y N OR (95% CL) p<br />

disposed 44 371 1.04 (0.7-1.6) 0.9<br />

storage<br />

not stored 4 14 2.6 (0.7-8.95) 0.2<br />

beneath the slats 3 2 13.5 (1.7-121.2) 0.003*<br />

composted 27 217 1.13 (0.6-2.3) 0.8<br />

<strong>in</strong> a slurry t<strong>an</strong>k 2 8 2.2 (0.0-11.7) 0.6<br />

<strong>in</strong> a lagoon 9 64 1.2 (0.5-2.9) 0.75<br />

Dung disposal: Slurry<br />

Y N OR (95% CL) p Value<br />

disposed<br />

storage<br />

71 521 1.73 (1.0-2.97) 0.03*<br />

not stored 13 84 1.2 (0.6-2.3) 0.75<br />

beneath the slats 3 53 0.4 (0.1-1.4) 0.16<br />

composted 1 8 0.92 (0.0-7.5) 0.66<br />

<strong>in</strong> a slurry t<strong>an</strong>k 26 191 1.0 (0.6-1.7) 0.9<br />

<strong>in</strong> a lagoon 27 196 1.0 (0.6-1.8) 0.9<br />

General m<strong>an</strong>agement<br />

pasture m<strong>an</strong>agement<br />

Y N OR (95% CL) p Value<br />

spread dung on the field 65 594 0.8 (0.5-1.3) 0.4<br />

graz<strong>in</strong>g beef <strong>cattle</strong> 17 194 0.7 (0.4-1.3) 0.25<br />

graz<strong>in</strong>g sheep 44 437 0.8 (0.5-1.2) 0.22<br />

Listeriosis <strong>in</strong> others<br />

beef <strong>cattle</strong> 11 3 32.4 (8.1-151.2)


Vacc<strong>in</strong>e<br />

Salmonellosis 2 19 0.9 (0.0-4.2) 0.9<br />

E. coli 2 11 1.6 (0.0-7.8) 0.9<br />

Leptospirosis 39 202 2.1 (1.3-3.4)


APPENDIX 5<br />

THE QUESTIONNAIRE AND THE EXPLANATION LETTER USED IN THE<br />

LONGITUDINAL STUDY


APPENDIX 6<br />

THE OVERALL RESULTS OF ELISA


Abbreviations:<br />

1 first blood sampl<strong>in</strong>g<br />

2 second blood sampl<strong>in</strong>g<br />

3 third blood sampl<strong>in</strong>g<br />

ODs optical densities (beneath the thick black l<strong>in</strong>e)<br />

B bl<strong>an</strong>k wells<br />

S st<strong>an</strong>dard (positive) control serum<br />

N negative control serum<br />

Farm A:<br />

Plate 1 Layout <strong>an</strong>d ODs<br />

B 1 1 1 2 1 3 2 1 2 2 2 3 1 3 2 S N B<br />

B 4 1 4 2 4 3 5 1 5 2 5 3 3 3 6 1 S N B<br />

B 7 7 2 7 3 8 8 2 8 3 6 2 6 3 S N B<br />

B 9 1 9 2 9 3 10 1 10 2 10 3 11 1 11 2 S N B<br />

B 12 1 12 2 12 3 13 1 13 2 13 3 11 3 14 1 S N B<br />

B 15 1 15 2 15 3 16 1 16 2 16 3 14 2 14 3 S N B<br />

B 17 1 17 2 17 3 18 1 18 2 18 3 19 1 19 2 S N B<br />

B 20 1 20 2 20 3 21 1 21 2 21 3 19 3 22 1 S N B<br />

0.124 1.035 1.001 1.290 1.210 1.489 1.156 0.954 1.057 0.743 0.168 0.142<br />

0.111 0.567 0.546 0.551 0.573 0.495 0.684 0.641 0.743 0.435 0.121 0.120<br />

0.108 0.546 0.535 0.723 0.685 0.607 0.643 0.591 0.663 0.425 0.107 0.119<br />

0.114 0.632 0.730 0.666 0.552 0.541 0.572 0.688 0.680 0.304 0.107 0.114<br />

0.105 0.696 0.774 0.761 0.602 0.609 0.459 0.649 0.615 0.240 0.099 0.119<br />

0.114 0.736 0.717 0.683 0.724 0.659 0.747 0.611 0.742 0.208 0.098 0.121<br />

0.111 0.846 0.859 0.551 0.647 0.748 0.788 0.773 0.838 0.188 0.101 0.122<br />

0.122 0.928 0.889 0.887 1.251 1.338 1.441 0.820 0.522 0.182 0.107 0.129<br />

Plate 2 Lay out <strong>an</strong>d ODs<br />

B 23 1 23 2 23 3 24 1 24 2 24 3 25 1 25 2 S N B<br />

B 26 1 26 2 26 3 27 1 27 2 27 3 25 3 28 1 S N B<br />

B 29 1 29 2 29 3 30 1 30 2 30 3 28 2 28 3 S N B<br />

B 31 1 31 2 31 3 32 1 32 2 32 3 33 1 33 2 S N B<br />

B 34 1 34 2 34 3 35 1 35 2 35 3 33 3 36 1 S N B<br />

B 37 1 37 2 37 3 38 1 38 2 38 3 36 2 36 3 S N B<br />

B 39 1 39 2 39 3 40 1 40 2 40 3 41 1 41 2 S N B<br />

B 42 1 42 2 42 3 43 1 43 2 43 3 41 3 44 1 S N B<br />

0.107 0.476 0.779 1.079 1.176 1.100 1.163 1.021 1.258 0.593 0.138 0.124<br />

0.215 0.491 0.692 0.650 0.916 0.972 0.773 0.897 0.751 0.560 0.121 0.117<br />

0.116 0.559 0.705 0.863 0.851 0.812 0.647 0.530 0.680 0.356 0.117 0.120<br />

0.106 0.635 0.643 0.752 0.685 0.670 0.725 0.640 0.684 0.406 0.112 0.119<br />

0.102 0.501 0.565 0.593 0.845 0.821 0.815 0.748 0.493 0.247 0.105 0.119<br />

0.090 0.561 0.729 0.740 0.860 0.686 1.017 0.728 0.705 0.226 0.105 0.126<br />

0.089 0.588 0.581 0.738 0.694 0.839 0.735 0.575 0.669 0.169 0.110 0.128<br />

0.101 0.594 0.759 0.775 0.769 0.915 0.881 0.841 0.578 0.155 0.106 0.125<br />

Plate 3 Layout <strong>an</strong>d ODs


B 45 1 45 2 45 3 46 1 46 2 46 3 47 1 47 2 S N B<br />

B 48 1 48 2 48 3 49 1 49 2 49 3 47 3 50 1 S N B<br />

B 51 1 51 2 51 3 52 1 52 2 52 3 50 2 50 3 S N B<br />

B 53 1 53 2 53 3 54 1 54 2 54 3 55 1 55 2 S N B<br />

B 56 1 56 2 56 3 57 1 57 2 57 3 55 3 58 1 S N B<br />

B 59 1 59 2 59 3 60 1 60 2 60 3 58 2 58 2 S N B<br />

B 61 1 61 2 61 3 62 1 62 2 62 3 63 1 63 2 S N B<br />

B 64 1 64 2 64 3 65 1 65 2 65 3 63 3 66 1 S N B<br />

0.126 0.773 0.904 0.973 1.072 1.125 1.056 0.982 0.789 0.438 0.145 0.218<br />

0.122 0.879 0.858 0.886 0.755 1.058 0.678 0.668 0.867 0.536 0.191 0.146<br />

0.126 0.774 0.684 0.876 0.790 0.713 0.598 0.687 1.027 0.446 0.126 0.149<br />

0.117 0.749 0.717 0.842 0.994 0.907 0.779 0.638 0.670 0.339 0.122 0.141<br />

0.119 0.795 0.544 0.691 0.872 0.986 0.952 0.864 0.839 0.262 0.115 0.141<br />

0.131 0.684 0.807 0.793 0.806 0.961 0.949 0.759 0.824 0.230 0.128 0.154<br />

0.120 0.944 0.816 0.858 0.538 0.925 0.801 0.807 0.653 0.207 0.118 0.167<br />

0.152 0.714 0.810 0.847 0.763 0.797 0.854 0.759 0.875 0.199 0.125 0.160<br />

Plate 4 Layout <strong>an</strong>d ODs<br />

B 67 1 67 2 67 3 68 1 68 2 68 3 69 1 69 2 S N B<br />

B 70 1 70 2 70 3 71 1 71 2 71 3 72 1 72 2 S N B<br />

B 73 1 73 2 73 3 74 1 74 2 74 3 75 2 75 3 S N B<br />

B 76 1 76 2 76 3 77 1 77 2 77 3 78 1 78 2 S N B<br />

B 79 1 79 2 79 3 80 1 80 2 80 3 81 1 81 2 S N B<br />

B 82 1 82 2 82 3 83 1 83 2 83 3 84 1 84 2 S N B<br />

B 85 1 85 2 85 3 86 1 86 2 86 3 87 1 88 1 S N B<br />

B 89 3 90 3 91 3 92 3 93 3 94 3 95 3 96 1 S N B<br />

0.127 0.757 0.459 1.010 0.928 0.821 0.860 0.967 0.868 0.588 0.145 0.110<br />

0.118 0.703 0.809 0.815 0.620 0.849 0.712 0.758 0.879 0.402 0.120 0.108<br />

0.124 0.586 0.609 0.512 0.762 0.833 0.792 0.584 0.705 0.323 0.124 0.111<br />

0.139 0.833 0.858 0.869 0.620 0.704 0.693 0.640 0.777 0.254 0.109 0.119<br />

0.141 0.651 0.659 0.773 0.708 0.421 0.741 0.676 0.704 0.242 0.110 0.115<br />

0.117 0.661 0.670 0.765 0.689 0.809 0.707 0.799 0.842 0.212 0.110 0.125<br />

0.123 0.512 0.687 0.682 0.600 0.702 0.608 0.849 0.791 0.178 0.106 0.133<br />

0.125 0.175 0.363 0.889 0.722 0.751 0.941 1.027 0.836 0.145 0.111 0.140<br />

Plate 5 Layout <strong>an</strong>d ODs<br />

B 97 1 98 1 99 1 100 1 101 1 102 1 103 1 104 1 S N B<br />

B 105 1 106 1 107 1 108 1 109 1 110 1 111 1 112 1 S N B


B 113 1 114 1 115 1 116 1 117 1 118 1 119 1 B S N B<br />

B B B B B B B B B S N B<br />

B B B B B B B B B S N B<br />

B B B B B B B B B S N B<br />

B B B B B B B B B S N B<br />

B B B B B B B B B S N B<br />

0.126 0.702 1.017 1.052 0.970 0.368 0.669 1.023 1.108 0.585 0.133 0.097<br />

0.116 1.092 1.063 1.012 0.431 0.540 0.789 0.953 1.128 0.665 0.132 0.108<br />

0.109 1.000 1.058 0.912 0.803 1.011 0.904 0.768 0.099 0.437 0.122 0.106<br />

0.120 0.113 0.117 0.108 0.105 0.112 0.103 0.098 0.110 0.559 0.120 0.103<br />

0.117 0.116 0.107 0.108 0.115 0.106 0.102 0.098 0.108 0.398 0.111 0.101<br />

0.122 0.119 0.117 0.117 0.112 0.119 0.124 0.101 0.109 0.299 0.099 0.098<br />

0.111 0.115 0.116 0.123 0.125 0.132 0.114 0.104 0.102 0.180 0.115 0.100<br />

0.119 0.118 0.126 0.129 0.131 0.139 0.125 0.106 0.117 0.149 0.118 0.104<br />

Farm B<br />

Plate 1 Layout <strong>an</strong>d ODs<br />

B 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 S N B<br />

B 4 1 4 2 4 3 5 1 5 2 5 3 6 1 6 2 S N B<br />

B 7 7 2 7 3 8 8 2 8 3 9 1 9 2 S N B<br />

B 10 1 10 2 10 3 11 1 11 2 11 3 12 1 12 2 S N B<br />

B 13 1 13 2 13 3 14 1 14 2 14 3 15 1 15 5 S N B<br />

B 16 1 16 2 16 3 17 1 17 2 17 3 18 1 18 2 S N B<br />

B 19 1 19 2 19 3 20 1 20 2 20 3 21 2 21 3 S N B<br />

B 22 1 22 2 22 3 23 1 23 2 23 3 24 2 24 3 S N B<br />

0.161 1.130 1.368 1.039 0.854 1.359 1.109 1.175 1.188 0.986 0.179 0.115<br />

0.134 1.215 1.389 0.464 1.045 1.271 1.408 1.134 1.126 0.724 0.150 0.119<br />

0.148 0.735 0.932 0.810 0.817 0.943 1.013 1.128 1.263 0.679 0.125 0.113<br />

0.133 1.303 1.300 1.130 1.180 1.189 1.182 1.030 0.999 0.377 0.118 0.119<br />

0.139 1.164 1.066 1.033 1.193 0.823 1.151 1.170 0.840 0.323 0.109 0.114<br />

0.166 1.260 1.038 0.643 0.504 0.671 0.662 1.082 1.074 0.234 0.106 0.114<br />

0.139 1.234 1.135 1.235 0.948 0.970 1.140 1.078 1.068 0.200 0.114 0.110<br />

0.159 1.139 0.994 1.319 1.121 1.172 1.343 1.286 1.156 0.136 0.103 0.114<br />

Plate 2 Layout <strong>an</strong>d ODs<br />

B 25 1 25 2 25 3 26 1 26 2 26 3 27 1 27 3 S N B<br />

B 28 1 28 2 28 3 29 1 29 2 29 3 30 2 30 3 S N B<br />

B 31 1 31 2 31 3 32 1 32 2 32 3 33 2 33 3 S N B<br />

B 34 1 34 2 34 3 35 1 35 2 35 3 36 2 36 3 S N B


B 37 1 37 2 37 3 38 1 38 2 38 3 39 2 39 3 S N B<br />

B 40 1 40 2 40 3 41 1 41 2 41 3 42 2 42 3 S N B<br />

B 43 1 43 2 43 3 44 1 44 2 44 3 45 1 45 3 S N B<br />

B 46 1 46 2 46 3 47 1 47 2 47 3 48 3 49 1 S N B<br />

0.179 1.526 0.648 0.589 0.699 1.396 1.173 1.132 1.357 0.872 0.192 0.136<br />

0.168 1.671 1.735 0.549 1.519 1.399 1.246 1.382 1.093 0.794 0.140 0.117<br />

0.173 1.556 1.305 0.965 1.670 1.266 1.031 1.274 1.310 0.580 0.135 0.121<br />

0.209 1.581 1.745 1.486 1.526 1.337 1.095 1.245 1.509 0.428 0.282 0.112<br />

0.171 1.573 1.285 1.662 1.504 0.900 1.227 1.108 1.159 0.411 0.119 0.119<br />

0.161 1.633 1.383 1.472 1.433 0.847 1.275 0.928 1.170 0.248 0.120 0.122<br />

0.213 1.686 1.637 1.623 1.394 1.411 1.567 1.448 1.322 0.201 0.120 0.126<br />

0.156 1.341 1.308 1.628 1.439 1.528 1.184 1.212 0.965 0.149 0.120 0.149<br />

Plate 3 layout <strong>an</strong>d ODs<br />

B 50 1 50 2 50 3 51 1 51 2 51 3 52 1 53 1 S N B<br />

B 54 1 54 2 54 3 55 1 55 2 55 3 56 1 57 1 S N B<br />

B 58 1 58 2 58 2 59 1 59 2 59 3 60 1 61 1 S N B<br />

B 62 1 62 2 62 3 63 1 63 2 63 3 64 1 65 1 S N B<br />

B 66 1 66 2 66 3 67 1 67 2 67 3 68 1 69 1 S N B<br />

B 70 1 70 2 70 3 71 1 71 2 71 3 72 1 73 1 S N B<br />

B 74 1 74 2 74 3 75 1 75 2 75 3 76 1 77 1 S N B<br />

B 78 1 78 2 78 3 79 1 79 2 79 3 80 1 81 1 S N B<br />

0.160 1.685 1.670 1.586 1.360 1.522 1.003 1.269 1.596 1.018 0.261 0.147<br />

0.151 1.515 1.319 1.265 1.375 1.397 1.136 1.495 1.140 0.766 0.169 0.148<br />

0.149 1.387 1.536 1.323 0.968 1.476 1.468 1.433 1.371 0.762 0.148 0.145<br />

0.149 1.551 1.541 1.452 1.352 1.431 1.086 1.214 1.484 0.449 0.161 0.152<br />

0.143 1.029 1.540 1.367 1.451 1.429 0.974 1.542 1.294 0.370 0.155 0.135<br />

0.146 1.265 1.314 1.322 1.440 1.340 1.286 1.490 1.244 0.219 0.146 0.139<br />

0.155 1.391 1.280 1.432 1.549 1.375 0.955 1.484 1.727 0.198 0.158 0.139<br />

0.155 1.670 1.594 1.691 1.530 1.535 1.528 1.612 1.339 0.962 0.137 0.131<br />

Plate 4 Layout <strong>an</strong>d ODs<br />

B 82 1 82 2 82 3 83 1 83 2 83 3 84 1 84 2 S N B<br />

B 85 1 85 2 85 3 86 1 86 2 86 3 84 3 B S N B<br />

B 87 1 87 2 87 3 88 1 88 2 88 3 89 1 90 3 S N B<br />

B 91 1 91 2 91 3 92 1 92 2 92 3 93 1 94 3 S N B<br />

B 95 1 95 2 96 3 97 1 97 2 97 3 98 1 99 3 S N B<br />

B 100 1 100 2 100 3 101 1 101 2 101 3 102 1 103 3 S N B


B 104 1 104 2 104 3 105 1 105 2 105 3 106 1 106 3 S N B<br />

B 107 1 107 2 107 3 108 1 108 2 108 3 109 3 110 3 S N B<br />

0.186 1.524 1.909 1.589 1.843 1.537 1.869 1.557 1.848 0.967 0.232 0.135<br />

0.194 1.413 1.511 1.515 1.763 1.592 1.548 1.079 0.132 0.917 0.250 0.144<br />

0.185 0.787 1.636 1.802 1.454 1.738 1.494 1.465 1.359 0.787 0.155 0.156<br />

0.191 1.726 1.458 1.861 1.420 1.306 1.537 1.547 1.631 0.391 0.141 0.134<br />

0.179 1.293 1.445 1.869 1.607 1.464 1.577 1.302 1.331 0.374 1.660 0.137<br />

0.177 1.401 1.388 1.857 1.683 1.431 1.405 1.451 1.578 0.294 0.163 0.145<br />

0.177 1.436 1.208 1.690 1.507 1.493 1.560 1.495 1.402 0.223 0.146 0.149<br />

0.172 0.649 0.673 1.412 1.453 1.194 1.635 1.393 1.520 0.199 0.140 0.151<br />

Farm C<br />

Plate 1 Layout <strong>an</strong>d ODs<br />

B 1 1 4 1 7 1 10 1 13 1 16 1 19 1 22 1 S N B<br />

B 1 2 4 2 7 2 10 2 13 2 16 2 19 2 22 2 S N B<br />

B 1 3 4 3 7 3 10 3 13 3 16 3 19 3 22 3 S N B<br />

B 2 1 5 1 8 1 11 1 14 1 17 1 20 1 23 1 S N B<br />

B 2 2 5 2 8 2 11 2 14 2 17 2 20 2 23 2 S N B<br />

B 2 3 5 3 8 3 11 3 14 3 17 3 20 3 23 3 S N B<br />

B 3 1 6 1 9 1 12 1 15 1 18 2 21 1 24 2 S N B<br />

B 3 2 6 2 9 2 12 2 15 3 18 3 21 2 24 3 S N B<br />

0.154 1.275 1.582 1.459 1.671 1.620 1.853 1.760 1.503 1.459 0.341 0.165<br />

0.142 1.173 1.323 1.686 1.748 1.817 1.953 2.009 1.585 0.919 0.249 0.165<br />

0.151 1.161 1.433 1.751 1.292 1.410 1.506 1.485 1.142 0.738 0.184 0.152<br />

0.139 1.414 1.440 1.440 1.610 1.428 1.502 1.684 1.680 0.571 0.164 0.164<br />

0.140 1.374 1.514 1.514 1.561 1.533 1.433 1.759 1.347 0.334 0.132 0.170<br />

0.134 1.188 0.930 0.930 1.477 1.604 1.210 1.423 0.963 0.225 0.132 0.175<br />

0.166 1.417 1.175 1.093 1.300 1.472 1.232 1.416 1.359 0.258 0.141 0.190<br />

0.168 1.341 1.263 1.131 1.379 1.531 1.495 1.761 1.588 0.262 0.154 0.178<br />

Plate 2 Layout <strong>an</strong>d ODs<br />

B 25 1 28 1 32 1 36 1 40 1 44 1 48 1 51 1 S N B<br />

B 25 2 28 2 32 2 36 2 40 2 44 2 48 2 51 2 S N B<br />

B 25 3 28 3 32 3 36 3 40 3 44 3 48 3 51 3 S N B<br />

B 26 1 29 1 33 1 37 1 41 1 45 1 49 1 52 1 S N B<br />

B 26 2 29 2 33 2 37 2 41 2 45 2 49 2 52 2 S N B<br />

B 26 3 29 3 33 3 37 3 41 3 45 3 49 3 52 3 S N B<br />

B 27 1 30 1 34 1 38 1 42 1 46 2 50 1 50 3 S N B


B 27 2 31 1 35 2 39 2 43 2 47 3 50 2 53 1 S N B<br />

0.137 1.251 1.181 1.334 1.590 1.480 1.300 1.318 1.765 0.976 0.263 0.173<br />

0.303 1.002 1.315 1.124 1.383 1.188 1.210 1.206 1.321 0.748 0.193 0.128<br />

0.321 1.195 1.268 1.347 1.593 0.996 1.053 1.019 1.187 0.616 0.145 0.113<br />

0.125 1.353 1.606 1.498 1.400 1.076 1.361 1.242 1.237 0.385 0.133 0.121<br />

0.118 1.615 1.772 1.378 1.321 0.902 1.054 1.113 1.290 0.284 0.124 0.115<br />

0.122 1.429 1.766 1.564 1.222 0.830 1.254 1.245 1.273 0.192 0.114 0.123<br />

0.129 1.701 1.454 1.312 1.419 1.412 1.429 1.296 1.401 0.165 0.113 0.134<br />

0.133 1.503 1.458 1.653 1.462 1.126 1.266 1.333 1.341 0.176 0.130 0.181<br />

Plate 3 Layout <strong>an</strong>d ODs<br />

B 54 1 56 1 58 1 60 1 62 1 64 1 66 1 B S N B<br />

B 54 2 56 2 58 2 60 2 62 2 64 2 66 2 B S N B<br />

B 54 3 56 3 58 3 60 3 62 3 64 3 66 3 B S N B<br />

B 55 1 57 1 59 1 61 1 63 1 65 1 67 1 B S N B<br />

B 55 2 57 2 59 2 61 2 63 2 65 2 67 2 B S N B<br />

B 55 3 57 3 59 3 61 3 63 3 65 3 67 3 B S N B<br />

B B B B B B B B B S N B<br />

B B B B B B B B B S N B<br />

0.132 1.401 1.244 0.936 1.072 1.161 1.390 1.293 0.122 0.994 0.196 0.136<br />

0.234 1.166 1.244 0.806 0.928 1.214 1.252 0.903 0.119 0.610 0.163 0.126<br />

0.111 1.224 1.211 0.781 0.803 0.944 1.076 1.109 0.123 0.518 0.144 0.131<br />

0.123 0.952 0.902 1.250 1.233 0.998 0.875 1.495 0.112 0.360 0.134 0.168<br />

0.116 1.191 0.868 1.185 1.263 0.889 1.045 1.211 0.116 0.261 0.129 0.137<br />

0.115 1.271 1.048 1.441 1.101 1.264 1.239 1.144 0.105 0.235 0.120 0.133<br />

0.111 0.116 0.112 0.118 0.116 0.122 0.114 0.118 0.113 0.171 0.124 0.135<br />

0.127 0.120 0.125 0.139 0.134 0.143 0.143 0.138 0.138 0.179 0.135 0.186<br />

Farm D<br />

Plate 1 Layout <strong>an</strong>d ODs<br />

B 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 S N B<br />

B 4 1 4 2 4 3 5 1 5 2 5 3 3 3 6 1 S N B<br />

B 7 1 7 2 7 3 8 1 8 2 8 3 6 2 6 3 S N B<br />

B 9 1 9 2 9 3 10 1 10 2 10 3 11 1 11 3 S N B<br />

B 12 1 12 2 12 3 13 1 13 2 13 3 11 2 14 1 S N B<br />

B 15 1 15 2 15 3 16 1 16 2 16 3 14 2 14 3 S N B<br />

B 17 1 17 2 17 3 18 1 18 2 18 3 19 1 19 2 S N B


B 20 1 20 2 20 3 21 1 21 2 21 3 19 3 22 1 S N B<br />

0.162 1.639 1.347 1.260 1.322 1.139 0.943 0.876 1.001 0.592 0.162 0.121<br />

0.163 1.740 1.530 1.537 1.648 1.073 1.309 1.208 1.137 0.639 0.202 0.134<br />

0.159 2.209 2.051 1.856 1.577 1.605 1.310 1.309 1.470 0.422 0.141 0.124<br />

0.140 1.731 1.943 1.817 1.944 1.548 1.711 1.686 1.394 0.328 0.127 0.113<br />

0.143 2.021 2.079 2.054 1.930 1.597 1.555 1.801 1.420 0.273 0.123 0.130<br />

0.129 1.981 2.043 1.744 1.787 1.701 1.737 1.197 1.259 0.180 0.124 0.136<br />

0.136 2.210 2.151 2.055 1.879 2.048 1.870 1.714 1.658 0.169 0.118 0.125<br />

0.132 2.194 2.170 2.010 2.149 2.117 1.935 1.789 2.113 0.183 0.119 0.132<br />

Plate 2 Layout <strong>an</strong>d ODs<br />

B 23 1 23 2 23 3 24 1 24 2 24 3 25 1 25 2 S N B<br />

B 26 1 26 2 26 3 27 1 27 2 27 3 25 3 28 1 S N B<br />

B 29 1 29 2 29 3 30 1 30 2 30 3 28 2 28 3 S N B<br />

B 31 1 31 2 31 3 32 1 32 2 32 3 33 1 33 2 S N B<br />

B 34 1 34 2 34 3 35 1 35 2 35 3 33 3 36 1 S N B<br />

B 37 1 37 2 37 3 38 1 38 2 38 3 36 2 36 3 S N B<br />

B 39 1 39 2 39 3 40 1 40 2 40 3 41 1 41 2 S N B<br />

B 42 1 42 2 42 3 43 1 43 2 43 3 41 3 44 1 S N B<br />

0.109 1.091 1.179 1.181 1.298 1.243 1.178 1.105 0.990 0.785 0.196 0.131<br />

0.120 1.417 1.502 1.558 1.142 1.472 1.368 1.310 1.040 0.602 0.164 0.117<br />

0.132 1.648 1.523 1.489 1.271 1.294 1.205 1.367 1.387 0.660 0.144 0.133<br />

0.125 1.685 1.594 1.681 1.598 1.839 1.007 1.929 1.945 0.438 0.148 0.128<br />

0.169 2.059 1.883 1.970 2.096 1.865 1.132 1.971 1.879 0.328 0.134 0.142<br />

0.141 1.698 1.734 1.958 1.815 1.860 2.071 1.529 1.789 0.238 0.131 0.133<br />

0.132 2.045 2.218 2.137 2.006 1.397 1.877 1.462 1.563 0.193 0.119 0.132<br />

0.129 1.786 2.052 2.106 2.005 1.557 1.606 1.429 1.506 0.148 0.117 0.142<br />

Plate 3 Layout <strong>an</strong>d ODs<br />

B 45 1 45 2 45 3 46 1 46 2 46 3 47 1 47 2 S N B<br />

B 48 1 48 2 48 3 49 1 49 2 49 3 47 3 50 1 S N B<br />

B 51 1 51 2 51 3 52 1 52 2 52 3 50 2 50 3 S N B<br />

B 53 1 53 2 53 3 54 1 54 2 54 3 55 1 55 2 S N B<br />

B 56 1 56 2 56 3 57 1 57 2 57 3 55 3 58 1 S N B<br />

B 59 1 59 2 59 3 60 1 60 2 60 3 58 2 58 3 S N B<br />

B 61 1 61 2 61 3 62 1 62 2 62 3 63 1 63 3 S N B<br />

B 64 1 64 2 64 3 65 1 65 2 65 3 66 1 66 2 S N B<br />

0.151 2.112 1.909 1.954 1.890 0.606 1.515 2.171 1.910 1.455 0.273 0.210<br />

0.175 2.207 1.888 1.891 1.418 1.416 1.423 1.787 1.985 1.057 0.199 0.142


0.150 1.838 1.194 1.855 1.834 1.194 1.537 1.977 2.058 0.796 0.148 0.136<br />

0.140 2.287 2.153 2.071 2.078 1.792 1.827 1.868 2.092 0.709 0.151 0.130<br />

0.137 2.486 2.603 2.086 2.172 2.100 2.121 2.109 1.918 0.589 0.209 0.131<br />

0.143 2.496 2.246 2.318 1.298 1.844 2.037 2.116 2.423 0.657 0.152 0.196<br />

0.131 1.798 1.597 1.510 2.134 1.847 1.103 1.737 2.296 0.540 0.149 0.134<br />

0.151 2.072 1.233 0.789 1.445 1.217 1.680 2.017 2.030 0.192 0.132 0.135<br />

Plate 4 Layout <strong>an</strong>d ODs<br />

B 67 1 67 2 68 1 68 2 69 2 69 3 70 2 70 3 S N B<br />

B 71 1 71 2 72 1 72 2 73 2 73 3 74 2 74 3 S N B<br />

B 75 1 75 2 76 1 76 2 77 2 77 3 78 2 78 3 S N B<br />

B 79 1 79 2 80 1 80 2 81 2 81 3 82 2 82 3 S N B<br />

B 83 1 83 2 84 2 84 3 85 2 85 3 86 2 86 3 S N B<br />

B 87 1 87 2 88 2 88 3 89 2 89 3 90 2 90 3 S N B<br />

B 91 1 91 2 92 2 92 3 93 2 93 3 94 2 94 3 S N B<br />

B 95 1 95 2 96 1 96 2 97 2 97 3 98 2 98 3 S N B<br />

0.132 1.268 1.122 1.662 1.157 1.434 1.139 1.222 1.127 0.774 0.182 0.176<br />

0.140 1.271 1.502 1.452 1.176 0.969 1.277 1.204 1.239 0.654 0.237 0.122<br />

0.125 1.269 1.599 1.331 0.649 1.513 1.345 1.402 1.569 0.593 0.169 0.130<br />

0.136 1.753 1.456 1.517 1.383 1.272 1.357 0.794 1.728 0.366 0.164 0.128<br />

0.115 1.481 1.702 1.572 1.359 1.331 1.321 1.744 1.802 0.249 0.139 0.135<br />

0.128 1.466 1.444 1.317 1.229 0.826 1.768 1.818 1.789 0.227 0.134 0.124<br />

0.116 1.452 1.494 1.577 0.900 0.873 1.251 1.733 1.888 0.201 0.180 0.148<br />

0.126 1.205 1.551 1.499 1.458 1.768 1.696 0.783 2.020 0.147 0.134 0.143<br />

Plate 5 Layout <strong>an</strong>d ODs<br />

B 99 2 99 3 100 2 100 3 101 B B B S N B<br />

B 102 2 102 3 103 2 103 2 104 B B B S N B<br />

B 105 2 105 3 106 2 106 3 107 B B B S N B<br />

B 108 2 108 3 109 2 109 3 110 B B B S N B<br />

B 111 2 111 3 112 2 112 3 B B B B S N B<br />

B 113 2 113 3 114 1 114 2 B B B B S N B<br />

B 115 2 115 3 116 3 117 3 B B B B S N B<br />

B 118 2 118 3 119 3 120 3 B B B B S N B<br />

0.116 0.711 0.803 0.549 0.902 0.621 0.137 0.138 0.157 1.049 0.284 0.173<br />

0.121 1.114 0.715 0.920 0.657 0.858 0.117 0.140 0.131 0.752 0.289 0.141<br />

0.141 1.086 1.022 1.405 1.162 1.829 0.154 0.143 0.137 0.677 0.188 0.178<br />

0.147 1.157 1.337 1.270 1.588 1.221 0.156 0.137 0.130 0.572 0.168 0.173


0.169 1.157 1.134 1.467 1.356 0.145 0.126 0.170 0.147 0.339 0.145 0.171<br />

0.155 1.458 1.644 1.794 1.819 0.145 0.140 0.130 0.140 0.254 0.150 0.173<br />

0.145 1.383 1.988 1.375 1.179 0.143 0.135 0.129 0.143 0.203 0.141 0.168<br />

0.120 1.452 1.523 1.727 1.208 0.143 0.140 0.131 0.130 0.178 0.133 0.138<br />

Plate 6 Layout <strong>an</strong>d ODs<br />

B 121 1 129 1 137 1 145 1 153 1 161 1 169 2 177 3 S N B<br />

B 122 1 130 1 138 1 146 1 154 1 162 1 170 2 178 3 S N B<br />

B 123 1 131 1 139 1 147 1 155 1 163 1 171 2 179 3 S N B<br />

B 124 1 132 1 140 1 148 1 156 1 164 1 172 2 180 3 S N B<br />

B 125 1 133 1 141 1 149 1 157 1 165 1 173 2 181 3 S N B<br />

B 126 1 134 1 142 1 150 1 158 1 166 2 174 2 182 3 S N B<br />

B 127 1 135 1 143 1 151 1 159 1 167 2 175 2 183 3 S N B<br />

B 128 1 136 1 144 1 152 1 160 1 168 1 176 2 184 3 S N B<br />

0.116 0.971 0.996 1.088 0.805 1.093 1.102 1.795 0.928 0.878 0.221 0.135<br />

0.178 1.153 0.893 1.148 1.187 1.261 1.228 1.366 1.278 0.660 0.252 0.123<br />

0.123 1.012 1.349 1.415 0.583 0.598 1.514 1.330 1.433 0.527 0.176 0.140<br />

0.118 1.355 1.455 1.139 1.546 1.393 1.317 1.583 1.560 0.394 0.152 0.151<br />

0.123 1.479 1.838 1.065 1.129 1.603 1.016 1.581 1.601 0.314 0.137 0.132<br />

0.110 1.232 1.254 1.408 1.209 1.318 0.467 0.729 0.687 0.248 0.140 0.257<br />

0.109 1.108 1.337 1.227 1.640 1.538 1.359 1.617 1.815 0.203 0.155 0.191<br />

0.120 0.893 1.243 1.017 1.943 1.752 1.597 1.438 1.549 0.192 0.160 0.146<br />

Farm E<br />

Plate 1 Layout <strong>an</strong>d ODs<br />

B 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 3 S N B<br />

B 4 1 4 2 4 3 5 1 5 2 5 3 6 1 6 3 S N B<br />

B 7 1 7 2 7 3 8 1 8 2 8 3 9 1 9 2 S N B<br />

B 10 1 10 2 10 3 11 1 11 2 11 3 12 1 12 3 S N B<br />

B 13 1 13 2 13 3 14 1 14 2 14 3 15 1 15 3 S N B<br />

B 16 1 16 2 16 3 17 1 17 2 17 3 18 1 18 3 S N B<br />

B 19 1 19 2 19 3 20 1 20 2 20 3 21 1 21 3 S N B<br />

B 22 1 22 2 22 3 23 1 23 2 23 3 24 1 24 3 S N B<br />

0.109 0.565 1.334 1.547 1.565 1.885 1.575 1.180 1.257 0.795 0.119 0.105<br />

0.108 1.235 1.347 1.189 1.195 1.137 0.980 1.130 1.072 0.827 0.132 0.110<br />

0.105 1.378 1.476 1.330 1.186 0.977 0.949 0.983 1.012 0.614 0.135 0.108<br />

0.111 1.679 1.616 1.363 1.101 1.037 0.817 1.166 1.271 0.504 0.129 0.106


0.102 1.537 1.612 1.434 1.456 0.881 1.361 1.476 1.449 0.306 0.116 0.111<br />

0.105 1.390 1.496 1.549 1.009 1.184 1.200 1.208 1.289 0.244 0.217 0.102<br />

0.108 1.582 1.415 1.335 1.252 1.385 1.214 1.124 1.189 0.183 0.102 0.106<br />

0.111 1.700 1.521 1.591 1.404 1.518 1.367 1.443 1.528 0.145 0.112 0.107<br />

Plate 2 Layout <strong>an</strong>d ODs<br />

B 25 1 25 2 25 3 26 1 26 2 26 3 27 1 27 2 S N B<br />

B 28 1 28 2 28 3 29 1 29 2 29 3 30 1 30 2 S N B<br />

B 31 1 31 2 31 3 32 1 32 2 32 3 33 1 33 2 S N B<br />

B 34 1 34 2 34 3 35 1 35 2 35 3 36 1 36 2 S N B<br />

B 37 1 37 2 37 3 38 1 38 2 38 3 39 1 39 3 S N B<br />

B 40 1 40 2 40 3 41 1 41 2 41 3 42 1 42 2 S N B<br />

B 43 1 43 2 43 3 44 1 44 2 44 3 45 1 45 3 S N B<br />

B 46 1 46 2 46 3 47 1 47 2 47 3 48 1 48 3 S N B<br />

1.305 1.338 1.205 1.139 1.293 1.330 1.257 1.406 1.480 0.775 0.162 0.121<br />

0.105 1.279 1.308 1.249 1.553 1.342 1.518 1.190 1.417 0.777 0.153 0.117<br />

0.104 1.313 1.350 0.107 1.154 1.514 1.372 1.241 1.330 0.753 0.156 0.117<br />

0.107 1.367 1.417 1.478 1.275 1.704 1.029 1.021 1.188 0.576 0.144 0.120<br />

0.106 1.789 1.593 1.600 1.216 1.392 1.486 1.661 1.474 0.473 0.130 0.119<br />

0.104 1.439 1.477 1.406 1.267 1.480 1.413 1.247 1.602 0.291 0.127 0.119<br />

0.107 1.362 1.501 1.469 1.422 1.597 1.504 1.348 1.516 0.223 0.120 0.121<br />

0.113 1.624 1.641 1.615 1.767 1.511 1.475 1.412 1.343 0.182 0.131 0.123<br />

Plate 3 Layout <strong>an</strong>d ODs<br />

B 49 1 49 2 49 3 50 1 50 2 50 3 51 1 51 3 S N B<br />

B 52 1 52 2 52 3 53 1 53 2 53 3 54 1 54 3 S N B<br />

B 55 1 55 2 55 3 56 1 56 2 56 3 57 1 57 3 S N B<br />

B 58 1 58 2 58 3 59 1 59 2 59 3 60 1 60 3 S N B<br />

B 61 1 61 2 61 3 62 1 62 2 62 3 63 1 63 3 S N B<br />

B 64 1 64 2 64 3 65 1 65 2 65 3 66 1 66 3 S N B<br />

B 67 1 67 2 67 3 68 1 68 2 68 3 69 1 69 2 S N B<br />

B 70 1 70 2 70 3 71 1 71 2 71 3 72 1 72 3 S N B<br />

0.117 1.994 1.876 1.864 1.653 1.562 1.682 1.652 1.453 1.182 0.203 0.132<br />

0.114 1.965 1.727 1.693 1.396 1.650 1.531 1.637 1.639 0.940 0.175 0.131<br />

0.110 1.394 1.318 1.395 1.285 1.085 1.184 1.282 1.371 0.625 0.137 0.125<br />

0.107 1.310 1.439 1.460 1.214 1.386 1.271 1.298 1.715 0.510 0.138 0.124<br />

0.104 1.459 1.621 1.362 1.272 1.466 1.519 1.640 1.757 0.358 0.126 0.126<br />

0.111 1.580 1.581 1.575 1.227 1.585 1.546 1.612 1.768 0.237 0.118 0.128<br />

0.122 0.808 1.367 1.308 1.301 1.422 1.441 1.633 1.576 0.220 0.128 0.131<br />

0.125 1.292 1.249 1.050 1.646 1.687 1.585 1.493 1.677 0.172 0.139 0.132


Plate 4 Layout <strong>an</strong>d ODs<br />

B 73 1 73 2 73 3 74 1 74 2 74 3 75 1 75 2 S N B<br />

B 76 1 76 2 76 3 77 1 77 2 77 3 75 3 78 1 S N B<br />

B 79 1 79 2 79 3 80 1 80 2 80 3 78 2 78 3 S N B<br />

B 81 1 81 2 81 3 82 1 82 2 82 3 83 1 83 2 S N B<br />

B 84 1 84 2 84 3 85 1 85 2 85 3 83 3 86 1 S N B<br />

B 87 1 87 2 87 3 88 1 88 2 88 3 86 2 86 3 S N B<br />

B 89 1 89 2 89 3 90 1 90 2 90 3 91 1 91 2 S N B<br />

B 92 1 92 2 92 3 93 1 93 2 93 3 91 3 94 1 S N B<br />

0.114 1.404 1.642 1.547 1.324 1.728 1.382 1.119 1.116 0.260 0.133 0.123<br />

0.581 1.186 1.275 1.226 1.124 1.179 1.014 1.202 1.031 0.254 0.121 0.109<br />

0.108 0.576 0.814 1.180 0.883 0.891 1.037 0.847 0.814 0.326 0.117 0.111<br />

0.104 1.249 1.159 1.167 1.094 1.062 0.937 1.037 0.875 0.191 0.111 0.110<br />

0.099 1.324 1.240 1.323 1.128 1.259 1.147 1.039 1.031 0.156 0.104 0.104<br />

0.106 1.354 1.041 1.135 1.175 1.160 1.102 1.307 1.096 0.148 0.104 0.101<br />

0.104 1.407 1.302 1.284 1.241 1.430 1.138 1.092 1.092 0.139 0.105 0.103<br />

0.111 1.170 0.956 1.327 1.210 1.300 1.225 0.558 0.917 0.164 0.105 0.116<br />

Plate 5 Layout <strong>an</strong>d ODs<br />

B 95 1 95 2 96 1 96 3 97 2 97 3 98 2 98 3 S N B<br />

B 99 1 99 2 100 1 100 3 101 2 101 3 102 2 102 3 S N B<br />

B 103 1 103 2 104 1 104 3 105 2 105 3 106 2 106 3 S N B<br />

B 107 1 107 3 108 1 108 3 109 2 109 3 110 2 110 3 S N B<br />

B 111 1 111 3 112 1 112 3 113 2 113 3 114 2 114 3 S N B<br />

B 115 1 115 3 116 1 116 3 117 2 117 3 118 2 118 3 S N B<br />

B 119 1 119 3 120 1 120 3 121 2 121 3 122 2 122 3 S N B<br />

B 123 1 123 3 124 1 124 3 125 2 125 3 126 2 126 3 S N B<br />

0.101 1.446 1.496 1.356 1.377 1.373 1.462 1.268 1.183 0.912 0.131 0.139<br />

0.102 1.665 1.653 1.333 0.944 1.559 1.288 0.692 1.172 0.711 0.115 0.111<br />

0.105 1.722 1.591 1.547 1.361 1.312 1.221 1.082 1.228 0.541 0.116 0.106<br />

0.104 1.943 1.845 1.872 1.376 1.322 1.000 1.365 1.621 0.464 0.183 0.109<br />

0.101 1.699 1.650 1.448 1.226 1.329 1.156 1.061 1.463 0.264 0.122 0.494<br />

0.101 1.013 0.533 1.575 1.422 1.428 1.514 1.265 1.397 0.197 0.116 0.110<br />

0.102 1.563 1.664 1.720 1.536 1.522 1.466 0.852 1.303 0.181 0.108 0.114<br />

0.115 1.402 1.350 1.144 1.609 1.545 1.299 1.318 1.359 0.137 0.112 0.111


Plate 6 Layout <strong>an</strong>d ODs<br />

B 126 2 126 3 127 1 127 2 128 1 128 2 129 2 129 3 S N B<br />

B 130 2 130 3 131 2 131 3 132 1 132 2 133 1 133 2 S N B<br />

B 134 2 134 3 135 2 135 3 136 2 136 3 137 2 137 3 S N B<br />

B 138 2 138 3 139 2 139 3 140 2 140 3 141 2 141 3 S N B<br />

B 142 2 142 3 143 2 143 3 144 2 144 3 145 2 145 3 S N B<br />

B 146 2 146 3 147 2 147 3 148 1 148 2 149 1 150 1 S N B<br />

B 151 2 151 3 152 2 152 3 153 1 153 2 154 1 155 1 S N B<br />

B 156 2 156 3 157 2 157 3 158 1 158 2 159 1 160 1 S N B<br />

0.107 0.985 1.114 1.190 1.281 0.926 0.933 0.982 1.016 0.870 0.114 0.099<br />

0.110 1.193 1.008 1.095 0.922 1.450 0.928 0.765 1.305 0.569 0.113 0.102<br />

0.104 0.500 1.110 1.065 0.801 0.904 1.036 0.788 1.082 0.466 0.109 0.099<br />

0.106 1.054 1.146 1.357 1.287 1.164 1.226 1.016 0.997 0.294 0.105 0.097<br />

0.109 0.746 1.025 1.161 0.704 1.120 0.980 1.098 1.302 0.223 0.100 0.100<br />

0.107 0.862 0.994 1.203 1.183 0.968 1.319 0.937 1.369 0.190 0.098 0.091<br />

0.108 1.136 1.198 1.298 1.457 1.279 1.497 1.084 0.951 0.149 0.093 0.096<br />

0.105 0.665 1.174 1.148 1.386 1.030 1.094 1.013 1.257 0.117 0.084 0.095<br />

Plate 7 Layout <strong>an</strong>d ODs<br />

B 161 1 169 1 177 1 185 2 193 3 201 3 209 3 B S N B<br />

B 162 1 170 1 178 1 186 2 194 3 202 3 210 3 B S N B<br />

B 163 1 171 1 179 1 187 2 195 3 203 3 211 3 B S N B<br />

B 164 1 172 1 180 1 188 2 196 3 204 3 B B S N B<br />

B 165 1 173 1 181 1 189 2 197 3 205 3 B B S N B<br />

B 166 1 174 1 182 1 190 2 198 3 206 3 B B S N B<br />

B 167 1 175 1 183 1 191 2 199 3 207 3 B B S N B<br />

B 168 1 176 1 184 1 192 2 200 3 208 3 B B S N B<br />

0.102 1.204 0.786 0.563 1.018 1.505 1.632 0.910 0.126 0.835 0.134 0.118<br />

0.103 1.166 1.011 0.978 0.790 0.981 0.360 0.439 0.110 0.664 0.121 0.114<br />

0.097 1.184 1.044 0.966 1.066 1.439 0.937 0.292 0.115 0.438 0.116 0.110<br />

0.091 0.893 0.664 1.073 1.238 1.164 1.135 0.100 0.105 0.307 0.112 0.110<br />

0.083 1.106 1.005 1.392 1.198 1.209 1.127 0.107 0.611 0.222 0.108 0.114<br />

0.092 0.920 0.172 1.731 1.336 1.281 1.291 0.105 0.119 0.197 0.111 0.108<br />

0.089 1.148 0.637 1.234 1.256 1.327 1.477 0.138 0.115 1.905 0.110 0.115<br />

0.110 1.690 0.436 1.319 1.097 1.436 1.319 0.108 0.630 0.132 0.111 0.111


UNIVERSITY OF BRISTOL<br />

LISTERIOSIS IN DAIRY CATTLE<br />

PART A : CASES OF LISTERIOSIS<br />

1. Have you ever had <strong>an</strong>y cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> your :- milk<strong>in</strong>g cows/heifers ?<br />

Yes No Don’t know<br />

(please circle one)<br />

No Don’t know<br />

No Don’t know<br />

IF NO OR DON'T KNOW PLEASE GO TO QUESTION 3<br />

replacement heifers ? Yes<br />

<strong>dairy</strong> calves ? Yes<br />

2. Who made the diagnosis <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> your :- milk<strong>in</strong>g cows/heifers<br />

? Self Vet. V.I.centre<br />

(please circle)<br />

Vet. V.I.centre<br />

Vet. V.I.centre<br />

3. Which <strong>of</strong> the follow<strong>in</strong>g are symptoms <strong>of</strong> <strong>listeriosis</strong> ?<br />

replacement heifers ? Self<br />

<strong>dairy</strong> calves ? Self<br />

nervous signs


(please circle one or more)<br />

lameness<br />

silage eye<br />

sudden death<br />

diarrhoea<br />

abortion<br />

pneumonia<br />

mastitis<br />

IF YOU HAVE NEVER HAD CASES OF LISTERIOSIS PLEASE GO TO PART C OF THE<br />

QUESTIONNAIRE<br />

PART B : CASES OF LISTERIOSIS:--BETWEEN JULY 1994 AND JUNE 1995<br />

1. Between 1st July 1994 <strong>an</strong>d 30th June 1995<br />

How m<strong>an</strong>y cases <strong>of</strong> <strong>listeriosis</strong> did you see <strong>in</strong> your :- milk<strong>in</strong>g<br />

cows/heifers ? ______________<br />

______________<br />

______________<br />

replacement heifers ?<br />

<strong>dairy</strong> calves ?<br />

2. Please provide details, <strong>in</strong> the table below, <strong>of</strong> <strong>an</strong>y cases <strong>of</strong> <strong>listeriosis</strong> seen from July 1994-<br />

June 1995.<br />

Month<br />

<strong>of</strong> illness<br />

Status<br />

M-milk<strong>in</strong>g<br />

cow/heifer<br />

H-replacement<br />

heifer<br />

C-<strong>dairy</strong> calf<br />

Other<br />

(please specify)<br />

Pregn<strong>an</strong>t<br />

Y-yes<br />

N-no<br />

D-don't know<br />

Hous<strong>in</strong>g<br />

C-cubicle<br />

L-loose yard<br />

O-outside<br />

Other<br />

(please specify)<br />

Symptoms<br />

N-nervous<br />

A-abortion<br />

S-silage eye<br />

M-mastitis<br />

D-sudden death<br />

Other<br />

(please specify)<br />

Diagnosed<br />

by<br />

S-self<br />

V-vet<br />

VI-VI centre<br />

Treated<br />

Y-yes<br />

N-no<br />

D-don't know<br />

Res<br />

R-r<br />

D-d<br />

C-c<br />

Oth<br />

(ple


PART C : HERD SIZE :--BETWEEN JULY 1994 AND JUNE 1995<br />

1. How m<strong>an</strong>y milk<strong>in</strong>g cows/heifers were there <strong>in</strong> your herd ? on 30th June 1995<br />

______________<br />

on 1st July 1994<br />

______________<br />

2. How m<strong>an</strong>y replacement heifers were there <strong>in</strong> your herd ? on 30th June 1995<br />

______________<br />

on 1st July 1994<br />

______________<br />

3. Between 1st July 1994 <strong>an</strong>d 30th June 1995 how m<strong>an</strong>y <strong>dairy</strong> calves were born ?<br />

______________<br />

PART D : FORAGE CROPS FED:--BETWEEN JULY 1994 AND JUNE 1995<br />

1. Which <strong>of</strong> the follow<strong>in</strong>g did you feed to your herd between 1st July 1994 <strong>an</strong>d 30th June<br />

1995 ?<br />

(please tick or complete the follow<strong>in</strong>g boxes)<br />

Grass silage Maize silage Hay Feed Straw<br />

(please specify type)<br />

2. What was the source <strong>of</strong> the forage crops ?<br />

(please tick the appropriate boxes)<br />

Root crops<br />

(please specify type)<br />

Other<br />

(please speci<br />

Source Grass silage Maize silage Hay Feed Straw Root crops Oth<br />

home made<br />

purchased<br />

other<br />

(please specify)


3. From 1st July 1994 to 30th June 1995 between which months did you feed your herd ?<br />

(please state the month for each)<br />

Grass silage Maize silage Hay Feed Straw Root crops Other<br />

4. When the cows were outside how did you feed forage crops to your herd ?<br />

(please tick the appropriate boxes)<br />

Feed<strong>in</strong>g<br />

not fed<br />

ad libitum<br />

on the ground<br />

<strong>in</strong> a complete diet<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

<strong>in</strong> hay racks<br />

<strong>in</strong> troughs<br />

<strong>of</strong>f the field<br />

other<br />

(please specify)<br />

Grass silage Maize silage Hay Feed<br />

Straw<br />

5. When the cows were housed how did you feed forage crops to your herd ?<br />

(please tick the appropriate boxes)<br />

Feed<strong>in</strong>g<br />

ad libitum<br />

at the clamp face<br />

on the floor<br />

<strong>in</strong> a complete diet<br />

<strong>in</strong> r<strong>in</strong>g feeders<br />

<strong>in</strong> hay racks<br />

<strong>in</strong> troughs<br />

other (please specify)<br />

Grass silage Maize silage Hay Feed<br />

Straw<br />

Root crops O<br />

Root crops Ot<br />

PART E : MAKING FORAGE CROPS FED:--BETWEEN JULY 1994 AND JUNE 1<br />

1. In which month did you make or harvest the forage crops fed between 1st July 1994 <strong>an</strong>d<br />

30th June 1995 ?<br />

(please state <strong>in</strong> the follow<strong>in</strong>g boxes)<br />

Grass silage Maize silage Hay Feed Straw Root crops Other<br />

2. How m<strong>an</strong>y grass cuts did you make for<br />

grass silage ?<br />

1 2 3


(please circle one for each)<br />

3. What type <strong>of</strong> mower or harvester did you use ?<br />

(please tick the appropriate boxes)<br />

<strong>an</strong>d<br />

hay ?<br />

1 2 3<br />

Type <strong>of</strong> mowers or harvesters<br />

forage harvester<br />

discs or drums<br />

mower conditioner<br />

comb<strong>in</strong>e harvester<br />

other<br />

(please specify)<br />

Grass silage Maize silage Hay Feed St<br />

4. For how long did you wilt, dry or leave the forage crops <strong>in</strong> the field ?<br />

(please circle one or state other)<br />

please circle one<br />

other<br />

(please specify)<br />

Grass silage Hay Feed Straw<br />

0 ½ 1 2 3 days 0 ½ 1 2 3 4 5 6 7 days 0 ½ 1 2 3 4 5 6 7 d<br />

5. What type <strong>of</strong> additives or treatments did you use ?<br />

(please give the trade names or tick the appropriate boxes)<br />

Additives/Treatments Grass silage Maize silage Hay Feed<br />

Straw<br />

please specify<br />

trade names or type<br />

none<br />

6. How did you store grass silage, maize silage <strong>an</strong>d root crops ?<br />

(please tick the appropriate boxes)<br />

Root cr<br />

Type <strong>of</strong> storage Grass silage Maize silage Root crops<br />

clamp<br />

silo<br />

big bale<br />

other


(please specify)<br />

IF YOU DID NOT USE A CLAMP OR SILO PLEASE GO TO QUESTION 10<br />

7. If you used a clamp or silo please describe the floor type.<br />

(please tick the appropriate boxes)<br />

Type <strong>of</strong> floor<br />

compacted soil<br />

concrete<br />

other<br />

(please specify)<br />

Grass silage Maize silage Root crops<br />

8. Did you use separate clamps or silos for each grass cut ?<br />

Don’t know<br />

(please circle one)<br />

9. If you used the same clamp or silo for more th<strong>an</strong> one cut<br />

did you seal the clamp or silo between each cut ?<br />

Don’t know<br />

(please circle one)<br />

Yes No<br />

Yes No<br />

10. How did you store hay, straw <strong>an</strong>d big bale silage if fed ?<br />

(please tick the appropriate boxes)<br />

Type <strong>of</strong> storage<br />

<strong>in</strong> a covered barn<br />

outside covered<br />

outside uncovered<br />

other<br />

(please specify)<br />

Hay Feed Straw Big bale silag<br />

11. Did you have your forage <strong>an</strong>alysed ?<br />

(please circle one)<br />

Yes No Don’t know<br />

12. IF YES, please provide details <strong>of</strong> <strong>an</strong>alysis <strong>of</strong> the forage fed between July 1994 <strong>an</strong>d June<br />

1995 ?<br />

(please state the results <strong>in</strong> the appropriate boxes)<br />

Forage<br />

Clamp - 1<br />

Clamp - 2<br />

Clamp - 3<br />

Big bale<br />

Maize silage<br />

Hay<br />

pH DM Ash ME<br />

PART F : HOUSING :--BETWEEN JULY 1994 AND JUNE 1995<br />

1. From 1st July 1994 to 30th June 1995


etween which months were your milk<strong>in</strong>g cows/heifers housed ?<br />

2. Which type <strong>of</strong> hous<strong>in</strong>g did you use for your milk<strong>in</strong>g cows/heifers ?<br />

cubicle<br />

(please circle one or more)<br />

______________<br />

loose yard<br />

other (please specify)<br />

______________<br />

3. Please provide details <strong>of</strong> the type <strong>of</strong> floor<br />

(please tick the appropriate boxes)<br />

Type <strong>of</strong> floor<br />

earth<br />

hard core<br />

concrete<br />

slatted<br />

other<br />

(please specify)<br />

Cubicle Loose yard Other<br />

4. What type <strong>of</strong> bedd<strong>in</strong>g did you use ?<br />

(please tick the appropriate boxes)<br />

Type <strong>of</strong> bedd<strong>in</strong>g<br />

none<br />

sawdust<br />

straw<br />

other<br />

(please specify)<br />

Cubicle Loose yard Other<br />

5. What was the source <strong>of</strong> the bedd<strong>in</strong>g ?<br />

(please tick the appropriate boxes)<br />

Source<br />

home made<br />

purchased<br />

other<br />

(please specify)<br />

Sawdust Straw Other<br />

6. For home made straw bedd<strong>in</strong>g <strong>in</strong> which<br />

month was it made ? ______________<br />

(please complete)<br />

how long was it left <strong>in</strong> the field ? ______________<br />

No<br />

was it big bale ?(please circle) Yes<br />

what type <strong>of</strong> straw was it ? (please specify) ______________


7. How did you store the bedd<strong>in</strong>g ?<br />

(please tick the appropriate boxes)<br />

Type <strong>of</strong> storage<br />

<strong>in</strong> a covered barn<br />

outside covered<br />

outside uncovered<br />

other<br />

(please specify)<br />

Sawdust Straw Other<br />

8. How m<strong>an</strong>y times each week did you add fresh bedd<strong>in</strong>g when the cows were housed ?<br />

(please state the frequency per week)<br />

Cubicle Loose yard Other<br />

please circle one<br />

other<br />

(please specify)<br />

1 2 3 4 5 6 7 times 1 2 3 4 5 6 7 times 1 2 3 4 5 6 7 t<br />

9. How m<strong>an</strong>y times each week did you remove the dirty bedd<strong>in</strong>g when the cows were<br />

housed ?<br />

(please state the frequency per week)<br />

Cubicle Loose yard Other<br />

please circle one<br />

other<br />

(please specify)<br />

0 1 2 3 4 5 6 7 times 0 1 2 3 4 5 6 7 8 9 times 0 1 2 3 4 5 6 7 t<br />

10. How m<strong>an</strong>y times was the bedd<strong>in</strong>g cle<strong>an</strong>ed out completely while the cows were housed ?<br />

(please state the frequency per hous<strong>in</strong>g period)<br />

Cubicle Loose yard Other<br />

please circle one<br />

other<br />

(please specify)<br />

0 1 2 3 4 5 times 0 1 2 3 4 5 6 7 8 9 times 0 1 2 3 4 5 tim<br />

11. How did you dispose <strong>of</strong> the dung ?<br />

(please circle one or more)<br />

12. Where did you store the dung ?<br />

(please tick the appropriate boxes)<br />

solid m<strong>an</strong>ure<br />

slurry<br />

other (please specify)<br />

______________<br />

Type <strong>of</strong> storage Solid m<strong>an</strong>ure Slurry Other


not stored<br />

beneath the slats<br />

composted<br />

<strong>in</strong> a slurry t<strong>an</strong>k<br />

<strong>in</strong> a lagoon<br />

other<br />

(please specify)<br />

13. Did you spread the dung on your pasture ?<br />

Don't know<br />

(please circle one)<br />

Yes No<br />

PART G : GENERAL INFORMATION:--BETWEEN JULY 1994 AND JUNE 1995<br />

1. Did you have <strong>an</strong>y cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> beef <strong>cattle</strong> ? :<br />

Yes No Don’t know<br />

(please circle one or more) sheep ? :<br />

Yes No Don’t know<br />

Yes No Don’t know<br />

goat ? :<br />

other (please specify)<br />

______________<br />

2. Did <strong>an</strong>y <strong>of</strong> the follow<strong>in</strong>g species graze Beef <strong>cattle</strong><br />

the same pasture as your <strong>dairy</strong> herd ? Sheep<br />

(please circle <strong>an</strong>d specify) Other (please specify)<br />

3. Aga<strong>in</strong>st which <strong>of</strong> the follow<strong>in</strong>g diseases None<br />

______________<br />

were your milk<strong>in</strong>g cows/heifers vacc<strong>in</strong>ated ? Salmonellosis<br />

(please circle one or more) E. coli<br />

Leptospirosis<br />

Lungworm<br />

Other (please specify)<br />

______________


4. Were there mole hills <strong>in</strong> the field where you made hay ?<br />

: Yes No Don’t<br />

know<br />

(please circle) grass silage?: Yes<br />

No Don’t know<br />

straw ? :<br />

Yes No Don’t know<br />

5. What did you use to control moles ? Noth<strong>in</strong>g<br />

(please circle <strong>an</strong>d specify) Chemicals (please<br />

specify)<br />

______________<br />

Other (please specify)<br />

______________<br />

Th<strong>an</strong>k you very much for fill<strong>in</strong>g <strong>in</strong> this questionnaire. Please return it to us<br />

us<strong>in</strong>g the stamped addressed envelope provided.


STUDY OF LISTERIOSIS IN DAIRY CATTLE<br />

Dear Sir / Madam,<br />

At Bristol Veter<strong>in</strong>ary School we are work<strong>in</strong>g on Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>, try<strong>in</strong>g to improve<br />

its diagnosis <strong>an</strong>d to f<strong>in</strong>d out more details <strong>of</strong> the risk factors associated with the disease, which<br />

will help to improve its control. As a part <strong>of</strong> our <strong>study</strong> we need to get some background<br />

<strong>in</strong>formation <strong>an</strong>d would be grateful if you could help us.<br />

Enclosed is a questionnaire which asks you about your farm <strong>an</strong>d <strong>dairy</strong> herd. Please fill it <strong>in</strong><br />

even if you did not have or have never had <strong>an</strong>y cases <strong>of</strong> Listeriosis on your farm.<br />

All <strong>in</strong>formation will be treated confidentially <strong>an</strong>d will be used only for our <strong>study</strong>.<br />

M<strong>an</strong>y th<strong>an</strong>ks for your co-operation.<br />

Yours s<strong>in</strong>cerely<br />

H. M. Erdog<strong>an</strong>, DVM<br />

P. J. Cripps, BSc, MSc (Epid), BVSc, PhD, MRCVS<br />

L. E. Green, BVSc, MSc (Epid), PhD, MRCVS<br />

K. L. Morg<strong>an</strong>, BA, VetMB, PhD, MRCVS


STUDY OF LISTERIOSIS IN DAIRY CATTLE<br />

Dear Sir / Madam<br />

We are conduct<strong>in</strong>g a <strong>study</strong> on Listeriosis <strong>in</strong> <strong>dairy</strong> <strong>cattle</strong>. This questionnaire is a part <strong>of</strong> our<br />

<strong>study</strong>. We are currently pretest<strong>in</strong>g the questionnaire <strong>an</strong>d would be most grateful if you could fill<br />

<strong>in</strong> <strong>an</strong>d state <strong>an</strong>y comments on the questionnaire <strong>an</strong>d <strong>an</strong>y difficulty you faced while fill<strong>in</strong>g <strong>in</strong>.<br />

Th<strong>an</strong>ks very much for your help.<br />

Yours s<strong>in</strong>cerely<br />

H. M. Erdog<strong>an</strong>, DVM<br />

P. J. Cripps, BSc, MSc (Epid), BVSc, PhD, MRCVS<br />

L. E. Green, BVSc, MSc (Epid), PhD, MRCVS<br />

K. L. Morg<strong>an</strong>, BA, VetMB, PhD, MRCVS


STUDY OF LISTERIOSIS IN DAIRY CATTLE<br />

Dear Sir/ Madam,<br />

The response rate <strong>in</strong> this <strong>study</strong> is now 60%.<br />

We need a response rate <strong>of</strong> 70% <strong>in</strong> order to obta<strong>in</strong> <strong>in</strong>formation which will help to prevent<br />

Listeriosis <strong>in</strong> <strong>cattle</strong>.<br />

Please help us to do this by complet<strong>in</strong>g your questionnaire over the Christmas period <strong>an</strong>d<br />

return<strong>in</strong>g to us. We will close the <strong>study</strong> on the 12th J<strong>an</strong>uary 1996.<br />

It is import<strong>an</strong>t that you return the questionnaire even if you have not had <strong>an</strong>y cases <strong>of</strong><br />

Listeriosis <strong>in</strong> your herd.<br />

We need your help <strong>an</strong>d th<strong>an</strong>k you <strong>in</strong> <strong>an</strong>ticipation.<br />

Merry Christmas<br />

Yours s<strong>in</strong>cerely<br />

H. M. Erdog<strong>an</strong>, DVM<br />

P. J. Cripps, BSc, MSc (Epid), BVSc, PhD, MRCVS<br />

L. E. Green, BVSc, MSc (Epid), PhD, MRCVS<br />

K. L. Morg<strong>an</strong>, BA, VetMB, PhD, MRCVS


UNIVERSITY OF LIVERPOOL<br />

STUDY OF LISTERIOSIS IN DAIRY CATTLE<br />

I would like to ask you some questions about the history <strong>of</strong> <strong>listeriosis</strong> on your farm. I may have<br />

already asked some <strong>of</strong> these questions partially but for completeness I will ask them aga<strong>in</strong>.<br />

1. Have you ever had <strong>an</strong>y cases <strong>of</strong> <strong>listeriosis</strong> <strong>in</strong> your :-milk<strong>in</strong>g cows/heifers? Yes No<br />

(please circle one) replacement heifers? Yes No<br />

<strong>dairy</strong> calves? Yes No<br />

2. If yes, could you please state when the last case was seen <strong>in</strong> your milk<strong>in</strong>g<br />

cows?_____________<br />

_____________<br />

_____________<br />

3. If you had a case <strong>of</strong> <strong>listeriosis</strong>,<br />

which <strong>of</strong> the follow<strong>in</strong>g symptoms were seen <strong>in</strong> <strong>listeriosis</strong> case(s) ?<br />

nervous signs<br />

(please circle one or more)<br />

silage eye<br />

sudden death<br />

diarrhoea<br />

abortion<br />

mastitis<br />

<strong>in</strong> your replacement heifers?<br />

<strong>in</strong> your <strong>dairy</strong> calves?


Now I would like to get some details about feed, feed<strong>in</strong>g <strong>an</strong>d feed preparation.<br />

4. Between 30th July 1996 <strong>an</strong>d 1st May 1997 which <strong>of</strong> the follow<strong>in</strong>g did you feed to your<br />

milk<strong>in</strong>g cows?<br />

(please state the exact dates)? -on what date did you start feed<strong>in</strong>g ……..?<br />

-on<br />

what date did you stop feed<strong>in</strong>g ……..?<br />

Date<br />

Type <strong>of</strong> forage Fed Started Stopped<br />

Grass silage<br />

Maize silage<br />

Hay<br />

Feed Straw (please specify type)<br />

(barley, wheat, etc.)<br />

Root crops (please specify type)<br />

(sugar beet, etc.)<br />

Others (please specify type)<br />

Concentrate(please specify type)<br />

5. What was the source <strong>of</strong> forage crops FED between 30th July 1996 <strong>an</strong>d 1st May 1997?<br />

( please circle one or more)<br />

Grass silage: Home made<br />

Bought <strong>in</strong><br />

Maize silage: Home made<br />

Bought <strong>in</strong>


Concentrate :<br />

_______________(from which comp<strong>an</strong>y)<br />

Hay : Home<br />

made Bought <strong>in</strong><br />

Feed Straw : Home made<br />

Bought <strong>in</strong><br />

Root crops : Home made<br />

Bought <strong>in</strong><br />

Others : Home<br />

made Bought <strong>in</strong><br />

6. In which month did you make or harvest forage crops FED between 30th July 1996 <strong>an</strong>d<br />

1st May 1997?<br />

(please specify month)<br />

Grass silage:<br />

______________________<br />

Maize silage:<br />

______________________<br />

Hay :<br />

______________________<br />

Feed Straw :<br />

______________________<br />

Root crops :<br />

______________________<br />

Others :<br />

______________________<br />

7. What type <strong>of</strong> treatment or additives did you use? Grass silage :<br />

______________________<br />

(please specify it)<br />

Maize silage :<br />

______________________<br />

Hay :<br />

______________________<br />

Feed Straw :<br />

______________________


Root crops :<br />

______________________<br />

Others :<br />

______________________<br />

8. Were there mole hills <strong>in</strong> the field where you made hay ? : Yes<br />

No Don’t know<br />

(please circle) or<br />

grass silage?: Yes<br />

No Don’t know<br />

or<br />

straw ? : Yes<br />

No Don’t know<br />

9. For how long did you wilt, dry or leave the forage crops FED between July 1996 <strong>an</strong>d May<br />

1997 <strong>in</strong> the field ?<br />

(please circle one or state other)<br />

please circle one<br />

other<br />

(please specify)<br />

10. Did you have your forage <strong>an</strong>alysed?<br />

Grass silage Hay Feed Straw<br />

0 ½ 1 2 3 days 0 ½ 1 2 3 4 5 6 7 days 0 ½ 1 2 3 4 5 6 7 d<br />

Yes No<br />

11. C<strong>an</strong> you please give us a copy <strong>of</strong> all <strong>an</strong>alyses?<br />

Yes No<br />

12. If no, please provide details <strong>of</strong> <strong>an</strong>alysis <strong>of</strong> the forage FED between 30th July 1996 <strong>an</strong>d<br />

1st May 1997?<br />

(please state the result <strong>in</strong> the appropriate boxes)<br />

Forage pH DM Ash ME<br />

Clamp - 1<br />

(Grass Silage)<br />

Clamp - 2<br />

(Grass Silage)<br />

Maize silage


Hay<br />

Now I have some questions to ask about hous<strong>in</strong>g <strong>an</strong>d bedd<strong>in</strong>g.<br />

13. From 30th July 1996 to 1st May 1997<br />

Start End<br />

between which months were your milk<strong>in</strong>g cows housed at night only?<br />

__________ __________<br />

(please state the EXACT DATE)<br />

<strong>an</strong>d<br />

between which months were they housed day <strong>an</strong>d night?<br />

__________ __________<br />

14. What type <strong>of</strong> straw bedd<strong>in</strong>g did you use?<br />

Big bale<br />

(please circle one)<br />

Small bale<br />

Other (please specify)<br />

_________________<br />

15. What was the source <strong>of</strong> the bedd<strong>in</strong>g straw used between 30th July 1996 <strong>an</strong>d 1st May<br />

1997?<br />

(please circle one or more)<br />

Bought <strong>in</strong><br />

16. If bought <strong>in</strong> where did you get your bedd<strong>in</strong>g straw?<br />

________________<br />

(please state from what part <strong>of</strong> country)<br />

Home made<br />

17. How <strong>of</strong>ten did you add fresh bedd<strong>in</strong>g each week?<br />

1 2 3 4 5 6 7 8 9 10<br />

(please circle one)<br />

18. How <strong>of</strong>ten did you remove dirty bedd<strong>in</strong>g each week?<br />

1 2 3 4 5 6 7 8 9 10<br />

(please circle one)


In this section I will be ask<strong>in</strong>g questions about dung disposal <strong>an</strong>d field m<strong>an</strong>agement.<br />

19. How did you dispose <strong>of</strong> the dung ? solid m<strong>an</strong>ure<br />

(please circle one or more)<br />

slurry<br />

specify)<br />

______________<br />

20. Where did you store the dung ?<br />

(please tick the appropriate boxes)<br />

other (please<br />

Type <strong>of</strong> storage Solid m<strong>an</strong>ure Slurry Other<br />

not stored<br />

<strong>in</strong> a slurry t<strong>an</strong>k<br />

<strong>in</strong> a lagoon<br />

other<br />

(please specify)<br />

21. What fertiliser did use on the field that your milk<strong>in</strong>g cows grazed Dung<br />

: Yes<br />

No<br />

between 30th July 1996 <strong>an</strong>d 1st May 1997?<br />

Artificial<br />

: Yes<br />

No<br />

(please<br />

specify)<br />

____________<br />

22. Please specify the source <strong>of</strong> the fertiliser used ? Dung<br />

:_______________<br />

:_______________<br />

(from which comp<strong>an</strong>y) Artificial<br />

23. Did you spread hum<strong>an</strong> sludge on the field from sewage works?<br />

Yes No<br />

24. If hum<strong>an</strong> was used, where did you get hum<strong>an</strong> sludge?<br />

________________


25. When was <strong>an</strong>imal dung spread on the field<br />

between 30th July 1996 <strong>an</strong>d 1st May 1997? (exact date)<br />

________________<br />

________________<br />

________________<br />

26. Did <strong>cattle</strong> graze the fields after dung spread? Yes No<br />

27. What dates did you spread hum<strong>an</strong> sludge on the field ______________<br />

between 30th July 1996 <strong>an</strong>d 1st May 1997?<br />

(please give exact dates) ______________<br />

_____________<br />

28. Did <strong>cattle</strong> graze the pasture after slurry spread? Yes No<br />

29. If yes, when did <strong>cattle</strong> graze the field? _______________<br />

30. Did <strong>an</strong>y <strong>of</strong> the follow<strong>in</strong>g species graze<br />

the same pasture as your <strong>dairy</strong> herd ?<br />

(please circle <strong>an</strong>d specify)<br />

I would like to move on to ask you about water supply.<br />

Beef <strong>cattle</strong><br />

Sheep<br />

Other (please specify)<br />

______________<br />

31. What was the source <strong>of</strong> water on your farm? Ma<strong>in</strong>s<br />

Bore hole<br />

Well<br />

32. If the source <strong>of</strong> water was ma<strong>in</strong>s could you please <strong>in</strong>dicate from which comp<strong>an</strong>ies did you<br />

get water?<br />

…………………………………………………………………………………………………<br />

I now have some question about milk storage <strong>an</strong>d collection.


33. Which days <strong>of</strong> the week bulk t<strong>an</strong>k milk was collected by <strong>dairy</strong>?<br />

-Monday -Tuesday -Wednesday -<br />

Thursday -Friday -Saturday -Sunday<br />

34. How <strong>of</strong>ten milk was collected by <strong>dairy</strong>?<br />

-Daily -Every other day -Weekly -Fortnightly<br />

-Monthly -Other (please specify)___________<br />

35. Did you cle<strong>an</strong> bulk milk t<strong>an</strong>k between each collection? Yes No<br />

36. If no, how <strong>of</strong>ten the bulk milk t<strong>an</strong>k was cle<strong>an</strong>ed ?<br />

-Daily -Every other day -Weekly -Fortnightly<br />

-Monthly -Other (please specify)___________<br />

37. Do you use dis<strong>in</strong>fect<strong>an</strong>t or sterilis<strong>in</strong>g agent when cle<strong>an</strong><strong>in</strong>g your bulk t<strong>an</strong>k? Yes No<br />

38. If yes, what dis<strong>in</strong>fect<strong>an</strong>t steriliser did you use? __________________<br />

Now I would like to ask some question about your dry cows.<br />

39. Were your dry cows separated from your milk<strong>in</strong>g cows? Yes No<br />

40. Between 30th July 1996 <strong>an</strong>d 1st May 1997 which <strong>of</strong> the follow<strong>in</strong>g did you feed to dry<br />

cows?<br />

(please state the exact dates)? -on what date did you start feed<strong>in</strong>g …..?<br />

-on what date did you stop feed<strong>in</strong>g……?<br />

Date<br />

Type <strong>of</strong> forage Fed Started Stopped<br />

Grass silage<br />

Maize silage<br />

Hay<br />

Feed Straw (please specify type)<br />

(barley, wheat, etc.)<br />

Root crops (please specify type)<br />

(sugar beet, etc.)<br />

Others (please specify type)


Concentrate(please specify type)<br />

41. Between July 1996 <strong>an</strong>d May 1997 where did you house your dry cows ?<br />

between which months they were housed at night only?<br />

Between which months they were housed day <strong>an</strong>d night?<br />

Date<br />

NIGHT DAY<br />

Start End Start End<br />

Type <strong>of</strong> hous<strong>in</strong>g<br />

Cubicle<br />

Loose yard<br />

Straw yard<br />

Others (please specify)<br />

In this section I would like to ask some questions about diseases <strong>an</strong>d their treatments<br />

42. If you used <strong>an</strong>y treatment or vacc<strong>in</strong>e aga<strong>in</strong>st <strong>an</strong>y disease between 30th July 1996 <strong>an</strong>d<br />

1st May 1997,<br />

could you please <strong>an</strong>swer the follow<strong>in</strong>g questions? (if necessary please use back <strong>of</strong> the<br />

page)<br />

-which vacc<strong>in</strong>es did you use?<br />

-which groups <strong>of</strong> <strong>an</strong>imals did you vacc<strong>in</strong>ate? (please give ID)<br />

-when did you vacc<strong>in</strong>ate?<br />

Treatment or Vacc<strong>in</strong>e<br />

(please specify)<br />

Animal ID Date <strong>of</strong> adm<strong>in</strong>istration<br />

43. If you had <strong>an</strong>y cl<strong>in</strong>ical problem between 30th July 1996 <strong>an</strong>d 1st May 1997, could you<br />

please <strong>an</strong>swer the follow<strong>in</strong>g questions? (if necessary please use back <strong>of</strong> the page)<br />

-did <strong>an</strong>y <strong>an</strong>imal suffer from <strong>an</strong>y illness? Yes No<br />

-if yes, could you give me a list <strong>of</strong> the <strong>an</strong>imals, their ID?<br />

-what was the date <strong>of</strong> illness?


-what was used to treat?<br />

-what was the result?<br />

Animal<br />

ID<br />

Cl<strong>in</strong>ical illness<br />

(i.e. mastitis,<br />

salmonellosis etc.)<br />

Date <strong>of</strong> illness Treated<br />

Y= Yes<br />

N= No<br />

F<strong>in</strong>ally I shall be ask<strong>in</strong>g some questions about your own health or health <strong>of</strong> your family or<br />

<strong>an</strong>ybody work<strong>in</strong>g on the farm.<br />

Result<br />

R= Recovered<br />

D= Died<br />

C= Culled<br />

44. Did you or your family or <strong>an</strong>y worker have <strong>an</strong>y illness<br />

between 30th July 1996 <strong>an</strong>d 1st May 1997? Yes No<br />

45. If yes could please state the illness <strong>an</strong>d its duration <strong>in</strong> the table below?<br />

who had illness?<br />

when did it start? (exact date)<br />

how long did it last?<br />

Illness<br />

Person Started Duration<br />

46. What type <strong>of</strong> <strong>dairy</strong> herd do you have? Open


Closed<br />

Other (please specify)<br />

_________________<br />

47. Could you please provide <strong>in</strong>formation on the age, stage <strong>of</strong> lactation, pregn<strong>an</strong>cy, <strong>an</strong>d<br />

<strong>an</strong>nual milk yield <strong>of</strong> the milk<strong>in</strong>g cows kept <strong>in</strong> your herd between 30th July 1996 <strong>an</strong>d 1st May<br />

1997?<br />

THANK YOU VERY MUCH FOR TIME TO COMPLETE THIS QUESTIONNAIRRE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!