14.07.2013 Views

Airfoil selection - ITLiMS

Airfoil selection - ITLiMS

Airfoil selection - ITLiMS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Wing<br />

<strong>Airfoil</strong> <strong>selection</strong><br />

• Aerodynamic characteristics (K max, C Lmax,<br />

stall characteristics)<br />

• Structural reasons;<br />

1


Leading<br />

edge<br />

Camber line<br />

<strong>Airfoil</strong> geometry<br />

<strong>Airfoil</strong> geometry<br />

Chord<br />

Maximum<br />

thickness<br />

position Maximum camber<br />

position<br />

Maximum<br />

camber<br />

Maximum<br />

thickness<br />

Trailing<br />

edge<br />

2


V ∞<br />

AoA=0°<br />

AoA=10°<br />

Angle of attack definition<br />

AoA<br />

AoA=15°<br />

Stall<br />

AoA=20°<br />

Separation point<br />

3


<strong>Airfoil</strong> aerodynamic characteristics<br />

Lift coefficient (C z or C L)<br />

CLMAX<br />

α 0<br />

/dα<br />

dC l<br />

Stall<br />

≡ a<br />

α KR<br />

Drag coefficient (C x or C D )<br />

<strong>Airfoil</strong> aerodynamic characteristics<br />

Design C z<br />

4


<strong>Airfoil</strong> aerodynamic characteristics<br />

Gliding ratio (C z / C x)<br />

Power factor<br />

(C z 3 / Cx 2 lub Cz 1,5 /Cx)<br />

<strong>Airfoil</strong> aerodynamic characteristics<br />

Pitching moment coefficient C m<br />

Derivative dCm/dCz<br />

is an indicator of<br />

stability.<br />

It is negative for<br />

stable aeroplanes<br />

and positive for<br />

unstable aeroplanes.<br />

5


Maximum thickness – t/c<br />

Chord - c<br />

Maximum<br />

thickness - t<br />

Effect of airfoil thickness on lift coefficient<br />

6%<br />

8%<br />

10%<br />

12%<br />

14%<br />

16%<br />

18%<br />

20%<br />

6


Effect of airfoil thickness on lift coefficient<br />

Effect of airfoil thickness on drag coefficient<br />

6%<br />

8%<br />

10%<br />

12%<br />

14%<br />

16%<br />

18%<br />

20%<br />

7


6%<br />

8%<br />

10%<br />

12%<br />

14%<br />

16%<br />

18%<br />

20%<br />

6%<br />

8%<br />

10%<br />

12%<br />

14%<br />

16%<br />

18%<br />

20%<br />

Effect of airfoil thickness on gliding ratio<br />

Effect of airfoil thickness on power factor<br />

8


Camber line<br />

0%<br />

0,5%<br />

1%<br />

1,5%<br />

2%<br />

2,5%<br />

3%<br />

3,5%<br />

Camber<br />

Maximum<br />

camber<br />

Effect of airfoil camber on lift coefficient<br />

9


Effect of airfoil camber on drag coefficient<br />

0%<br />

0,5%<br />

1%<br />

1,5%<br />

2%<br />

2,5%<br />

3%<br />

3,5%<br />

0%<br />

0,5%<br />

1%<br />

1,5%<br />

2%<br />

2,5%<br />

3%<br />

3,5%<br />

Effect of airfoil camber on gliding ratio<br />

10


0%<br />

0,5%<br />

1%<br />

1,5%<br />

2%<br />

2,5%<br />

3%<br />

3,5%<br />

Effect of airfoil camber on power factor<br />

Effect of airfoil camber on moment coefficient<br />

0%<br />

0,5%<br />

1%<br />

1,5%<br />

2%<br />

2,5%<br />

3%<br />

3,5%<br />

11


Position of<br />

maximum<br />

thickness<br />

Position of maximum thickness<br />

Boundary layer development<br />

laminar turbulent<br />

transition<br />

Maximum<br />

thickness<br />

separation<br />

separated<br />

12


Effect of airfoil „laminarity” on drag coefficient<br />

15%<br />

20%<br />

25%<br />

30%<br />

35%<br />

40%<br />

45%<br />

50%<br />

Effect of airfoil „laminarity” on lift coefficient<br />

15%<br />

20%<br />

25%<br />

30%<br />

35%<br />

40%<br />

45%<br />

50%<br />

13


15%<br />

15%<br />

Effect of camber line shape on moment coefficient<br />

28%<br />

22%<br />

28%<br />

22%<br />

35%<br />

0°<br />

2°<br />

4°<br />

6°<br />

Effect of camber line shape on gliding ratio<br />

35%<br />

0%<br />

2%<br />

4%<br />

6%<br />

14


Reynolds<br />

number effect on<br />

aerodynamic<br />

coefficients<br />

Effect of<br />

Mach<br />

number on<br />

lift<br />

coefficient<br />

15


Effect of<br />

Mach<br />

number<br />

on drag<br />

coefficient<br />

Effect of Mach number on moment<br />

coefficient<br />

16


Critical Mach<br />

number<br />

Historical values of an aeroplane airfoil thickness<br />

as a function of Mach number<br />

17


Critical Mach<br />

number<br />

Critical Mach<br />

number<br />

18


Calculate Reynolds number for design airspeed<br />

<strong>Airfoil</strong> <strong>selection</strong><br />

Re>3 000 000 3 000 000>Re>500 000 500 000>Re<br />

Calculate Mach number<br />

for maximum airspeed<br />

M max 0,75<br />

Wortmann catalogue<br />

„Stuttgarter<br />

Profilkatalog” Vol.1 i 2<br />

Selig catalogue<br />

„Summary of low speed<br />

airfoil data” Vol.1-3<br />

„<strong>Airfoil</strong>s at low speeds”<br />

Abbot catalogue „Theory of the wing section”, raport NACA 824, NASA TN D-7428<br />

Calculate Reynolds number for design<br />

airspeed<br />

Find characteristics for Re des i M des<br />

Calculate C L for design airspeed<br />

Supercritical airfoil eg. NASA SC(2) 714<br />

NASA TM X-1109<br />

NASA TM X-2977<br />

NASA TP 2969<br />

<strong>Airfoil</strong><br />

<strong>selection</strong><br />

Compare C D for C Ldes of available airfoils and select few best airfoils<br />

Compare C Lmax of selected airfoils<br />

Compare stall character of selected airfoils<br />

Compare C M of selected airfoils<br />

Select an airfoil with a combination of above features best suiting to the<br />

aeroplane mission<br />

19


Remaining wing features<br />

• Wing incidence;<br />

• Mean aerodynamic chord mac, c<br />

• Wing area (reference area) S;<br />

• Wing span b;<br />

• Wing aspect ratio A;<br />

• Wing dihedral;<br />

• Wing sweep angle (leading edge ΛLE, quarter chord Λc/4); • Taper ratio λ;<br />

• Geometrical and aerodynamic twist;<br />

• Winglets<br />

• Leading edges extensions;<br />

Wing incidence angle<br />

An angle between root chord and fuselage<br />

longitudinal axis<br />

20


c R<br />

c R<br />

c T<br />

S<br />

W<br />

S =<br />

W / S<br />

b = A ⋅ S<br />

c R<br />

T<br />

=<br />

b/2<br />

2⋅<br />

S<br />

[ b ⋅ ( 1 + λ)<br />

]<br />

c = λ ⋅ c<br />

R<br />

Taper ratio<br />

c T<br />

c<br />

λ =<br />

c<br />

T<br />

R<br />

Straight wings:<br />

λ=0.4÷0.5<br />

Swept wings:<br />

λ=0.2÷0.3<br />

Mean aerodynamic chord mac, c<br />

0,25mac<br />

Y<br />

c<br />

c R<br />

c T<br />

⎛ 2 ⎞<br />

c = ⎜⎝<br />

⎟⎠<br />

⋅ cROOT<br />

⋅<br />

3<br />

⎛ ⎞<br />

= ⎜ ⎟⋅<br />

⎝ 6 ⎠<br />

b<br />

Y<br />

2 ( 1+<br />

λλλλ + λλλλ )<br />

( 1+<br />

λλλλ )<br />

[ ( 1+<br />

2⋅<br />

λ )( 1+<br />

λ)<br />

];<br />

;<br />

21


Vortices generated by a wing<br />

Vortices generated by a wing and effect<br />

of aspect ratio on drag coefficient<br />

A<br />

=<br />

b<br />

S<br />

2<br />

C<br />

D<br />

=<br />

C<br />

D0<br />

2<br />

CL<br />

+<br />

π ⋅ A ⋅e<br />

22


Effect of aspect ratio (A, AR) on lift<br />

coefficient<br />

C<br />

b 1 b2<br />

b 3<br />

Wing dihedral angle<br />

φ – an angle between<br />

chords’ plane and<br />

horizontal plane<br />

b 4<br />

L<br />

α<br />

Unswept<br />

= C<br />

l<br />

α<br />

⋅<br />

⎛<br />

⎜⎜<br />

⎝<br />

C<br />

l<br />

π<br />

⎞<br />

⎟⎟ +<br />

⎠<br />

A<br />

⎛<br />

⎜⎜<br />

⎝<br />

A<br />

Wing dihedral<br />

Subsonic swept<br />

Supersonic swept<br />

ϕ<br />

α<br />

C<br />

Helmbolt equation<br />

=<br />

l<br />

π<br />

α<br />

2<br />

⎞<br />

⎟⎟<br />

⎠<br />

b 3


Λ c/4<br />

M eff =M ∞ cos(Λ LE )<br />

M kryt ~1/cos m (Λ LE )<br />

Wing sweep reduces<br />

effective Mach number.<br />

q eff=q ∞cos 2 (Λ LE)<br />

W~tan 2 (Λ LE)<br />

Wing sweep Λ LE , Λ c / 4,<br />

Λ t / c<br />

tan LE<br />

c / 4<br />

Λ LE<br />

Line connecting quarter<br />

chords along the wing span<br />

[ ( 1 − λ)<br />

/ A ⋅ ( + λ)<br />

]<br />

Λ = tan Λ +<br />

1<br />

Wing sweep<br />

Λ t/c<br />

Λ LE<br />

M<br />

McosΛ LE<br />

24


Wing sweep effect on dC L /dα<br />

dC<br />

dα<br />

L<br />

=<br />

2 +<br />

4 +<br />

β =<br />

eff<br />

( A ⋅β)<br />

2⋅<br />

π ⋅ A<br />

2<br />

2 ⎛ tan ( Λ ) ⎞ t / c<br />

⋅ ⎜⎜ 1 + ⎟ 2<br />

⎝ β ⎠<br />

2<br />

1− Meff<br />

M M cos Λ<br />

= ∞<br />

Wing sweep effect on separation<br />

LE<br />

25


Wing sweep at supersonic speeds<br />

Winglets<br />

26


Geometric twist<br />

Geometric twist<br />

Wing twist<br />

Aerodynamic twist<br />

Wing twist<br />

Aerodynamic twist<br />

27


AoA<br />

V<br />

Leading<br />

Edge<br />

eXtensions<br />

Delta wings<br />

28


LEX effect on lift coefficient<br />

Vortex generators<br />

RAF Museum Hendon<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!