14.07.2013 Views

The Mermin-Wagner Theorem - Condensed Matter Theory Group

The Mermin-Wagner Theorem - Condensed Matter Theory Group

The Mermin-Wagner Theorem - Condensed Matter Theory Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Andreas Werner<br />

June 24, 2010


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Conclusion<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

In one and two dimensions, continuous symmetries cannot be<br />

spontaneously broken at finite temperature in systems with<br />

sufficiently short-range interactions.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Contents<br />

1 How symmetry breaking occurs in principle<br />

2 Actors<br />

3 Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

4 Discussion<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

For systems in statistical equilibrium the expectation value of an<br />

operator A is given by<br />

<br />

e −βH <br />

A<br />

〈A〉 = lim<br />

V →∞ tr<br />

If the Hamiltonian displays a continuous symmetry S it commutes<br />

with the generators Γi S of the corresponding symmetry group<br />

i<br />

H, ΓS = 0<br />

If some operator is not invariant under the transformations of S,<br />

i i<br />

B, ΓS = C = 0<br />

the average of the commutator C i vanishes:<br />

C i = 0<br />

−<br />

−<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

For systems in statistical equilibrium the expectation value of an<br />

operator A is given by<br />

<br />

e −βH <br />

A<br />

〈A〉 = lim<br />

V →∞ tr<br />

If the Hamiltonian displays a continuous symmetry S it commutes<br />

with the generators Γi S of the corresponding symmetry group<br />

i<br />

H, ΓS = 0<br />

If some operator is not invariant under the transformations of S,<br />

i i<br />

B, ΓS = C = 0<br />

the average of the commutator C i vanishes:<br />

C i = 0<br />

−<br />

−<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

It turns out that such averages may be unstable under an<br />

infinitesimal perturbation of the Hamiltonian<br />

one can define the quasi-average:<br />

Hν = H + νH ′ − µ ˆN<br />

〈A〉 q = lim<br />

ν→0 lim<br />

V →∞ tr<br />

<br />

e −βHν <br />

A<br />

<strong>The</strong> quasi-average does not need to coincide with the normal<br />

average<br />

i<br />

C <br />

= lim q ν→0 tr<br />

<br />

e −βHν H, Γ i <br />

S = 0 −<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

An Example:<br />

H = − <br />

ij<br />

JijSi · Sj<br />

it is invariant under rotations in spin-space<br />

[H, S] − = 0<br />

from S α , S β<br />

<br />

= 0 and [S<br />

−<br />

x , S y ] − = iS z<br />

we find that the conventional average of the magnetization<br />

vansihes.<br />

Adding a symmetry breaking field<br />

B0 = B0ez<br />

we may study quasi-averages and find spontaneous symmetry<br />

breaking.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


David<br />

<strong>Mermin</strong><br />

(1935)<br />

How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Herbert<br />

<strong>Wagner</strong><br />

(1935)<br />

Pierre<br />

Hohenberg<br />

(1934)<br />

Sidney<br />

Coleman<br />

(1937-2007)<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Nikolai<br />

Bogoliubov<br />

(1909-1992)


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

For the proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem we will use the<br />

Bogoliubov inequality<br />

1<br />

2 β<br />

A, A †<br />

[C, H] − , C<br />

+<br />

†<br />

<br />

≥<br />

−<br />

<br />

[C, A] 2 −<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<strong>The</strong> idea for proofing the Bogoliubov inequality is to define an<br />

appropriate scalar product and then exploit the Schwarz inequality:<br />

with<br />

(A, B) = <br />

<br />

n<br />

A †<br />

<br />

<br />

m 〈m| B |n〉 Wm − Wn<br />

En − Em<br />

n=m<br />

Wn = e−βEn<br />

Tr (e −βH )<br />

A scalar product has four defining axioms:<br />

1<br />

(A, B) = (B, A) ∗<br />

This is valid since<br />

<br />

<br />

n<br />

B †<br />

<br />

<br />

∗ <br />

<br />

m 〈m| A |n〉 = n<br />

A †<br />

<br />

<br />

m 〈m| B |n〉<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

2 <strong>The</strong> linearity follows directly from the linearity of the matrix<br />

element<br />

3 It is also obvious that<br />

(A, A) ≥ 0<br />

4 From A = 0 it naturally follows that (A, A) = 0. <strong>The</strong> converse<br />

is not necessarily true<br />

In conclusion this shows that we have constructed a semidefinite<br />

scalar product.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

To exploit the Schwarz inequality, we calculate the terms occurring<br />

in it:<br />

|(A, B)| 2 ≤ (A, A) (B, B)<br />

We now choose<br />

B =<br />

<br />

C † <br />

, H<br />

−<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

n=m<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

First we calculate<br />

(A, B) = <br />

<br />

n<br />

A †<br />

<br />

<br />

m<br />

<br />

<br />

m<br />

C † <br />

, H<br />

−<br />

<br />

<br />

<br />

n <br />

Wm − Wn<br />

= <br />

<br />

n<br />

A †<br />

<br />

<br />

m m<br />

C †<br />

<br />

<br />

n (Wm − Wn)<br />

n,m<br />

= <br />

=<br />

m<br />

Wm<br />

Substituting B = C † , H <br />

<br />

<br />

m<br />

C † A †<br />

<br />

<br />

m − <br />

<br />

C † A † − A † C †<br />

=<br />

(B, B) =<br />

−<br />

, we find<br />

n<br />

Wn<br />

<br />

C † , A †<br />

−<br />

C † <br />

, [H, C] −<br />

−<br />

<br />

≥ 0<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

En − Em<br />

<br />

<br />

n<br />

A † C †<br />

<br />

<br />

n


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

For (A, A) we use the following approximation:<br />

0 < Wm − Wn<br />

=<br />

En − Em<br />

<br />

Tr<br />

= Wm + Wn<br />

En − Em<br />

<br />

e −βH −1 e −βEm + e −βEn<br />

En − Em<br />

<br />

β<br />

tanh<br />

2 (En<br />

<br />

− Em)<br />

Since tanh x < x for x > 0, we find that<br />

0 < Wm − Wn<br />

En − Em<br />

< β<br />

2 (Wn + Wm)<br />

e−βEm − e−βEn e−βEm + e−βEn Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

We can now estimate the scalar product:<br />

(A, A) < β<br />

2<br />

≤ β<br />

2<br />

= β<br />

2<br />

This finally leads to<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<br />

<br />

n<br />

A †<br />

<br />

<br />

m 〈m| A |n〉 (Wn + Wm)<br />

n=m<br />

<br />

<br />

n<br />

A †<br />

<br />

<br />

m 〈m| A |n〉 (Wn + Wm)<br />

n,m<br />

<br />

n<br />

Wn<br />

<br />

<br />

n<br />

A † <br />

<br />

A n + n<br />

AA †<br />

<br />

<br />

n<br />

(A, A) ≤ β<br />

A, A<br />

2<br />

†<br />

<br />

+<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Putting what we found in the Schwarz inequality, we find that we<br />

proofed the Bogoliubov inequality<br />

1<br />

2 β<br />

A, +<br />

A [C, H]− , C +<br />

+<br />

<br />

≥<br />

−<br />

<br />

[C, A] 2 −<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We now want to find out whether the isotropic Heisenberg model<br />

gives a spontaneous magnetization. <strong>The</strong> starting point is the<br />

Hamiltonian<br />

H = − <br />

JijSi · Sj − b <br />

S z i e −iK·Ri<br />

We are interested in the magnetization<br />

i,j<br />

Ms(T ) = lim<br />

B0→0 gJ<br />

µB<br />

<br />

<br />

i<br />

i<br />

e −iK·Ri 〈S z i 〉 T ,B0<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

For the following analysis, we assume that the exchange integrals<br />

Jij decrease sufficiently fast with increasing distance |Ri − Rj| so<br />

that the quantity<br />

remains finite.<br />

Q = 1<br />

N<br />

<br />

|Ri − Rj| 2 |Jij|<br />

i,j<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We will now prove the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem by using the<br />

Bogoliubov inequality for the operators<br />

A = S − (−k + K) ⇒ A † = S + (k − K)<br />

C = S + (k) ⇒ C † = S − (−k)<br />

Where the spin operators in k-space are defined by<br />

S α (k) = <br />

S α i e −ikRi<br />

From this we find the commutation relations<br />

S + (k1), S − (k2) <br />

− = 2S z (k1 + k2)<br />

S z (k1), S ± (k2) <br />

− = ±S ± (k1 + k2)<br />

i<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We now evaluate the three individual terms of the Bogoliubov<br />

inequality<br />

S <br />

+ −<br />

[C, A]− = (k), S (−k + K)<br />

= 2 〈S z (K)〉<br />

= 2 <br />

i<br />

e −iKRi 〈S z i 〉<br />

= 22N M(T , B0)<br />

gJµB<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />


k<br />

How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

A, A †<br />

<br />

+<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

= S <br />

− +<br />

(−k + K), S (k − K)<br />

k<br />

= <br />

<br />

i(k−K)(Ri−Rj)<br />

e S −<br />

k<br />

i,j<br />

= 2N <br />

≤ 2N 2<br />

Si i<br />

i<br />

= 2 2 N 2 S(S + 1)<br />

(S x i ) 2 + (S y<br />

i )2<br />

i<br />

S +<br />

j<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

+<br />

<br />

+ S +<br />

j<br />

<br />

−<br />

Si


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Now we calculate the double commutator<br />

[C, H] , C †<br />

<br />

−<br />

First we will evaluate<br />

S + m, H <br />

−<br />

= − <br />

i<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

+<br />

Jim 2S i S z m − S z i S + m − S + mS z +<br />

i + bS me −iKRm<br />

Using this, we evaluate the double commutator<br />

S +<br />

m, H <br />

− , S − <br />

p =<br />

+<br />

22 Jipδmp S i S − p + 2S z i S z p<br />

−<br />

− 2 2 Jmp<br />

i<br />

+<br />

S mS − p + 2S z mS z 2<br />

p + 2 bδmpS z p e −iKRp<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

This leads to the following intermediate result for the expectation<br />

value we are looking for<br />

[C, H] , C †<br />

<br />

−<br />

= <br />

e<br />

m,p<br />

ik(Rm−Rp)<br />

S +<br />

m, H <br />

− , S − <br />

p<br />

−<br />

= 2 2 b z −iKRp Sp e<br />

+ 2<br />

p<br />

<br />

2<br />

Jmp<br />

m,p<br />

<br />

1 − e −ik(Rm−Rp) +<br />

S mS − p + 2S z mS z p<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

To find a simple upper bound we may add to the right-hand side<br />

the same expression with k replaced by −k:<br />

[C, H] , C †<br />

<br />

−<br />

≤ 4 2 b z −iKRp Sp e<br />

+ 4<br />

p<br />

<br />

2<br />

m,p<br />

Jmp (1 − cos (k (Rm − Rp))) SmSp + S z mS z p<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

m,p<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We can simplify the right hand side using the triangle inequality<br />

[C, H] , C †<br />

<br />

−<br />

≤ 4 2 bN S z <br />

p<br />

<br />

2<br />

+ 4 |Jmp| |(1 − cos (k (Rm − Rp)))| |〈SmSp〉| + S z mS z <br />

p<br />

≤ 4 2 bN S z <br />

p<br />

+ 4<br />

2 <br />

m,p<br />

|Jmp| |1 − cos (k (Rm − Rp))| 2 S(S + 1) + 2 S 2<br />

≤ 4 2 bN S z <br />

p<br />

+ 8 2 S(S + 1) <br />

|Jmp| |1 − cos (k (Rm − Rp))|<br />

m,p<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong>rewith we have found<br />

[C, H] , C †<br />

<br />

−<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

≤ 4 2 |B0M(T , B0)|<br />

+ 8 2 S(S + 1) |Jmp|<br />

2 k2 |Rm − Rp| 2<br />

m,p<br />

≤ 4 2 |B0M(T , B0)| + 4Nk 2 4 QS(S + 1)<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Substituting what we have found in the Bogoliubov inequality and<br />

summing over all the wavevectors of the first Brillouin zone we get:<br />

βS(S + 1) ≥ M2<br />

N2g 2<br />

j µ2 <br />

1<br />

B |B0M| + k<br />

k<br />

22NQS(S + 1)<br />

We are finally ready to prove the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem. In the<br />

thermodynamic limit we find:<br />

S(S + 1) ≥ m2vdΩd β(2π) dg 2<br />

j µ2 k0<br />

B 0<br />

k d−1 dk<br />

|B0M| + k 2 2 QS(S + 1)<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

All that is left to do is to evaluate the integrals. This can be done<br />

exactly; in one dimension we find:<br />

S(S + 1) ≥ m2 v1<br />

β2πg 2<br />

j µ2 B<br />

<br />

Q2S(S+1) arctan k0<br />

|B0m|<br />

Q 2 S(S + 1) |B0m|<br />

We are specifically interested in the behaviour of the magnetization<br />

for small fields B0:<br />

|m(T , B0)| ≤ const. B1/3<br />

0<br />

T 2/3 , as B0 → 0<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

For a two-dimensional lattice we find:<br />

S(S + 1) ≥ m2v2 β2πg 2<br />

j µ2 ln<br />

B<br />

from which for small fields we get<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Q 2 S(S+1)k 2 0 +|B0m|<br />

|B0m|<br />

2Q 2 S(S + 1)<br />

<br />

const. ′ + |B0m|<br />

|m(T , B0)| ≤ const. T ln<br />

|B0m|<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<br />

−1/2


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

From the previous two expressions we conclude that there is no<br />

spontaneous magnetization in one and two dimensions:<br />

msp = lim<br />

B0→0 m(T , B0) = 0 for T = 0<br />

Thus, the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem is proved.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

1 <strong>The</strong> proof is valid only for T > 0. For T = 0 our inequalities<br />

make no predictions.<br />

2 Via the factor e −iKRi the proof also forbids long-range order in<br />

antiferromagnets.<br />

3 We cannot make any predictions for d > 2, but Roepstroff<br />

strengthened the proof to find an upper bound for the<br />

magnetization in d ≥ 3.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

4 <strong>The</strong> theorem is valid for arbitrary spin S.<br />

5 <strong>The</strong> theorem is valid only for the isotropic Heisenberg model.<br />

<strong>The</strong> proof is not valid even for a weak anisotropy. This<br />

explains the existence of a number of two-dimensional<br />

Heisenberg ferromagnets and antiferromagnets like K2CuF4.<br />

6 <strong>The</strong> theorem is restricted only to the non-existence of<br />

spontaneous magnetization. It does not necessarily exclude<br />

other types of phase transitions. For example the magnetic<br />

susceptibility may diverge.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

This is the end of my presentation<br />

Thank you for your attention.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

References<br />

Coleman, S. <strong>The</strong>re are no goldstone bosons in two dimensions. Comm. Math. Phys. 31 (1973), 259–264.<br />

Gelfert, A., and Nolting, W. <strong>The</strong> absence of finite-temperature phase transitions in low-dimensional<br />

many-body models: a survey and new results. Journal of Physics: <strong>Condensed</strong> <strong>Matter</strong> 13, 27 (2001), R505.<br />

Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 2 (Jun<br />

1967), 383–386.<br />

<strong>Mermin</strong>, N. D., and <strong>Wagner</strong>, H. Absence of ferromagnetism or antiferromagnetism in one- or<br />

two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 22 (Nov 1966), 1133–1136.<br />

Nolting, W., and Ramakanth, A. Quantum <strong>The</strong>ory of Magnetism. Springer, 2009.<br />

Roepstorff, G. A stronger version of bogoliubov’s inequality and the heisenberg model. Comm. Math.<br />

Phys. 53, 2 (1977), 143–150.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!