14.07.2013 Views

The Mermin-Wagner Theorem - Condensed Matter Theory Group

The Mermin-Wagner Theorem - Condensed Matter Theory Group

The Mermin-Wagner Theorem - Condensed Matter Theory Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Andreas Werner<br />

June 24, 2010


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Conclusion<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

In one and two dimensions, continuous symmetries cannot be<br />

spontaneously broken at finite temperature in systems with<br />

sufficiently short-range interactions.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Contents<br />

1 How symmetry breaking occurs in principle<br />

2 Actors<br />

3 Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

4 Discussion<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

For systems in statistical equilibrium the expectation value of an<br />

operator A is given by<br />

<br />

e −βH <br />

A<br />

〈A〉 = lim<br />

V →∞ tr<br />

If the Hamiltonian displays a continuous symmetry S it commutes<br />

with the generators Γi S of the corresponding symmetry group<br />

i<br />

H, ΓS = 0<br />

If some operator is not invariant under the transformations of S,<br />

i i<br />

B, ΓS = C = 0<br />

the average of the commutator C i vanishes:<br />

C i = 0<br />

−<br />

−<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

For systems in statistical equilibrium the expectation value of an<br />

operator A is given by<br />

<br />

e −βH <br />

A<br />

〈A〉 = lim<br />

V →∞ tr<br />

If the Hamiltonian displays a continuous symmetry S it commutes<br />

with the generators Γi S of the corresponding symmetry group<br />

i<br />

H, ΓS = 0<br />

If some operator is not invariant under the transformations of S,<br />

i i<br />

B, ΓS = C = 0<br />

the average of the commutator C i vanishes:<br />

C i = 0<br />

−<br />

−<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

It turns out that such averages may be unstable under an<br />

infinitesimal perturbation of the Hamiltonian<br />

one can define the quasi-average:<br />

Hν = H + νH ′ − µ ˆN<br />

〈A〉 q = lim<br />

ν→0 lim<br />

V →∞ tr<br />

<br />

e −βHν <br />

A<br />

<strong>The</strong> quasi-average does not need to coincide with the normal<br />

average<br />

i<br />

C <br />

= lim q ν→0 tr<br />

<br />

e −βHν H, Γ i <br />

S = 0 −<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

An Example:<br />

H = − <br />

ij<br />

JijSi · Sj<br />

it is invariant under rotations in spin-space<br />

[H, S] − = 0<br />

from S α , S β<br />

<br />

= 0 and [S<br />

−<br />

x , S y ] − = iS z<br />

we find that the conventional average of the magnetization<br />

vansihes.<br />

Adding a symmetry breaking field<br />

B0 = B0ez<br />

we may study quasi-averages and find spontaneous symmetry<br />

breaking.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


David<br />

<strong>Mermin</strong><br />

(1935)<br />

How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Herbert<br />

<strong>Wagner</strong><br />

(1935)<br />

Pierre<br />

Hohenberg<br />

(1934)<br />

Sidney<br />

Coleman<br />

(1937-2007)<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Nikolai<br />

Bogoliubov<br />

(1909-1992)


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

For the proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem we will use the<br />

Bogoliubov inequality<br />

1<br />

2 β<br />

A, A †<br />

[C, H] − , C<br />

+<br />

†<br />

<br />

≥<br />

−<br />

<br />

[C, A] 2 −<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<strong>The</strong> idea for proofing the Bogoliubov inequality is to define an<br />

appropriate scalar product and then exploit the Schwarz inequality:<br />

with<br />

(A, B) = <br />

<br />

n<br />

A †<br />

<br />

<br />

m 〈m| B |n〉 Wm − Wn<br />

En − Em<br />

n=m<br />

Wn = e−βEn<br />

Tr (e −βH )<br />

A scalar product has four defining axioms:<br />

1<br />

(A, B) = (B, A) ∗<br />

This is valid since<br />

<br />

<br />

n<br />

B †<br />

<br />

<br />

∗ <br />

<br />

m 〈m| A |n〉 = n<br />

A †<br />

<br />

<br />

m 〈m| B |n〉<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

2 <strong>The</strong> linearity follows directly from the linearity of the matrix<br />

element<br />

3 It is also obvious that<br />

(A, A) ≥ 0<br />

4 From A = 0 it naturally follows that (A, A) = 0. <strong>The</strong> converse<br />

is not necessarily true<br />

In conclusion this shows that we have constructed a semidefinite<br />

scalar product.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

To exploit the Schwarz inequality, we calculate the terms occurring<br />

in it:<br />

|(A, B)| 2 ≤ (A, A) (B, B)<br />

We now choose<br />

B =<br />

<br />

C † <br />

, H<br />

−<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

n=m<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

First we calculate<br />

(A, B) = <br />

<br />

n<br />

A †<br />

<br />

<br />

m<br />

<br />

<br />

m<br />

C † <br />

, H<br />

−<br />

<br />

<br />

<br />

n <br />

Wm − Wn<br />

= <br />

<br />

n<br />

A †<br />

<br />

<br />

m m<br />

C †<br />

<br />

<br />

n (Wm − Wn)<br />

n,m<br />

= <br />

=<br />

m<br />

Wm<br />

Substituting B = C † , H <br />

<br />

<br />

m<br />

C † A †<br />

<br />

<br />

m − <br />

<br />

C † A † − A † C †<br />

=<br />

(B, B) =<br />

−<br />

, we find<br />

n<br />

Wn<br />

<br />

C † , A †<br />

−<br />

C † <br />

, [H, C] −<br />

−<br />

<br />

≥ 0<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

En − Em<br />

<br />

<br />

n<br />

A † C †<br />

<br />

<br />

n


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

For (A, A) we use the following approximation:<br />

0 < Wm − Wn<br />

=<br />

En − Em<br />

<br />

Tr<br />

= Wm + Wn<br />

En − Em<br />

<br />

e −βH −1 e −βEm + e −βEn<br />

En − Em<br />

<br />

β<br />

tanh<br />

2 (En<br />

<br />

− Em)<br />

Since tanh x < x for x > 0, we find that<br />

0 < Wm − Wn<br />

En − Em<br />

< β<br />

2 (Wn + Wm)<br />

e−βEm − e−βEn e−βEm + e−βEn Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

We can now estimate the scalar product:<br />

(A, A) < β<br />

2<br />

≤ β<br />

2<br />

= β<br />

2<br />

This finally leads to<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<br />

<br />

n<br />

A †<br />

<br />

<br />

m 〈m| A |n〉 (Wn + Wm)<br />

n=m<br />

<br />

<br />

n<br />

A †<br />

<br />

<br />

m 〈m| A |n〉 (Wn + Wm)<br />

n,m<br />

<br />

n<br />

Wn<br />

<br />

<br />

n<br />

A † <br />

<br />

A n + n<br />

AA †<br />

<br />

<br />

n<br />

(A, A) ≤ β<br />

A, A<br />

2<br />

†<br />

<br />

+<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Putting what we found in the Schwarz inequality, we find that we<br />

proofed the Bogoliubov inequality<br />

1<br />

2 β<br />

A, +<br />

A [C, H]− , C +<br />

+<br />

<br />

≥<br />

−<br />

<br />

[C, A] 2 −<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We now want to find out whether the isotropic Heisenberg model<br />

gives a spontaneous magnetization. <strong>The</strong> starting point is the<br />

Hamiltonian<br />

H = − <br />

JijSi · Sj − b <br />

S z i e −iK·Ri<br />

We are interested in the magnetization<br />

i,j<br />

Ms(T ) = lim<br />

B0→0 gJ<br />

µB<br />

<br />

<br />

i<br />

i<br />

e −iK·Ri 〈S z i 〉 T ,B0<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

For the following analysis, we assume that the exchange integrals<br />

Jij decrease sufficiently fast with increasing distance |Ri − Rj| so<br />

that the quantity<br />

remains finite.<br />

Q = 1<br />

N<br />

<br />

|Ri − Rj| 2 |Jij|<br />

i,j<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We will now prove the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem by using the<br />

Bogoliubov inequality for the operators<br />

A = S − (−k + K) ⇒ A † = S + (k − K)<br />

C = S + (k) ⇒ C † = S − (−k)<br />

Where the spin operators in k-space are defined by<br />

S α (k) = <br />

S α i e −ikRi<br />

From this we find the commutation relations<br />

S + (k1), S − (k2) <br />

− = 2S z (k1 + k2)<br />

S z (k1), S ± (k2) <br />

− = ±S ± (k1 + k2)<br />

i<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We now evaluate the three individual terms of the Bogoliubov<br />

inequality<br />

S <br />

+ −<br />

[C, A]− = (k), S (−k + K)<br />

= 2 〈S z (K)〉<br />

= 2 <br />

i<br />

e −iKRi 〈S z i 〉<br />

= 22N M(T , B0)<br />

gJµB<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />


k<br />

How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

A, A †<br />

<br />

+<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

= S <br />

− +<br />

(−k + K), S (k − K)<br />

k<br />

= <br />

<br />

i(k−K)(Ri−Rj)<br />

e S −<br />

k<br />

i,j<br />

= 2N <br />

≤ 2N 2<br />

Si i<br />

i<br />

= 2 2 N 2 S(S + 1)<br />

(S x i ) 2 + (S y<br />

i )2<br />

i<br />

S +<br />

j<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

+<br />

<br />

+ S +<br />

j<br />

<br />

−<br />

Si


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

Now we calculate the double commutator<br />

[C, H] , C †<br />

<br />

−<br />

First we will evaluate<br />

S + m, H <br />

−<br />

= − <br />

i<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

+<br />

Jim 2S i S z m − S z i S + m − S + mS z +<br />

i + bS me −iKRm<br />

Using this, we evaluate the double commutator<br />

S +<br />

m, H <br />

− , S − <br />

p =<br />

+<br />

22 Jipδmp S i S − p + 2S z i S z p<br />

−<br />

− 2 2 Jmp<br />

i<br />

+<br />

S mS − p + 2S z mS z 2<br />

p + 2 bδmpS z p e −iKRp<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

This leads to the following intermediate result for the expectation<br />

value we are looking for<br />

[C, H] , C †<br />

<br />

−<br />

= <br />

e<br />

m,p<br />

ik(Rm−Rp)<br />

S +<br />

m, H <br />

− , S − <br />

p<br />

−<br />

= 2 2 b z −iKRp Sp e<br />

+ 2<br />

p<br />

<br />

2<br />

Jmp<br />

m,p<br />

<br />

1 − e −ik(Rm−Rp) +<br />

S mS − p + 2S z mS z p<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

To find a simple upper bound we may add to the right-hand side<br />

the same expression with k replaced by −k:<br />

[C, H] , C †<br />

<br />

−<br />

≤ 4 2 b z −iKRp Sp e<br />

+ 4<br />

p<br />

<br />

2<br />

m,p<br />

Jmp (1 − cos (k (Rm − Rp))) SmSp + S z mS z p<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

m,p<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

We can simplify the right hand side using the triangle inequality<br />

[C, H] , C †<br />

<br />

−<br />

≤ 4 2 bN S z <br />

p<br />

<br />

2<br />

+ 4 |Jmp| |(1 − cos (k (Rm − Rp)))| |〈SmSp〉| + S z mS z <br />

p<br />

≤ 4 2 bN S z <br />

p<br />

+ 4<br />

2 <br />

m,p<br />

|Jmp| |1 − cos (k (Rm − Rp))| 2 S(S + 1) + 2 S 2<br />

≤ 4 2 bN S z <br />

p<br />

+ 8 2 S(S + 1) <br />

|Jmp| |1 − cos (k (Rm − Rp))|<br />

m,p<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong>rewith we have found<br />

[C, H] , C †<br />

<br />

−<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

≤ 4 2 |B0M(T , B0)|<br />

+ 8 2 S(S + 1) |Jmp|<br />

2 k2 |Rm − Rp| 2<br />

m,p<br />

≤ 4 2 |B0M(T , B0)| + 4Nk 2 4 QS(S + 1)<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Substituting what we have found in the Bogoliubov inequality and<br />

summing over all the wavevectors of the first Brillouin zone we get:<br />

βS(S + 1) ≥ M2<br />

N2g 2<br />

j µ2 <br />

1<br />

B |B0M| + k<br />

k<br />

22NQS(S + 1)<br />

We are finally ready to prove the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem. In the<br />

thermodynamic limit we find:<br />

S(S + 1) ≥ m2vdΩd β(2π) dg 2<br />

j µ2 k0<br />

B 0<br />

k d−1 dk<br />

|B0M| + k 2 2 QS(S + 1)<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

All that is left to do is to evaluate the integrals. This can be done<br />

exactly; in one dimension we find:<br />

S(S + 1) ≥ m2 v1<br />

β2πg 2<br />

j µ2 B<br />

<br />

Q2S(S+1) arctan k0<br />

|B0m|<br />

Q 2 S(S + 1) |B0m|<br />

We are specifically interested in the behaviour of the magnetization<br />

for small fields B0:<br />

|m(T , B0)| ≤ const. B1/3<br />

0<br />

T 2/3 , as B0 → 0<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

For a two-dimensional lattice we find:<br />

S(S + 1) ≥ m2v2 β2πg 2<br />

j µ2 ln<br />

B<br />

from which for small fields we get<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Q 2 S(S+1)k 2 0 +|B0m|<br />

|B0m|<br />

2Q 2 S(S + 1)<br />

<br />

const. ′ + |B0m|<br />

|m(T , B0)| ≤ const. T ln<br />

|B0m|<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

<br />

−1/2


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

<strong>The</strong> Bogoliubov inequality<br />

<strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

From the previous two expressions we conclude that there is no<br />

spontaneous magnetization in one and two dimensions:<br />

msp = lim<br />

B0→0 m(T , B0) = 0 for T = 0<br />

Thus, the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem is proved.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

1 <strong>The</strong> proof is valid only for T > 0. For T = 0 our inequalities<br />

make no predictions.<br />

2 Via the factor e −iKRi the proof also forbids long-range order in<br />

antiferromagnets.<br />

3 We cannot make any predictions for d > 2, but Roepstroff<br />

strengthened the proof to find an upper bound for the<br />

magnetization in d ≥ 3.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

4 <strong>The</strong> theorem is valid for arbitrary spin S.<br />

5 <strong>The</strong> theorem is valid only for the isotropic Heisenberg model.<br />

<strong>The</strong> proof is not valid even for a weak anisotropy. This<br />

explains the existence of a number of two-dimensional<br />

Heisenberg ferromagnets and antiferromagnets like K2CuF4.<br />

6 <strong>The</strong> theorem is restricted only to the non-existence of<br />

spontaneous magnetization. It does not necessarily exclude<br />

other types of phase transitions. For example the magnetic<br />

susceptibility may diverge.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

This is the end of my presentation<br />

Thank you for your attention.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem


How symmetry breaking occurs in principle<br />

Actors<br />

Proof of the <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem<br />

Discussion<br />

References<br />

Coleman, S. <strong>The</strong>re are no goldstone bosons in two dimensions. Comm. Math. Phys. 31 (1973), 259–264.<br />

Gelfert, A., and Nolting, W. <strong>The</strong> absence of finite-temperature phase transitions in low-dimensional<br />

many-body models: a survey and new results. Journal of Physics: <strong>Condensed</strong> <strong>Matter</strong> 13, 27 (2001), R505.<br />

Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 2 (Jun<br />

1967), 383–386.<br />

<strong>Mermin</strong>, N. D., and <strong>Wagner</strong>, H. Absence of ferromagnetism or antiferromagnetism in one- or<br />

two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 22 (Nov 1966), 1133–1136.<br />

Nolting, W., and Ramakanth, A. Quantum <strong>The</strong>ory of Magnetism. Springer, 2009.<br />

Roepstorff, G. A stronger version of bogoliubov’s inequality and the heisenberg model. Comm. Math.<br />

Phys. 53, 2 (1977), 143–150.<br />

Andreas Werner <strong>The</strong> <strong>Mermin</strong>-<strong>Wagner</strong> <strong>The</strong>orem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!