20.07.2013 Views

cluj polynomial description of ti02 nanostructures - Catedra de Chimie

cluj polynomial description of ti02 nanostructures - Catedra de Chimie

cluj polynomial description of ti02 nanostructures - Catedra de Chimie

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

STUDIA UNIVERSITATIS BABES-BOLYAI, CHEMIA, L1V, 1,2009<br />

Dedicated to Pr<strong>of</strong>essor Liviu Literat, at his sd h anniversary<br />

CLUJ POLYNOMIAL DESCRIPTION OF TI02<br />

NANOSTRUCTURES<br />

ANIELA ELENA VIZITIU a AND MIRCEA V. DIUDEA a<br />

ABSTRACT. Operations on maps are well known theoretical tools for<br />

transforming a given polyhedral tessellation. In this article, we propose a<br />

new method to <strong>de</strong>sign a titanium nanostructure. To <strong>de</strong>scnbe the topology<br />

<strong>of</strong> such structures, we applied Cluj counting <strong>polynomial</strong>.<br />

Keyords: Ti02 <strong>nanostructures</strong>, molecular <strong>de</strong>sign, <strong>polynomial</strong> <strong><strong>de</strong>scription</strong><br />

INTRODUCTION<br />

After the discovery <strong>of</strong> carbon nanotubes many researchers addressed<br />

the question about the possible existence <strong>of</strong> nanotubular forms <strong>of</strong> other<br />

elements and they tned to obtain inorganic <strong>nanostructures</strong> [1-3]. Among<br />

numerous oXi<strong>de</strong> <strong>nanostructures</strong>, the titanium nanotubular matenals are <strong>of</strong><br />

high interest due to their chemical inertness, endurance, strong oxidizing<br />

power, large surface area, high photocatalytic activity, non-toxicity and low<br />

production cost. The application <strong>of</strong> Ti02 nanotubes to photocatalysis, in solar<br />

cells, as nanoscale materials for lithium-ion batteries and as gas-sensing<br />

matenal was discussed In the literature [4-10]. The nanotubes (TI02) were<br />

syntheSized uSing vanous precursors [11-17], carbon nanotubes, porous<br />

alumlna or polymer membranes as templates [8-24], fabncatlon by anodlc<br />

oxidation <strong>of</strong> Ti [25-27], sol-gel technique [28-32] and sonochemical<br />

syntheSIS [33]. Mo<strong>de</strong>ls <strong>of</strong> pOSSible growth mechanisms <strong>of</strong> titanium nanotubes<br />

are discussed [16, 17, 32] but the <strong>de</strong>tails <strong>of</strong> the atomic structure <strong>of</strong> the<br />

nanotube walls and their stacking mo<strong>de</strong> are unknown. TI02 NTs are<br />

semiconductors with a wi<strong>de</strong> band gap and their stability increases with<br />

Increasing <strong>of</strong> their diameters. The numerous studies for the use <strong>of</strong> nanotubular<br />

titania in technological applications require a lot <strong>of</strong> theoretical studies <strong>of</strong><br />

stability and other properties <strong>of</strong> such structures. Theoretical studies on the<br />

a Universitatea Babe§-Bolyai, Facultatea <strong>de</strong> <strong>Chimie</strong> §i Inginerie Chimica, Str. Kogalniceanu,<br />

Nr. 1, RO-400084 Cluj-Napoca, Romania, diu<strong>de</strong>a@chem.ubb<strong>cluj</strong>.ro


ANIELA ELENA VIZITILJ AND MIRCEA V DIlJDEA<br />

stability and electronic charactenstlcs <strong>of</strong> TI02 <strong>nanostructures</strong> were presented<br />

in ref. [34, -36]. In the present paper we report a new method to <strong>de</strong>sign<br />

Ti02 <strong>nanostructures</strong> using map operations, and then we <strong>de</strong>scribe their<br />

topology by the CluJ <strong>polynomial</strong>.<br />

RESULTS AND DISCUSSION<br />

Mo<strong>de</strong>ls and computational method<br />

The titanium <strong>nanostructures</strong> can be achieved by map operations:<br />

the sequence consists <strong>of</strong> DU[Med(M )], applied on the polyhex ton or tubes<br />

(Figure 1).<br />

(a) Du[Med(TOH(8,8))] (b) Du[Med(H832)]<br />

Figure 1. Ti02 nanotube (a) and nanotorus (b).<br />

A map M is a combinatorial representation <strong>of</strong> a (closed) surface [37,38].<br />

Several transformations (I.e., operations) on maps are known and used for<br />

various purposes.<br />

Let us <strong>de</strong>note in a map: v - the number <strong>of</strong> vertices, e - the number<br />

<strong>of</strong> edges, f - the number <strong>of</strong> faces and d - the vertex <strong>de</strong>gree. A subscript "0"<br />

Will mark the corresponding parameters In the parent map.<br />

Recall some baSIC relations In a map:<br />

Is Is =2e<br />

where Vd and fs are the number <strong>of</strong> vertices <strong>of</strong> <strong>de</strong>gree d and number <strong>of</strong> sgonal<br />

faces, respectively.<br />

174<br />

(1 )<br />

(2)


ClUJ POLYNOMIAL DESCRIPTION OF TI02 NANOSTRUCTURES<br />

Medial Me<br />

Medial is achieved by putting new vertices in the middle <strong>of</strong> the<br />

onglnal edges [38]. JOin two vertices If the edges span an angle (and are<br />

consecutive within a rotation path around their common vertex in M).<br />

Medial is a 4-valent graph and Me(M) = Me(Du(M)), as illustrated in Figure<br />

2. The transformed map parameters are:<br />

The medial operation rotates parent s-gonal faces by TT/S. Points in<br />

the medial represent onglnal edges, thus this property can be used for<br />

topological analysis <strong>of</strong> edges in the parent polyhedron. Similarly, the points<br />

in dual give information on the topology <strong>of</strong> parent faces.<br />

(a) (b)Me[TUH(8,4)] (b)Me[H(8,8)]<br />

Dual Du<br />

Figure 2. Medlals <strong>of</strong> a polyhex nanotube.<br />

The duallzatlon <strong>of</strong> a map starts by locating a pOint In the center <strong>of</strong><br />

each face. Next, two such points are joined if their corresponding faces<br />

share a common edge. It IS the (POInCarE3) dual Du(M). The vertices <strong>of</strong><br />

Du(M) represent the faces <strong>of</strong> M and vIce-versa [38].<br />

Figure 3. The duals <strong>of</strong> the Platonic polyhedra.<br />

(3)<br />

175


180<br />

ANIELA ELENA VIZITILJ AND MIRCEA V DIlJDEA<br />

34. V. V. Ivanovskaya, A. N. Enyashln, A. L. Ivanovskll, Men<strong>de</strong>/eev Gomm. 2003,<br />

13,5.<br />

35. V. V. Ivanovskaya, A. N. Enyashln, A. L. Ivanovskll, Russ. J. /norg. Chem.<br />

2004,49,1.<br />

36.A. N. Enyashin, G. Seifert, Phys. Stat. Sol. 2005 , 242, 7, 1361.<br />

37.P. W. Fowler and T. Pisanski, J. Chem. Soc. Faraday Trans., 1994, 90,2865.<br />

38.T. Pisanski and M. Randic, in Geometry at Work, (Ed. C. A. Gorini) M. A.<br />

A. Notes, 2000, 53, 174.<br />

39.M.V. Diu<strong>de</strong>a, I. Gutman, L. Jantschi, Molecular Topology. Nova Science,<br />

Huntington, New York, 2001.<br />

40.M. V. Dlu<strong>de</strong>a, Cluj MatriX Invariants. J. Ghem. /nt. Gomput. SC!. 1997, 37,300.<br />

41.M. V. Diu<strong>de</strong>a, B. Parv, I. Gutman, Detour-Cluj Matrix and Derived Invariants.<br />

J. Ghem. /n'- Gomput. SC!. 1997, 37, 1101.<br />

42.M. V. Dlu<strong>de</strong>a, G. Katona, I. LukoVltS, N. Trlnajstlc, Detour and Cluj-Detour<br />

Indices. Groat. Ghem. Acta, 1998, 71,459.<br />

43.D. Opris, M. V. Diu<strong>de</strong>a, Pepti<strong>de</strong> Property Mo<strong>de</strong>ling by Cluj Indices.<br />

SARIOSAR Env!ron. Res. 2001, 12,159.<br />

44.M. V. Dlu<strong>de</strong>a, Cluj Polynomials. Stud!a Un/v. "Babes-Ba/rat': 2002, 47, 131.<br />

45.0. Orsu, M. V. Dlu<strong>de</strong>a, TOPOCLOJ s<strong>of</strong>tware program, Babes-Bolyal<br />

University, Cluj, 2005; Available, on line at http://chem.ubb<strong>cluj</strong>.ro/-diu<strong>de</strong>a.<br />

46.M. V. Dlu<strong>de</strong>a, A. E. VIZltIU, D. Janezlc, Cluj and related <strong>polynomial</strong>s applied<br />

in correlating studies, J. Chem. Int. Mo<strong>de</strong>l., 2007, 47(3), 864.<br />

47. I. Gutman, S. Klavzar, An AlgOrithm for the Calculation <strong>of</strong> the Szeged In<strong>de</strong>x <strong>of</strong><br />

Benzenold Hydrocarbons. J. Ghem. /n'- Gomput. SC!. 1995, 35, 1011.<br />

48.M. V. Dlu<strong>de</strong>a, In: M. V. Dlu<strong>de</strong>a, Ed., Nanostructures-Novel Architecture,<br />

NOVA, New York, 2005,111.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!