20.07.2013 Views

Smart Power IC-Entwicklung für die Automobiltechnik - HTL Wien 10

Smart Power IC-Entwicklung für die Automobiltechnik - HTL Wien 10

Smart Power IC-Entwicklung für die Automobiltechnik - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Seite 1 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

<strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>- <strong>Entwicklung</strong><br />

<strong>für</strong> <strong>die</strong> <strong>Automobiltechnik</strong><br />

Heinz Zitta<br />

Infineon Technologies Austria<br />

Automotive <strong>Power</strong><br />

heinz.zitta@infineon.com<br />

Inhalt<br />

Einleitung - Einsatz integrierter Schaltungen im Automobil<br />

Halbleiter Technologien <strong>für</strong> <strong>Smart</strong> <strong>Power</strong> Schaltungen<br />

Besondere Anforderungen beim Betrieb im Automobil<br />

Schaltungstechnik-Beispiele <strong>für</strong> <strong>Smart</strong> <strong>Power</strong> Switches<br />

Anforderungen an Gehäuse/Montagetechnik - Beispiele<br />

Systemintegration von <strong>Smart</strong> <strong>Power</strong> Produkten<br />

Zusammenfassung<br />

Seite 2 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 1


Seite 3 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Trends<br />

Automotive <strong>Power</strong> - Einsatzgebiete<br />

<strong>Power</strong>train – „Antriebsstrang“<br />

Safety<br />

o Motorsteuerung, Engine Management<br />

o Einspritzventile, Zü ndung<br />

o Getriebesteuerung<br />

o ABS, ASR, ESP (Elektron. Stabilitäts-Progr.)<br />

o Airbag<br />

„B o d y“ – Alles, was in der Karosserie ist<br />

o Lampenschalter (hoher „inrush-current “)<br />

o Fensterheber, Zentralverrieg. (T ü rmodul)<br />

o Relais, Signallampen, LED-Ansteuerung<br />

• Ersatz aller elektromechanischen durch elektronische Komponenten<br />

• “ Silicon instead of heatsink” Niedrige Rds- on sparen Verlustleistung<br />

• Verstärkter Einsatz von Bus- Systemen, Car - Communication<br />

• H öherer Komfort erhö ht prozentuellen Elektronik- Anteil im Auto<br />

• “ X by wire” Ersatz von Mechanik, Hydraulik durch Elektroantrieb<br />

• Ü bergang zu 42V Bordnetz? (war geplant, kommt wohl nicht mehr ...)<br />

• System on Chip<br />

• Selbsttest, Diagnosesysteme<br />

• Treibstoffverbrauchsreduktion (z.B. Benzin Direkteinspritzung)<br />

• Hohe Anforderung an Zuverlässigkeit f ür elektron. Komponenten<br />

• Abkehr von reinen kundenspezifischen Lös u n g e n :<br />

• Custom - specific<br />

• - > AS<strong>IC</strong> (Application Specific <strong>IC</strong>)<br />

• -> ASSP (Application Specific Standard Product)<br />

• - > Standard ?<br />

Seite 4 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 2


Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Einleitung - Einsatz integrierter Schaltungen im Automobil<br />

Halbleiter Technologien <strong>für</strong> <strong>Smart</strong> <strong>Power</strong> Schaltungen<br />

Besondere Anforderungen beim Betrieb im Automobil<br />

Schaltungstechnik-Beispiele f ü r <strong>Smart</strong> <strong>Power</strong> Switches<br />

Anforderungen an Gehä use/Montagetechnik - Beispiele<br />

Systemintegration von <strong>Smart</strong> <strong>Power</strong> Produkten<br />

Zusammenfassung<br />

Seite 5 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Technologie Evolution: Shrinking Possibility Limited for <strong>Power</strong> Technologies<br />

W.Ziebert, „Technical and Economical Trends in Microelectronic “. ESSCIRC 2007. München<br />

Seite 6 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 3


ts 1<br />

n-substrate<br />

n-well<br />

ts 2<br />

p-substrat<br />

substrat<br />

<strong>Smart</strong> <strong>Power</strong> Technologien<br />

Klassifizierung entsprechend der angewandten Isolation:<br />

• Selbst-Isolation<br />

Diese Isolationstechnik ist von den CMOS Prozessen her bekannt. Es ist <strong>die</strong><br />

einfachste Art, benachbarte Bauteile werden nur durch Anlegen vo n<br />

S p a n n u n g e n e n t s p r e c h e n d e r P o l a r i t ä t im Vergleich zum Substratpotential oder<br />

v o m W a n n e n -Potential voneinander isoliert.<br />

<strong>Smart</strong> <strong>Power</strong> Selbstisolations Prozesse verwenden n-Substrat u. p-W a n n e n .<br />

• Sperrschicht Isolation (Junction -Isolation)<br />

Diese Art der Isolation ist von bipolaren Prozessen her bekannt. Auf ein p-<br />

Substrat wird eine n-dotierte Epischicht aufgebracht. Isolation der Bauteile<br />

innerhalb der Epischicht durch zusä tzliche, in Sperrschicht betriebene p-<br />

Diffusionen. Diese Art von <strong>Smart</strong> <strong>Power</strong> Prozessen benö tigt einen komplexeren<br />

Prozessaufbau (=hö her Maskenanzahl) als der Selbstisolations-Prozess, aber ist<br />

vielseitiger im Hinblick auf m ögliche Bauteile, einschließ l i c h b i p o l a r e r<br />

Komponenten. (Infineon: SPT, allgemein bekannt als BCD-P rozess)<br />

• Dielelektrische Isolation (SOI Silicon-o n -Insulator)<br />

E i n e „echte“ Isolation mittels Oxid.<br />

Beste Performance hinsichtlich Parasiten und Hochvolt -Festigkeit, jedoch am<br />

teuersten und daher derzeit nicht Mainstream f ü r automotive Produkte.<br />

Thermisches Verhalten: Si-Oxid ist ein deutlich schlechterer W ärmeleiter als Si.<br />

Seite 7 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

+Vdd<br />

n-well<br />

Self-Isolation<br />

device 1 device 2<br />

p p p p<br />

n- substrate<br />

It is the simplest solution and is used in each MOS process. Iso lation of<br />

neighbouring components is only done by applying the right voltages to the<br />

components in respect to the substrat or well connection. The sm art power self -<br />

isolation processes are based on a n-substrate/p-well CMOS approach.<br />

Apply a positive voltage to the n-substrate to allow isolation of p-type devices.<br />

Seite 8 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 4


Gnd (-)<br />

p<br />

iso<br />

p<br />

n- Epi<br />

Junction-Isolation<br />

device 1 device 2<br />

p - substrat<br />

p<br />

This kind of isolation is known from bipolar processes. A n-type epitaxial<br />

layer is grown on a p-type substrat. The components are inside the epi -<br />

layer and they are isolated by revers biased junctions realized by pdiffusions.<br />

This kind of smart power process needs a higher mask count as<br />

the self isolation approach, but is more flexible in the availab le devices.<br />

Substrate must be connected to GND or most negative voltage to<br />

enable the isolation.<br />

Seite 9 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

n<br />

p<br />

device 1 device 2<br />

substrat<br />

Seite <strong>10</strong> H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

p<br />

Dielectric-Isolation<br />

p<br />

n<br />

n<br />

n<br />

n<br />

p<br />

oxid<br />

isolation<br />

This isolation is r e a l l y d o n e with an insulator (oxid ).<br />

It would give the best results in avoiding parasitics and f o r high voltage capability.<br />

For power circuits you would have to calculate, that the thermal conductivity o f<br />

oxid is v e r y l o w compared to silicon. Due to the fabrication process it is the m o s t<br />

expensive technology and therefore not (yet) the mainstream f o r smart power<br />

circuits.<br />

• 5


n<br />

p<br />

device 1 device 2<br />

p - substrate<br />

Partial Dielectric-Isolation<br />

Deep Trench Isolation (DTI)<br />

A oxid isolation o n l y to separate the n- wells is easier to realize than a f u l l <strong>die</strong>lectric<br />

isolation, it could be done with deep trench etching . The advantage is a smaller<br />

chip-size because o f less area wasted f o r the well- isolation compared to the<br />

junction-isolation.<br />

Against substrate there is no advantage related to parasitics („reverse current<br />

problem “)<br />

Seite 11 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

S G<br />

D<br />

Gate<br />

p- channel n- channel<br />

D r a i n<br />

Source<br />

S G<br />

D S G<br />

D<br />

B<br />

p +<br />

n- Epi<br />

n+ Substrat<br />

p-<br />

D<br />

n +<br />

G Bulk<br />

S<br />

p<br />

n<br />

n<br />

CMOS Self-Isolation<br />

oxid<br />

isolation<br />

Seite 12 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

+<br />

s u b s t r a t<br />

n- channel<br />

p- channel<br />

Correct biasing of all parasitic diodes<br />

is necessary to maintain self - isolation<br />

• 6


MOS: expand voltage capability<br />

low voltage<br />

MOS<br />

p- channel<br />

high voltage<br />

MOS<br />

S G<br />

D<br />

S G<br />

D<br />

S G<br />

D<br />

p + L p +<br />

L<br />

p + p-<br />

p +<br />

n<br />

Higher voltage capability requires longer channels for lateral M OS Devices<br />

- > increasing chip- area, increasing Rds- on<br />

introduce drain extension as a better solution:<br />

a h i g h- ohmic (low doped) diffusion of same type (n or p) as device typ ( n o r p - channel)<br />

increase gate- oxid thickness near drain (allow high drain- source voltage)<br />

Seite 13 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

LDD High Voltage Device: Electric Field<br />

VS=0V VG=+5V VD=+50V<br />

drain extension<br />

Lightly doped drain<br />

extension area<br />

reduces the electric<br />

field strength in the<br />

channel region.<br />

Also called“RESURF“<br />

device<br />

„reduced surface<br />

field“<br />

source:<br />

Balan, High voltage devices and<br />

circuits in standard CMOS<br />

technologies<br />

Seite 14 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 7


low voltage<br />

CMOS<br />

p- Kanal n- Kanal<br />

S<br />

G<br />

D<br />

B<br />

S G<br />

D<br />

p +<br />

CMOS: Low Voltage and High Voltage Devices<br />

can be on same chip<br />

p-<br />

n +<br />

n- Epi<br />

n+ Substrat<br />

p- Kanal<br />

S G<br />

D<br />

p + p-<br />

high voltage<br />

MOS<br />

Seite 15 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

p +<br />

n- Kanal<br />

S G<br />

D<br />

p-<br />

n + n-<br />

Insert a lightly doped drain diffusion for<br />

higher voltage capability (drain extension)<br />

• p- f o r P -channel device<br />

• n- f o r N -channel device Double diffusion MOS = DMOS<br />

(lateral DMOS)<br />

S<br />

p- n + p +<br />

n- epi<br />

n+ substrate<br />

G<br />

Current flow<br />

D r a i n<br />

Vertical DMOS<br />

Seite 16 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

n +<br />

Use the epi- l a y e r<br />

a s d r a i n e x t e n s i o n .<br />

The vertical DMOS is born!<br />

d Epi doping and thickness can be<br />

adjusted to the required<br />

breakdown voltage vs. Rds-on<br />

thumb- r u l e : d = 1 u m e a c h 1 0 V<br />

D r a i n = S u b s t r a t +<br />

Gate<br />

Source<br />

• 8


p +<br />

Gate<br />

low voltage<br />

CMOS<br />

p- Kanal n- Kanal<br />

p- Kanal<br />

n- Kanal<br />

S G<br />

D<br />

B<br />

S G<br />

D<br />

S G<br />

D<br />

S G<br />

D<br />

S<br />

G<br />

D r a i n<br />

Source<br />

Vertical SMART <strong>Power</strong> Technologie<br />

CMOSDMOS, SMART = Selfisolation<br />

n +<br />

p-<br />

n- Epi<br />

n+ Substrat<br />

D<br />

G Bulk<br />

S<br />

p + p-<br />

high voltage<br />

MOS<br />

p +<br />

p-<br />

n + n-<br />

Vertical D M O S<br />

<strong>Power</strong> Transistor<br />

+ Vbatt<br />

D r a i n<br />

D r a i n = S u b s t r a t +<br />

Seite 17 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

n +<br />

p- n + p +<br />

Gate<br />

Highside Switch: Vertical SMART Technology<br />

Source<br />

DMOS<br />

2 x 90 mOhm<br />

12 A / 60 V<br />

Analog MOS<br />

Diagnostic<br />

Protection<br />

Seite 18 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 9


p +<br />

n- epi- l a y e r<br />

p Substrat<br />

All components are in<br />

n- epi- w e l l s , i s o l a t e d b y<br />

p + i s o l a t i o n d i f f u s i o n s<br />

Bipolar Technology<br />

Junction Isolation<br />

Bipolar<br />

npn- T r a n s i s t o r<br />

C B<br />

E<br />

p +<br />

n +<br />

p<br />

n-<br />

n +<br />

p+<br />

Isolation s i n k e r<br />

buried l a y e r<br />

C B<br />

E<br />

pnp- T r a n s i s t o r ( l a t e r a l )<br />

B C E<br />

n- p p+<br />

C E<br />

Seite 19 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

B<br />

CMOS<br />

p- Kanal n- Kanal<br />

Bipolar<br />

npn- T r a n s i s t o r<br />

DMOS<br />

Vertical " U p d r a i n "<br />

<strong>Power</strong> Transistor<br />

S G<br />

D<br />

B<br />

S G<br />

D<br />

C<br />

B<br />

E D<br />

S<br />

G<br />

p +<br />

at GND level ( - )<br />

„Updrain“-<strong>Smart</strong> <strong>Power</strong> Technologie<br />

BIPOLARCMOSDMOS, SPT = Junction Isolation<br />

n +<br />

p Substrat<br />

p-<br />

n- Epi<br />

S<br />

p -K a n a l<br />

D<br />

D<br />

n -K a n a l<br />

S<br />

n +<br />

p<br />

p + n-<br />

n +<br />

p +<br />

Isolation s i n k e r<br />

buried l a y e r<br />

B<br />

Seite 20 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

C<br />

E<br />

B<br />

p- n + p +<br />

n +<br />

Drain: no restrictions<br />

Gate<br />

Source<br />

p +<br />

• <strong>10</strong>


Source: <strong>Smart</strong> <strong>Power</strong> Ics, Technologies and Applications, B. Murari et al (eds), Springer Verlag 1995, ISBN 3-540-60332-8<br />

Seite 21 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

current<br />

flow<br />

symbol<br />

DMOS Cross-section<br />

IGBT Insulated Gate Bipolar Transistor<br />

electrical<br />

subcircuit<br />

Isolation is done with two<br />

implantations:<br />

bottom isolation implanted<br />

before growing the<br />

epitaxial layer, top isolation<br />

implanted from surface<br />

included parasitics<br />

Seite 22 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 11


IGBT Insulated Gate Bipolar Transistor<br />

The IGBT combines the advantage of an easy to control MOS gate structure<br />

with the low conduction loss of a bipolar transistor.<br />

Although the symbol shows a npn-transistor, controlled by a gate, in reality it<br />

is better understood as a pnp-transistor, which base current is controlled by a<br />

n-channel MOS transistor. Therefore voltage drop in foreward direction is<br />

always higher than a bipolar diode.<br />

If we look at included parasitics we will find a thyristor structure, formed from<br />

npn and pnp device. Under normal operation conditions this thyristor is not<br />

activated.<br />

Resulting we can define the IGBT as a device between power-MOS and<br />

thyristor.<br />

The Non-Punch-Through (NPT) IGBT has a low doped n- region, designed to<br />

support the whole blocking voltage of the device. The Punch-Through (PT)<br />

concept uses an n+ -doped layer which seperates the active region of the<br />

device from the thick backside p+ emitter.<br />

A drawback of the IGBT is its lack of reverse blocking capabilit y (compared to<br />

bipolar) or the absence of a body diode (compared to MOS).<br />

Seite 23 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Compare Characteristics: MOS-FET / IGBT<br />

SIPMOS BUZ 342<br />

V DS I D RDS( on)<br />

50 V 60 A 0,01 Ohm<br />

IGBT BUP 604<br />

V CE I C V CE( sat)<br />

600 V 80 A 2V (@50A)<br />

T j=25°C<br />

Seite 24 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 12


Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

R on · A (W*mm 2 )<br />

Use the best suited technology for cost<br />

effective automotive power products<br />

discrete power transistor t o s y s t e m - i n t e g r a t i o n<br />

MOSFET<br />

/IGBT<br />

TEMPFET<br />

protected<br />

PROFET<br />

fully protected<br />

<strong>Smart</strong><br />

<strong>Power</strong> <strong>IC</strong>’s<br />

Multi-Channel Switches<br />

Bridges<br />

Driver-<strong>IC</strong>‘s<br />

Voltage Regulators<br />

<strong>Power</strong><br />

System <strong>IC</strong>’s<br />

<strong>Smart</strong> <strong>Power</strong><br />

System Integration:<br />

ABS / AIRBAG<br />

<strong>Power</strong>train<br />

Embedded<br />

<strong>Power</strong> Products<br />

single package<br />

smart power and<br />

controller integration<br />

low-side-Switch<br />

high-side-Switch<br />

Overload<br />

Integrated charge<br />

protection<br />

pump<br />

CCAN/LIN Transceiver<br />

Thermal shutdown<br />

Overload protectionDC/DC<br />

Converter<br />

Current limitation smart IGBT<br />

HITFET<br />

Short-circuit<br />

C u r r e n t limitation<br />

protection<br />

Short-circuit<br />

protection<br />

Overvoltage<br />

Overvoltage<br />

protection<br />

protection<br />

Open load detection<br />

O p e n load<br />

Diagnostic feedback<br />

detection<br />

Multi-Channel<br />

SFET/IGBT <strong>Smart</strong>&SFET <strong>Smart</strong> BIPOLAR, SPT,IGBT SPT / CMOS<br />

Seite 25 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

1990 1995 2000<br />

lithography<br />

R-on Reduction of <strong>Smart</strong> <strong>Power</strong> Technologies<br />

vertical updrain<br />

60 V<br />

90 V<br />

2.0 µm 1.2 µm<br />

0.5 µm<br />

0.35 µm<br />

Seite 26 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

2005<br />

• 13


Seite 27 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

P o w e r m e t a l<br />

(Aluminum)<br />

Source<br />

C h a n n e l<br />

Poly(Gate)<br />

from Lateral to Trench-DMOS<br />

p-<br />

for further R-on*Area reduction<br />

Lateral High-Voltage MOS<br />

S D<br />

n + n- n +<br />

lateral<br />

channel<br />

lateral<br />

drift region<br />

Vertical Trench DMOS<br />

<strong>Power</strong>-Transistor in Trench-Technik<br />

Drain<br />

S<br />

D<br />

G<br />

vertical<br />

channel<br />

vertical<br />

drift region<br />

Seite 28 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 14


Self - Isolation<br />

Vertical <strong>Smart</strong><br />

Junction Isolation<br />

BCD, SPT<br />

Possible <strong>Power</strong> Output Configurations<br />

With Integrated <strong>Power</strong> Technologies<br />

High-Side<br />

Switch<br />

+ V s<br />

++<br />

Low-Side<br />

Switch<br />

1 channel +<br />

multi- ch. -<br />

Half-<br />

Bridge<br />

H - Bridge<br />

+ ++ +<br />

+<br />

Seite 29 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Four-f old smart power low-side switch in SPT-T e c h n o l o g y<br />

rated max. 3 A , 60 V each channel<br />

Analog:<br />

Driver,<br />

diagnostic and<br />

Protection<br />

DMOS<br />

It consists of the power DMOS, logic CMOS circuits and analog circuit<br />

realized in SPT-Technology (TLE 6220)<br />

Seite 30 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

CMOS Logic<br />

-<br />

-<br />

• 15


Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Einleitung - Einsatz integrierter Schaltungen im Automobil<br />

Halbleiter Technologien f ü r <strong>Smart</strong> <strong>Power</strong> Schaltungen<br />

Besondere Anforderungen beim Betrieb im Automobil<br />

Schaltungstechnik-Beispiele f ü r <strong>Smart</strong> <strong>Power</strong> Switches<br />

Anforderungen an Gehä use/Montagetechnik - Beispiele<br />

Systemintegration von <strong>Smart</strong> <strong>Power</strong> Produkten<br />

Zusammenfassung<br />

Seite 31 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Besondere Anforderungen beim Betrieb im Automobil<br />

• Hoher Spannungsbereich 5V .. 60 V (90V)<br />

• Hoher Temperaturbereich<br />

• - 40 °C .. + 150 °C voll getestet, jedes Device<br />

• 150 °C .. + 200 °C volle Funktion<br />

• > 200°C bis 300°C bei Überlast, kontrolliertes Abschalten<br />

• St ö runempfindlichkeit<br />

• Übersprechen (Kabelbä u m e )<br />

• EMV Einstrahlung (Susceptibility)<br />

• EMV Abstrahlung (Emission)<br />

• Hohe Qualitätsanforderungen<br />

• Zuverlä ssigkeit (Engine-Management)<br />

• Sicherheitsrelevanz (ABS, Airbag)<br />

Seite 32 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 16


Operating voltages in automotive applications ...<br />

42V <strong>Power</strong> Net<br />

12V 5<br />

7 18<br />

18<br />

30 nominal voltage 50<br />

12 24 36 48 60<br />

42<br />

Coresponding<br />

Wafer technology limit<br />

Seite 33 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

58<br />

60 75<br />

75<br />

75 90<br />

… is against the trend of downsizing micro-controller core voltages<br />

‡0,5µm


V<br />

12V<br />

-<strong>10</strong>0V<br />

Negative Voltage Transients can cause Reverse Current<br />

<strong>10</strong>%<br />

90%<br />

200ms<br />


Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Seite 37 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Vbat<br />

+ 12 .. 60V<br />

Logic<br />

IN<br />

Logic<br />

OUT<br />

V C C<br />

+ 5 V<br />

Einleitung - Einsatz integrierter Schaltungen im Automobil<br />

Halbleiter Technologien f ü r <strong>Smart</strong> <strong>Power</strong> Schaltungen<br />

Besondere Anforderungen beim Betrieb im Automobil<br />

Schaltungstechnik-Beispiele <strong>für</strong> <strong>Smart</strong> <strong>Power</strong> Switches<br />

Anforderungen an Gehä use/Montagetechnik - Beispiele<br />

Systemintegration von <strong>Smart</strong> <strong>Power</strong> Produkten<br />

Zusammenfassung<br />

R 1<br />

R 2<br />

I1<br />

<strong>IC</strong><br />

Q1<br />

I2<br />

M1 M2<br />

Block diagram of a <strong>Smart</strong> <strong>Power</strong> Switch<br />

Prestabilisation<br />

Voltage Regulator<br />

I/O Buf<br />

Digital<br />

Logic<br />

Parallel/<br />

Seriell<br />

Interface<br />

S P I<br />

C A N -Bus<br />

. . . . .<br />

Reference-Voltage<br />

& B i a s -Current<br />

Generation<br />

Internal S u p p l y<br />

Vref1<br />

Vref1<br />

Iref1<br />

Iref1<br />

Diagnostic & Protection<br />

Overlaod<br />

Overcurrent<br />

Overtemperature<br />

Open Load<br />

Gate Driver<br />

Slewrate -<br />

Control<br />

Seite 38 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

M3<br />

<strong>Power</strong><br />

DMOS<br />

• 19


Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Examples of Analog <strong>Smart</strong> <strong>Power</strong> Circuit Blocks<br />

Reference Voltage & Current Generation<br />

Bipolar transistor characteristic<br />

Bandgap reference circuit<br />

Diagnostic & Protection Circuits<br />

Temperature sensors<br />

Current measurement<br />

Overvoltage protection<br />

Open load detection<br />

Gate Driver & Slew-rate Control<br />

Low side<br />

High side<br />

Seite 39 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Voltage Reference: Bandgap Circuits<br />

Vref<br />

Seite 40 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 20


What characteristic can be used to generate a reference voltage?<br />

Vbe<br />

Bipolar MOS<br />

Base-emitter-voltage Vbe:<br />

depends on temperature, but is not<br />

sensitive to process variation.<br />

Bipolar device is the key<br />

component for accurate<br />

voltage reference circuits<br />

Vgs<br />

Gate-source-voltage Vgs:<br />

Depends strong on process variation<br />

MOS device based voltage<br />

reference circuits will not<br />

achieve high accuracy<br />

Seite 41 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I C<br />

1 mA<br />

<strong>10</strong>0 µ A<br />

Characteristic of bipolar transistor Ic = f (Vbe)<br />

0 , 2 0 , 4 0 , 6<br />

0 , 8<br />

I<br />

C<br />

V BE ⎛ ⎞<br />

⎜ Vt = I ⋅ ⎟<br />

S ⎜<br />

e −1<br />

⎟<br />

⎝ ⎠<br />

log(I C)<br />

linear scale logarithmic scale<br />

1 mA<br />

<strong>10</strong>0 µ A<br />

U BE [V]<br />

<strong>10</strong> µ A<br />

1 µ A<br />

I S<br />

k T<br />

Vt = mV C<br />

q<br />

⋅<br />

≈ 26 [ 25°<br />

]<br />

0 , 2 0 , 4 0 , 6<br />

0 , 8<br />

U BE [V]<br />

Seite 42 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 21


U BE<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

extended temp.range<br />

Bipolar Transistor: V BE = f (T)<br />

Temperature behaviour approx. - 2mV/K<br />

<strong>IC</strong>=<strong>10</strong>0µA<br />

<strong>IC</strong>=<strong>10</strong>µ A<br />

0 K<br />

- 273 C<br />

300 K 400 K<br />

Normal operating range for integrated circuits<br />

in a u t o m o t i v e applications<br />

-40 C 27 C<br />

150 175C<br />

Seite 43 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

log(Ic)<br />

1 mA<br />

<strong>10</strong>0 µ A<br />

<strong>10</strong> µ A<br />

1 µ A<br />

I S<br />

Calculation of Delta- Vbe<br />

0 , 2 0 , 4 0 , 6<br />

0 , 8<br />

Ic1<br />

Ic2<br />

ΔVBE<br />

U BE [V]<br />

absolute value of Vbe depends on transistor parameter Is,<br />

delta Vbe is independent of individual transistor parameter<br />

V BE ⎛ ⎞<br />

⎜ Vt = I ⋅ ⎟<br />

S ⎜<br />

e −1<br />

⎟<br />

⎝ ⎠<br />

Seite 44 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I<br />

V<br />

C<br />

BE<br />

ΔV<br />

⎛ I<br />

= ln<br />

⎜<br />

⎝ I<br />

BE<br />

C<br />

S<br />

⎛ I<br />

= ln<br />

⎜<br />

⎝ I<br />

⎞<br />

⎟ ⋅Vt<br />

⎠<br />

C 1<br />

C 2<br />

⎞<br />

⎟ ⋅Vt<br />

⎠<br />

T<br />

k T<br />

Vt = mV C<br />

q<br />

⋅<br />

≈ 26 [ 25°<br />

]<br />

−23<br />

k = 1, 38⋅<strong>10</strong> J/ K<br />

−19<br />

q = 1, 602⋅<strong>10</strong> As<br />

T [ ° C ] T [ K ] VT [mV]<br />

- 4 0 2 3 3 20,1<br />

2 5 2 9 8 25,7<br />

1 0 0 3 7 3 32,1<br />

1 5 0 4 2 3 36,4<br />

2 0 0 4 7 3 40,7<br />

• 22


V REF<br />

Temperature- compensation of Vbe voltage<br />

Vbe<br />

Δ Vbe<br />

T<br />

T<br />

25 C 150 C<br />

Seite 45 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

-40 C<br />

Vref = const.<br />

The negative temperature dependence of Vbe can be compensated<br />

by the positive temperature dependence of delta-Vbe<br />

V BE2<br />

V BE1<br />

V R1<br />

V R2<br />

Temperature-constant Reference Voltage<br />

“B andgap-Reference”<br />

Q1<br />

n : 1 Q2<br />

R1<br />

R2<br />

+Vdd<br />

Q3 Q4<br />

I1 I2 C1<br />

Q5<br />

R3<br />

R4<br />

Seite 46 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

V REF<br />

1,2<br />

0,6<br />

Vbe<br />

Δ Vbe<br />

V REF<br />

-40 C<br />

25 C<br />

T<br />

Vbe<br />

Δ<br />

V BE2<br />

V R2<br />

Vbe<br />

125 C<br />

T<br />

T<br />

T<br />

• 23


Calculation of b a n d g a p reference circuit<br />

Assumption: I1 =I2, this i s done b y current mirror Q3,Q4.<br />

Q1, Q2 have different emitter areas (AE) with AE(Q1) > AE(Q2) .<br />

Ratio n i s choosen as integer.<br />

If collector-currents are equal , the base-emitter-voltages (V BE) of Q1, Q2 are different.<br />

Δ<br />

V BE<br />

= Vt ⋅ ln<br />

V R 1 = Δ V BE<br />

( n )<br />

=<br />

I<br />

1<br />

⋅ R<br />

1<br />

AE( Q1)<br />

n =<br />

AE( Q2)<br />

k<br />

Vt<br />

q T = ⋅<br />

R 2<br />

V R 2 = ( I 1 + I 2 ) ⋅ R 2 = 2 ⋅ I 1 ⋅ R 2 = 2 ⋅ ⋅ Δ V<br />

R<br />

VREF = VBE<br />

2 + VR<br />

2<br />

= 1,<br />

20...<br />

1,<br />

25V<br />

Example:<br />

n=<strong>10</strong><br />

Δ V BE = 60 mV [ 25 C ]<br />

R2/R1 = 5<br />

V R 2 = 6 0 0 m V<br />

VBE2=600 m V<br />

V R E F = 1,2 V<br />

Voltage drop at R1 equals delta -V b e and has the s a m e positiv tc (temp.coefficient) as V t. So<br />

a l s o the voltage VR2 has the s a m e tc, the absolute value of V R 2 i s choosen to a value similar<br />

to V B E .<br />

T h i s leads to a compensation of the negative tc o f V B E over full temperature range. The<br />

resulting temperature error i s of 2nd order and i s i n practice lower than 1%. The best<br />

temperature compensation will be achieved if the voltage Vref i s adjusted to 1.2 - 1.25 V. The<br />

absolute value o f this reference voltage i s better than + /- 5% assuming all practical<br />

manufacturing tolerances<br />

Seite 47 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Ibias<br />

1<br />

for optimal<br />

BE<br />

temp.<br />

comp.<br />

Bandgap<br />

Reference<br />

Circuit<br />

Practical example of a<br />

circuit realized in a<br />

SPT (BCD)<br />

technology<br />

Seite 48 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 24


Startup- Problem of Bandgap- Reference Circuit<br />

I1 I2 C1<br />

Q5<br />

R3<br />

I1 I2<br />

Vref<br />

Q1<br />

n : 1 Q2<br />

R1<br />

R2<br />

+Vdd<br />

Q3 Q4<br />

R4<br />

V REF<br />

Seite 49 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

R1<br />

R2<br />

I2 I1<br />

V BG<br />

Current Mirror Q3/Q4 forces I1=I1,<br />

this defines the operating point.<br />

But there exists a second stable<br />

operating point: I1=I2=0<br />

A startup- circuit is required<br />

Adjustment of bandgap reference voltage<br />

Vref<br />

V r e f<br />

- 40°C - 25°C 150°C<br />

Adjusting the Vref by changing the value of the resistor ratio R1/R2 changes not only the<br />

output voltage but also the temperature behaviour.<br />

There exists one point with minimal temperature depedence (in pr actice < 1%)<br />

For bipolar technologies this optimal voltage is around 1,25V<br />

Adjustement can be done during wafer measurement, using „ zener - zapping“ or laser<br />

trimming.<br />

Seite 50 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

T<br />

• 25


Accuracy of voltage dividers (diffusion resistors)<br />

V1<br />

a) b)<br />

R 1<br />

R 2<br />

V2<br />

well connection<br />

V2/V1<br />

Seite 51 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

k<br />

k =<br />

R2<br />

R + R )<br />

( 1 2<br />

a) all resistors in one well – not suited for precision resistor divider<br />

b) each resistor in separate well – better accuracy<br />

Remark: this problem does not exist for polysilicon resistors<br />

Diffusion Resistor Voltage Divider - Layout<br />

R 1 R 2<br />

pp-<br />

p resistor<br />

n- well<br />

resistor p<br />

p<br />

presistor<br />

n- well<br />

p<br />

presistor<br />

n- well<br />

Seite 52 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

p<br />

V1<br />

a<br />

b<br />

a)<br />

all resistors in one well:<br />

R2 sees a higher voltage in<br />

respect to the n- well -> t e n d s<br />

to be highohmic compared to<br />

R1, caused by the backgate<br />

effect.<br />

b)<br />

each transistor<br />

in separate wells:<br />

better for accurate<br />

matching<br />

• 26


CMOS Compatible Bandgap Reference<br />

If in a CMOS process no real npn is available, u s e t h e „ substrat- npn“ , which always<br />

is available in a p- well CMOS technology, as bipolar reference .<br />

e.g . i n the <strong>Smart</strong> technology this s u b s t r a t- npn exists.<br />

The collector is f i x e d t o + Vbat ( = substrat in that technologies), so you cannot u s e<br />

the npn as amplifier . You h a v e only free access to base and emitter , which is enough<br />

to use the emitter - scaling for t h e D e l t a- Vbe principle.<br />

Amplifier has t o b e d o n e in MOS which will cause m o r e offset as a pure bipolar<br />

solution .<br />

p- Kanal n- Kanal<br />

npn<br />

S G<br />

D<br />

B<br />

S G<br />

D<br />

E<br />

B<br />

+Vbat = Substrat<br />

p +<br />

n +<br />

p-<br />

CMOS p- well process<br />

e.g . logic p a r t of <strong>Smart</strong><br />

n Substrat<br />

C<br />

Seite 53 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Bandgap reference with all npn-collectors connected to VDD<br />

+Vdd = Substrat (for p- well CMOS)<br />

Seite 54 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Vref<br />

B<br />

M O S O p a m p<br />

1) This is a possibility solution to realize a bandgap reference in a CMOS<br />

technology<br />

take care of opamp offset<br />

2) This circuit is robust against leakage currents and other parasitic currents at the<br />

bipolar collectors. So it can also be used with bipolars in the BCD process to<br />

improve robustness.<br />

C<br />

E<br />

• 27


M 1 M 2<br />

1 : m<br />

I1 I2 I3<br />

Q2<br />

R3<br />

n : 1<br />

Current - Reference<br />

based on Delta -Vbe<br />

Q1<br />

M 3<br />

I f M 1 = M 2 -> I1 = I2<br />

ΔVBE<br />

Vt ⋅ln(<br />

n)<br />

I1 = =<br />

R R1<br />

Seite 55 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

1<br />

If M1, M2 not equal: M2/M1 = m<br />

Ratio m acts as multiplication-factor:<br />

ΔV<br />

BE Vt ⋅ ln( n ⋅ m )<br />

I 1 = =<br />

R R1<br />

1<br />

Temperature behaviour:<br />

A resistor R3 with positive temp.coefficient (e.g. diffusion resistor)<br />

would give a temperature compensation of ΔVBE<br />

Diagnostic and Protection of <strong>Smart</strong> <strong>Power</strong> Switches<br />

o n<br />

status<br />

reset<br />

feedback<br />

- loop<br />

Overcurrent<br />

Overtemperature<br />

Overvoltage<br />

Open Load<br />

measure<br />

switch - o f f<br />

latch<br />

This is really the „<strong>Smart</strong>“ part of <strong>Smart</strong> <strong>Power</strong> devices<br />

Seite 56 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

logic<br />

• 28


C<br />

200<br />

150<br />

<strong>10</strong>0<br />

50<br />

K<br />

450<br />

400<br />

350<br />

300<br />

Temperature Sensors<br />

Leakage current detection<br />

Bipolar VBE monitoring<br />

Robustness aginst epi- well parasitics<br />

Position of temperature sensor in layout<br />

Seite 57 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Temperature Sensor (1)<br />

Using t h e leakage current as temperature signal<br />

R 1<br />

I C B<br />

V+<br />

I1<br />

V TMP<br />

Leakage current is very low at junction temperatures < 150°C. For higher temperatures it<br />

increases exponentially, doubling approx. for each <strong>10</strong>K of temper ature increase. Therefore<br />

the leakage current is a good indicator to detect an overtemperature in the range > 150°C in<br />

integrated smart power circuits. In a MOS technology the always available parasitic substrat<br />

npn can be used as bipolar device. The temperature threshold is only in a given range<br />

adjustable by the values of R1 and I1, the exact temperature is not predictable (in contrast to<br />

direct Vbe measurement)<br />

Seite 58 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I C B<br />

V TMP<br />

150 °C<br />

T<br />

T<br />

• 29


Temperature Sensor Circuit ( 2 )<br />

C o m p a r i n g of the bipolar VBE voltage with a stable reference<br />

R 1<br />

R 2<br />

I1<br />

<strong>IC</strong><br />

Q1<br />

I2<br />

M 1 M 2<br />

M 3<br />

V TMP<br />

V TMP<br />

Seite 59 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

U B E<br />

V R E F<br />

<strong>IC</strong>=I1+I2<br />

<strong>IC</strong>=I1<br />

Bipolar Bipolar characteristic of of approx. -2mV/K -2mV/K of of Vbe Vbe is is very very reliable<br />

reliable<br />

Hysterese<br />

Temperature Sensor with npn- Collector at VCC<br />

more robust against parasitics of bipolar collector (epi- well)<br />

Epi well (C of npn) is often affected by<br />

parasitics<br />

( reverse current, EMC,<br />

high temperature leakage currents ...)<br />

VCC<br />

Seite 60 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Vref<br />

Solution:<br />

T e m p -sensor with with npn-C at at supply line,<br />

line,<br />

emitter as as temp-information<br />

T<br />

T<br />

Hysteresis<br />

• 30


Temperature Sensor w i t h D e l a y<br />

Example of realised circuit<br />

temp-sensor comparator current-mirror<br />

delay logic-o u t<br />

Seite 61 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

D<br />

Positioning of Temperature Sensor in Layout<br />

B<br />

<strong>Power</strong>-DMOS<br />

A<br />

C<br />

E<br />

Where is the best position?<br />

A center<br />

B inside, but not center<br />

C outside, at long edge<br />

D outside, at short edge<br />

E outside, chiptemp.<br />

Use thermal simulation to define the temp.sensor threshold of the sensor<br />

to ensure protection in case of short circuit with max. power dis sipation<br />

Seite 62 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 31


Seite 63 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

3 0 0 µs<br />

Thermal Simulation<br />

Ch 3 Ch 6<br />

Ch 4<br />

Treiber Treiber Treiber<br />

Treiber Treiber Treiber<br />

Dynamic Thermal FEM Simulation<br />

1ms<br />

3ms<br />

Ch 5<br />

Heat source<br />

(junction)<br />

<strong>10</strong>ms<br />

Logik<br />

Ch 2<br />

Ch 1<br />

To decide size<br />

of power-DMOS<br />

(if not only<br />

R-on related)<br />

and best position<br />

of temperature<br />

sensors<br />

Chip cross section<br />

(through DMOS)<br />

Seite 64 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 32


Verifying of the the<br />

thermal model by<br />

i n f r a r e d t h e r m o g r a f y<br />

Seite 65 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

4<br />

K / W<br />

3<br />

2<br />

1<br />

T h e r m o g r a f i e ( 3 0 W , 1 4 7 ° C )<br />

F E M ( 4 . 5 W , 1 4 1 ° C )<br />

• Diagnostic & Protection Circuits<br />

– Temperature Sensors<br />

– Current Measurement<br />

– Overvoltage Protection<br />

– Openload Detection<br />

0<br />

- 2 - 1 0 1 mm<br />

2<br />

Seite 66 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 33


R1<br />

Current Measurement with Shunt- Resistor<br />

I LAST<br />

V 1<br />

V REF<br />

+<br />

-<br />

I OVL<br />

Requires a reference v o l t a g e<br />

I LAST<br />

V REF<br />

Seite 67 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

R1<br />

V 1<br />

I OVL<br />

Current Measurement with Shunt- Resistor<br />

Comparator uses Delta -V B E principle<br />

I LAST<br />

U R1<br />

I 1 I 2<br />

Q1 Q2 n : 1<br />

n = ratio of emitter areas Q1/Q2<br />

I OVL<br />

R1 a s aluminum -resistor results in a good first order temperature compensation of Vt (TK AL = 3,8 <strong>10</strong> - 3 )<br />

Seite 68 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I LAST<br />

U R1<br />

U S<br />

U IOVL<br />

Calculation of threshold U S :<br />

U V n I2<br />

S = t ⋅ln( ⋅ )<br />

I1<br />

z.B. I1 = I2 , n=2 U S = 18 mV bei 25C<br />

• 34


Current Measurement with Sense- Transistor<br />

Shunt -resistance in series to sense -cell<br />

I LAST<br />

I SENS<br />

M1 z : 1<br />

M2<br />

R1 U R1<br />

I 1 I 2<br />

Q1 Q2 n : 1<br />

Seite 69 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I OVL<br />

U<br />

R1<br />

1 R<br />

I LAST = ⋅<br />

z +<br />

The layout of the powerdevice (DMOS) in general consist of many cells (> <strong>10</strong>00). One or few<br />

cells are used as sense cells, the current ratio between main (M1) and sense DMOS (M2) is<br />

defined by the ratio z. The shunt resistor R1 must therefore not be dimensioned for the full load<br />

current and, as additional advantage, the shunt resistor does not generate a voltage drop in<br />

series to the power DMOS.<br />

M1<br />

Current Measurement with Sense- Transistor<br />

without Shunt -Resistor<br />

I LAST<br />

z : 1<br />

M2<br />

I REF<br />

VP<br />

I OVL<br />

VN VN<br />

VP = RdsOn( M1) ⋅ I LAST<br />

Here the voltage drop at the power-transistor itself is used as current measuring device. This<br />

allows the measurement of high currents (overload) and very low currents (open load<br />

detection), depending on the choosen value of the reference current.<br />

Seite 70 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I LAST<br />

VP<br />

I OVL<br />

VP = RdsOn ( M 2)<br />

⋅ I REF<br />

RdsOn( M 2 ) = z ⋅<br />

RdsOn( M 1)<br />

1<br />

• 35


+ Vbat<br />

D<br />

M1 M2<br />

z : 1<br />

S<br />

I Load<br />

S- sense<br />

OUT<br />

RLoad Rs<br />

(x Ampere) ( x m A )<br />

I FB<br />

CFB<br />

M3<br />

ON<br />

A / D<br />

µ C<br />

Current Feedback<br />

With sense-cells a given ratio of<br />

the load current can be mirrored<br />

to a pin as current feedback<br />

signal. To obtain the same drain<br />

voltage at the sense-DMOS as of<br />

the power-DMOS the gate<br />

voltage of an additional Transistor<br />

M3 in series to the sens DMOS<br />

M2 is controlled by a regulationloop.<br />

Current can than be acurate<br />

measured in application by using<br />

the A/D port of a µC<br />

Note: For a vertical technology (Highside<br />

Switch) the Sens Ratio of DMOS cells is<br />

very accurate, for updrain DMOS (BCD) the<br />

ratio of few cells to a large DMOS is not so<br />

good defined. That, and also offset of<br />

opamp can limit accuracy to approx. <strong>10</strong>% .<br />

Seite 71 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

• Diagnostic & Protection<br />

Circuits<br />

– Temperature Sensors<br />

– Current Measurement<br />

– Overvoltage Protection<br />

– Openload Detection<br />

Seite 72 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 36


Freewheeling diode<br />

disadvantage:<br />

switch off delay<br />

Circuit measures against overvoltages<br />

caused by switching inductances<br />

Clamping with<br />

external voltage<br />

<strong>Power</strong> transistor is<br />

switched on at high<br />

voltages - limits voltage<br />

like a power Z-diode<br />

Seite 73 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Overvoltage protection - Switching of inductive loads<br />

Integrating the Z-diode into the smart power device<br />

U IN<br />

I O U T<br />

U O U T<br />

U S T<br />

t o n<br />

I OpenLoad<br />

t A Z<br />

Current Imax at switch-off depends on turn-o n t i m e .<br />

i f t o n > > t i m e-constant L/R than imax is only defined<br />

by ohmic resistor R of coil<br />

I m a x<br />

Seite 74 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

U Z<br />

V S<br />

T i m e t AZ can be calculated from amount of<br />

energy which is stored in the inductance.<br />

E m<br />

L I<br />

=<br />

Set magnetic energy equal to electrical<br />

energy:<br />

2<br />

⋅ max<br />

2<br />

⎛<br />

I = I ⋅ ⎜ − e<br />

⎝<br />

IN<br />

∫<br />

( )<br />

E = I ⋅ U − V ⋅ dt<br />

el out z s<br />

⎞<br />

⎠<br />

Vz<br />

V<br />

R<br />

R+L<br />

Vs<br />

t<br />

−<br />

τ<br />

max 1 ⎟<br />

τ = L<br />

S<br />

I max =<br />

R<br />

I OUT<br />

• 37


Clamping with slew rate controlled soft clipping<br />

Reference<br />

Voltage<br />

Vref<br />

> 70V<br />

O F F<br />

> 85V<br />

<strong>Power</strong><br />

DMOS<br />

Seite 75 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Clamping voltage defined by<br />

bandgap ref, not with z-diodes<br />

+<br />

+<br />

R e f -voltage and comparators have to be supplied via drain to guarantee clamping<br />

function in case of loosing or missing supply voltage<br />

• Diagnostic & Protection Circuits<br />

– Temperature Sensors<br />

– Current Measurement<br />

– Overvoltage Protection<br />

– Openload Detection<br />

Seite 76 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 38


Open Load Diagnostic (at OFF)<br />

To detect open load condition the output voltage is measured at off -state.<br />

A pull down current (or resistor) is used to pull down the output in case of<br />

an open load (broken line). This pull down device alway is seen l i k e a<br />

“leakage” current during off -state. Therefore a switch to cut off this current<br />

(e.g. in reset-mode) should be foreseen to enable real leakage control of<br />

power DMOS.<br />

Open<br />

Load<br />

Ipd<br />

e.g. <strong>10</strong>0 uA<br />

V r e f<br />

3 V<br />

+ V b a t<br />

R L<br />

o p e n ,<br />

broken<br />

Open load detection level calculation:<br />

V = V −V<br />

= R ⋅ I<br />

RL<br />

V<br />

R =<br />

Seite 77 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

L<br />

BAT<br />

BAT<br />

−V<br />

I<br />

PD<br />

REF<br />

REF<br />

with Vref=3V, Ipd=<strong>10</strong>0µA<br />

L<br />

PD<br />

Vbat = 6V - > R L = 3 0 k O h m<br />

Vbat =16V - > RL = 13 kOhm<br />

RL > 30 kOhm will allways be detected als open load<br />

RL < 13 kOhm will never be detected as open load<br />

Short to GND Diagnostic (at OFF)<br />

The open load detection in any way will also detect a short to GND<br />

(or switch bypass).<br />

To differ between this two conditions, direction of the current can be used:<br />

For open load the internal pull down current flows into the pin,<br />

for short to gnd the current flow is out from the pin.<br />

Short to GND<br />

I-p u l l u p<br />

V r e f<br />

2 V<br />

+ V b a t<br />

Seite 78 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

R L<br />

Short to<br />

G N D<br />

• 39


Blockdiagram of a Lowside Switch with Diagnostic Functions<br />

Seite 79 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Status<br />

<strong>Smart</strong> Two C h a n n e l L o w-S ide Switch (TLE 6215)<br />

ENA Open Load<br />

IN1<br />

ST1<br />

IN2<br />

ST2<br />

Overtemperature<br />

Overcurre<br />

n t<br />

Open Load<br />

Detection<br />

(ON mode)<br />

Open Load<br />

Detection<br />

(OFF mode<br />

LOG<strong>IC</strong><br />

LOG<strong>IC</strong><br />

VS<br />

Thermal o v e r l o a d<br />

G N D<br />

Overload<br />

Open Load<br />

Overload<br />

RPD<br />

RPD<br />

INTERFACE SMART-PART POWER-PART<br />

Low Side Switch TLE 6 2 1 5 :<br />

Blockdiagram of Diagnostic Functions<br />

Bandgap -<br />

Referenc<br />

e<br />

V S<br />

I r e f 2<br />

1 m A<br />

O U T 1<br />

O U T 2<br />

R ref R L<br />

1kOhm<br />

Sens-Cells<br />

0,2 Ohm<br />

DMOS<br />

Pull- d o w n<br />

Resistor<br />

20k<br />

Seite 80 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

V S<br />

R 1<br />

R 2<br />

I r e f 2<br />

50 u A<br />

1 : z<br />

Temperature<br />

Sensor<br />

V S<br />

<strong>Power</strong> DMOS<br />

Sens - DMOS for overcurrent<br />

Sens - DMOS for open load @ on)<br />

• 40


CS<br />

TLE6215: Diagnostic at Status Output<br />

Diagnostic concept is as follows:<br />

If status output follows the logic input signal, all is okay.<br />

If status signal is inverted against logic input, it indicates so me error.<br />

U IN<br />

I O U T<br />

V STATUS<br />

SCLK<br />

SI<br />

SO<br />

Outputs<br />

U O U T<br />

normal Overcurrent Openload Open load at OFF<br />

Overcurrent<br />

Threshold<br />

Open Load<br />

Voltage Threshold<br />

Open Load<br />

Current Threshold<br />

Seite 81 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

TLE 6220: Readout Diagnostic Information with Serial Interface (SPI)<br />

Blockdiagram of<br />

TLE 6220<br />

4- fold Low- side Switch<br />

Control Bits<br />

Data Bits<br />

64444 74444<br />

8 64444 74444<br />

8<br />

7 6 5 4 3 2 1 0<br />

MSB LSB<br />

7 6 5 4 3 2 1 0<br />

OLD NEW<br />

SCLK<br />

SI<br />

CS<br />

SO<br />

IN1<br />

IN2<br />

IN3<br />

IN4<br />

GND<br />

VS<br />

a s C h . 1<br />

a s C h . 1<br />

a s C h . 1<br />

PRG<br />

Diagnostic Serial OUT (SO)<br />

7 6 5 4 3 2 1 0<br />

C h . 4 C h . 3 Ch.2 Ch.1<br />

Two bits for each<br />

channel for detailed<br />

diagnostic<br />

HH Normal function<br />

HL Overload, Shorted Load or Overtemperature<br />

LH Open Load<br />

LL Shorted to Ground<br />

Seite 82 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

RESET<br />

8<br />

Serial Interface<br />

SPI<br />

VS<br />

LOG<strong>IC</strong><br />

FAULT<br />

1 4<br />

8<br />

Output Control<br />

Buffer<br />

4<br />

GND<br />

normal function<br />

SCB / overload<br />

open load<br />

short to ground<br />

Output Stage<br />

V B B<br />

OUT1<br />

OUT4<br />

• 41


Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Switching behaviour of a MOS transistor<br />

L o w-side driver<br />

H i g h -side driver<br />

Charge pumps<br />

Oscillators<br />

D r i v e r – Circuits<br />

Seite 83 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I 1<br />

ein<br />

a u s<br />

I 2<br />

Vdd<br />

Switching behaviour of a MOS transistor<br />

Cdg<br />

Cgs<br />

Vgs<br />

Vs<br />

R L<br />

Id<br />

Vds<br />

Vgs<br />

Vth<br />

90%<br />

Vds<br />

<strong>10</strong>%<br />

A: Cgs(off) defines slope<br />

B: Cdg acts as Miller-C<br />

C: Cgs(on) > Cgs(off)<br />

A<br />

I d<br />

A<br />

t f<br />

t<br />

d<br />

t o n<br />

B<br />

ein a u s<br />

R o n .<br />

I L<br />

t d t<br />

r<br />

t o f f<br />

Seite 84 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

C<br />

• 42


I G<br />

Gatecharge plot<br />

to understand switching behaviour of DMOS<br />

V GS<br />

The characteristic of the gate- voltage over time in case of<br />

driving with constant current is presented as Vgs vs Qgate<br />

(gatecharge) in data sheets of power MOS transistors.<br />

This allows ewasy to calculate the required<br />

charge/discharge currents to obtain a given switching<br />

time.<br />

Gatecharge is, in contrast to other parameters, not<br />

dependent from temperature.<br />

I D<br />

from datasheet<br />

BUZ 342<br />

Seite 85 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

H o w to Switch on/off a Gate -C h a r g e /Discharge C u r r e n t<br />

Vdd<br />

Igate- on<br />

I gate- off<br />

V s<br />

RL<br />

<strong>Power</strong><br />

DMOS<br />

a) series switches b) parallel switch to current<br />

m i r r o r<br />

Seite 86 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Vdd<br />

Low = OFF<br />

V s<br />

I gate- off<br />

RL<br />

<strong>Power</strong><br />

DMOS<br />

• 43


Vdd<br />

Ibias<br />

M1<br />

IN<br />

Simple d r i v e r circuit for l o w- side switch<br />

Gate charge and discharge with constant current<br />

Seite 87 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Vdd<br />

Ibias<br />

M1<br />

IN<br />

M3<br />

2 discharge pathes:<br />

M2<br />

M6<br />

M7<br />

M<strong>10</strong><br />

M8 M9<br />

M11<br />

M4 M5<br />

Low Side Switch<br />

Improved discharge circuit for switch off<br />

M3<br />

M2<br />

normal<br />

discharge<br />

I gate- on<br />

I gate- off<br />

V s<br />

R L<br />

<strong>Power</strong><br />

DMOS<br />

Seite 88 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

f a s t<br />

M4 M5<br />

M12<br />

fast<br />

discharge<br />

M11<br />

V s<br />

RL<br />

<strong>Power</strong><br />

DMOS<br />

1) l o w discharge current with M5 f o r s l e w rate control<br />

2) higher discharge current (M11), controlled b y switch M12<br />

f o r reduce switch-o f f delay t i m e<br />

• 44


EMI measurements<br />

confirm the improvement<br />

of “soft” switching<br />

I N<br />

I D = 2 A<br />

VDS<br />

dB<br />

1 0 0<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

<strong>10</strong><br />

Abstrahlungsmessung<br />

Last 7 Ohm + 2m Kabel<br />

TLE soft Soft 6240 edge<br />

GP<br />

0<br />

<strong>10</strong>0,E+3 1,E+6 1 0 , E + 6 1 0 0 , E + 6<br />

Seite 89 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

I N<br />

ID = 2A<br />

VD S<br />

Frequenz [Hz]<br />

L o w s i d e driver (real circuit)<br />

slew-rate control<br />

currnet limit<br />

current limit<br />

slower slope<br />

4 4 m O h m<br />

Competitor<br />

normal<br />

soft edge<br />

Specification: ton, toff typ . 5 us, Ron typ . 0.3 Ohm (25C), current l i m i t typ . 4 . 5 A , V c l a m p typ . 50V<br />

44 mOhm<br />

5000 Zellen<br />

Seite 90 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

zener-clamping<br />

current<br />

measurement<br />

with<br />

sens-DMOS<br />

• 45


ON<br />

bias<br />

current<br />

Low Side<br />

Driver<br />

zoom in (1)<br />

switching ON<br />

(charging) &<br />

switching OFF<br />

(discharging)<br />

if overcurrent,<br />

then<br />

charging current<br />

is decreased<br />

Seite 91 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Low Side<br />

Driver<br />

zoom in (2)<br />

gate<br />

gate for fast discharge<br />

overcurrent<br />

Current Limit<br />

circuit<br />

z-diode<br />

clamping<br />

D r a i n<br />

resistor to<br />

protect circuit<br />

during highvoltage<br />

gate<br />

stress<br />

Pad to allow<br />

gatestress<br />

on wafer - level<br />

metal resistor<br />

( a l u m i n u m )<br />

for current<br />

measurement<br />

Seite 92 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 46


High side d r i v e r<br />

<strong>Power</strong> DMOS is always a N -channel device.<br />

For inserting the DMOS as switch in the<br />

positive supply line („high side switch“), the<br />

drain is connected to Vbat (plus). A more<br />

positiv gate-voltage (higher than Vbat) is<br />

therefore necessary to drive the DMOS.<br />

The usual way to g e n e r a t e this voltage is a<br />

capacitive voltage multiplier called „charge<br />

p u m p“<br />

Seite 93 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Principle circuit of a one- step charge pump<br />

O s c il la to r<br />

VS VC V C P<br />

VCP(max) = 2⋅(<br />

Vs−Vd)<br />

turn-on time to charge C2:<br />

Ton≥ 2⋅(<br />

C2/<br />

C1)<br />

⋅T<br />

1<br />

T = f o r faster switching t i m e increase C1 and/or f r e q u e n c y<br />

f<br />

Seite 94 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

C 1<br />

C 2<br />

• 47


B<br />

n + p<br />

S G<br />

D<br />

n+ Substrat<br />

parasitic substrat- npn<br />

inside a n- channel MOS<br />

Oszillator<br />

Charge pump in CMOS based t e c h n o l o g y<br />

(no bipolar diodes avalable)<br />

VBatt<br />

(substrate)<br />

n- channel MOS- “ Diodes“<br />

Seite 95 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

V C P<br />

Example: 2- stage VCP≤ ⋅(<br />

Vbatt−V<br />

)<br />

3 th(MOS)<br />

Oscillator circuits for charge pump driving<br />

Ring- oscillator<br />

RC-oscillator<br />

Operating-frequency defined by R and C<br />

Odd number of inverters, usually 5 or 7<br />

Operating-frequency defined by internal delay (depends on technology)<br />

Seite 96 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

R<br />

C<br />

• 48


Seite 97 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

5 V<br />

0 V<br />

Charge pump<br />

3 -step with ring-o s c i l l a t o r<br />

V S VCP<br />

advantage: simple<br />

disadvantage: frequency not defined<br />

IN<br />

High voltage level shifter<br />

V d d + 5 V<br />

Ibias<br />

H<br />

H<br />

H ... Highvoltage transistor<br />

V s + 5 0 V<br />

H<br />

H<br />

Seite 98 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

OUT<br />

5 0 V<br />

also for high- voltage transistors<br />

Vgs cannot withstand > 5..<strong>10</strong>V<br />

(depend on gateoxid thickness)<br />

- > z- diode protection required<br />

0 V<br />

Vgs<br />

Gate<br />

Source<br />

D r a i n<br />

Vds<br />

• 49


R IS<br />

3<br />

1<br />

5<br />

I N<br />

ST<br />

IS<br />

Blockdiagram of a <strong>Smart</strong> <strong>Power</strong> Highside Switch<br />

( Profet BTS 640)<br />

Voltage<br />

source<br />

V L o g i c<br />

Voltage<br />

sensor<br />

ESD Logic<br />

S i g n a l G N D<br />

Overvoltage<br />

protection<br />

Charge pump<br />

Level shifter<br />

Rectifier<br />

2<br />

G N D<br />

Current<br />

limit<br />

Limit for<br />

unclamped<br />

ind. loads<br />

Temperature<br />

sensor<br />

Seite 99 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

I IS<br />

Output<br />

Voltage<br />

detection<br />

Gate<br />

protection<br />

Current<br />

Sense<br />

R O<br />

+ V b b<br />

OUT<br />

G N D<br />

P R O F E T ®<br />

4<br />

6 , 7<br />

I L<br />

Load<br />

L o a d G N D<br />

Einleitung - Einsatz integrierter Schaltungen im Automobil<br />

Halbleiter Technologien f ü r <strong>Smart</strong> <strong>Power</strong> Schaltungen<br />

Besondere Anforderungen beim Betrieb im Automobil<br />

Schaltungstechnik-Beispiele f ü r <strong>Smart</strong> <strong>Power</strong> Switches<br />

Anforderungen an Gehäuse/Montagetechnik - Beispiele<br />

Systemintegration von <strong>Smart</strong> <strong>Power</strong> Produkten<br />

Zusammenfassung<br />

Seite <strong>10</strong>0 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 50


Montagetechnik -Beispiel Nr.1<br />

Optimale Realisierung einer <strong>Power</strong> H-Brücke<br />

HS: Drain an VBAT = Plus,<br />

ideal f ür vertikale <strong>Smart</strong> Technologie<br />

LS: Source an GND = Minus:<br />

On -chip Integration mit HS nur in<br />

Updrain SPT Technologie m öglich<br />

D r a i n D r a i n<br />

Source Source<br />

Nachteil: R -on grösser als bei Vertikaler <strong>Smart</strong>-Techn. gleicher Chipfläche<br />

Seite <strong>10</strong>1 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

New Technologies chip/package<br />

Chipflächenoptimale Lösung <strong>für</strong> H-Brücken<br />

Lowside-<br />

MOSFET<br />

High -Side-<br />

<strong>Smart</strong> -FET<br />

High-Side HS<br />

Low-Side LS<br />

TRILITH<strong>IC</strong> Family<br />

Seite <strong>10</strong>2 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 51


R I S<br />

3<br />

1<br />

5<br />

IN<br />

S T<br />

I S<br />

Montagetechnik -Beispiel Nr.2<br />

Realisierung eines sehr niederohmigen<br />

<strong>Smart</strong> <strong>Power</strong> Schalters ( < 20 mOhm)<br />

mit vollen Schutz und Diagnosefunktionen<br />

V o l t a g e<br />

source<br />

V o l t a g e<br />

sensor<br />

E S D L o g i c<br />

I I S<br />

V L o g i c<br />

S i g n a l G N D<br />

O v e r v o l t a g e<br />

p r o t e c t i o n<br />

Charge pump<br />

L e v e l s h i f t e r<br />

R e c t i f i e r<br />

2<br />

GND<br />

Current<br />

l i m i t<br />

L i m i t f o r<br />

u n c l a m p e d<br />

i n d . l o a d s<br />

T e m p e r a t u r e<br />

sensor<br />

Seite <strong>10</strong>3 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Chip on Chip<br />

<strong>Power</strong> Switch<br />

Control / Top-Chip<br />

Output<br />

V o l t a g e<br />

d e t e c t i o n<br />

G a t e<br />

p r o t e c t i o n<br />

Multi Chip Packaging<br />

Example: Chip on Chip<br />

Costs<br />

Leistungschalter<br />

Base-Chip (4-5 Masken)<br />

Chip on Chip<br />

S-<strong>Smart</strong> or SPT 4<br />

with<br />

S-FET<br />

On State Resistance<br />

Monolithic<br />

S-<strong>Smart</strong><br />

SPT 4<br />

Current<br />

Sense<br />

R O<br />

+ V b b<br />

OUT<br />

GND<br />

PROFET ®<br />

4<br />

6 , 7<br />

I L<br />

Load GND<br />

Monolithic<br />

<strong>Power</strong> Switch<br />

Seite <strong>10</strong>4 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Load<br />

• 52


Cost benefit of Chip-on-Chip solutions<br />

<strong>Smart</strong> control chip is glued on top of power transistor<br />

Comparison of two devices with same RDS-On<br />

Chip on Chip solution<br />

Monolithic device<br />

12 mOhm PROFET<br />

Seite <strong>10</strong>5 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

BTS 550 4 mOhm<br />

Seite <strong>10</strong>6 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 53


Features: Features<br />

• Vclp = 400 V<br />

• Ic, max = 9 ... 15 A<br />

• Tj,max = 175°C<br />

• Current limitation<br />

• Current Feedback<br />

• Voltage Feedback<br />

• ESD Protection<br />

• Soft Shutdown<br />

• PT- IGBT Process<br />

• µC compatible Input<br />

<strong>Smart</strong> Ignition IGBT<br />

BTS 2145<br />

BTS 2140<br />

IN<br />

IFL<br />

SSD<br />

VS<br />

Protection ,<br />

Limitation<br />

Current feedback<br />

Seite <strong>10</strong>7 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

VFL<br />

1<br />

SMD<br />

Top Chip OUT<br />

IGBT + <strong>Smart</strong>-<strong>Power</strong>-Chip = <strong>Smart</strong> IGBT<br />

BTS 2145<br />

Bottom - Chip:<br />

IGBT<br />

Top- Chip:<br />

<strong>Smart</strong> Control Chip<br />

Chip- on chip Montagetechnik erlaubt hier <strong>die</strong> gemeinsame Integration v on<br />

sonst “ inkompatiblen” Technologien wie IGBT und SPT - Ansteuerung/Diagnose<br />

als Systemlösung in einem Geh äuse.<br />

Seite <strong>10</strong>8 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

GND<br />

Base Chip<br />

7<br />

12 V<br />

GND<br />

• 54


Seite <strong>10</strong>9 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

Hochpolige Leistungsgehäuse<br />

High-Integration of 16 <strong>Power</strong> Switches for<br />

new Generation of Engine Management Platform<br />

SoC - System on Chip<br />

Highintegration<br />

• Reduced Board Space<br />

• Reduced Devices for Assembly<br />

• Reduced Overall Package Costs<br />

• Increased Reliability<br />

Einleitung - Einsatz integrierter Schaltungen im Automobil<br />

Halbleiter Technologien f ü r <strong>Smart</strong> <strong>Power</strong> Schaltungen<br />

Besondere Anforderungen beim Betrieb im Automobil<br />

Schaltungstechnik-Beispiele f ü r <strong>Smart</strong> <strong>Power</strong> Switches<br />

Anforderungen an Gehä use/Montagetechnik - Beispiele<br />

Systemintegration von <strong>Smart</strong> <strong>Power</strong> Produkten<br />

Zusammenfassung<br />

Seite 1<strong>10</strong> H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 55


Automotive <strong>Smart</strong> <strong>Power</strong> System Integration<br />

micro system<br />

sensor<br />

bus interface<br />

signal preconditioning<br />

Interface<br />

bus<br />

Interface & Signal<br />

preconditioning<br />

System A<br />

uC<br />

EEPROM<br />

Supply &<br />

application specific<br />

functions<br />

System B<br />

<strong>Power</strong><br />

activate, diagnosis<br />

valves<br />

relay<br />

lamps<br />

motors<br />

...<br />

Door module<br />

lamp module<br />

airbag, ....<br />

Seite 111 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

System Integration eines ABS Systems (excl. µP)<br />

Beinhaltet:<br />

Sensor - Interface<br />

CAN Tranceiver<br />

Spannungsregler 5V<br />

Spannungsregler 3V<br />

Ü berwachungslogik<br />

(Watchdog)<br />

Leistungsschalter<br />

weiters:<br />

Seite 112 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

µ<br />

µ<br />

Leistungschalter<br />

f ür V e n t i l e<br />

Lampentreiber<br />

Leitungstreiber<br />

Diagnosefunktionen<br />

Diagnose Schnittstelle<br />

• 56


12V<br />

IASG<br />

curr./volt.<br />

ISO<br />

9141<br />

Crash<br />

Sensors<br />

System Integration eines Airbag-Systems<br />

Zwei integrierter DC/DC Konverter zur Sicherstellung<br />

der el. Airbag-Zündung auch beim Ausfall der<br />

Batterieausfall bei einem Unfall<br />

12v -> 30 V (Speicherung in Elkos ) -> 5 V<br />

Umfangreiche Selbstü berwachung, Diagnosefunktionen<br />

Buck<br />

and<br />

Boost<br />

Converter<br />

Optional<br />

Outputs<br />

Diagnostics<br />

Interface<br />

Sensor &<br />

Satellite<br />

Interface<br />

Input<br />

Interface<br />

Airbag <strong>Power</strong> ASSP<br />

5V<br />

Microcontroller<br />

(e.g. C164CG-xFM)<br />

Electronic<br />

Accelerator<br />

Serial Control<br />

Interface Unit<br />

30V<br />

CAN<br />

Transceiver<br />

Squib<br />

Diagnosis<br />

Quad<br />

Squib<br />

Drivers<br />

Additional<br />

Belt<br />

Pretentioners<br />

and<br />

Airbag<br />

Belt<br />

Seite 113 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

<strong>Power</strong> System Integration von 18 Endstufen<br />

Quelle: Bosch Presseinfo/Internet<br />

Seite 114 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 57


System on Chip<br />

<strong>für</strong> das<br />

Engine-<br />

Management:<br />

Seite 115 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

Seminar<br />

Elektronik im KFZ<br />

Spital/Pyhrn 12/07<br />

18 Endstufen<br />

komplexe<br />

Diagnose-<br />

Funktionen<br />

SPI- Logik<br />

Der Einsatz integrierter Schaltungen im Automobil bietet breite Einsatzm<br />

öglichkeiten vom einfachen <strong>Smart</strong>- <strong>Power</strong> Schalter bis zu komplexen<br />

System - L ösungen.<br />

Der Fokus der Technologieentwicklung liegt hier nicht vorwiegend auf der<br />

Strukturgr össe, Eigenschaften wie:<br />

• Robustheit<br />

• Zuverlässigkeit<br />

• Niedriger Ron<br />

Zusammenfassung<br />

• Hoher Temperatur - Bereich<br />

• Beherschung von Montagetechniken<br />

s i n d m aßgebend f ür den wirtschaftlichen Erfolg.<br />

Neben bereits etablierten Anwendungen wie ABS, Airbag, Engine-<br />

Management werden das zukünftige 42V Bordnetz (?), „ X by wire“<br />

Anwendungen(elektrische Lenkung, el. Ventilsteuerung), erweiterte<br />

Bus- und Kommunikations- Systeme sowie ein allgemeiner Trend zu<br />

„ Komfort“ den Anteil von <strong>Smart</strong>- <strong>Power</strong> Schaltungen im Auto weiter<br />

erhöhen und interessante Herausforderungen f ür <strong>die</strong><br />

Halbleiterindustrie darstellen.<br />

Seite 116 H.Zitta / <strong>Smart</strong> <strong>Power</strong> <strong>IC</strong>-<strong>Entwicklung</strong><br />

• 58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!