21.07.2013 Views

On a forcing model for non-standard arithmetic

On a forcing model for non-standard arithmetic

On a forcing model for non-standard arithmetic

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

<strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong><br />

Benno van den Berg, TU Darmstadt, Germany<br />

Aug 5, 2009<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Classical <strong><strong>for</strong>cing</strong><br />

Let P be a preorder.<br />

Then one has the following <strong><strong>for</strong>cing</strong> clauses:<br />

p −φ ∧ ψ ⇔ p −φ and p −ψ<br />

p −φ ∨ ψ ⇔ {q ≤ p : q −φ or q −ψ} is dense below p<br />

p −φ → ψ ⇔ <strong>for</strong> all q ≤ p, q −φ implies q −ψ<br />

p −∃xφ(x) ⇔ {q ≤ p : there exists an a such that q −φ(a)}<br />

is dense below p<br />

p −∀xφ(x) ⇔ <strong>for</strong> all q ≤ p and <strong>for</strong> all a, q −φ(a)<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Coverages<br />

This can be generalised using the notion of a coverage.<br />

A sieve on p is a downwards closed subset of ↓ p. A coverage Cov<br />

is a function that assigns to every p ∈ P a collection Cov(p) of<br />

sieves on p, in such a way that three axioms are satisfied:<br />

1 ↓ p ∈ Cov(p);<br />

2 if q ≤ p and S ∈ Cov(p), then S∩ ↓ q ∈ Cov(q);<br />

3 if S ∈ Cov(p) and Rq ∈ Cov(q) <strong>for</strong> every q ∈ S, then<br />

∪q∈SRq ∈ Cov(p).<br />

Example: the ¬¬-coverage.<br />

Cov(p) = {S ⊆↓ p : S is downwards closed and dense below p}.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Covering semantics<br />

For a coverage Cov the <strong><strong>for</strong>cing</strong> clauses read as follows:<br />

p −φ ∧ ψ ⇔ p −φ and p −ψ<br />

p −φ ∨ ψ ⇔ {q ≤ p : q −φ or q −ψ} ∈ Cov(p)<br />

p −φ → ψ ⇔ <strong>for</strong> all q ≤ p, q −φ implies q −ψ<br />

p −∃xφ(x) ⇔ {q ≤ p : there exists an a such that q −φ(a)}<br />

∈ Cov(p)<br />

p −∀xφ(x) ⇔ <strong>for</strong> all q ≤ p and <strong>for</strong> all a, q −φ(a)<br />

Warning: For a general coverage it is no longer the case that<br />

classical logic is <strong>for</strong>ced! But the laws of intuitionistic logic are.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Topos-theoretic perspective<br />

A presheaf on P is a functor P op → Sets.<br />

So it consists of a family of sets {X (p) : p ∈ P} together with a<br />

restriction operation assigning to every element x ∈ X (p) and<br />

q ≤ p an element x · q ∈ X (q).<br />

Presheaves <strong>for</strong>m a topos PSh(P). Every topos has an “internal<br />

logic”: the internal logic of categories of presheaves is Kripke<br />

semantics (<strong>for</strong> intuitionistic logic).<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Topos-theoretic perspective, continued<br />

A presheaf is a sheaf (relative to a coverage Cov) if it satisfies:<br />

Sheaf axiom<br />

For every S ∈ Cov(p) and family of elements {xq ∈ X (q) : q ∈ S}<br />

that is compatible (i.e. satisfies p ≤ q ∈ S ⇒ xq · p = xp), there is<br />

a unique element x ∈ X (p) such that x · q = xq <strong>for</strong> all q ∈ S.<br />

Sheaves also <strong>for</strong>m a topos Sh(P, Cov). The internal logic of<br />

categories of sheaves is precisely covering semantics. The internal<br />

logic of Sh(P, ¬¬) is classical <strong><strong>for</strong>cing</strong>.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

The work of Krivine<br />

In his (unpublished) paper<br />

Structures de réalisabilité, RAM et ultrafiltre sur N,<br />

Krivine constructs a <strong><strong>for</strong>cing</strong> <strong>model</strong> in which there exists an<br />

(explicit) <strong>non</strong>-principal ultrafilter on the natural numbers.<br />

How does this work?<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

The <strong><strong>for</strong>cing</strong> <strong>model</strong><br />

Let P be the preorder consisting of infinite subsets of N, preordered<br />

by:<br />

p ≤ q ⇔ ∃n ∀k ≥ n (k ∈ p → k ∈ q),<br />

and let E = Sh(P, ¬¬). The object of truth values in E is<br />

Ω(p) = {closed sieves on p},<br />

where a sieve S is closed, if S dense below q implies q ∈ S. The<br />

power set PN = Ω N is given by<br />

Ω N (p) = {X : N → Ω(p)}.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

The ultrafilter<br />

So suppose X ∈ Ω N (p), i.e., X is a function N → Ω(p).<br />

The ultrafilter is given by: p −X ∈ U iff<br />

{q ≤ p : q ∈ X (n) <strong>for</strong> all n ∈ q} is dense below p.<br />

<strong>On</strong>e easily verifies that E believes this to be a filter, which does<br />

not contain the finite sets. So the main issue is to show that it is<br />

in fact an ultrafilter.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Key combinatorial lemma<br />

The proof that U is an ultrafilter relies on the following lemma:<br />

Lemma<br />

Every infinitely descending sequence of elements<br />

x0 ≥ x1 ≥ x2 ≥ . . . in P has a lower bound.<br />

Proof.<br />

Suppose x0 ≥ x1 ≥ x2 ≥ . . . is an infinitely descending sequence in<br />

P. For every n the set <br />

i≤n xi is infinite, so one may construct a<br />

sequence of elements an ∈ <br />

i≤n xi with an = ai <strong>for</strong> all i < n. Then<br />

the set y = {a0, a1, a2, . . .} is a lower bound <strong>for</strong> the sequence.<br />

Nota bene: In a similar fashion one can show that P does not<br />

satisfy the countable chain condition!<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Model <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong><br />

We now try to compute the <strong>model</strong> of <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> this<br />

<strong>non</strong>-principal ultrafilter leads to.<br />

The natural numbers in E are what Bell calls “mixed natural<br />

numbers”: at level p, they consist of an anti-chains<br />

{qi ≤ p : i ∈ I } in P together with a natural number ni <strong>for</strong> each<br />

i ∈ I . (Where such anti-chains can be uncountable!)<br />

This makes the structure of N → N in E rather complicated.<br />

However using two lemmas we can keep things simple.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

First useful fact<br />

Lemma<br />

The ordinary functions N → N lie dense in the object playing the<br />

rôle of N → N in E, and there<strong>for</strong>e validity of statements<br />

concerning N → N in E can be reduced to validity of statements<br />

concerning ordinary functions N → N.<br />

Proof.<br />

Use the key combinatorial lemma.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Second useful fact<br />

Lemma<br />

If S lies dense below p, then <strong>for</strong> all but finitely many n ∈ p there is<br />

a q ∈ S such that n ∈ q.<br />

Proof.<br />

Suppose not, et cetera.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

The <strong><strong>for</strong>cing</strong> clauses<br />

<strong>On</strong>e is led to the following <strong><strong>for</strong>cing</strong> clauses, where <strong>non</strong>-<strong>standard</strong><br />

natural numbers are interpreted as functions f : N → N:<br />

p −f = g ⇔ <strong>for</strong> all but finitely many n ∈ p, f (n) = g(n)<br />

p −f ≤ g ⇔ <strong>for</strong> all but finitely many n ∈ p, f (n) ≤ g(n)<br />

. . .<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Being <strong>standard</strong><br />

The <strong>model</strong> believes that a function f : N → N represents a<br />

<strong>standard</strong> natural number, if it is “locally constant”. More precisely:<br />

p −st(f ) ⇔ f ↾ p is bounded.<br />

In short, we end up with the <strong>model</strong> introduced by Avigad in:<br />

J. Avigad – Weak theories of <strong>non</strong><strong>standard</strong> <strong>arithmetic</strong> and analysis,<br />

in: Reverse mathematics 2001, Lect. Notes Log. 21, pp. 19–46.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Intermediate intuitionistic <strong>model</strong>s<br />

Question: are there <strong>model</strong>s of intuitionistic <strong>non</strong>-<strong>standard</strong><br />

<strong>arithmetic</strong> such that what we saw above can be seen as the result<br />

of combining the intuitionistic <strong>model</strong> with a double negation<br />

translation?<br />

I believe this can be done in at least two ways.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Intuitionistic <strong>model</strong> 1<br />

We work in PSh(P). This means: <strong><strong>for</strong>cing</strong> clauses <strong>for</strong> the atomic<br />

<strong>for</strong>mulas as above and the clauses <strong>for</strong> the interpretation of logical<br />

connectives as in Kripke semantics.<br />

Interesting fact:<br />

Lemma<br />

In PSh(P) the double negation shift holds:<br />

PSh(P) |= ∀n ∈ N(¬¬P(n)) → ¬¬∀nP(n).<br />

Proof.<br />

Use the key combinatorial lemma.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Intuitionistic <strong>model</strong> 2<br />

Let B be the powerset of N, ordered by inclusion, and consider the<br />

ideal I of finite sets in N. I determines a coverage on B:<br />

S ∈ Cov(c) ⇔ ∃i ∈ I , b1, . . . , bn ∈ S : b1 ∨ . . . ∨ bn ∨ i = c,<br />

which we will also denote by I . In E = Sh(B, I ) the following<br />

defines an filter on N:<br />

p −X ∈ U ⇔ {q ≤ p : q ∈ X (n) <strong>for</strong> all n ∈ q} ∈ Cov(p).<br />

Forcing clauses <strong>for</strong> the atomic <strong>for</strong>mulas are as above and the<br />

clauses <strong>for</strong> the interpretation of logical connectives are as in<br />

covering semantics.<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>


Sheaf semantics A <strong>non</strong>-principal ultrafilter A <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong> Open questions<br />

Questions<br />

1 What holds in these intuitionistic <strong>model</strong>s? Which one is<br />

“better”?<br />

2 Jeremy Avigad and his student Henry Townser have used the<br />

classical <strong>model</strong> <strong>for</strong> proof-mining purposes. Is a direct<br />

functional interpretation of the language of <strong>non</strong>-<strong>standard</strong><br />

<strong>arithmetic</strong> possible?<br />

Benno van den Berg, TU Darmstadt, Germany <strong>On</strong> a <strong><strong>for</strong>cing</strong> <strong>model</strong> <strong>for</strong> <strong>non</strong>-<strong>standard</strong> <strong>arithmetic</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!