22.07.2013 Views

Magnetic monopoles at the LHC and in the Cosmos - Rencontres de ...

Magnetic monopoles at the LHC and in the Cosmos - Rencontres de ...

Magnetic monopoles at the LHC and in the Cosmos - Rencontres de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Magnetic</strong> <strong>monopoles</strong> <strong>at</strong> <strong>the</strong><br />

<strong>LHC</strong> <strong>and</strong> <strong>in</strong> <strong>the</strong> <strong>Cosmos</strong><br />

Philippe Mermod (University of Geneva)<br />

<strong>Rencontres</strong> <strong>de</strong> Moriond<br />

11 March 2013


Monopoles: <strong>in</strong>troductory remarks<br />

• Dirac argument (1931): existence of magnetic charge<br />

would expla<strong>in</strong> electric charge quantis<strong>at</strong>ion<br />

– Fundamental magnetic charge: g = 68.5N (N = 1,2,3...)<br />

• Coupl<strong>in</strong>g to <strong>the</strong> photon ≫ 1<br />

– Non-perturb<strong>at</strong>ive dynamics<br />

– Very large ionis<strong>at</strong>ion energy loss<br />

• <strong>Magnetic</strong> charge conserv<strong>at</strong>ion ensures th<strong>at</strong><br />

<strong>monopoles</strong> are stable <strong>and</strong> produced <strong>in</strong> pairs<br />

<strong>LHC</strong><br />

reach<br />

primordial GUT monopole<br />

Possible monopole mass rage (GeV)<br />

2


• Monopoles <strong>at</strong> <strong>the</strong> <strong>LHC</strong><br />

Outl<strong>in</strong>e<br />

– ATLAS results <strong>and</strong> plans<br />

– MoEDAL st<strong>at</strong>us<br />

– Monopole trapp<strong>in</strong>g experiments<br />

• Stellar (trapped <strong>in</strong> stardust) <strong>monopoles</strong><br />

– New polar rock results<br />

• Limits on cosmic (free) <strong>monopoles</strong><br />

from <strong>de</strong>tector arrays<br />

Large Hadron Colli<strong>de</strong>r<br />

SQUID magnetometer


ATLAS monopole search<br />

• Electron trigger requires energy <strong>in</strong> second calorimeter<br />

layer (EM2) → sensitive to high energy or low charge (N = 1)<br />

• Dedic<strong>at</strong>ed track<strong>in</strong>g <strong>and</strong> simul<strong>at</strong>ion<br />

PRL 109, 261803 (2012), arXiv:1207.6411<br />

• Sign<strong>at</strong>ure: high ionis<strong>at</strong>ion hits <strong>and</strong> narrow energy <strong>de</strong>position<br />

• Results: cross section limits 2-30 fb for masses up to 1500 GeV<br />

4


ATLAS monopole search – next step<br />

PRL 109, 261803 (2012), arXiv:1207.6411<br />

Recover <strong>monopoles</strong> stopp<strong>in</strong>g <strong>in</strong> first calorimeter layer<br />

• New <strong>de</strong>dic<strong>at</strong>ed high-level trigger based on high-ionis<strong>at</strong>ion hits<br />

• Large acceptance <strong>in</strong>crease, allows to probe N = 2<br />

• 7 fb -1 of 8 TeV d<strong>at</strong>a <strong>in</strong> 2012, analysis <strong>in</strong> progress<br />

5


MoEDAL<br />

<strong>LHC</strong> experiment <strong>de</strong>dic<strong>at</strong>ed to highly-ionis<strong>in</strong>g particle<br />

<strong>de</strong>tection<br />

Pr<strong>in</strong>ciple: passive <strong>de</strong>tectors are exposed to<br />

collision products around <strong>LHC</strong>b collision po<strong>in</strong>t<br />

Ma<strong>in</strong> <strong>de</strong>tector:<br />

• Th<strong>in</strong> plastic foils<br />

• High ionis<strong>at</strong>ion sign<strong>at</strong>ure<br />

• Track-etch technique<br />

New sub<strong>de</strong>tector:<br />

• Mag. monopole trapper (MMT)<br />

• Alum<strong>in</strong>ium absorber<br />

• Induction technique<br />

6


http://moedal.web.cern.ch/<br />

MoEDAL – st<strong>at</strong>us<br />

Test arrays <strong>de</strong>ployed <strong>in</strong> 2012<br />

Ma<strong>in</strong> run planned for 2015<br />

7


Magnetometer tests for trapped<br />

<strong>monopoles</strong> searches (1)<br />

Labor<strong>at</strong>ory of N<strong>at</strong>ural<br />

Magnetism, ETH Zurich<br />

<strong>Magnetic</strong>ally<br />

shiel<strong>de</strong>d room<br />

DC-SQUID<br />

magnetometer<br />

8


Magnetometer tests for trapped<br />

<strong>monopoles</strong> searches (2)<br />

Proof-of-pr<strong>in</strong>ciple us<strong>in</strong>g acceler<strong>at</strong>or m<strong>at</strong>erial near CMS<br />

Calibr<strong>at</strong>ion cross-check with long, th<strong>in</strong> solenoids<br />

X-ray image<br />

of <strong>de</strong>fective<br />

plug-<strong>in</strong><br />

module<br />

EPJC 72, 2212 (2012), arXiv:1206.6793<br />

9


Trapped <strong>monopoles</strong> <strong>at</strong> <strong>the</strong> <strong>LHC</strong><br />

Future proposal:<br />

Search <strong>in</strong> ATLAS <strong>and</strong> CMS<br />

beryllium beam pipes<br />

• Be<strong>in</strong>g replaced this year<br />

Ongo<strong>in</strong>g project:<br />

Search <strong>in</strong> <strong>de</strong>dic<strong>at</strong>ed alum<strong>in</strong>ium trapp<strong>in</strong>g<br />

volume (MoEDAL MMT)<br />

• Only vacuum between <strong>in</strong>teraction po<strong>in</strong>t <strong>and</strong> beam pipe<br />

→ sensitivity to very high magnetic charges (N > 4)<br />

10


Monopoles <strong>at</strong> <strong>the</strong> <strong>LHC</strong>: Summary<br />

Cross section nee<strong>de</strong>d for 10 events <strong>in</strong> acceptance<br />

after one year of <strong>LHC</strong> runn<strong>in</strong>g<br />

A. De Roeck et al., EPJC 72, 1985 (2012), arXiv:1112.2999<br />

11


Stellar <strong>monopoles</strong> – where should <strong>the</strong>y be?<br />

Cloud<br />

Planetary System<br />

Planetary<br />

differenti<strong>at</strong>ion<br />

Monopoles<br />

are heavier<br />

than <strong>the</strong><br />

heaviest<br />

nuclei<br />

12


Searches for <strong>monopoles</strong> <strong>in</strong> bulk m<strong>at</strong>ter<br />

• Monopoles expected to b<strong>in</strong>d strongly to m<strong>at</strong>ter<br />

• Stellar <strong>monopoles</strong> sank to <strong>the</strong> Earth's <strong>in</strong>terior<br />

– Absent from planetary crusts<br />

– Searches <strong>in</strong> w<strong>at</strong>er, air, sediments,<br />

rocks, moon rocks... are sensitive<br />

only to cosmic <strong>monopoles</strong><br />

• Motiv<strong>at</strong>es search<strong>in</strong>g <strong>in</strong> meteorites<br />

– 100 kg of chondrites analysed with<br />

<strong>in</strong>duction technique PRL 75, 1443 (1995)<br />

• Recent i<strong>de</strong>a: search <strong>in</strong> polar volcanic rocks<br />

– Migr<strong>at</strong>ion along Earth's magnetic axis<br />

13


Polar volcanic rock search<br />

– equilibrium conditions<br />

Gravit<strong>at</strong>ional force F g = ma <strong>in</strong><br />

equilibrium with magnetic force<br />

F m = gecB<br />

• Dirac charge (g = 68.5) →<br />

equilibrium above <strong>the</strong> coremantle<br />

boundary (B) for:<br />

m < 4·10 14 GeV<br />

• (solid) mantle convection br<strong>in</strong>gs<br />

up <strong>monopoles</strong> to <strong>the</strong> surface<br />

Over geologic time, accumul<strong>at</strong>ion <strong>in</strong> <strong>the</strong><br />

mantle bene<strong>at</strong>h <strong>the</strong> geomagnetic poles for<br />

a wi<strong>de</strong> range of masses <strong>and</strong> charges<br />

14


Polar volcanic rock search – samples<br />

High l<strong>at</strong>itu<strong>de</strong> (>63 o ), mantle <strong>de</strong>rived<br />

• Hotspot (Icel<strong>and</strong>, Jan Mayen, Ross Isl<strong>and</strong>)<br />

• Mid-ocean ridge (Icel<strong>and</strong>, Gakkel Ridge)<br />

• Large igneous prov<strong>in</strong>ce (North<br />

Greenl<strong>and</strong>, East Greenl<strong>and</strong>)<br />

• Isotopic content <strong>in</strong>dic<strong>at</strong><strong>in</strong>g <strong>de</strong>ep<br />

orig<strong>in</strong>s (Coleman Nun<strong>at</strong>ak)<br />

Crushed to reduce magnetis<strong>at</strong>ion for<br />

precise magnetometer measurement<br />

15


Polar volcanic rock search – results<br />

arXiv:1301.6530, accepted <strong>in</strong> PRL (2013)<br />

• No <strong>monopoles</strong> found <strong>in</strong> 24 kg of polar volcanic rocks<br />

– In simple mo<strong>de</strong>l, transl<strong>at</strong>es <strong>in</strong>to limit of less than 0.02<br />

monopole per kg <strong>in</strong> <strong>the</strong> Solar System (90% c.l.)<br />

• Comparable <strong>and</strong> complementary to meteorite search<br />

16


Stellar monopole searches:<br />

limits on monopole <strong>de</strong>nsity<br />

<strong>in</strong> <strong>the</strong> Solar System<br />

Meteorites<br />

< 2.3·10 -5 mon./g<br />

Polar volcanic rocks<br />

< 1.6·10 -5 mon./g<br />

monopole mass (GeV)<br />

17


Cosmic monopole searches: flux limits<br />

oon rocks<br />

F < 5·10 -19<br />

cm -2 s -1 sr -1<br />

Induction –<br />

<strong>in</strong>-flight<br />

Seaw<strong>at</strong>er, air, sediments<br />

Superconduct<strong>in</strong>g arrays F < 10 -12 cm -2 s -1 sr -1<br />

MACRO (un<strong>de</strong>rground)<br />

F < 10 -16 cm -2 s -1 sr -1<br />

SLIM (high altitu<strong>de</strong>)<br />

F < 10 -15 cm -2 s -1 sr -1<br />

ANTARES / ICECUBE (rel<strong>at</strong>ivistic)<br />

F < 2·10 -17 cm -2 s -1 sr -1<br />

RICE (ultra-rel<strong>at</strong>ivistic)<br />

F < 10 -18 cm -2 s -1 sr -1<br />

Terrestrial rocks<br />

monopole mass (GeV)<br />

Cherenkov<br />

Induction – trapped<br />

Ionis<strong>at</strong>ion<br />

arrays<br />

18


Summary<br />

• <strong>Magnetic</strong> <strong>monopoles</strong> are fundamental, wellmotiv<strong>at</strong>ed<br />

objects<br />

• Searches for <strong>monopoles</strong> are very much alive<br />

– In-flight <strong>de</strong>tection with ATLAS<br />

– In-flight <strong>de</strong>tection with MoEDAL<br />

– Monopoles trapped <strong>in</strong> <strong>the</strong> MoEDAL MMT<br />

– Monopoles trapped <strong>in</strong> <strong>the</strong> ATLAS <strong>and</strong> CMS<br />

beam pipes<br />

– Primordial <strong>monopoles</strong> trapped <strong>in</strong> rocks <strong>and</strong><br />

meteorites<br />

– Cosmic <strong>monopoles</strong> <strong>in</strong> neutr<strong>in</strong>o telescopes...<br />

19


Extra sli<strong>de</strong>s<br />

20


Dirac's argument<br />

Proc. Roy. Soc. A 133, 60 (1931)<br />

• Field angular momentum of electronmonopole<br />

system is quantised:<br />

• Expla<strong>in</strong>s quantis<strong>at</strong>ion of electric charge!<br />

– Fundamental magnetic charge (n=1):<br />

21


Schw<strong>in</strong>ger's argument<br />

Phys. Rev. 144, 1087 (1966)<br />

• Postul<strong>at</strong>e particle carry<strong>in</strong>g both electric <strong>and</strong><br />

magnetic charges → dyon<br />

• Quantis<strong>at</strong>ion of angular momentum with two dyons<br />

(q e1 ,q m1 ) <strong>and</strong> (q e2 ,q m2 ) yields:<br />

• Fundamental magnetic charge is now 2g D !<br />

– With |q e |=1/3e (down quark) as <strong>the</strong> fundamental<br />

electric charge, it even becomes 6g D<br />

22


't Hooft <strong>and</strong> Polyakov's argument<br />

Assume <strong>the</strong> U(1) group of electromagnetism is a<br />

subgroup of a broken gauge symmetry<br />

– Then <strong>monopoles</strong> arise as solutions of <strong>the</strong> field equ<strong>at</strong>ions.<br />

Very general result!<br />

– Monopole mass typically of <strong>the</strong> or<strong>de</strong>r of <strong>the</strong> unific<strong>at</strong>ion scale<br />

<strong>LHC</strong><br />

reach<br />

Nucl. Phys. B79, 276 (1974)<br />

Possible monopole mass rage (GeV)<br />

GUT monopole<br />

23


Property: production<br />

EM coupl<strong>in</strong>g constant for Dirac charge = 34.25<br />

→ non-perturb<strong>at</strong>ive dynamics, no reliable cross<br />

sections <strong>and</strong> k<strong>in</strong>em<strong>at</strong>ics!<br />

“N<strong>at</strong>ural” benchmark mo<strong>de</strong>ls:<br />

photon fusion Drell-Yan<br />

M<br />

_<br />

M<br />

M<br />

Remark: magnetic charge conserv<strong>at</strong>ion prescribes<br />

th<strong>at</strong> <strong>monopoles</strong> are stable <strong>and</strong> produced <strong>in</strong> pairs<br />

_<br />

M<br />

24


Monopole b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> m<strong>at</strong>ter<br />

• To <strong>at</strong>oms<br />

– B<strong>in</strong>d<strong>in</strong>g energies of <strong>the</strong> or<strong>de</strong>r of a few eV<br />

• To nuclei with non-zero magnetic moments<br />

– B<strong>in</strong>d<strong>in</strong>g energies of <strong>the</strong> or<strong>de</strong>r of 200 keV<br />

• At <strong>the</strong> surface of a ferromagnetic<br />

– Image force of <strong>the</strong> or<strong>de</strong>r of 10 eV/Å<br />

– Robust prediction (classical)<br />

25


arXiv:1112.2999<br />

Monopole bend<strong>in</strong>g<br />

Acceler<strong>at</strong>ion along<br />

magnetic field:<br />

• Straight l<strong>in</strong>e <strong>in</strong> xy<br />

plane<br />

• Parabola <strong>in</strong> rz<br />

plane<br />

26


Monopole ionis<strong>at</strong>ion energy loss<br />

Electric <strong>Magnetic</strong><br />

No Bragg peak!<br />

Dirac monopole: |g D | = 68.5 → several thous<strong>and</strong> times<br />

gre<strong>at</strong>er dE/dx than a m<strong>in</strong>imum-ionis<strong>in</strong>g |z|=1 particle<br />

27


Monopole production k<strong>in</strong>em<strong>at</strong>ics<br />

arXiv:1112.2999<br />

28


Range of <strong>monopoles</strong> <strong>in</strong> ATLAS <strong>and</strong> CMS<br />

arXiv:1112.2999 (2012)<br />

29


ATLAS search multiply-charged particles<br />

First HIP search <strong>at</strong> <strong>the</strong> <strong>LHC</strong><br />

– Very first d<strong>at</strong>a (summer 2010)<br />

– St<strong>and</strong>ard EM trigger <strong>and</strong> reco<br />

– Interpret<strong>at</strong>ion 6e < |q e | < 17e<br />

arXiv:1102.0459 (2011)<br />

Major source of <strong>in</strong>efficiency comes<br />

from acceptance (punch through)<br />

→ Mo<strong>de</strong>l-<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt<br />

approach: 1-2 pb limits set <strong>in</strong><br />

well-<strong>de</strong>f<strong>in</strong>ed k<strong>in</strong>em<strong>at</strong>ic ranges<br />

Sequel: monopole search with 2011 d<strong>at</strong>a (next sli<strong>de</strong>s)<br />

30


ATLAS monopole search – pr<strong>in</strong>ciple<br />

• D<strong>at</strong>a from 2011 (2 fb -1 )<br />

• St<strong>and</strong>ard EM trigger<br />

• Special track<strong>in</strong>g<br />

– Count TRT hits <strong>in</strong> w<strong>in</strong>dow<br />

around EM cluster<br />

– Robust aga<strong>in</strong>st <strong>de</strong>lta-electrons<br />

<strong>and</strong> anomalous bend<strong>in</strong>g<br />

• Sign<strong>at</strong>ure: high-threshold TRT hits<br />

associ<strong>at</strong>ed to narrow EM cluster<br />

• Interpret<strong>at</strong>ion for magnetic monopole with m<strong>in</strong>imum charge<br />

(|g| = g D )<br />

– Apply<strong>in</strong>g HIP correction <strong>in</strong> LAr<br />

ATLAS-CONF-2012-062<br />

– Simul<strong>at</strong><strong>in</strong>g monopole dE/dx <strong>and</strong> trajectory <strong>in</strong> Geant4<br />

31


Visible energy <strong>in</strong> Liquid-Argon<br />

• Birks' law mo<strong>de</strong>ls electron-ion recomb<strong>in</strong><strong>at</strong>ion effects<br />

– over-suppresses signal <strong>at</strong> high dE/dx<br />

• For high charges, need HIP correction obta<strong>in</strong>ed from heavy<br />

ion d<strong>at</strong>a<br />

S. Burd<strong>in</strong> et al., Nucl. Inst. Meth. A 664, 111 (2012)<br />

z=1 z=2<br />

z=10 z=26 z=57 z=79<br />

32


ATLAS monopole search – acceptance<br />

Efficiency > 80% for<br />

transverse energy<br />

above 600 GeV <strong>in</strong><br />

range |η| < 1.37<br />

→ mo<strong>de</strong>l-<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt<br />

approach: 2 fb limit set<br />

<strong>in</strong> fiducial region<br />

Drell-Yan pair production<br />

→ acceptance 1–10 %<br />

→ mo<strong>de</strong>l-<strong>de</strong>pen<strong>de</strong>nt limit<br />

ATLAS-CONF-2012-062<br />

33


ATLAS monopole search – results<br />

• Valid for Dirac (N=1) <strong>monopoles</strong><br />

• Blue curve is mo<strong>de</strong>l-<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt (factor<strong>in</strong>g out acceptance)<br />

PRL 109, 261803 (2012), arXiv:1207.6411<br />

34


Colli<strong>de</strong>r cross section limits for a Dirac monopole<br />

Each limit is valid <strong>in</strong> a given mass range,<br />

generally assum<strong>in</strong>g Drell-Yan like pair production mechanism<br />

Track-etch<br />

M. Fairbairn et al., Phys. Rept. 438, 1 (2007), arXiv:hep-ph/0611040<br />

Extraction<br />

Induction<br />

General-purpose<br />

ATLAS<br />

(ad<strong>de</strong>d by<br />

speaker)<br />

35


MODAL (LEP1, track-etch)<br />

• Plastic <strong>de</strong>tectors surround<strong>in</strong>g I5 <strong>in</strong>teraction po<strong>in</strong>t<br />

• 0.3 pb limit (up to 45 GeV HIPs)<br />

Phys. Rev. D 46, R881 (1992)<br />

36


<strong>LHC</strong> reach <strong>in</strong> mass <strong>and</strong> charge<br />

arXiv:1112.2999 (2012)<br />

37


<strong>LHC</strong> plug<strong>in</strong> module<br />

(18 m from CMS <strong>in</strong>teraction po<strong>in</strong>t)<br />

38


Monopoles <strong>in</strong> ATLAS/CMS beam pipe –<br />

acceptance<br />

arXiv:1112.2999 (2012)<br />

39


• M<strong>at</strong>erial: Alum<strong>in</strong>ium<br />

MMT <strong>de</strong>sign<br />

– Large nuclear dipole moment (sp<strong>in</strong> 5/2) → likely to b<strong>in</strong>d<br />

<strong>monopoles</strong><br />

– No activ<strong>at</strong>ion<br />

– Low magnetis<strong>at</strong>ion<br />

– Cheap<br />

• Module:<br />

– cyl<strong>in</strong><strong>de</strong>r 2.5 x 2.5 x 7 cm<br />

– Nicely fits magnetometer sample hol<strong>de</strong>r<br />

• Two arrays<br />

– one <strong>in</strong> front <strong>and</strong> one on <strong>the</strong> si<strong>de</strong><br />

of VELO vacuum chamber<br />

• MoEDAL track-etch module <strong>in</strong> front of each array


MMT acceptance estim<strong>at</strong>es<br />

(assum<strong>in</strong>g Drell-Yan pair production mechanism)<br />

2–10 % acceptance for <strong>monopoles</strong> <strong>in</strong> <strong>the</strong> range 1–4 g D<br />

– Higher charge → stops <strong>in</strong> VELO chamber<br />

– Lower charge → punches through <strong>the</strong> MMT<br />

41


MMT tests with magnetometer<br />

• Alum<strong>in</strong>ium modules i<strong>de</strong>ntical to those used <strong>in</strong> <strong>the</strong><br />

MT setup<br />

Ḿ<br />

• Monopoles with charge down to N = 0.5 can be<br />

i<strong>de</strong>ntified without ambiguity<br />

42


New polar volcanic rock search – samples<br />

arXiv:1301.6530, accepted <strong>in</strong> PRL (2013)<br />

43


H1 beam pipe (HERA, <strong>in</strong>duction)<br />

• Monopoles <strong>and</strong> dyons with very high magnetic<br />

charges would stop <strong>in</strong> <strong>the</strong> Al beam pipe!<br />

• 0.1 – 1 pb limit (up to 140 GeV monopole with g ≥ g D )<br />

arXiv:hep-ex/0501039 (2005)<br />

44


Superconduct<strong>in</strong>g arrays (<strong>in</strong>duction)<br />

• Response <strong>de</strong>pends only on magnetic charge<br />

→ can probe very low velocities / high masses<br />

• Cryogenics typically limit area to 1 m 2<br />

• Exposure time of <strong>the</strong> or<strong>de</strong>r of 1 year<br />

• Spurious offsets can happen → <strong>in</strong>clu<strong>de</strong> multiple,<br />

<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt <strong>de</strong>tectors (e.g. closed box)<br />

• F < 10 -12 cm -2 s -1 sr -1<br />

PRL 64, 839 (1990)<br />

PRD 44, 622 (1991)<br />

PRD 44, 636 (1991)<br />

45


MACRO<br />

• ~1400 m un<strong>de</strong>rground<br />

• Area: 1000 m 2 , 10 m height<br />

• Exposure: 5 years<br />

• Various <strong>de</strong>tection techniques:<br />

– Sc<strong>in</strong>till<strong>at</strong>or (time-of-flight):<br />

0.0001 < β < 0.01<br />

– Sc<strong>in</strong>till<strong>at</strong>or (dE/dx):<br />

0.001 < β < 0.1<br />

– Streamer tubes:<br />

0.001 < β < 1<br />

– Track-etch:<br />

0.001 < β < 1<br />

• F < 10 -16 cm -2 s -1 sr -1<br />

arXiv:hep-ex/0207020 (2002)<br />

46


AMANDA-II (Cherenkov)<br />

• PM arrays buried <strong>in</strong> polar ice<br />

– Can i<strong>de</strong>ntify <strong>in</strong>tense Cherenkov<br />

light expected from rel<strong>at</strong>ivistic<br />

monopole (β > 0.8)<br />

• Dark area: sensitive to up-go<strong>in</strong>g<br />

(much less backgrounds)<br />

EPJC 69, 361 (2010)<br />

47


ANTARES search<br />

• Rel<strong>at</strong>ivistic (β > 0.75) → abundant Cherenkov light<br />

• Only upgo<strong>in</strong>g signals consi<strong>de</strong>red to reduce<br />

<strong>at</strong>mospheric muon backgrounds → need monopole<br />

to traverse <strong>the</strong> Earth (m > 10 7 GeV)<br />

Density of photons emission<br />

δ-electrons<br />

Monopole<br />

g=g D<br />

muon<br />

Astropart. Phys. 35, 634 (2012), arXiv:1110.2656<br />

48


• Altitu<strong>de</strong>: 5230 m<br />

(Chacaltaya observ<strong>at</strong>ory)<br />

• Area: 400 m 2<br />

• Exposure: 4 years<br />

• F < 10 -15 cm -2 s -1 sr -1<br />

arXiv:0801.4913 (2008)<br />

SLIM (track-etch)<br />

49


RICE (radio Cherenkov)<br />

• Antennas buried <strong>in</strong> polar ice<br />

– Can i<strong>de</strong>ntify strong radio wave signal from<br />

coherent Cherenkov radi<strong>at</strong>ion expected from<br />

ultra-rel<strong>at</strong>ivistic monopole (β ≈ 1)<br />

→ “<strong>in</strong>termedi<strong>at</strong>e mass”<br />

• F < 10 -18 cm -2 s -1 sr -1 (γ > 10 7 )<br />

(simul<strong>at</strong>ed event)<br />

arXiv:0806.2129 (2008)<br />

50


Deeply buried rocks <strong>and</strong> seaw<strong>at</strong>er<br />

(<strong>in</strong>duction – cosmic)<br />

• Hundreds of kilograms<br />

of m<strong>at</strong>erial analysed<br />

with large<br />

superconduct<strong>in</strong>g<br />

<strong>de</strong>tector<br />

• Depths of up to 25 km<br />

→ stop higher-energy<br />

<strong>monopoles</strong><br />

• ρ < 5·10 -30 mon./nucleon<br />

PRA 33, 1183 (1986)<br />

51<br />

→g D /2


Moon rocks (<strong>in</strong>duction – cosmic)<br />

• Exposure: 4 billion years!<br />

– No movement (few meters <strong>de</strong>pth)<br />

• No <strong>at</strong>mosphere <strong>and</strong> no magnetic field<br />

PRD 4, 3260 (1971)<br />

PRD 8, 698 (1973)<br />

– Robust assessment of monopole f<strong>at</strong>e after stopp<strong>in</strong>g<br />

52


Old (460 Ma) mica crystals<br />

• Very highly ionis<strong>in</strong>g particle causes l<strong>at</strong>tice <strong>de</strong>fects<br />

revealed after etch<strong>in</strong>g<br />

– Needs assumption of a low-velocity (β ~10 -3 )<br />

monopole which captured a nucleus<br />

• F < 10 -18 cm -2 s -1 sr -1<br />

PRL 56, 1226 (1986)<br />

53


Iron ore<br />

• Induction <strong>de</strong>tector placed un<strong>de</strong>r a furnace <strong>at</strong><br />

ore-process<strong>in</strong>g plant<br />

– Large amounts (>100 tons) of m<strong>at</strong>erial<br />

– Assume ferromagnetic b<strong>in</strong>d<strong>in</strong>g, but must also<br />

assume no b<strong>in</strong>d<strong>in</strong>g to nuclei<br />

• ρ < 10 -30 <strong>monopoles</strong>/nucleon PRD 36, 3359 (1987)<br />

54


Deep-sea sediments (extraction)<br />

PRD 4, 1285 (1971)<br />

• Where would <strong>monopoles</strong> have accumul<strong>at</strong>ed<br />

preferentially?<br />

• Monopoles <strong>the</strong>rmalised <strong>in</strong> ocean w<strong>at</strong>er would drift to<br />

<strong>the</strong> bottom <strong>and</strong> become trapped near <strong>the</strong> surface<br />

of sediment<br />

– Sediment<strong>at</strong>ion r<strong>at</strong>e 0.1 – 1 mm/century<br />

• The extraction method used <strong>in</strong> this search could only<br />

probe masses up to 10 4 GeV<br />

55


Annihil<strong>at</strong>ion of <strong>monopoles</strong> <strong>in</strong>si<strong>de</strong> Earth<br />

• He<strong>at</strong> gener<strong>at</strong>ion from monopole-antimonopole<br />

annihil<strong>at</strong>ions dur<strong>in</strong>g geomagnetic reversals<br />

• ρ < 10 -28 <strong>monopoles</strong>/nucleon<br />

N<strong>at</strong>ure 288, 348 (1980)<br />

56


Recent searches for cosmic <strong>monopoles</strong><br />

• Free <strong>monopoles</strong> with m < 10 15 GeV acceler<strong>at</strong>ed to rel<strong>at</strong>ivistic<br />

speeds by galactic magnetic fields<br />

• Superconduct<strong>in</strong>g arrays (<strong>in</strong>duction technique) PRL 64, 839 (1990),<br />

PRD 44, 622 (1991), PRD 44, 636 (1991)<br />

– No velocity <strong>de</strong>pen<strong>de</strong>nce → masses up to planck scale!<br />

• Large-surface arrays (ionis<strong>at</strong>ion)<br />

– Un<strong>de</strong>rground: MACRO EPJ.C 25, 511 (2002)<br />

– High altitu<strong>de</strong>: SLIM EPJC 55, 57 (2008)<br />

• Neutr<strong>in</strong>o telescopes (rel<strong>at</strong>ivistic)<br />

– Cerenkov light: BAIKAL Astropart. Phys. 29, 366 (2008),<br />

ICECUBE EPJC 69, 361 (2010), ANTARES Astropart. Phys. 35,<br />

634 (2012)<br />

– Cerenkov radio: RICE Phys. Rev. D 78, 075031 (2008), ANITA<br />

Phys. Rev. D 83, 023513 (2011)<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!