22.07.2013 Views

Ulrich Heintz Brown University

Ulrich Heintz Brown University

Ulrich Heintz Brown University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Hunting for the<br />

Higgs Boson<br />

<strong>Ulrich</strong> <strong>Heintz</strong><br />

<strong>Brown</strong> <strong>University</strong>


the standard model<br />

spin ½ spin 1<br />

electromagnetism<br />

acts on all charged particles<br />

strong force<br />

acts on all quarks<br />

weak force<br />

acts on all particles<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 2


gauge theories<br />

• gauge theories describe all three interactions<br />

Lagrangian invariant under continuous group of<br />

local transformations<br />

• quantum electrodynamics<br />

Lagrangian invariant under local phase transformations<br />

need interactions of charged particles with a gauge field<br />

exactly describes electromagnetic interactions<br />

the quantum of the gauge field is the photon<br />

photon is mediator of the electromagnetic force<br />

• electroweak theory (Glashow 1960)<br />

gauge theory of QED and weak interactions<br />

larger symmetry group<br />

additional gauge field quanta: W ± and Z 0 bosons<br />

weak force is short range W and Z are massive<br />

PROBLEM: cannot describe massive particles without breaking the symmetry<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 3<br />

e<br />

e<br />

ν<br />

νe<br />

γ<br />

ZW<br />

e<br />

e<br />

e<br />


spontaneous symmetry breaking<br />

• 1965<br />

Higgs Guralnik Hagen Kibble Brout Englert<br />

• introduce a field with a special potential<br />

• continuously degenerate ground state at non-zero field<br />

• field equations have same symmetry as theory<br />

• every ground state breaks the symmetry<br />

• can describe massive particles by coupling<br />

them with the Higgs field<br />

• the quantum of this field is the Higgs boson<br />

Higgs mechanism<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 4


not just a nice idea<br />

• 1973<br />

– Gargamelle bubble chamber observes weak neutral current<br />

• 1979<br />

– Glashow, Salam, Weinberg receive Nobel Prize<br />

• for their … theory of the unified weak and electromagnetic interaction<br />

• 1983<br />

– UA1 and UA2 find the W and Z bosons at CERN<br />

the hunt for the Higgs boson starts<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 5


properties of the Higgs boson<br />

• spin 0<br />

• coupling to the Higgs gives particles mass<br />

• Higgs couples to pairs of all massive particles<br />

and their antiparticles<br />

+ −<br />

H → µ µ if 210 MeV < mH < 270 MeV<br />

H<br />

→<br />

bb<br />

if 9 GeV < m H < 135 GeV<br />

H →WW<br />

if 135 GeV < mH • coupling is proportional to particle mass<br />

• decays to most massive particles with 2m


the mass of the Higgs boson<br />

• not predicted by the theory<br />

constraints from theory<br />

Triviality<br />

Vacuum Stability<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 7


the mass of the Higgs boson<br />

• not yet measured by experiment<br />

constraints from experiment<br />

global ewk fit<br />

consistency test<br />

of all measured<br />

parameters with<br />

standard model<br />

preferred mass<br />

≈ 90 GeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 8


theoretical problems<br />

• there is no (other) elementary spin-0 particle<br />

• corrections to Higgs mass diverge as Λ∞<br />

→new physics must exist at TeV scale<br />

• does it have to be one elementary scalar?<br />

– Supersymmetry → at least 4 Higgs bosons<br />

– strong dynamics → role of Higgs is played by a<br />

bound state of the new strong interaction<br />

does the Higgs boson exist?<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 9


events/20 MeV<br />

early Higgs searches<br />

• in decays of other particles, e.g. YH+γ<br />

CUSB Collaboration @ CESR<br />

PRD 35, 2883(1987)<br />

photon energy (MeV)<br />

exclude m H < 5 GeV<br />

should see<br />

monochromatic<br />

line in photon<br />

energy spectrum<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 10


L3<br />

DELPHI<br />

e + e - collisions<br />

1989: E com = 91 GeV<br />

2000: E com = 209 GeV<br />

ALEPH<br />

LEP<br />

CERN, Geneva<br />

OPAL<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 11


Higgs production at LEP<br />

LEP 1<br />

Center of mass energy (GeV)<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD<br />

LEP 2<br />

Björken process Higgsstrahlung<br />

12


Higgs decay<br />

• look for Z+Higgs<br />

M<br />

M<br />

M<br />

H<br />

H<br />

H<br />

<<br />

<<br />

<<br />

2m<br />

2m<br />

π<br />

b<br />

2M<br />

W<br />

e, µ – directly detectable<br />

H<br />

H<br />

H<br />

τ - decays to other particles<br />

g,c,b – form jets of particles<br />

→<br />

→<br />

→<br />

gg<br />

bb<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 13<br />

e<br />

+<br />

e<br />

−<br />

or<br />

or<br />

cc<br />

µ<br />

+<br />

easy to identify<br />

µ<br />

−<br />

or τ<br />

+<br />

τ<br />

cannot measure total energy<br />

hard to identify<br />


and then…<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 14


signal or fluctuation?<br />

• 3 selections with increasing purity for m H = 115 GeV<br />

Data 17<br />

Bkg 15.8<br />

Sig 7.1<br />

Data 5<br />

Bkg 3.9<br />

Sig 3.8<br />

for m H > 109 GeV<br />

Data 4<br />

Bkg 1.2<br />

Sig 2.2<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 15


the final LEP result<br />

“the results of the experiment were inconclusive so we had to use statistics...”<br />

from Louis Lyon’s book “statistics for nuclear and particle physicists”<br />

CLs<br />

• small if data agree better with<br />

background only<br />

• large if data agree better with<br />

signal+background<br />

signal can be excluded at 95% CL if CL s < 0.05<br />

exclude m H < 114 GeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD<br />

16


2000: the end of LEP<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 17


Tevatron<br />

Fermilab, Chicago<br />

pp collisions<br />

E com ≈ 2 TeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 18


Higgs production at Tevatron<br />

g<br />

g<br />

q<br />

q<br />

t<br />

W/Z<br />

large cross section – huge background<br />

H<br />

H<br />

W<br />

Z<br />

small cross section – moderate background<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 19


Higgs search at Tevatron<br />

H →<br />

2 jets<br />

bb<br />

“low mass” Higgs “high mass” Higgs<br />

m H < 135 GeV (Hbb)<br />

background driven<br />

WHlνbb, ZHll/ννbb<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD<br />

H →<br />

e<br />

WW<br />

µ<br />

ν<br />

2 acollinear leptons<br />

m H > 135 GeV (HWW)<br />

rate driven<br />

all production modes<br />

ν<br />

20


Higgs search at Tevatron<br />

ZH ννbb H WW<br />

backgrounds<br />

signal x 500<br />

M. Cooke – this conference R. Lysak – this conference<br />

need to use many observables combined into a discriminant variable<br />

this is a tough job!<br />

backgrounds<br />

signal x 10<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 21


can we see such a small signal?<br />

• observation of single top quark and WW production<br />

WW<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 22


can we see such a small signal?<br />

WW production – same final state as WH<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 23


Tevatron Higgs limits<br />

excluded @ 95% CL<br />

m H < 109.5 GeV<br />

158 < m H < 173 GeV<br />

J. Hays– this conference<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 24


will the Tevatron find the Higgs?<br />

M. Cooke – this conference<br />

possibly exclude mH < 190 GeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 25


LHC<br />

CMS<br />

Alice<br />

pp collisions<br />

2010-13: E com = 7 TeV<br />

2015: E com ≈ 14 TeV<br />

ATLAS<br />

LHCb<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 26


Higgs production at LHC<br />

Higgs production cross sections at LHC<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 27


LHC projections for Higgs search<br />

• mH < 130 GeV<br />

– H γγ<br />

• 130 < mH < 190 GeV<br />

– H W+W- ℓℓνν<br />

• 190 < mH < 460 GeV<br />

– H ZZ ℓℓ ℓℓ<br />

• 460 < mH < 800 GeV<br />

– H W+W- ℓνqq<br />

E com = 14 TeV<br />

designed to discover Higgs with 100 < m H < 800 GeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 28


the CMS experiment<br />

• homogeneous electromagnetic calorimeter<br />

– 78,000 lead tungstate crystals<br />

– excellent photon energy resolution<br />

– measure Hγγ<br />

# of events / 0.5 GeV<br />

m H = 130 GeV<br />

L = 100 fb -1<br />

M γγ (GeV)<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 29


ATLAS<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 30


LHC Operations<br />

• 2010:<br />

– delivered 45 pb -1 at E com = 7 TeV<br />

• 2011:<br />

– already delivered 20 pb -1 at E com = 7 TeV<br />

– goal: 1-3 fb -1<br />

• 2012:<br />

– E com ≥ 8 TeV<br />

• 2015:<br />

– E com → 14 TeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 31


first Higgs limits from LHC<br />

W. Quayle – this conference<br />

observed upper limit<br />

standard model prediction<br />

exclude cross sections > 2.1 standard model prediction<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 32


LHC projections<br />

W. Quayle – this conference<br />

possibly exclude 130 < m H < 460 GeV<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD 33


the quest goes on<br />

• the hunt for the Higgs boson has shaped<br />

particle physics experiments for the last three<br />

decades<br />

• it still eludes detection…<br />

3/24/2011 <strong>Ulrich</strong> <strong>Heintz</strong> - Moriond QCD<br />

… LHC will find it (or exclude it)<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!