22.07.2013 Views

The role of radiation pressure and accretion disks in the formation of ...

The role of radiation pressure and accretion disks in the formation of ...

The role of radiation pressure and accretion disks in the formation of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rolf Kuiper<br />

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>radiation</strong> <strong>pressure</strong><br />

<strong>and</strong> <strong>accretion</strong> <strong>disks</strong><br />

<strong>in</strong> <strong>the</strong> <strong>formation</strong> <strong>of</strong> massive stars<br />

Rolf Kuiper<br />

H. Klahr, H. Beu<strong>the</strong>r, T. Henn<strong>in</strong>g, C. Dullemond, M. Flock (MPIA),<br />

W. Kley (University <strong>of</strong> Tüb<strong>in</strong>gen), T. Hosokawa (JPL)<br />

ITA colloquium, Heidelberg, May, 12 th 2010<br />

ITA colloquium, Heidelberg May, 12 th 2010


Generalized Edd<strong>in</strong>gton limit:<br />

● M → 20 M º<br />

Rolf Kuiper<br />

<strong>The</strong> <strong>radiation</strong> <strong>pressure</strong> problem<br />

not to scale<br />

ITA colloquium, Heidelberg May, 12 th 2010


L *<br />

M *<br />

Rolf Kuiper<br />

What is <strong>the</strong> <strong>radiation</strong> <strong>pressure</strong> problem<br />

= 4G c<br />

<strong>in</strong> <strong>the</strong> <strong>formation</strong> <strong>of</strong> massive stars?<br />

*<br />

Hosokawa & Omukai (2009)<br />

L *=L <strong>accretion</strong>L nuclear<br />

Laor & Dra<strong>in</strong>e (1993)<br />

ITA colloquium, Heidelberg May, 12 th 2010


Generalized Edd<strong>in</strong>gton limit:<br />

● M → 20 M º<br />

Dynamic 1D limit:<br />

● M → 40 M º<br />

Rolf Kuiper<br />

<strong>The</strong> <strong>radiation</strong> <strong>pressure</strong> problem<br />

not to scale<br />

ITA colloquium, Heidelberg May, 12 th 2010


<strong>The</strong> upper mass limit <strong>of</strong> spherically symmetric <strong>accretion</strong><br />

Rolf Kuiper<br />

ITA colloquium, Heidelberg May, 12 th 2010


Generalized Edd<strong>in</strong>gton limit:<br />

● M → 20 M º<br />

Dynamic 1D limit:<br />

● M → 40 M º<br />

Yorke & Sonnhalter (2002):<br />

● “Flashlight effect”<br />

● Frequency dependent<br />

Rolf Kuiper<br />

<strong>The</strong> <strong>radiation</strong> <strong>pressure</strong> problem<br />

● But: shorten disk <strong>accretion</strong> phases<br />

● M → 43 M º<br />

Krumholz et al. (2007, 2009):<br />

● Non-axially symmetric modes required<br />

● M → 41.5 M º (primary) + 29.2 M º (secondary) + 28.3 M º (disk+envelope)<br />

not to scale<br />

ITA colloquium, Heidelberg May, 12 th 2010


Aim:<br />

● S<strong>in</strong>gle yet versatile code to test<br />

<strong>the</strong> proposed solutions:<br />

● Splitt<strong>in</strong>g stellar ir<strong>radiation</strong><br />

Rolf Kuiper<br />

<strong>and</strong> <strong>the</strong>rmal dust emission<br />

● Frequency dependent stellar<br />

lum<strong>in</strong>osity feedback<br />

● 1D, 2D, <strong>and</strong> 3D<br />

Code:<br />

Code development<br />

● Open source Magneto-Hydrodynamics code Pluto (v3.0)<br />

● plus Frequency dependent <strong>radiation</strong> transport<br />

● plus Poisson-solver<br />

Poisson<br />

PIA cluster at <strong>the</strong> Garch<strong>in</strong>g comput<strong>in</strong>g center.<br />

● plus Stellar evolution model (tracks by Hosokawa & Omukai 2009)<br />

● plus Dust model (Laor & Dra<strong>in</strong>e 1993)<br />

ITA colloquium, Heidelberg May, 12 th 2010


Conservation <strong>of</strong> ...<br />

… Mass<br />

… Momentum<br />

… Energy<br />

Eq. <strong>of</strong> state<br />

Poisson eq.<br />

FLD equation<br />

Rolf Kuiper<br />

∂ t ∇⋅u=0<br />

∂tuu⋅ ∇ u=− ∇ P<br />

∇ <br />

− ∇ <br />

∂t e ∇⋅[eP u]= u⋅ ∇ −u⋅ ∇ <br />

P=−1e<br />

∇ 2 =4G <br />

∂ t E R f c ∇⋅ D ∇ E R= f cQ +<br />

D= c<br />

R f c=<br />

F P ,<br />

4a T 3<br />

c v 1−1<br />

*<br />

= F<br />

* −<br />

Ir<strong>radiation</strong> 0e<br />

= P , r<br />

Q + =− *<br />

∇⋅F P ,<br />

− ∇ F<br />

c<br />

− u⋅ ∇ F<br />

c<br />

=gas density<br />

u=gas u=gas velocity<br />

P=gas <strong>pressure</strong><br />

e=<strong>in</strong>ternal energy<br />

=adiabatic <strong>in</strong>dex<br />

=viscosity tensor<br />

− ∇⋅F<br />

=gravitational potential<br />

G=gravitaty constant<br />

E R=<strong>the</strong>rmal <strong>radiation</strong> energy<br />

F =flux <strong>of</strong> total <strong>radiation</strong> energy<br />

F<br />

D=diffusion coefficient<br />

=-dependent dust opacity<br />

=optical depth<br />

c=speed <strong>of</strong> light<br />

* =flux <strong>of</strong> stellar <strong>radiation</strong> energy<br />

=flux-limiter<br />

R=Rossel<strong>and</strong> mean opacity<br />

P=Planck mean opacity<br />

a=<strong>radiation</strong> constant<br />

cv=heat capacity<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

Pluto3.0: A high-order Godunov-solver<br />

For <strong>the</strong> hydrodynamics we are us<strong>in</strong>g <strong>the</strong> public available MHD-code Pluto3.0:<br />

Godunov-solver: Comb<strong>in</strong><strong>in</strong>g F<strong>in</strong>ite Volume Method (FVM) with Riemann-solvers<br />

Conservative scheme for mass, momentum <strong>and</strong> energy<br />

Analytic or analytically approximated propagation speed <strong>of</strong> waves<br />

Full implementation <strong>of</strong> <strong>the</strong> viscous stress tensor<br />

Our default configuration:<br />

Runge-Kutta 2 (RK2) <strong>in</strong> time <strong>and</strong> spatially<br />

piecewise l<strong>in</strong>ear <strong>in</strong>terpolation (Slope-Limiter)<br />

2 nd order <strong>in</strong> time <strong>and</strong> space<br />

Harten-Lax-VanLeer (hll) Riemann-solver<br />

Slope-Limiter: M<strong>in</strong>Mod-Limiter, Total Variation Dim<strong>in</strong>ish<strong>in</strong>g (TVD) method<br />

No violation <strong>of</strong> propagation speeds, No post-shock wiggles<br />

Strang operator splitt<strong>in</strong>g <strong>in</strong> multi-dimensions<br />

We added: Self-gravity (Poisson-solver) <strong>and</strong> Radiation transport (FLD+Ray-trac<strong>in</strong>g),<br />

Dust (Laor & Dra<strong>in</strong>e) <strong>and</strong> Stellar evolution (Hosokawa & Omukai) model<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

<strong>The</strong> Radiation scheme<br />

not to scale<br />

ITA colloquium, Heidelberg May, 12 th 2010


8<br />

Rolf Kuiper<br />

Doma<strong>in</strong>:<br />

Axial symmetry.<br />

Density setup: r , = 0<br />

Pascucci Radiation Test:<br />

r = 1...1000 AU<br />

= ±90 °<br />

Radial stretched grid (10%).<br />

r d<br />

r<br />

exp− <br />

4<br />

z 2<br />

hr <br />

hr =z d r /r d 1.125<br />

r d =r max /2=500 AU<br />

z d=r max/8=125 AU<br />

Different optical depths via different density normalizations.<br />

2 <br />

y [AU]<br />

x [AU]<br />

ITA colloquium, Heidelberg May, 12 th 2010


8<br />

Rolf Kuiper<br />

Doma<strong>in</strong>:<br />

Axial symmetry.<br />

Density setup: r , = 0<br />

Pascucci Radiation Test:<br />

r = 1...1000 AU<br />

= ±90 °<br />

Radial stretched grid (10%).<br />

r d<br />

r<br />

exp− <br />

4<br />

z 2<br />

hr <br />

hr =z d r /r d 1.125<br />

r d =r max /2=500 AU<br />

z d=r max/8=125 AU<br />

Different optical depths via different density normalizations.<br />

=0.1 :<br />

For this most optical th<strong>in</strong> case, <strong>the</strong> temperature distribution<br />

is well reproduced via simple gray ir<strong>radiation</strong> (< 2%).<br />

=100 :<br />

<strong>The</strong> absorption/ir<strong>radiation</strong> temperature distribution is well<br />

reproduced via frequency-dependent ir<strong>radiation</strong> (< 5%).<br />

<strong>The</strong> deviations <strong>in</strong> <strong>the</strong> diffusion run stay below 11%.<br />

2 <br />

y [AU]<br />

x [AU]<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

gray<br />

Pascucci Radiation Test:<br />

radial cut<br />

through<br />

midplane<br />

frequency dependent<br />

<strong>in</strong>termediate layer<br />

polar cut<br />

at r = 2 AU<br />

ITA colloquium, Heidelberg May, 12 th 2010


●Setup:<br />

Rolf Kuiper<br />

Configuration<br />

● Monolithic collapse <strong>in</strong> spherical coord<strong>in</strong>ates /<br />

Accretion onto a s<strong>in</strong>gle massive star<br />

Initial conditions:<br />

● Outer radius <strong>of</strong> 0.1 pc<br />

● Density ~ r -2<br />

● Temperature = 20 K<br />

● Rigid rotation = 1.6*10 -5 yr -1 (<strong>in</strong> 2 <strong>and</strong> 3D)<br />

Numerical configuration:<br />

● 2 nd order accurate <strong>in</strong> space <strong>and</strong> time<br />

● Semi-permeable <strong>in</strong>ner <strong>and</strong> outer boundaries<br />

(mass can leave but not enter <strong>the</strong> doma<strong>in</strong>)<br />

64 x 16 grid:<br />

0.1 pc<br />

100 AU<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

Key features<br />

● Superior frequency dependent ray-trac<strong>in</strong>g step (ir<strong>radiation</strong>)<br />

● Fast <strong>and</strong> robust flux limited diffusion solver (dust emission)<br />

● Resolution down to 1.27 AU (~10 times higher than before)<br />

● Complete coverage <strong>of</strong> <strong>the</strong> <strong>accretion</strong> phase (10 5 … 10 6 yr) for <strong>the</strong> first time<br />

● First broad scan <strong>of</strong> <strong>the</strong> parameter space (37 simulations analyzed so far)<br />

ITA colloquium, Heidelberg May, 12 th 2010


● Dimension = 1D, 2D, 3D<br />

● Resolution / Convergence<br />

● S<strong>in</strong>k cell radius = 1 … 160 AU<br />

● Alpha-viscosity (2D) = 0 … 1<br />

● Initial core mass = 60 … 480 M º<br />

Rolf Kuiper<br />

Variations <strong>of</strong> <strong>the</strong> 37 simulations<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

Visualization: Global collapse<br />

0.2 pc<br />

ITA colloquium, Heidelberg May, 12 th 2010


Results:<br />

Larger s<strong>in</strong>k cells lead to ...<br />

● longer free fall phases<br />

Rolf Kuiper<br />

Resolv<strong>in</strong>g <strong>the</strong> dust condensation front<br />

=> can be elim<strong>in</strong>ated analytically<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

Resolv<strong>in</strong>g <strong>the</strong> dust condensation front<br />

ITA colloquium, Heidelberg May, 12 th 2010


Results:<br />

Larger s<strong>in</strong>k cells lead to ...<br />

● longer free fall phases<br />

Rolf Kuiper<br />

Resolv<strong>in</strong>g <strong>the</strong> dust condensation front<br />

=> can be elim<strong>in</strong>ated analytically<br />

● dim<strong>in</strong>ished shadow<strong>in</strong>g<br />

=> S<strong>in</strong>k cells <strong>in</strong> Yorke & Sonnhalter<br />

(2002) were too large!<br />

ITA colloquium, Heidelberg May, 12 th 2010


Break<strong>in</strong>g through<br />

<strong>the</strong> upper mass limit <strong>of</strong> spherically symmetric <strong>accretion</strong><br />

Rolf Kuiper<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

Visualization: Non-axial symmetric outflows<br />

~ 200 AU<br />

ITA colloquium, Heidelberg May, 12 th 2010


Results:<br />

Rolf Kuiper<br />

<strong>The</strong> 3 rd dimension:<br />

Angular momentum transport via self-gravity<br />

● Gravitational <strong>in</strong>stabilities (Toomre: 1 < Q < 2)<br />

● Mean <strong>accretion</strong> rate ~ viscous disk evolution<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

Visualization: Angular momentum transport<br />

~ 80 AU<br />

ITA colloquium, Heidelberg May, 12 th 2010


Ongo<strong>in</strong>g projects:<br />

Rolf Kuiper<br />

What's next?<br />

● Detailed study <strong>of</strong> <strong>the</strong> outflow region <strong>in</strong> three dimensions<br />

● Consistent stellar evolution model<strong>in</strong>g (with T. Hosokawa, JPL)<br />

● Broader scan <strong>of</strong> <strong>the</strong> parameter space (density pr<strong>of</strong>iles, rotation)<br />

Long-term tasks:<br />

● Ionization + <strong>radiation</strong> <strong>pressure</strong> feedback<br />

● Radiation Magneto-Hydrodynamics<br />

Magneto<br />

● S<strong>in</strong>k particles for study <strong>of</strong> disk fragmentation<br />

ITA colloquium, Heidelberg May, 12 th 2010


Rolf Kuiper<br />

You shall resolve <strong>the</strong><br />

dust condensation front!<br />

No “3D Radiative<br />

Rayleigh-Taylor”<br />

<strong>in</strong>stability.<br />

Summary<br />

Disk <strong>accretion</strong> produces<br />

<strong>the</strong> most massive stars!<br />

Self-gravity drives a sufficient<br />

angular momentum transport!<br />

ITA colloquium, Heidelberg May, 12 th 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!