23.07.2013 Views

An Introduction to Neutron Scattering - Spallation Neutron Source

An Introduction to Neutron Scattering - Spallation Neutron Source

An Introduction to Neutron Scattering - Spallation Neutron Source

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

y<br />

Roger Pynn<br />

Los Alamos<br />

National Labora<strong>to</strong>ry<br />

LECTURE 1: <strong>Introduction</strong> & <strong>Neutron</strong> <strong>Scattering</strong> “Theory”


Overview<br />

1. <strong>Introduction</strong> and theory of neutron scattering<br />

1. Advantages/disadvantages of neutrons<br />

2. Comparison with other structural probes<br />

3. Elastic scattering and definition of the structure fac<strong>to</strong>r, S(Q)<br />

4. Coherent & incoherent scattering<br />

5. Inelastic scattering<br />

6. Magnetic scattering<br />

7. Overview of science studied by neutron scattering<br />

8. References<br />

2. <strong>Neutron</strong> scattering facilities and instrumentation<br />

3. Diffraction<br />

4. Reflec<strong>to</strong>metry<br />

5. Small angle neutron scattering<br />

6. Inelastic scattering


Why do <strong>Neutron</strong> <strong>Scattering</strong>?<br />

• To determine the positions and motions of a<strong>to</strong>ms in condensed matter<br />

– 1994 Nobel Prize <strong>to</strong> Shull and Brockhouse cited these areas<br />

(see http://www.nobel.se/physics/educational/poster/1994/neutrons.html)<br />

• <strong>Neutron</strong> advantages:<br />

– Wavelength comparable with intera<strong>to</strong>mic spacings<br />

– Kinetic energy comparable with that of a<strong>to</strong>ms in a solid<br />

– Penetrating => bulk properties are measured & sample can be contained<br />

– Weak interaction with matter aids interpretation of scattering data<br />

– Iso<strong>to</strong>pic sensitivity allows contrast variation<br />

– <strong>Neutron</strong> magnetic moment couples <strong>to</strong> B => neutron “sees” unpaired electron spins<br />

• <strong>Neutron</strong> Disadvantages<br />

– <strong>Neutron</strong> sources are weak => low signals, need for large samples etc<br />

– Some elements (e.g. Cd, B, Gd) absorb strongly<br />

– Kinematic restrictions (can’t access all energy & momentum transfers)


The 1994 Nobel Prize in Physics – Shull & Brockhouse<br />

<strong>Neutron</strong>s show where the a<strong>to</strong>ms are….<br />

…and what the a<strong>to</strong>ms do.


The <strong>Neutron</strong> has Both Particle-Like and Wave-Like Properties<br />

• Mass: m n = 1.675 x 10 -27 kg<br />

• Charge = 0; Spin = ½<br />

• Magnetic dipole moment: μ n = - 1.913 μ N<br />

• Nuclear magne<strong>to</strong>n: μ N = eh/4πm p = 5.051 x 10 -27 J T -1<br />

• Velocity (v), kinetic energy (E), wavevec<strong>to</strong>r (k), wavelength (λ),<br />

temperature (T).<br />

• E = m n v 2 /2 = k B T = (hk/2π) 2 /2m n ; k = 2 π/λ = m n v/(h/2π)<br />

Energy (meV) Temp (K) Wavelength (nm)<br />

Cold 0.1 – 10 1 – 120 0.4 – 3<br />

Thermal 5 – 100 60 – 1000 0.1 – 0.4<br />

Hot 100 – 500 1000 – 6000 0.04 – 0.1<br />

l (nm) = 395.6 / v (m/s)<br />

E (meV) = 0.02072 k 2 (k in nm -1 )


Comparison of Structural Probes<br />

Note that scattering methods<br />

provide statistically averaged<br />

information on structure<br />

rather than real-space pictures<br />

of particular instances<br />

Macromolecules, 34, 4669 (2001)


Thermal <strong>Neutron</strong>s, 8 keV X-Rays & Low Energy<br />

Electrons:- Absorption by Matter<br />

Note for neutrons:<br />

• H/D difference<br />

• Cd, B, Sm<br />

• no systematic A<br />

dependence


Interaction Mechanisms<br />

• <strong>Neutron</strong>s interact with a<strong>to</strong>mic nuclei via very short range (~fm) forces.<br />

• <strong>Neutron</strong>s also interact with unpaired electrons via a magnetic dipole<br />

interaction.


Brightness & Fluxes for <strong>Neutron</strong> &<br />

X-Ray <strong>Source</strong>s<br />

Brightness<br />

(s -1 m -2 ster -1 )<br />

<strong>Neutron</strong>s 10 15<br />

Rotating<br />

<strong>An</strong>ode<br />

Bending<br />

Magnet<br />

10 16<br />

10 24<br />

Wiggler 10 26<br />

Undula<strong>to</strong>r<br />

(APS)<br />

10 33<br />

dE/E<br />

(%)<br />

Divergence<br />

(mrad 2 )<br />

Flux<br />

(s -1 m -2 )<br />

2 10 x 10 10 11<br />

3 0.5 x 10 5 x 10 10<br />

0.01 0.1 x 5 5 x 10 17<br />

0.01 0.1 x 1 10 19<br />

0.01 0.01 x 0.1 10 24


Φ = number of<br />

σ<br />

=<br />

<strong>to</strong>talnumber<br />

dσ<br />

number of<br />

=<br />

dΩ<br />

2<br />

d σ<br />

=<br />

dΩdE<br />

of<br />

number of<br />

incident neutrons per<br />

Cross Sections<br />

cm<br />

neutrons scatteredper<br />

per second<br />

second / Φ<br />

neutronsscatteredper<br />

second in<strong>to</strong><br />

dΩ<br />

Φ dΩ<br />

neutronsscatteredper<br />

second in<strong>to</strong><br />

Φ dΩ<br />

dE<br />

2<br />

dΩ<br />

& dE<br />

σ measured in barns:<br />

1 barn = 10 -24 cm 2<br />

Attenuation = exp(-Nσt)<br />

N = # of a<strong>to</strong>ms/unit volume<br />

t = thickness


<strong>Scattering</strong> by a Single (fixed) Nucleus<br />

If v is the velocity of<br />

passing through an area dS per second after scattering is<br />

v dS ψ<br />

scat<br />

Since the number of<br />

2<br />

= v dS b<br />

2<br />

dσ<br />

v b dΩ<br />

= = b<br />

dΩ<br />

ΦdΩ<br />

2<br />

2<br />

the neutron (same before and after scattering),<br />

the<br />

/r<br />

2<br />

= v b<br />

2<br />

dΩ<br />

incident neutrons passing through unit areasis<br />

soσ<br />

<strong>to</strong>tal<br />

= 4πb<br />

2<br />

:<br />

• range of nuclear force (~ 1fm)<br />

is scattering is<br />

elastic<br />

• we consider only scattering far<br />

from nuclear resonances where<br />

neutron absorption is negligible<br />

:<br />

number of<br />

Φ = vψ<br />

incident<br />

neutrons<br />

2<br />

= v


Adding up <strong>Neutron</strong>s Scattered by Many Nuclei<br />

0<br />

)<br />

(<br />

,<br />

)<br />

(<br />

)<br />

'<br />

(<br />

,<br />

2<br />

i<br />

2<br />

)<br />

'<br />

(<br />

i<br />

'.<br />

2<br />

)<br />

'.(<br />

i<br />

i<br />

scat<br />

R<br />

.<br />

k<br />

i<br />

i<br />

'<br />

by<br />

defined<br />

is<br />

Q<br />

r transfer<br />

wavevec<strong>to</strong><br />

the<br />

where<br />

get<br />

<strong>to</strong><br />

dS/r<br />

d<br />

use<br />

can<br />

we<br />

R<br />

r<br />

that<br />

so<br />

away<br />

enough<br />

far<br />

measure<br />

we<br />

If<br />

R<br />

-<br />

r<br />

1<br />

R<br />

-<br />

r<br />

b<br />

-<br />

is<br />

wave<br />

scattered<br />

the<br />

so<br />

e<br />

is<br />

ave<br />

incident w<br />

the<br />

R<br />

at<br />

located<br />

nucleus<br />

a<br />

At<br />

0<br />

0<br />

0<br />

i<br />

0<br />

k<br />

k<br />

Q<br />

e<br />

b<br />

b<br />

e<br />

b<br />

b<br />

d<br />

d<br />

e<br />

e<br />

b<br />

d<br />

dS<br />

vd<br />

vdS<br />

d<br />

d<br />

e<br />

e<br />

j<br />

i<br />

j<br />

i<br />

i<br />

i<br />

i<br />

R<br />

R<br />

.<br />

Q<br />

i<br />

j<br />

j<br />

i<br />

i<br />

R<br />

R<br />

.<br />

k<br />

k<br />

i<br />

j<br />

j<br />

i<br />

i<br />

R<br />

.<br />

k<br />

k<br />

i<br />

r<br />

k<br />

i<br />

i<br />

scat<br />

R<br />

r<br />

k<br />

i<br />

R<br />

.<br />

k<br />

i<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

−<br />

=<br />

=<br />

=<br />

Ω<br />

=<br />

Ω<br />

>><br />

Ω<br />

=<br />

Ω<br />

=<br />

Ω<br />

∴<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

∑<br />

∑<br />

∑<br />

∑<br />

σ<br />

ψ<br />

σ<br />

ψ


Coherent and Incoherent <strong>Scattering</strong><br />

The scattering length, b i , depends on the nuclear iso<strong>to</strong>pe, spin relative <strong>to</strong> the<br />

neutron & nuclear eigenstate. For a single nucleus:<br />

b<br />

i<br />

b b<br />

i<br />

=<br />

but<br />

j<br />

δb<br />

2<br />

i<br />

=<br />

dσ<br />

∴<br />

dΩ<br />

b<br />

δb<br />

=<br />

=<br />

+ δb<br />

b<br />

2<br />

=<br />

b<br />

i<br />

b<br />

0<br />

i<br />

+<br />

−<br />

2<br />

b<br />

where δb<br />

averages <strong>to</strong> zero<br />

and<br />

b<br />

∑<br />

i,<br />

j<br />

( δb<br />

e<br />

2<br />

i<br />

+ δb<br />

δb<br />

δb<br />

=<br />

i<br />

b<br />

2<br />

r r r<br />

−iQ.(<br />

R −R<br />

Coherent <strong>Scattering</strong><br />

(scattering depends on the<br />

direction of Q)<br />

i<br />

j<br />

j<br />

j<br />

)<br />

) + δbδb<br />

vanishes<br />

−<br />

+ (<br />

b<br />

b<br />

2<br />

i<br />

2<br />

j<br />

−<br />

unless<br />

b<br />

2<br />

) N<br />

Note: N = number of a<strong>to</strong>ms in scattering system<br />

i<br />

=<br />

Incoherent <strong>Scattering</strong><br />

(scattering is uniform in all directions)<br />

j


Nuclide<br />

1 H<br />

2 H<br />

C<br />

O<br />

Al<br />

Values of σ coh and σ inc<br />

s coh<br />

1.8<br />

5.6<br />

5.6<br />

4.2<br />

1.5<br />

s inc<br />

80.2<br />

2.0<br />

0.0<br />

0.0<br />

0.0<br />

Nuclide<br />

V<br />

Fe<br />

Co<br />

Cu<br />

36 Ar<br />

s coh<br />

0.02<br />

11.5<br />

1.0<br />

7.5<br />

24.9<br />

• Difference between H and D used in experiments with soft matter (contrast variation)<br />

• Al used for windows<br />

• V used for sample containers in diffraction experiments and as calibration for energy<br />

resolution<br />

• Fe and Co have nuclear cross sections similar <strong>to</strong> the values of their magnetic cross sections<br />

• Find scattering cross sections at the NIST web site at:<br />

http://webster.ncnr.nist.gov/resources/n-lengths/<br />

s inc<br />

5.0<br />

0.4<br />

5.2<br />

0.5<br />

0.0


so<br />

or<br />

ie<br />

Coherent Elastic <strong>Scattering</strong> measures the Structure<br />

Fac<strong>to</strong>r S(Q) I.e. correlations of a<strong>to</strong>mic positions<br />

dσ<br />

=<br />

dΩ<br />

Now<br />

where<br />

b<br />

∑<br />

i<br />

2<br />

e<br />

r<br />

N.<br />

S(<br />

Q)<br />

r r<br />

−iQ.<br />

R<br />

r 1<br />

S( Q)<br />

=<br />

N<br />

∫<br />

r<br />

g( R)<br />

=<br />

i<br />

=<br />

∫<br />

r<br />

dr<br />

'<br />

∑<br />

i≠0<br />

r<br />

dr.<br />

e<br />

∫<br />

for an assembly of similar a<strong>to</strong>mswhere<br />

r r<br />

−iQ.<br />

r<br />

∑<br />

r r r<br />

δ(<br />

R−<br />

R + R<br />

i<br />

i<br />

r r<br />

δ(<br />

r −R<br />

) =<br />

0<br />

∫<br />

)<br />

i<br />

∫<br />

r<br />

dr.<br />

e<br />

r r<br />

−iQ.<br />

r<br />

r<br />

r 1 r r 2<br />

−iQ.<br />

r r<br />

S(<br />

Q)<br />

= ∫ dr.<br />

e ρN<br />

( r)<br />

N<br />

r r r r<br />

−iQ.(<br />

r −r<br />

')<br />

r r 1<br />

dr.<br />

e ρN<br />

( r)<br />

ρN<br />

( r')<br />

=<br />

N<br />

r r r r r<br />

−iQ.<br />

R<br />

S(<br />

Q)<br />

= 1+<br />

dR.<br />

g(<br />

R)<br />

. e<br />

ρ<br />

r<br />

( r)<br />

r<br />

dR<br />

∫ ∫<br />

whereρ<br />

r<br />

dre<br />

r<br />

is a function of R only.<br />

N<br />

r 1<br />

S(<br />

Q)<br />

=<br />

N<br />

r r<br />

−iQ.<br />

R<br />

N<br />

ρ<br />

is<br />

N<br />

thenuclear<br />

r<br />

( r)<br />

ρ<br />

∑<br />

N<br />

i,<br />

j<br />

e<br />

r r r<br />

−iQ.(<br />

R −R<br />

r r<br />

( r − R)<br />

i<br />

j<br />

)<br />

ensemble<br />

number density<br />

g(R) is known as the static pair correlation function. It gives the probability that there is an<br />

a<strong>to</strong>m, i, at distance R from the origin of a coordinate system at time t, given that there is also a<br />

(different) a<strong>to</strong>m at the origin of the coordinate system


S(Q) and g(r) for Simple Liquids<br />

• Note that S(Q) and g(r)/ρ both tend <strong>to</strong> unity at large values of their arguments<br />

• The peaks in g(r) represent a<strong>to</strong>ms in “coordination shells”<br />

• g(r) is expected <strong>to</strong> be zero for r < particle diameter – ripples are truncation<br />

errors from Fourier transform of S(Q)


<strong>Neutron</strong>s can also gain or lose energy in the scattering process: this is<br />

called inelastic scattering


Inelastic neutron scattering measures a<strong>to</strong>mic motions<br />

The concept of a pair correlation function can be generalized:<br />

G(r,t) = probability of finding a nucleus at (r,t) given that there is one at r=0 at t=0<br />

G s (r,t) = probability of finding a nucleus at (r,t) if the same nucleus was at r=0 at t=0<br />

Then one finds:<br />

2 ⎛ d σ ⎞<br />

⎜<br />

d dE ⎟<br />

⎝ Ω.<br />

⎠<br />

2 ⎛ d σ ⎞<br />

⎜<br />

d dE<br />

⎟<br />

⎝ Ω.<br />

⎠<br />

coh<br />

inc<br />

= b<br />

= b<br />

where<br />

r 1<br />

S(<br />

Q,<br />

ω)<br />

=<br />

2πh<br />

2<br />

coh<br />

2<br />

inc<br />

∫∫<br />

k'<br />

r<br />

NS(<br />

Q,<br />

ω)<br />

k<br />

k'<br />

r<br />

NSi<br />

( Q,<br />

ω)<br />

k<br />

r<br />

G(<br />

r,<br />

t)<br />

e<br />

r r<br />

i(<br />

Q.<br />

r −ωt)<br />

r<br />

drdt<br />

and<br />

(h/2π)Q & (h/2π)ω are the momentum &<br />

energy transferred <strong>to</strong> the neutron during the<br />

scattering process<br />

r 1<br />

Si<br />

( Q,<br />

ω)<br />

=<br />

2πh<br />

∫∫<br />

G<br />

s<br />

r<br />

( r,<br />

t)<br />

e<br />

r r<br />

i(<br />

Q.<br />

r −ωt<br />

)<br />

r<br />

drdt<br />

Inelastic coherent scattering measures correlated motions of a<strong>to</strong>ms<br />

Inelastic incoherent scattering measures self-correlations e.g. diffusion


Magnetic <strong>Scattering</strong><br />

• The magnetic moment of the neutron interacts with B fields<br />

caused, for example, by unpaired electron spins in a material<br />

– Both spin and orbital angular momentum of electrons contribute <strong>to</strong> B<br />

– Expressions for cross sections are more complex than for nuclear scattering<br />

• Magnetic interactions are long range and non-central<br />

– Nuclear and magnetic scattering have similar magnitudes<br />

– Magnetic scattering involves a form fac<strong>to</strong>r – FT of electron spatial distribution<br />

• Electrons are distributed in space over distances comparable <strong>to</strong> neutron wavelength<br />

• Elastic magnetic scattering of neutrons can be used <strong>to</strong> probe electron distributions<br />

– Magnetic scattering depends only on component of B perpendicular <strong>to</strong> Q<br />

– For neutrons spin polarized along a direction z (defined by applied H field):<br />

• Correlations involving B z do not cause neutron spin flip<br />

• Correlations involving B x or B y cause neutron spin flip<br />

– Coherent & incoherent nuclear scattering affects spin polarized neutrons<br />

• Coherent nuclear scattering is non-spin-flip<br />

• Nuclear spin-incoherent nuclear scattering is 2/3 spin-flip<br />

• Iso<strong>to</strong>pic incoherent scattering is non-spin-flip


Magnetic <strong>Neutron</strong> <strong>Scattering</strong> is a Powerful Tool<br />

• In early work Shull and his collabora<strong>to</strong>rs:<br />

– Provided the first direct evidence of antiferromagnetic ordering<br />

– Confirmed the Neel model of ferrimagnetism in magnetite (Fe 3 O 4 )<br />

– Obtained the first magnetic form fac<strong>to</strong>r (spatial distribution of magnetic<br />

electrons) by measuring paramagnetic scattering in Mn compounds<br />

– Produced polarized neutrons by Bragg reflection (where nuclear and magnetic<br />

scattering scattering cancelled for one neutronspin state)<br />

– Determined the distribution of magnetic moments in 3d alloys by measuring<br />

diffuse magnetic scattering<br />

– Measured the magnetic critical scattering at the Curie point in Fe<br />

• More recent work using polarized neutrons has:<br />

– Discriminated between longitudinal & transverse magnetic fluctuations<br />

– Provided evidence of magnetic soli<strong>to</strong>ns in 1-d magnets<br />

– Quantified electron spin fluctuations in correlated-electron materials<br />

– Provided the basis for measuring slow dynamics using the neutron spin-echo<br />

technique…..etc


Ene rgy Trans fe r (me V)<br />

10000<br />

100<br />

1<br />

0.01<br />

10-4<br />

10-6<br />

Ne utro ns in Co n de ns e d Matte r Re s e arc h<br />

SSPSS pa lla tio - Chopper n - Ch opp Spectrometer<br />

er<br />

ILL - w itho u t s pin -ec ho<br />

ILL - w ith s p in -e ch o<br />

Elastic <strong>Scattering</strong><br />

[Larger Objects Resolved]<br />

Micelles Polymers<br />

Proteins in Solution<br />

Viruses<br />

Metallu rgical<br />

Systems<br />

Colloids<br />

Aggregate<br />

Motion<br />

Polymers<br />

and<br />

Biological<br />

Systems<br />

Coherent<br />

M odes in<br />

Glasses<br />

and Liquids<br />

Molecular<br />

M otions<br />

Mem branes<br />

Proteins<br />

Critic al<br />

Sca ttering<br />

Diffusive<br />

Modes<br />

Spin<br />

Wa ves<br />

Elec tron-<br />

phonon<br />

Intera ctions<br />

C rystal and<br />

Magnetic<br />

Structures<br />

Crystal<br />

Fields<br />

Slower<br />

M otions<br />

Res olved<br />

Molecular<br />

Reorie nta tion<br />

Tunneling<br />

Spectroscopy<br />

Surface<br />

Effects ?<br />

Itine rant<br />

Magnets<br />

Hyd rog en<br />

Modes<br />

Molecular<br />

Vibrations<br />

La ttice<br />

Vibra tions<br />

and<br />

A nharmonicity<br />

Amorphous<br />

Systems<br />

N eutron<br />

Induced<br />

Excitations<br />

Momentum<br />

Distributions<br />

Accurate Liquid Structu res<br />

Precision Crystallography<br />

<strong>An</strong>harmonicity<br />

0 .0 01 0.01 0 .1 1 10 100<br />

Q (Å -1 )<br />

<strong>Neutron</strong> scattering experiments measure the number of neutrons scattered at different values of<br />

the wavevec<strong>to</strong>r and energy transfered <strong>to</strong> the neutron, denoted Q and E. The phenomena probed<br />

depend on the values of Q and E accessed.


Next Lecture<br />

2. <strong>Neutron</strong> <strong>Scattering</strong> Instrumentation and Facilities – how is<br />

neutron scattering measured?<br />

1. <strong>Source</strong>s of neutrons for scattering – reac<strong>to</strong>rs & spallation sources<br />

1. <strong>Neutron</strong> spectra<br />

2. Monochromatic-beam and time-of-flight methods<br />

2. Instrument components<br />

1. Crystal monochroma<strong>to</strong>rs and analysers<br />

2. <strong>Neutron</strong> guides<br />

3. <strong>Neutron</strong> detec<strong>to</strong>rs<br />

4. <strong>Neutron</strong> spin manipulation<br />

5. Choppers<br />

6. etc<br />

3. A zoo of specialized neutron spectrometers


References<br />

• <strong>Introduction</strong> <strong>to</strong> the Theory of Thermal <strong>Neutron</strong> <strong>Scattering</strong><br />

by G. L. Squires<br />

Reprint edition (February 1997)<br />

Dover Publications<br />

ISBN 048669447<br />

• <strong>Neutron</strong> <strong>Scattering</strong>: A Primer<br />

by Roger Pynn<br />

Los Alamos Science (1990)<br />

(see www.mrl.ucsb.edu/~pynn)


y<br />

Roger Pynn<br />

Los Alamos<br />

National Labora<strong>to</strong>ry<br />

LECTURE 2: <strong>Neutron</strong> <strong>Scattering</strong> Instrumentation & Facilities


Overview<br />

1. Essential messages from Lecture #1<br />

2. <strong>Neutron</strong> <strong>Scattering</strong> Instrumentation and Facilities – how is<br />

neutron scattering measured?<br />

1. <strong>Source</strong>s of neutrons for scattering – reac<strong>to</strong>rs & spallation sources<br />

1. <strong>Neutron</strong> spectra<br />

2. Monochromatic-beam and time-of-flight methods<br />

2. Instrument components<br />

3. A “zoo” of specialized neutron spectrometers


Recapitulation of Key Messages From Lecture #1<br />

• <strong>Neutron</strong> scattering experiments measure the number of neutrons scattered<br />

by a sample as a function of the wavevec<strong>to</strong>r change (Q) and the energy<br />

change (E) of the neutron<br />

• Expressions for the scattered neutron intensity involve the positions and<br />

motions of a<strong>to</strong>mic nuclei or unpaired electron spins in the scattering sample<br />

• The scattered neutron intensity as a function of Q and E is proportional <strong>to</strong><br />

the space and time Fourier Transform of the probability of finding two a<strong>to</strong>ms<br />

separated by a particular distance at a particular time<br />

• Sometimes the change in the spin state of the neutron during scattering is<br />

also measured <strong>to</strong> give information about the locations and orientations of<br />

unpaired electron spins in the sample


What Do We Need <strong>to</strong> Do a Basic <strong>Neutron</strong> <strong>Scattering</strong> Experiment?<br />

• A source of neutrons<br />

• A method <strong>to</strong> prescribe the wavevec<strong>to</strong>r of the neutrons incident on the sample<br />

• (<strong>An</strong> interesting sample)<br />

• A method <strong>to</strong> determine the wavevec<strong>to</strong>r of the scattered neutrons<br />

– Not needed for elastic scattering<br />

• A neutron detec<strong>to</strong>r<br />

Incident neutrons of wavevec<strong>to</strong>r k 0 Scattered neutrons of<br />

wavevec<strong>to</strong>r, k 1<br />

Q<br />

k 0<br />

k 1<br />

Sample<br />

Detec<strong>to</strong>r<br />

Remember: wavevec<strong>to</strong>r, k, &<br />

wavelength, λ, are related by:<br />

k = m n v/(h/2π) = 2π/λ


<strong>Neutron</strong> <strong>Scattering</strong> Requires Intense <strong>Source</strong>s of <strong>Neutron</strong>s<br />

• <strong>Neutron</strong>s for scattering experiments can be produced either by nuclear<br />

fission in a reac<strong>to</strong>r or by spallation when high-energy pro<strong>to</strong>ns strike a heavy<br />

metal target (W, Ta, or U).<br />

– In general, reac<strong>to</strong>rs produce continuous neutron beams and spallation sources produce<br />

beams that are pulsed between 20 Hz and 60 Hz<br />

– The energy spectra of neutrons produced by reac<strong>to</strong>rs and spallation sources are different,<br />

with spallation sources producing more high-energy neutrons<br />

– <strong>Neutron</strong> spectra for scattering experiments are tailored by modera<strong>to</strong>rs – solids or liquids<br />

maintained at a particular temperature – although neutrons are not in thermal equilibrium<br />

with modera<strong>to</strong>rs at a short-pulse spallation sources<br />

• Both reac<strong>to</strong>rs and spallation sources are expensive <strong>to</strong> build and require<br />

sophisticated operation.<br />

– SNS at ORNL will cost about $1.5B <strong>to</strong> construct & ~$140M per year <strong>to</strong> operate<br />

• Either type of source can provide neutrons for 30-50 neutron spectrometers<br />

– Small science at large facilities


About 1.5 Useful <strong>Neutron</strong>s Are Produced by Each Fission Event in<br />

a Nuclear Reac<strong>to</strong>r Whereas About 25 <strong>Neutron</strong>s Are Produced by<br />

spallation for Each 1-GeV Pro<strong>to</strong>n Incident on a Tungsten Target<br />

Artist’s view of spallation<br />

Nuclear Fission<br />

<strong>Spallation</strong>


<strong>Neutron</strong>s From Reac<strong>to</strong>rs and <strong>Spallation</strong> <strong>Source</strong>s Must Be<br />

Moderated Before Being Used for <strong>Scattering</strong> Experiments<br />

• Reac<strong>to</strong>r spectra are Maxwellian<br />

• Intensity and peak-width ~ 1/(E) 1/2 at<br />

high neutron energies at spallation<br />

sources<br />

• Cold sources are usually liquid<br />

hydrogen (though deuterium is also<br />

used at reac<strong>to</strong>rs & methane is sometimes<br />

used at spallation sources)<br />

• Hot source at ILL (only one in the<br />

world) is graphite, radiation heated.


The ESRF* & ILL* With Grenoble & the Beldonne Mountains<br />

*ESRF = European Synchrotron Radiation Facility; ILL = Institut Laue-Langevin


The National Institute of Standards and Technology (NIST) Reac<strong>to</strong>r Is a<br />

20 MW Research Reac<strong>to</strong>r With a Peak Thermal Flux of 4x10 14 N/sec. It Is<br />

Equipped With a Unique Liquid-hydrogen Modera<strong>to</strong>r That Provides <strong>Neutron</strong>s<br />

for Seven <strong>Neutron</strong> Guides


<strong>Neutron</strong> <strong>Source</strong>s Provide <strong>Neutron</strong>s for Many<br />

Spectrometers: Schematic Plan of the ILL Facility


A ~ 30 X 20 m 2 Hall at the ILL Houses About 30 Spectrometers.<br />

<strong>Neutron</strong>s Are Provided Through Guide Tubes


Pro<strong>to</strong>n<br />

Radiography<br />

800-MeV Linear<br />

Accelera<strong>to</strong>r<br />

LANSCE<br />

Visi<strong>to</strong>r’s Center<br />

Los Alamos <strong>Neutron</strong> Science Center<br />

Manuel Lujan Jr.<br />

<strong>Neutron</strong> <strong>Scattering</strong><br />

Center<br />

Pro<strong>to</strong>n S<strong>to</strong>rage<br />

Ring<br />

Weapons<br />

<strong>Neutron</strong> Research


<strong>Neutron</strong> Production at LANSCE<br />

• Linac produces 20 H - (a pro<strong>to</strong>n + 2 electrons) pulses per second<br />

– 800 MeV, ~800 μsec long pulses, average current ~100 μA<br />

• Each pulse consists of repetitions of 270 nsec on, 90 nsec off<br />

• Pulses are injected in<strong>to</strong> a Pro<strong>to</strong>n S<strong>to</strong>rage Ring with a period of 360 nsec<br />

– Thin carbon foil strips electrons <strong>to</strong> convert H - <strong>to</strong> H + (I.e. a pro<strong>to</strong>n)<br />

– ~3 x 10 13 pro<strong>to</strong>ns/pulse ejected on<strong>to</strong> neutron production target


Components of a <strong>Spallation</strong> <strong>Source</strong><br />

A half-mile long pro<strong>to</strong>n linac…<br />

…and a neutron production target<br />

….a pro<strong>to</strong>n accumulation ring….


A Comparison of <strong>Neutron</strong> Flux Calculations for the ESS SPSS (50 Hz, 5 MW)<br />

& LPSS (16 Hz, 5W) With Measured <strong>Neutron</strong> Fluxes at the ILL<br />

Instantaneous flux [n/cm 2 /s/str/Å]<br />

Flux [n/cm 2 /s/str/Å]<br />

10 17<br />

10 16<br />

10 15<br />

10 14<br />

10 13<br />

10 12<br />

10 11<br />

10 10<br />

2.0x10 14<br />

1.5x10 14<br />

1.0x10 14<br />

5.0x10 13<br />

ILL hot source<br />

ILL thermal source<br />

ILL cold source<br />

0 1 2 3 4<br />

Wavelength [Å]<br />

0.0<br />

0 500 1000 1500 2000 2500 3000<br />

Time [μs]<br />

l = 4 Å<br />

poisoned modera<strong>to</strong>r<br />

decoupled modera<strong>to</strong>r<br />

coupled modera<strong>to</strong>r<br />

long pulse<br />

peak flux<br />

poisoned m.<br />

decoupled m.<br />

coupled m.<br />

long pulse<br />

Flux [n/cm 2 /s/str/Å]<br />

10 17<br />

10 16<br />

10 15<br />

10 14<br />

10 13<br />

10 12<br />

10 11<br />

10 10<br />

ILL hot source<br />

ILL thermal source<br />

ILL cold source<br />

average flux<br />

poisoned m.<br />

decoupled m.<br />

coupled m.<br />

and long pulse<br />

0 1 2 3 4<br />

Wavelength [Å]<br />

Pulsed sources only make sense if<br />

one can make effective use of the<br />

flux in each pulse, rather than the<br />

average neutron flux


Simultaneously Using <strong>Neutron</strong>s With Many Different Wavelengths<br />

Enhances the Efficiency of <strong>Neutron</strong> <strong>Scattering</strong> Experiments<br />

k i<br />

k i<br />

k f<br />

k f<br />

I<br />

I<br />

Dl res = Dl bw<br />

Dl bw a T<br />

Dl res a DT<br />

Potential Performance Gain relative <strong>to</strong> use of a Single Wavelength<br />

is the Number of Different Wavelength Slices used<br />

l<br />

l<br />

I<br />

<strong>Neutron</strong><br />

<strong>Source</strong> Spectrum<br />

l


The Time-of-flight Method Uses Multiple Wavelength Slices<br />

at a Reac<strong>to</strong>r or a Pulsed <strong>Spallation</strong> <strong>Source</strong><br />

Detec<strong>to</strong>r<br />

Distance<br />

Modera<strong>to</strong>r<br />

Dl res = 3956 dT p / L<br />

Dl bw = 3956 DT / L<br />

DT<br />

When the neutron wavelength is determined by time-of-flight, ΔT/δT p different<br />

wavelength slices can be used simultaneously.<br />

dT p<br />

DT<br />

Time<br />

L


The Actual ToF Gain From <strong>Source</strong> Pulsing<br />

Often Does Not Scale Linearly With Peak <strong>Neutron</strong> Flux<br />

low rep. rate => large dynamic range<br />

short pulse => good resolution —<br />

neither may be necessary or useful<br />

large dynamic range may result in intensity<br />

changes across the spectrum<br />

at a traditional short-pulse source the wavelength<br />

resolution changes with wavelength<br />

k i<br />

k i<br />

Q<br />

k i k f<br />

k i<br />

Q<br />

k f<br />

k f<br />

I<br />

I<br />

k f<br />

l<br />

l<br />

l


A Comparison of Reac<strong>to</strong>rs & <strong>Spallation</strong> <strong>Source</strong>s<br />

Short Pulse <strong>Spallation</strong> <strong>Source</strong><br />

Energy deposited per useful neutron is<br />

~20 MeV<br />

<strong>Neutron</strong> spectrum is “slowing down”<br />

spectrum – preserves short pulses<br />

Constant, small δλ/λ at large neutron<br />

energy => excellent resolution<br />

especially at large Q and E<br />

Copious “hot” neutrons=> very good for<br />

measurements at large Q and E<br />

Low background between pulses =><br />

good signal <strong>to</strong> noise<br />

Single pulse experiments possible<br />

Reac<strong>to</strong>r<br />

Energy deposited per useful neutron is<br />

~ 180 MeV<br />

<strong>Neutron</strong> spectrum is Maxwellian<br />

Resolution can be more easily tailored<br />

<strong>to</strong> experimental requirements, except<br />

for hot neutrons where monochroma<strong>to</strong>r<br />

crystals and choppers are less effective<br />

Large flux of cold neutrons => very<br />

good for measuring large objects and<br />

slow dynamics<br />

Pulse rate for TOF can be optimized<br />

independently for different<br />

spectrometers<br />

<strong>Neutron</strong> polarization easier


Why Isn’t There a Universal <strong>Neutron</strong> <strong>Scattering</strong> Spectrometer?<br />

Mononchromatic<br />

incident beam<br />

Detec<strong>to</strong>r<br />

• Conservation of momentum => Q = k f – k i<br />

• Conservation of energy => E = ( h 2 m/ 8 p 2 ) (k f 2 - ki 2 )<br />

Elastic <strong>Scattering</strong> — detect all<br />

scattered neutrons<br />

Inelastic <strong>Scattering</strong> — detect<br />

neutrons as a function of<br />

scattered energy (color)<br />

• <strong>Scattering</strong> properties of sample depend only on Q and E, not on neutron l<br />

Many types of neutron scattering spectrometer are required because<br />

the accessible Q and E depend on neutron energy and because resolution and<br />

detec<strong>to</strong>r coverage have <strong>to</strong> be tailored <strong>to</strong> the science for such a signal-limited technique.


Brightness & Fluxes for <strong>Neutron</strong> &<br />

X-ray <strong>Source</strong>s<br />

Brightness<br />

(s -1 m -2 ster -1 )<br />

<strong>Neutron</strong>s 10 15<br />

Rotating<br />

<strong>An</strong>ode<br />

Bending<br />

Magnet<br />

10 16<br />

10 24<br />

Wiggler 10 26<br />

Undula<strong>to</strong>r<br />

(APS)<br />

10 33<br />

dE/E<br />

(%)<br />

Divergence<br />

(mrad 2 )<br />

Flux<br />

(s -1 m -2 )<br />

2 10 x 10 10 11<br />

3 0.5 x 10 5 x 10 10<br />

0.01 0.1 x 5 5 x 10 17<br />

0.01 0.1 x 1 10 19<br />

0.01 0.01 x 0.1 10 24


• Uncertainties in the neutron<br />

wavelength & direction of travel<br />

imply that Q and E can only be<br />

defined with a certain precision<br />

Instrumental Resolution<br />

• When the box-like resolution<br />

volumes in the figure are convolved,<br />

the overall resolution is Gaussian<br />

(central limit theorem) and has an<br />

elliptical shape in (Q,E) space<br />

• The <strong>to</strong>tal signal in a scattering<br />

experiment is proportional <strong>to</strong> the<br />

phase space volume within the<br />

elliptical resolution volume – the better the resolution, the lower the count<br />

rate


Examples of Specialization of Spectrometers:<br />

Optimizing the Signal for the Science<br />

• Small angle scattering [Q = 4π sinθ/λ; (δQ/Q) 2 = (δλ/λ) 2 + (cotθ δθ) 2 ]<br />

– Small diffraction angles <strong>to</strong> observe large objects => long (20 m) instrument<br />

– poor monochromatization (δλ/λ ~ 10%) sufficient <strong>to</strong> match obtainable angular<br />

resolution (1 cm 2 pixels on 1 m 2 detec<strong>to</strong>r at 10 m => δθ ~ 10 -3 at θ ~ 10 -2 ))<br />

• Back scattering [θ = π/2; λ = 2 d sin θ; δλ/λ = cot θ +…]<br />

– very good energy resolution (~neV) => perfect crystal analyzer at θ ~ π/2<br />

– poor Q resolution => analyzer crystal is very large (several m 2 )


Typical <strong>Neutron</strong> <strong>Scattering</strong> Instruments<br />

Note: relatively massive shielding; long<br />

flight paths for time-of-flight spectrometers;<br />

many or multi-detec<strong>to</strong>rs<br />

but… small science at a large facility


Components of <strong>Neutron</strong> <strong>Scattering</strong> Instruments<br />

• Monochroma<strong>to</strong>rs<br />

– Monochromate or analyze the energy of a neutron beam using Bragg’s law<br />

• Collima<strong>to</strong>rs<br />

– Define the direction of travel of the neutron<br />

• Guides<br />

– Allow neutrons <strong>to</strong> travel large distances without suffering intensity loss<br />

• Detec<strong>to</strong>rs<br />

– <strong>Neutron</strong> is absorbed by 3 He and gas ionization caused by recoiling particles<br />

is detected<br />

• Choppers<br />

– Define a short pulse or pick out a small band of neutron energies<br />

• Spin turn coils<br />

– Manipulate the neutron spin using Lamor precession<br />

• Shielding<br />

– Minimize background and radiation exposure <strong>to</strong> users


Most <strong>Neutron</strong> Detec<strong>to</strong>rs Use 3 He<br />

• 3 He + n -> 3 H + p + 0.764 MeV<br />

• Ionization caused by tri<strong>to</strong>n and pro<strong>to</strong>n<br />

is collected on an electrode<br />

• 70% of neutrons are absorbed<br />

when the product of gas<br />

pressure x thickness x neutron<br />

wavelength is 16 atm. cm. Å<br />

• Modern detec<strong>to</strong>rs are often “position<br />

sensitive” – charge division is used<br />

<strong>to</strong> determine where the ionization<br />

cloud reached the cathode.<br />

A selection of neutron detec<strong>to</strong>rs –<br />

thin-walled stainless steel tubes<br />

filled with high-pressure 3 He.


Essential Components of Modern <strong>Neutron</strong><br />

<strong>Scattering</strong> Spectrometers<br />

Horizontally & vertically focusing<br />

monochroma<strong>to</strong>r (about 15 x 15 cm 2 )<br />

Pixelated detec<strong>to</strong>r covering a wide range<br />

of scattering angles (vertical & horizontal)<br />

<strong>Neutron</strong> guide<br />

(glass coated<br />

either with Ni<br />

or “supermirror”)


Rotating Choppers Are Used <strong>to</strong> Tailor <strong>Neutron</strong><br />

Pulses at Reac<strong>to</strong>rs and <strong>Spallation</strong> <strong>Source</strong>s<br />

• T-zero choppers made of Fe-Co are used at spallation sources<br />

<strong>to</strong> absorb the prompt high-energy pulse of neutrons<br />

• Cd is used in frame overlap choppers <strong>to</strong> absorb slower<br />

neutrons<br />

Fast neutrons from one pulse can catch-up with<br />

slower neutrons from a succeeding pulse and spoil<br />

the measurement if they are not removed.This is<br />

called “frame-overlap”


Larmor Precession & Manipulation of the <strong>Neutron</strong> Spin<br />

• In a magnetic field, H, the neutron<br />

spin precesses at a rate<br />

υ<br />

L<br />

= −γH<br />

/ 2π<br />

= −2916.<br />

4H<br />

Hz<br />

where γ is the neutron’s gyromagnetic<br />

ratio & H is in Oesteds<br />

• This effect can be used <strong>to</strong> manipulate<br />

the neutron spin<br />

• A “spin flipper” – which turns the spin<br />

through 180 degrees is illustrated<br />

• The spin is usually referred <strong>to</strong> as “up”<br />

when the spin (not the magnetic<br />

moment) is parallel <strong>to</strong> a (weak ~ 10 –<br />

50 Oe) magnetic guide field


3. Diffraction<br />

Next Lecture<br />

1. Diffraction by a lattice<br />

2. Single-crystal diffraction and powder diffraction<br />

3. Use of monochromatic beams and time-of-flight <strong>to</strong> measure powder<br />

diffraction<br />

4. Rietveld refinement of powder patterns<br />

5. Examples of science with powder diffraction<br />

• Refinement of structures of new materials<br />

• Materials texture<br />

• Strain measurements<br />

• Structures at high pressure<br />

• Microstrain peak broadening<br />

• Pair distribution functions (PDF)


LECTURE 3: Diffraction<br />

by<br />

Roger Pynn<br />

Los Alamos<br />

National Labora<strong>to</strong>ry


2. Diffraction<br />

This Lecture<br />

1. Diffraction by a lattice<br />

2. Single-crystal compared with powder diffraction<br />

3. Use of monochromatic beams and time-of-flight <strong>to</strong> measure powder<br />

diffraction<br />

4. Rietveld refinement of powder patterns<br />

5. Examples of science with powder diffraction<br />

• Refinement of structures of new materials<br />

• Materials texture<br />

• Strain measurements<br />

• Pair distribution functions (PDF)


dσ<br />

dΩ<br />

⎛<br />

⎜<br />

⎝<br />

Q<br />

=<br />

dσ<br />

⎞<br />

⎟<br />

dΩ<br />

⎠<br />

where<br />

the<br />

i,<br />

j<br />

From Lecture 1:<br />

number of neutrons scattered through angle 2θ<br />

per second in<strong>to</strong> dΩ<br />

number of incident neutrons per square cm per second<br />

coh<br />

k 0<br />

=<br />

k’<br />

∑<br />

b<br />

coh<br />

i<br />

b<br />

coh<br />

j<br />

e<br />

r r r r<br />

i(<br />

k −k<br />

')<br />

. ( R −R<br />

wavevec<strong>to</strong>r<br />

transfer<br />

2θ<br />

Incident neutrons of wavevec<strong>to</strong>r k 0<br />

0<br />

i<br />

j<br />

)<br />

=<br />

∑<br />

i,<br />

j<br />

b<br />

coh<br />

i<br />

b<br />

coh<br />

j<br />

r<br />

Q is defined by<br />

e<br />

r r r<br />

−iQ.<br />

( R −R<br />

i<br />

r r r<br />

Q = k '−k<br />

For elastic scattering k 0 =k’=k:<br />

Q = 2k sin θ<br />

Q = 4π sin θ/λ<br />

Sample<br />

2θ<br />

j<br />

)<br />

0<br />

Detec<strong>to</strong>r<br />

Scattered neutrons of<br />

wavevec<strong>to</strong>r, k’


<strong>Neutron</strong> Diffraction<br />

• <strong>Neutron</strong> diffraction is used <strong>to</strong> measure the differential cross section, dσ/dΩ<br />

and hence the static structure of materials<br />

– Crystalline solids<br />

– Liquids and amorphous materials<br />

– Large scale structures<br />

• Depending on the scattering angle,<br />

structure on different length scales, d,<br />

is measured:<br />

2π / Q<br />

= d = λ / 2sin(<br />

θ )<br />

• For crystalline solids & liquids, use<br />

wide angle diffraction. For large structures,<br />

e.g. polymers, colloids, micelles, etc.<br />

use small-angle neutron scattering


Diffraction by a Lattice of A<strong>to</strong>ms<br />

.<br />

G<br />

vec<strong>to</strong>r,<br />

lattice<br />

reciprocal<br />

a<br />

<strong>to</strong><br />

equal<br />

is<br />

Q,<br />

r,<br />

wavevec<strong>to</strong><br />

scattering<br />

when the<br />

occurs<br />

only<br />

lattice<br />

(frozen)<br />

a<br />

from<br />

scattering<br />

So<br />

.<br />

2<br />

)<br />

.(<br />

then<br />

If<br />

.<br />

2<br />

.<br />

Then<br />

ns.<br />

permutatio<br />

cyclic<br />

and<br />

2<br />

Define<br />

cell.<br />

unit<br />

the<br />

of<br />

on vec<strong>to</strong>rs<br />

translati<br />

primitive<br />

the<br />

are<br />

,<br />

,<br />

where<br />

can write<br />

we<br />

lattice,<br />

Bravais<br />

a<br />

In<br />

.<br />

2<br />

)<br />

.(<br />

such that<br />

s<br />

Q'<br />

for<br />

zero<br />

-<br />

non<br />

only<br />

is<br />

S(Q)<br />

s,<br />

vibration<br />

thermal<br />

Ignoring<br />

position.<br />

m<br />

equilibriu<br />

the<br />

from<br />

thermal)<br />

(e.g.<br />

nt<br />

displaceme<br />

any<br />

is<br />

and<br />

i<br />

a<strong>to</strong>m<br />

of<br />

position<br />

m<br />

equilibriu<br />

the<br />

is<br />

where<br />

with<br />

1<br />

)<br />

(<br />

hkl<br />

*<br />

3<br />

*<br />

2<br />

*<br />

1<br />

*<br />

3<br />

2<br />

0<br />

*<br />

1<br />

3<br />

2<br />

1<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

,<br />

)<br />

.(<br />

π<br />

πδ<br />

π<br />

π<br />

M<br />

j<br />

i<br />

Q<br />

a<br />

l<br />

a<br />

k<br />

a<br />

h<br />

G<br />

Q<br />

a<br />

a<br />

a<br />

a<br />

V<br />

a<br />

a<br />

a<br />

a<br />

a<br />

m<br />

a<br />

m<br />

a<br />

m<br />

i<br />

M<br />

j<br />

i<br />

Q<br />

u<br />

i<br />

u<br />

i<br />

R<br />

e<br />

N<br />

Q<br />

S<br />

hkl<br />

ij<br />

j<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

j<br />

i<br />

R<br />

R<br />

Q<br />

i j<br />

i<br />

=<br />

−<br />

+<br />

+<br />

=<br />

=<br />

=<br />

∧<br />

=<br />

+<br />

+<br />

=<br />

=<br />

−<br />

+<br />

=<br />

= ∑<br />

−<br />

−<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

v<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

v<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

v<br />

r<br />

r<br />

a 1<br />

a 2<br />

a 3


For Periodic Arrays of Nuclei, Coherent <strong>Scattering</strong> Is Reinforced Only in<br />

Specific Directions Corresponding <strong>to</strong> the Bragg Condition:<br />

λ = 2 d hkl sin(θ) or 2 k sin(θ) = G hkl


Working<br />

⎛ dσ<br />

⎞<br />

⎜ ⎟<br />

⎝ dΩ<br />

⎠<br />

and W<br />

is<br />

Bragg <strong>Scattering</strong> from Crystals<br />

through the<br />

( 2π<br />

)<br />

V<br />

where the unit - cell structure fac<strong>to</strong>r<br />

r<br />

r r<br />

iQ.<br />

d −Wd<br />

F ( Q)<br />

= b e e<br />

hkl<br />

Bragg<br />

d<br />

=<br />

∑<br />

d<br />

N<br />

d<br />

0<br />

the Debye - Waller<br />

3<br />

math (see, for example, Squires' book), we find :<br />

r r<br />

δ ( Q − G ) F<br />

r 2<br />

( Q)<br />

∑<br />

hkl<br />

hkl<br />

is<br />

hkl<br />

fac<strong>to</strong>r that<br />

given<br />

accounts<br />

for thermal<br />

motions<br />

a<strong>to</strong>ms<br />

• Using either single crystals or powders, neutron diffraction can be used <strong>to</strong><br />

measure F 2 (which is proportional <strong>to</strong> the intensity of a Bragg peak) for<br />

various values of (hkl).<br />

• Direct Fourier inversion of diffraction data <strong>to</strong> yield crystal structures is not<br />

possible because we only measure the magnitude of F, and not its phase =><br />

models must be fit <strong>to</strong> the data<br />

• <strong>Neutron</strong> powder diffraction has been particularly successful at determining<br />

structures of new materials, e.g. high T c materials<br />

by<br />

of


We would be better off<br />

if diffraction measured<br />

phase of scattering<br />

rather than amplitude!<br />

Unfortunately, nature<br />

did not oblige us.<br />

Picture by courtesy of D. Sivia


Reciprocal Space – <strong>An</strong> Array of Points (hkl)<br />

that is Precisely Related <strong>to</strong> the Crystal Lattice<br />

a*<br />

• • • • • • • • • • •<br />

• • • •<br />

k<br />

• • • • • • •<br />

k 0<br />

• • • • • • • • • • •<br />

G hkl<br />

• • • • • • • • • • •<br />

O<br />

• • • • • • • • • • •<br />

b* Ghkl = 2p/dhkl (hkl)=(260)<br />

a* = 2p(b x c)/V 0 , etc.<br />

A single crystal has <strong>to</strong> be aligned precisely <strong>to</strong> record Bragg scattering


Powder – A Polycrystalline Mass<br />

All orientations of<br />

crystallites possible<br />

Single crystal reciprocal lattice<br />

- smeared in<strong>to</strong> spherical shells<br />

Typical Sample: 1cc powder of<br />

10mm crystallites - 10 9 particles<br />

if 1mm crystallites - 10 12 particles


Powder Diffraction gives <strong>Scattering</strong> on<br />

Debye-Scherrer Cones<br />

Incident beam<br />

x-rays or neutrons<br />

Bragg’s Law l = 2dsinQ<br />

Powder pattern – scan 2Q or l<br />

Sample<br />

(220)<br />

(200)<br />

(111)


Measuring <strong>Neutron</strong> Diffraction Patterns with a<br />

Monochromatic <strong>Neutron</strong> Beam<br />

Since we know the neutron wavevec<strong>to</strong>r, k,<br />

the scattering angle gives G hkl directly:<br />

G hkl = 2 k sin θ<br />

Use a continuous beam<br />

of mono-energetic<br />

neutrons.


<strong>Neutron</strong> Powder Diffraction using Time-of-Flight<br />

Pulsed<br />

source<br />

L o = 9-100m<br />

F<br />

Detec<strong>to</strong>r<br />

bank<br />

Sample<br />

L 1 ~ 1-2m<br />

l = 2dsinQ<br />

2Q - fixed<br />

Measure scattering as<br />

a function of time-offlight<br />

t = const*l


Time-of-Flight Powder Diffraction<br />

Use a pulsed beam with a<br />

broad spectrum of neutron<br />

energies and separate<br />

different energies (velocities)<br />

by time of flight.


Counts<br />

10.0 0.05 155.9 CPD RRRR PbSO4 1.909A neutron data 8.8<br />

Scan no. = 1 Lambda = 1.9090 Observed Profile<br />

X10E 3<br />

.5 1.0 1.5 2.0 2.5<br />

Compare X-ray & <strong>Neutron</strong> Powder Patterns<br />

X-ray Diffraction - CuKa<br />

Phillips PW1710<br />

• Higher resolution<br />

• Intensity fall-off at small d<br />

spacings<br />

• Better at resolving small<br />

lattice dis<strong>to</strong>rtions<br />

1.0<br />

D-spacing, A<br />

2.0 3.0 4.0<br />

10.000 0.025 159.00 CPD RRRR PbSO4 Cu Ka X-ray data 22.9.<br />

Scan no. = 1 Lambda1,lambda2 = 1.540 Observed Profile<br />

Counts<br />

X10E 4<br />

.0 .5 1.0 1.5<br />

1.0<br />

D-spacing, A<br />

2.0 3.0 4.0<br />

<strong>Neutron</strong> Diffraction - D1a, ILL<br />

l=1.909 Å<br />

• Lower resolution<br />

• Much higher intensity at small<br />

d-spacings<br />

• Better a<strong>to</strong>mic positions/thermal<br />

parameters


There’s more than meets the eye in a powder pattern*<br />

Intensity<br />

Rietveld Model<br />

I c = I b + SY p<br />

I o<br />

I c<br />

Y p<br />

TOF<br />

*Discussion of Rietveld method adapted from viewgraphs by R. Vondreele (LANSCE)<br />

I b


The Rietveld Model for Refining Powder Patterns<br />

I c = I o {Sk h F 2 h m h L h P(D h ) + I b }<br />

I o - incident intensity - variable for fixed 2Q<br />

k h - scale fac<strong>to</strong>r for particular phase<br />

F 2 h<br />

- structure fac<strong>to</strong>r for particular reflection<br />

m h - reflection multiplicity<br />

L h - correction fac<strong>to</strong>rs on intensity - texture, etc.<br />

P(D h ) - peak shape function – includes instrumental resolution,<br />

crystallite size, microstrain, etc.


How good is this function?<br />

Protein Rietveld refinement - Very low angle fit<br />

1.0-4.0° peaks - strong asymmetry<br />

“perfect” fit <strong>to</strong> shape


Examples of Science using Powder Diffraction<br />

• Refinement of structures of new materials<br />

• Materials texture<br />

• Strain measurements<br />

• Pair distribution functions (PDF)


High-resolution <strong>Neutron</strong> Powder Diffraction in CMR manganates*<br />

• In Sr 2LaMn 2O 7 – synchrotron data indicated<br />

two phases at low temperature. Simultaneous<br />

refinement of neutron powder data at 2 λ’s<br />

allowed two almost-isostructural phases (one<br />

FM the other AFM) <strong>to</strong> be refined. Only<br />

neutrons see the magnetic reflections<br />

• High resolution powder diffraction<br />

with Nd 0.7Ca 0.3MnO 3 showed<br />

splitting of (202) peak due <strong>to</strong> a<br />

transition <strong>to</strong> a previously unknown<br />

monoclinic phase. The data showed<br />

the existence of 2 Mn sites with<br />

different Mn-O distances. The<br />

different sites are likely occupied<br />

by Mn3+ and Mn4+ respectively<br />

* E. Suard & P. G. Radaelli (ILL)


Texture: “Interesting Preferred Orientation”<br />

Loose powder<br />

Metal wire<br />

Random powder - all crystallite orientations<br />

equally probable - flat pole figure<br />

Pole figure - stereographic projection of a<br />

crystal axis down some sample direction<br />

(100) random texture<br />

(100) wire texture<br />

Crystallites oriented along wire axis - pole figure<br />

peaked in center and at the rim (100’s are 90º<br />

apart)<br />

Orientation Distribution Function - probability<br />

function for texture


Texture Measurement by Diffraction<br />

Non-random crystallite<br />

orientations in sample<br />

Incident beam<br />

x-rays or neutrons<br />

Sample<br />

(220)<br />

Debye-Scherrer cones<br />

• uneven intensity due <strong>to</strong> texture<br />

• different pattern of unevenness for different hkl’s<br />

• intensity pattern changes as sample is turned<br />

(200)<br />

(111)


Texture Determination of Titanium Wire Plate<br />

(Wright-Patterson AFB/LANSCE Collaboration)<br />

Possible “pseudo-single crystal” turbine blade material<br />

Ti Wire -<br />

(100) texture<br />

• Bulk measurement<br />

• <strong>Neutron</strong> time-of-flight data<br />

• Rietveld refinement of texture<br />

TD<br />

• Spherical harmonics <strong>to</strong> L max = 16<br />

• Very strong wire texture in plate<br />

ND<br />

Ti Wire Plate - does it<br />

still have wire texture?<br />

RD<br />

ND<br />

TD<br />

reconstructed (100) pole figure


Definitions of Stress and Strain<br />

• Macroscopic strain – <strong>to</strong>tal strain measured by an extensometer<br />

• Elastic lattice strain – response of lattice planes <strong>to</strong> applied<br />

stress, measured by diffraction<br />

d - d<br />

e hkl =<br />

d<br />

hkl 0<br />

• Intergranular strain – deviation of elastic lattice strain from<br />

linear behavior<br />

• Residual strains – internal strains present with no applied force<br />

• Thermal residual strains – strains that develop on cooling from<br />

processing temperature due <strong>to</strong> anisotropic coefficients of<br />

thermal expansion<br />

0<br />

s<br />

e I =ehkl -<br />

E<br />

applied<br />

hkl


<strong>Neutron</strong> Diffraction Measurements of Lattice Strain*<br />

Text box<br />

The <strong>Neutron</strong> Powder<br />

Diffrac<strong>to</strong>meter at LANSCE<br />

<strong>Neutron</strong> measurements :-<br />

• Non destructive, bulk, phase sensitive<br />

• Time consuming, Limited spatial resolution<br />

s<br />

-90° Detec<strong>to</strong>r<br />

measures e parallel<br />

<strong>to</strong> loading direction<br />

Incident neutrons<br />

* Discussion of residual strain adapted from viewgraphs by M. Bourke (LANSCE)<br />

+90° Detec<strong>to</strong>r<br />

measures e ^<br />

<strong>to</strong> loading direction<br />

s


Why use Metal Matrix Composites ?<br />

F117 (JSF)<br />

Landing Gear<br />

Higher Pay Loads<br />

High temperatures<br />

High pressures<br />

Reduced Engine Weights<br />

Reduced Fuel Consumption<br />

Better Engine Performance<br />

MMC Applications<br />

Ro<strong>to</strong>rs<br />

Fan Blades<br />

Structural Rods<br />

Impellers<br />

Landing Gears<br />

National AeroSpace Plane<br />

Engine


W-Fe :- Fabrication, Microstructure & Composition<br />

• 200 mm diameter continuous Tungsten fibers,<br />

• Hot pressed at 1338 K for 1 hour in<strong>to</strong> Kanthal<br />

( 73 Fe, 21 Cr, 6 Al wt%) – leads <strong>to</strong> residual strains after cooling<br />

• Specimens :- 200 * 25 * 2.5 mm 3<br />

10 vol.%<br />

20 vol.%<br />

30 vol.%<br />

70 vol.%<br />

Normalized Intensity<br />

Powder diffraction data includes Bragg peaks<br />

from both Kanthal and Tungsten.<br />

K<br />

W<br />

d spacing (A)<br />

K<br />

W


<strong>Neutron</strong> Diffraction Measures Mean Residual Phase<br />

Strains when Results for a MMC are compared <strong>to</strong> an<br />

Undeformed Standard<br />

Residual Strain (me)<br />

Residual strain (me)<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

0 20 40 60 80 100<br />

Symbols show data points<br />

<strong>An</strong>gle <strong>to</strong> the fiber (deg)<br />

Kanthal<br />

10 vol.% W<br />

20 vol.% W<br />

30 vol.% W<br />

70 vol.% W<br />

Tungsten<br />

10 vol.% W<br />

20 vol.% W<br />

30 vol.% W<br />

70 vol.% W<br />

Curves are fits of the form =< e 11 >cos 2 a + < e 22 >sin 2 a<br />

Pressure Vessels and Piping, Vol. 373, “Fatigue, Fracture & Residual Stresses”, Book No H01154


Load Sharing in MMCs can also be<br />

Measured by <strong>Neutron</strong> Diffraction<br />

• Initial co-deformation results<br />

from confinement of W fibers<br />

by the Kanthal matrix<br />

• Change of slope (125 MPa) is<br />

the typical load sharing<br />

behavior of MMCs:<br />

– Kanthal yields and ceases <strong>to</strong> bear<br />

further load<br />

Applied stress [MPa]<br />

– Tungsten fibers reinforce and<br />

strengthen the composite<br />

50<br />

0<br />

-1000 -500 0 500 1000 1500 2000 2500 3000<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Kanthal<br />

Tungsten<br />

Elastic lattice strain [με]


Deformation Mechanism in U/Nb Alloys<br />

Atypical “Double Plateau Stress Strain Curve.<br />

Applied Stress (MPa)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Tensile Axis<br />

0<br />

0 0.02 0.04 0.06<br />

Q ||<br />

-90° Detec<strong>to</strong>r<br />

U-6 wt% Nb<br />

Typical Metal<br />

Macroscopic Strain<br />

NPD Diffraction Geometry<br />

Q ⊥<br />

+ 90 ° Detec<strong>to</strong>r<br />

Diffraction Results<br />

• Important Programmatic <strong>An</strong>swers.<br />

1. Material is Single Phase Monoclinic (a’’).<br />

2. Lack of New Peaks Rules out Stress Induced Phase Transition.<br />

3. Changes in Peak Intensity Indicate That Twinning is the Deformation Mechanism.


Pair Distribution Functions<br />

• Modern materials are often disordered.<br />

• Standard crystallographic methods lose the aperiodic<br />

(disorder) information.<br />

• We would like <strong>to</strong> be able <strong>to</strong> sit on an a<strong>to</strong>m and look at<br />

our neighborhood.<br />

• The PDF method allows us <strong>to</strong> do that (see next slide):<br />

– First we do a neutron or x-ray diffraction experiment<br />

– Then we correct the data for experimental effects<br />

– Then we Fourier transform the data <strong>to</strong> real-space


Obtaining the Pair Distribution Function*<br />

Raw data<br />

* See http://www.pa.msu.edu/cmp/billinge-group/<br />

Structure function<br />

2<br />

G( r)<br />

∫ Q[<br />

S(<br />

Q)<br />

1]<br />

sinQrdQ<br />

0<br />

∞<br />

= −<br />

π<br />

PDF


Structure and PDF of a High Temperature<br />

Superconduc<strong>to</strong>r<br />

The structure of La 2-x Sr x CuO 4<br />

looks like this: (copper [orange]<br />

sits in the middle of octahedra<br />

of oxygen ions [shown shaded<br />

with pale blue].)<br />

The resulting PDFs look like this.<br />

The peak at 1.9A is the Cu-O<br />

bond.<br />

So what can we learn about<br />

charge-stripes from the PDF?


Effect of Doping on the Octahedra<br />

• Doping holes (positive<br />

charges) by adding Sr<br />

shortens Cu-O bonds<br />

• Localized holes in stripes<br />

implies a coexistence of<br />

short and long Cu-O inplane<br />

bonds => increase in<br />

Cu-O bond distribution<br />

width with doping.<br />

• We see this in the PDF: σ 2<br />

is the width of the CuO<br />

bond distribution which<br />

increases with doping then<br />

decreases beyond optimal<br />

doping<br />

Polaronic<br />

Fermiliquid<br />

like<br />

Bozin et al. Phys. Rev. Lett. Submitted;<br />

cond-mat/9907017


LECTURE 3: Surface Reflection<br />

by<br />

Roger Pynn<br />

Los Alamos<br />

National Labora<strong>to</strong>ry


Surface Reflection Is Very Different From<br />

Most <strong>Neutron</strong> <strong>Scattering</strong><br />

• We worked out the neutron cross section by adding scattering<br />

from different nuclei<br />

– We ignored double scattering processes because these are usually very weak<br />

• This approximation is called the Born Approximation<br />

• Below an angle of incidence called the critical angle, neutrons<br />

are perfectly reflected from a smooth surface<br />

– This is NOT weak scattering and the Born Approximation is not applicable <strong>to</strong><br />

this case<br />

• Specular reflection is used:<br />

– In neutron guides<br />

– In multilayer monochroma<strong>to</strong>rs and polarizers<br />

– To probe surface and interface structure in layered systems


This Lecture<br />

• Reflectivity measurements<br />

– <strong>Neutron</strong> wavevec<strong>to</strong>r inside a medium<br />

– Reflection by a smooth surface<br />

– Reflection by a film<br />

– The kinematic approximation<br />

– Graded interface<br />

– Science examples<br />

• Polymers & vesicles on a surface<br />

• Lipids at the liquid air interface<br />

• Boron self-diffusion<br />

• Iron on MgO<br />

– Rough surfaces<br />

• Shear aligned worm-like micelles


What Is the <strong>Neutron</strong> Wavevec<strong>to</strong>r Inside a Medium?<br />

[ ]<br />

materials.<br />

most<br />

from<br />

reflected<br />

externally<br />

are<br />

neutrons<br />

1,<br />

n<br />

generally<br />

Since<br />

2<br />

/<br />

1<br />

:<br />

get<br />

we<br />

)<br />

A<br />

10<br />

(~<br />

small<br />

very<br />

is<br />

and<br />

),<br />

definition<br />

(by<br />

index<br />

refractive<br />

Since<br />

material<br />

a<br />

in<br />

r<br />

wavevec<strong>to</strong><br />

the<br />

is<br />

and<br />

vevec<strong>to</strong>r<br />

neutron wa<br />

is<br />

where<br />

4<br />

/<br />

)<br />

(<br />

2<br />

Simlarly<br />

.<br />

/<br />

2<br />

so<br />

)<br />

(<br />

0<br />

)<br />

(<br />

/<br />

)<br />

(<br />

2<br />

:<br />

equation<br />

s<br />

r'<br />

Schrodinge<br />

obeys<br />

neutron<br />

The<br />

(SLD)<br />

Density<br />

Length<br />

<strong>Scattering</strong><br />

nuclear<br />

the<br />

called<br />

is<br />

1<br />

where<br />

2<br />

:<br />

is<br />

medium<br />

the<br />

inside<br />

potential<br />

average<br />

the<br />

So<br />

nucleus.<br />

single<br />

a<br />

for<br />

)<br />

(<br />

2<br />

)<br />

(<br />

:<br />

by<br />

given<br />

is<br />

potential<br />

neutron<br />

-<br />

nucleus<br />

the<br />

Rule,<br />

Golden<br />

s<br />

Fermi'<br />

by<br />

given<br />

with that<br />

S(Q)<br />

for<br />

expression<br />

our<br />

Comparing<br />

2<br />

2<br />

-<br />

6<br />

-<br />

0<br />

0<br />

2<br />

0<br />

2<br />

2<br />

2<br />

2<br />

0<br />

.<br />

2<br />

2<br />

2<br />

2<br />

<<br />

=<br />

=<br />

=<br />

−<br />

=<br />

−<br />

=<br />

=<br />

=<br />

=<br />

−<br />

+<br />

∇<br />

=<br />

=<br />

=<br />

∑<br />

π<br />

ρ<br />

λ<br />

ρ<br />

πρ<br />

ψ<br />

ψ<br />

ρ<br />

ρ<br />

ρ<br />

π<br />

δ<br />

π<br />

-<br />

n<br />

n<br />

k/k<br />

k<br />

in vacuo<br />

k<br />

k<br />

V<br />

E<br />

m<br />

k<br />

mE<br />

k<br />

e<br />

r<br />

in vacuo<br />

r<br />

V<br />

E<br />

m<br />

b<br />

volume<br />

m<br />

V<br />

r<br />

b<br />

m<br />

r<br />

V<br />

r<br />

k<br />

i<br />

i<br />

i<br />

o h<br />

h<br />

h<br />

h<br />

r<br />

h<br />

r<br />

r<br />

r


Typical Values<br />

• Let us calculate the scattering length density for quartz – SiO 2<br />

• Density is 2.66 gm.cm -3 ; Molecular weight is 60.08 gm. mole -1<br />

• Number of molecules per Å 3 = N = 10 -24 (2.66/60.08)*N avagadro<br />

= 0.0267 molecules per Å 3<br />

• ρ=Σb/volume = N(b Si + 2b O ) = 0.0267(4.15 + 11.6) 10 -5 Å -2 =<br />

4.21 x10 -6 Å -2<br />

• This means that the refractive index n = 1 – λ 2 2.13 x 10 -7 for<br />

quartz<br />

• To make a neutron “bottle” out of quartz we require k= 0 I.e.<br />

k 0 2 = 4πρ or λ=(π/ρ) 1/2 .<br />

• Plugging in the numbers -- λ = 864 Å or a neutron velocity of<br />

4.6 m/s (you could out-run it!)


Only Those Thermal or Cold <strong>Neutron</strong>s With Very Low<br />

Velocities Perpendicular <strong>to</strong> a Surface Are Reflected<br />

α<br />

α’<br />

nickel<br />

for<br />

)<br />

(<br />

1<br />

.<br />

0<br />

)<br />

(<br />

:<br />

Note<br />

quartz<br />

for<br />

)<br />

(<br />

02<br />

.<br />

0<br />

)<br />

(<br />

sin<br />

)<br />

/<br />

2<br />

(<br />

A<br />

10<br />

05<br />

.<br />

2<br />

quartz<br />

For<br />

4<br />

is<br />

reflection<br />

external<br />

for <strong>to</strong>tal<br />

of<br />

value<br />

critical<br />

The<br />

4<br />

or<br />

4<br />

sin<br />

'<br />

sin<br />

i.e.<br />

4<br />

)<br />

sin<br />

(cos<br />

)<br />

'<br />

sin<br />

'<br />

(cos<br />

4<br />

Since<br />

Law<br />

s<br />

Snell'<br />

obey<br />

<strong>Neutron</strong>s<br />

'<br />

/cos<br />

cos<br />

n<br />

i.e<br />

'<br />

cos<br />

'<br />

cos<br />

cos<br />

:<br />

so<br />

surface<br />

the<br />

<strong>to</strong><br />

parallel<br />

locity<br />

neutron ve<br />

the<br />

change<br />

cannot<br />

surface<br />

The<br />

/<br />

critical<br />

critical<br />

critical<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

0<br />

2<br />

2<br />

2<br />

0<br />

2<br />

2<br />

2<br />

2<br />

2<br />

0<br />

2<br />

2<br />

2<br />

2<br />

0<br />

2<br />

0<br />

0<br />

0<br />

0<br />

0<br />

A<br />

A<br />

k<br />

x<br />

k<br />

k<br />

k<br />

k<br />

k<br />

k<br />

k<br />

k<br />

k<br />

k<br />

k<br />

n<br />

k<br />

k<br />

k<br />

n<br />

k<br />

k<br />

o<br />

o<br />

critical<br />

critical<br />

z<br />

z<br />

z<br />

z<br />

zl<br />

zl<br />

λ<br />

α<br />

λ<br />

α<br />

α<br />

λ<br />

π<br />

πρ<br />

πρ<br />

πρ<br />

α<br />

α<br />

πρ<br />

α<br />

α<br />

α<br />

α<br />

πρ<br />

α<br />

α<br />

α<br />

α<br />

α<br />

≈<br />

≈<br />

⇒<br />

=<br />

=<br />

=<br />

−<br />

=<br />

−<br />

=<br />

−<br />

+<br />

=<br />

+<br />

−<br />

=<br />

=<br />

=<br />

=<br />

=<br />


Reflection of <strong>Neutron</strong>s by a Smooth Surface: Fresnel’s Law<br />

n = 1-λ 2 ρ/2π<br />

T<br />

T<br />

R<br />

R<br />

I<br />

I<br />

T<br />

R<br />

I<br />

k<br />

a<br />

k<br />

a<br />

k<br />

a<br />

a<br />

a<br />

a<br />

r<br />

r<br />

r<br />

&<br />

=<br />

+<br />

=<br />

+<br />

⇒<br />

=<br />

(1)<br />

0<br />

z<br />

at<br />

&<br />

of<br />

continuity<br />

ψ<br />

ψ<br />

)<br />

/(<br />

)<br />

(<br />

/<br />

by<br />

given<br />

is<br />

e<br />

reflectanc<br />

so<br />

sin<br />

sin<br />

sin<br />

sin<br />

)<br />

(<br />

)<br />

(<br />

(3)<br />

&<br />

(1)<br />

cos<br />

cos<br />

:<br />

Law<br />

s<br />

Snell'<br />

(2)<br />

&<br />

(1)<br />

(3)<br />

sin<br />

sin<br />

)<br />

(<br />

(2)<br />

cos<br />

cos<br />

cos<br />

:<br />

surface<br />

the<br />

<strong>to</strong><br />

parallel<br />

and<br />

lar<br />

perpendicu<br />

components<br />

Tz<br />

Iz<br />

Tz<br />

Iz<br />

I<br />

R<br />

Iz<br />

Tz<br />

R<br />

I<br />

R<br />

I<br />

T<br />

R<br />

I<br />

T<br />

R<br />

I<br />

k<br />

k<br />

k<br />

k<br />

a<br />

a<br />

r<br />

k<br />

k<br />

n<br />

a<br />

a<br />

a<br />

a<br />

n<br />

nk<br />

a<br />

k<br />

a<br />

a<br />

nk<br />

a<br />

k<br />

a<br />

k<br />

a<br />

+<br />

−<br />

=<br />

=<br />

=<br />

′<br />

≈<br />

′<br />

=<br />

+<br />

−<br />

=><br />

′<br />

=<br />

=><br />

′<br />

−<br />

=<br />

−<br />

−<br />

′<br />

=<br />

+<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α


What do the Amplitudes a R and a T Look Like?<br />

• For reflection from a flat substrate, both a R and a T are complex when k 0 < 4πρ<br />

I.e. below the critical edge. For a I = 1, we find:<br />

1<br />

0.5<br />

-0.5<br />

-1<br />

0.005 0.01 0.015 0.02 0.025<br />

Real (red) & imaginary (green) parts of a R<br />

plotted against k 0 . The modulus of a R is<br />

plotted in blue. The critical edge is at<br />

k 0 ~ 0.009 A -1 . Note that the reflected wave is<br />

completely out of phase with the incident wave<br />

at k 0 = 0<br />

2<br />

1.5<br />

1<br />

0.5<br />

-0.5<br />

-1<br />

0.005 0.01 0.015 0.02 0.025<br />

Real (red) and imaginary (green) parts<br />

of a T . The modulus of a T is plotted in<br />

blue. Note that a T tends <strong>to</strong> unity at<br />

large values of k 0 as one would expect


V(z)<br />

One can also think about <strong>Neutron</strong> Reflection from a Surface as a<br />

substrate<br />

z<br />

1-d Problem<br />

Film Vacuum<br />

V(z)= 2 π ρ(z) h 2 /m n<br />

k 2 =k 0 2 - 4π ρ(z)<br />

Where V(z) is the potential seen by<br />

the neutron & ρ(z) is the scattering<br />

length density


Fresnel’s Law for a Thin Film<br />

• r=(k 1z-k 0z)/(k 1z+k 0z) is Fresnel’s law<br />

• Evaluate with ρ=4.10 -6 A -2 gives the<br />

red curve with critical wavevec<strong>to</strong>r<br />

given by k 0z = (4πρ) 1/2<br />

• If we add a thin layer on <strong>to</strong>p of the<br />

substrate we get interference fringes &<br />

the reflectance is given by:<br />

r<br />

=<br />

r<br />

01<br />

1+<br />

+ r<br />

r<br />

01<br />

12<br />

r<br />

12<br />

i2k<br />

1z<br />

i2k<br />

and we measure the reflectivity R = r.r*<br />

e<br />

e<br />

t<br />

1z<br />

t<br />

0.01 0.02 0.03 0.04 0.05<br />

• If the film has a higher scattering length density than the substrate we get the<br />

green curve (if the film scattering is weaker than the substance, the green curve is<br />

below the red one)<br />

• The fringe spacing at large k 0z is ~ π/t (a 250 A film was used for the figure)<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

Log(r.r*)<br />

0<br />

1<br />

2<br />

substrate<br />

k 0z<br />

Film thickness = t


Kinematic (Born) Approximation<br />

• We defined the scattering cross section in terms of an incident plane wave & a<br />

weakly scattered spherical wave (called the Born Approximation)<br />

• This picture is not correct for surface reflection, except at large values of Q z<br />

• For large Q z , one may use the definition of the scattering cross section <strong>to</strong><br />

calculate R for a flat surface (in the Born Approximation) as follows:<br />

R<br />

=<br />

=<br />

L<br />

because<br />

number of<br />

number of<br />

sin α<br />

From the definition<br />

dσ<br />

dΩ<br />

x<br />

L<br />

=<br />

σ<br />

y<br />

ρ<br />

2<br />

k<br />

x<br />

=<br />

=<br />

k<br />

0<br />

neutrons reflected by a sample of<br />

neutrons incident<br />

L<br />

x<br />

L<br />

y<br />

1<br />

cosα<br />

r<br />

r<br />

∫ dr∫<br />

dr<br />

'e<br />

sin α<br />

of<br />

so<br />

iQ.(<br />

r −r ')<br />

r v r<br />

∫<br />

dk<br />

2<br />

x<br />

4π<br />

Q<br />

on sample ( = ΦL<br />

L<br />

2<br />

2<br />

z<br />

It is easy <strong>to</strong> show that this is the same as the Fresnel form at large Q<br />

0<br />

1<br />

sin α<br />

sin α<br />

dα.<br />

a cross section we get for a smooth substrate :<br />

=<br />

dσ<br />

dΩ<br />

=<br />

dΩ<br />

ρ<br />

= −k<br />

L<br />

L<br />

x<br />

x<br />

L<br />

y<br />

y<br />

L δ ( Q<br />

x<br />

∫<br />

) δ ( Q<br />

size<br />

x<br />

dσ<br />

dΩ<br />

y<br />

)<br />

y<br />

L<br />

2<br />

0<br />

so<br />

x<br />

L<br />

y<br />

sinα<br />

)<br />

dk<br />

k<br />

x<br />

dk<br />

y<br />

sin α<br />

R = 16π<br />

2<br />

ρ<br />

z<br />

2<br />

/ Q<br />

4<br />

z


Reflection by a Graded Interface<br />

ion.<br />

justificat<br />

physical<br />

good<br />

have<br />

must<br />

data<br />

ty<br />

refelctivi<br />

fit<br />

<strong>to</strong><br />

refined<br />

models<br />

that<br />

means<br />

This<br />

n.<br />

informatio<br />

phase<br />

important<br />

lack<br />

generally<br />

we<br />

because<br />

(z),<br />

obtain<br />

o<br />

uniquely t<br />

inverted<br />

be<br />

cannot<br />

data<br />

ty<br />

reflectivi<br />

:<br />

point<br />

important<br />

an<br />

s<br />

illustrate<br />

equation<br />

e<br />

approximat<br />

This<br />

(z).<br />

1/cosh<br />

as<br />

such<br />

/dz<br />

d<br />

of<br />

forms<br />

convenient<br />

several<br />

for<br />

ly<br />

analytical<br />

solved<br />

be<br />

can<br />

This<br />

)<br />

(<br />

Q<br />

large<br />

at<br />

form<br />

correct<br />

the<br />

as<br />

well<br />

as<br />

interface,<br />

smooth<br />

a<br />

for<br />

answer<br />

right<br />

get the<br />

we<br />

,<br />

R<br />

ty<br />

reflectivi<br />

Fresnel<br />

by the<br />

prefac<strong>to</strong>r<br />

the<br />

replace<br />

we<br />

If<br />

parts.<br />

by<br />

ng<br />

intergrati<br />

after<br />

follows<br />

equality<br />

second<br />

the<br />

where<br />

)<br />

(<br />

16<br />

)<br />

(<br />

16<br />

:<br />

gives<br />

of<br />

dependence<br />

-<br />

z<br />

the<br />

keeping<br />

but<br />

viewgraph<br />

previous<br />

the<br />

of<br />

line<br />

bot<strong>to</strong>m<br />

the<br />

Repeating<br />

2<br />

2<br />

z<br />

F<br />

2<br />

4<br />

2<br />

2<br />

2<br />

2<br />

ρ<br />

ρ<br />

ρ<br />

ρ<br />

π<br />

ρ<br />

π<br />

ρ<br />

∫<br />

∫<br />

∫<br />

=<br />

=<br />

=<br />

dz<br />

e<br />

dz<br />

z<br />

d<br />

R<br />

R<br />

dz<br />

e<br />

dz<br />

z<br />

d<br />

Q<br />

dz<br />

e<br />

z<br />

Q<br />

R<br />

z<br />

iQ<br />

F<br />

z<br />

iQ<br />

z<br />

z<br />

iQ<br />

z<br />

z<br />

z<br />

z


The Goal of Reflectivity Measurements Is <strong>to</strong> Infer a<br />

Density Profile Perpendicular <strong>to</strong> a Flat Interface<br />

• In general the results are not unique, but independent<br />

knowledge of the system often makes them very reliable<br />

• Frequently, layer models are used <strong>to</strong> fit the data<br />

• Advantages of neutrons include:<br />

– Contrast variation (using H and D, for example)<br />

– Low absorption – probe buried interfaces, solid/liquid interfaces etc<br />

– Non-destructive<br />

– Sensitive <strong>to</strong> magnetism<br />

– Thickness length scale 10 – 5000 Å


Direct Inversion of Reflectivity Data is Possible*<br />

• Use different “fronting” or “backing” materials for two<br />

measurement of the same unknown film<br />

– E.g. D 2 O and H 2 O “backings” for an unknown film deposited on a quartz<br />

substrate or Si & Al 2 O 3 as substrates for the same unknown sample<br />

– Allows Re(R) <strong>to</strong> be obtained from two simultaneous equations for<br />

R<br />

1<br />

2<br />

and<br />

R<br />

2<br />

2<br />

– Re(R) can be Fourier inverted <strong>to</strong> yield a unique SLD profile<br />

• <strong>An</strong>other possibility is <strong>to</strong> use a magnetic “backing” and<br />

polarized neutrons<br />

SiO 2<br />

Unknown film<br />

H2O or D2O<br />

Si or Al 2 O 3 substrate<br />

* Majkrzak et al Biophys Journal, 79,3330 (2000)


Vesicles composed of DMPC molecules fuse creating almost a perfect<br />

lipid bilayer when deposited on the pure, uncoated quartz block*<br />

(blue curves)<br />

When PEI polymer was added only after quartz was covered by the lipid<br />

bilayer, the PEI appeared <strong>to</strong> diffuse under the bilayer (red curves)<br />

4<br />

Reflectivity, R*Q z<br />

10 -8<br />

10 -9<br />

<strong>Neutron</strong> Reflectivities<br />

Lipid Bilayer on Quartz<br />

Lipid Bilayer on Polymer<br />

on Quartz<br />

0.00 0.02 0.04 0.06 0.08 0.10 0.12<br />

Q z [Å -1 ]<br />

* Data courtesy of G. Smith (LANSCE)<br />

<strong>Scattering</strong> Length Density [Å -2 ]<br />

2 10 -6<br />

0<br />

-2 10 -6<br />

-4 10 -6<br />

-6 10 -6<br />

-8 10 -6<br />

2 O<br />

D 2 O<br />

<strong>Scattering</strong> Length Density<br />

Profiles<br />

Head<br />

σ = 5.9 Å<br />

Hydrogenated<br />

Tails<br />

Head<br />

Length, z [Å]<br />

Polymer<br />

σ = 4.3 Å<br />

Quartz<br />

Quartz<br />

0.0 20.0 40.0 60.0 80.0 100.0


4<br />

R*Q z<br />

10 -7<br />

10 -8<br />

10 -9<br />

1.3% PEG lipid<br />

in lipids<br />

<strong>Neutron</strong> Reflectivities<br />

Pure lipid<br />

Lipid + 9% PEG<br />

4.5% PEG lipid<br />

in lipids<br />

0 0.05 0.1 0.15 0.2 0.25<br />

Q z [Å -1 ]<br />

Polymer-Decorated Lipids at a Liquid-Air Interface*<br />

mushroom-<strong>to</strong>brush<br />

transition<br />

*Data courtesy of G. Smith (LANSCE)<br />

9.0% PEG lipid<br />

in lipids<br />

neutrons see contrast between<br />

heads (2.6), tails (-0.4),<br />

D 2 O (6.4) & PEG (0.24)<br />

x-rays see heads (0.65), but all<br />

else has same electron density<br />

within 10% (­0.33)<br />

SLD [Å -2 ]<br />

Interface broadens as PEG<br />

concentration increases - this is<br />

main effect seen with x-rays<br />

R/R F<br />

8 10 -6<br />

6 10 -6<br />

4 10 -6<br />

2 10 -6<br />

0<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

SLD Profiles of PEG-Lipids<br />

Black - pure lipid<br />

Blue - 1.3% PEG<br />

Green - 4.5% PEG<br />

Red - 9.0% PEG<br />

40 60 80 100 120 140 160<br />

Length [Å]<br />

X-Ray Reflectivities<br />

Lipid + 9% PEG<br />

Pure lipid<br />

0 0.1 0.2 0.3<br />

Q<br />

z<br />

0.4 0.5 0.6


~650Å<br />

~1350Å<br />

Reflectivity<br />

Non-Fickian Boron Self-Diffusion at an Interface*<br />

10<br />

0.1<br />

0.001<br />

10 -5<br />

10 -7<br />

10 -9<br />

10 -11<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

11 B<br />

10 B<br />

Si<br />

Boron Self Diffusion<br />

Q (Å -1<br />

)<br />

Unnanealed sample<br />

2.4 Hours<br />

5.4 Hours<br />

9.7 Hours<br />

22.3 Hours<br />

35.4 Hours<br />

*Data courtesy of G. Smith (LANSCE)<br />

-2 )<br />

<strong>Scattering</strong> Length Density (Å<br />

8 10 -6<br />

7 10 -6<br />

6 10 -6<br />

5 10 -6<br />

4 10 -6<br />

3 10 -6<br />

2 10 -6<br />

1 10 -6<br />

Non-Standard Fickian Model<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -9<br />

10 -10<br />

10 -11<br />

Data requires density<br />

step at interface<br />

0<br />

-800 -600 -400 -200 0 200 400 600 800<br />

Distance from<br />

11 B- 10 B Interface (Å)<br />

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08<br />

-2 )<br />

<strong>Scattering</strong> Length Density (Å<br />

8 10 -6<br />

7 10 -6<br />

6 10 -6<br />

5 10 -6<br />

4 10 -6<br />

3 10 -6<br />

2 10 -6<br />

1 10 -6<br />

Fickian diffusion<br />

doesn’t fit the data<br />

Standard Fickian Model<br />

0<br />

-600 -400 -200 0 200 400 600 800<br />

Distance from<br />

11 B- 10 B Interface (Å)


Polarized <strong>Neutron</strong> Reflec<strong>to</strong>metry (PNR)<br />

Non-Spin-Flip Spin-Flip<br />

++ measures b + Mz - - measures b - Mz +- measures Mx + i My -+ measures Mx – i My


X-Ray Reflectivity<br />

Polarized <strong>Neutron</strong> Reflectivity<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Structure, Chemistry & Magnetism of Fe(001) on MgO(001)*<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Q [Å -1 ]<br />

R ++ (obs)<br />

R ++ (fit)<br />

R -- (obs)<br />

R -- (fit)<br />

R SF (obs)<br />

R SF (fit)<br />

10 -5<br />

0.00 0.02 0.04 0.06<br />

Q [Å<br />

0.08 0.10 0.12<br />

-1 ]<br />

X-Ray<br />

<strong>Neutron</strong><br />

*Data courtesy of M. Fitzsimmons (LANSCE)<br />

Co-Refinement<br />

α-FeOOH (1.8µ B )<br />

Fe(001) (2.2µ<br />

B<br />

)<br />

fcc Fe (4µ B )<br />

H<br />

X-Ray<br />

β = 3.9(3)<br />

β = 5.2(3)<br />

β = 4.4(2)<br />

β = 3.1(3)<br />

1.9(2)nm<br />

10.7(2)nm Fe<br />

2.1(2)nm<br />

0.20(1)nm<br />

a-FeOOH<br />

0.44(2)nm<br />

0.07(1)nm<br />

interface<br />

0.03(1)nm<br />

MgO<br />

TEM<br />

<strong>Neutron</strong><br />

β = 4.4(8)<br />

β = 8.6(4)<br />

β = 6.9(4)<br />

β = 6.2(5)<br />

H


Reflection from Rough Surfaces<br />

z<br />

z = 0<br />

k 1<br />

θ 1<br />

• diffuse scattering is caused by surface roughness or inhomogeneities in<br />

the reflecting medium<br />

• a smooth surface reflects radiation in a single (specular) direction<br />

• a rough surface scatters in various directions<br />

• specular scattering is damped by surface roughness – treat as graded<br />

interface. For a single surface with r.m.s roughness σ:<br />

R<br />

=<br />

Fe R<br />

1<br />

t Izk z<br />

−2k<br />

σ<br />

2<br />

x<br />

θ 2<br />

k 2<br />

k t 1


When Does a “Rough” Surface Scatter Diffusely?<br />

• Rayleigh criterion<br />

path difference: Dr = 2 h sing<br />

phase difference: Df = (4ph/l) sing<br />

boundary between rough and smooth: Df = p/2<br />

that is h < l/(8sing) for a smooth surface<br />

γ<br />

γ<br />

γ<br />

γ<br />

where g = 4 p h sin g / l = Q z h<br />

h


fi fi fi<br />

Q =kf -ki<br />

Qx-Qz<br />

Transformation<br />

qi<br />

Time-of-Flight, Energy-Dispersive <strong>Neutron</strong> Reflec<strong>to</strong>metry<br />

ki fi<br />

z<br />

where<br />

fi<br />

Q<br />

-ki fi<br />

kf fi<br />

qf<br />

2 p<br />

Q x = l *(cos qf -cos qi )<br />

2 p<br />

Q z =<br />

l *(sin qf +sin qi )<br />

For specular reflectivity qf =qi. Then,<br />

Qz=<br />

4 psin( q)<br />

=2k z<br />

l<br />

Vandium-Carbon Multilayer — specular & diffuse scattering<br />

in θ f -TOF space and transformed <strong>to</strong> Q x -Q z<br />

x<br />

Raw data in θf -TOF space for a single layer.<br />

Note that large divergence does not imply poor Qz resolution<br />

TOF ­ l . L / 4<br />

Raw Data from SPEAR


The Study of Diffuse <strong>Scattering</strong> From Rough Surfaces Has<br />

Not Made Much Headway Because Interpretation Is Difficult<br />

The theory (Dis<strong>to</strong>rted Wave<br />

2 2<br />

from a rough surface, works in some cases but breaks down when ξ / k >> 1,<br />

where ξ is the range of<br />

In some<br />

cases (e.g. faceted surfaces) one would also expect the approximation<br />

using an " average<br />

Born Approximation)<br />

correlations<br />

in thesurface<br />

surface" wavefunction<br />

used <strong>to</strong> describe scattering<br />

for perturbation<br />

theory<br />

R<br />

R<br />

micro−rough<br />

facet<br />

=<br />

R<br />

k z<br />

of<br />

<strong>to</strong> break down.<br />

=<br />

R<br />

smooth<br />

smooth<br />

e<br />

−2<br />

k<br />

2<br />

0<br />

s<br />

e<br />

2<br />

−2k<br />

t<br />

0k1<br />

s<br />

a<br />

2


Observation of Hexagonal Packing of Thread-like Micelles<br />

Under Shear: <strong>Scattering</strong> From Lateral Inhomogeneities<br />

NEUTRON<br />

BEAM<br />

INLET<br />

HOLES<br />

46Å<br />

QUARTZ or SILICON<br />

TEST SECTION<br />

TEFLON LIP OUTLET<br />

TRENCH<br />

RESERVOIRS<br />

TEFLON<br />

Up <strong>to</strong><br />

Microns<br />

Thread-like micelle<br />

H2O<br />

Specularly reflected beam<br />

Flow<br />

direction<br />

Quartz Single<br />

Crystal<br />

z<br />

x<br />

<strong>Scattering</strong> pattern<br />

implies hexagonal<br />

symmetry


LECTURE 5: Small <strong>An</strong>gle <strong>Scattering</strong><br />

by<br />

Roger Pynn<br />

Los Alamos<br />

National Labora<strong>to</strong>ry


This Lecture<br />

5. Small <strong>An</strong>gle <strong>Neutron</strong> <strong>Scattering</strong> (SANS)<br />

1. What is SANS and what does it measure?<br />

2. Form fac<strong>to</strong>rs and particle correlations<br />

3. Guinier approximation and Porod’s law<br />

4. Contrast and contrast variation<br />

5. Deuterium labelling<br />

6. Examples of science with SANS<br />

1. Particle correlations in colloidal suspensions<br />

2. Helium bubble size distribution in steel<br />

3. Verification of Gaussian statistics for a polymer chain in a melt<br />

4. Structure of 30S ribosome<br />

5. The fractal structure of sedimentary rocks<br />

Note: The NIST web site at www.ncnr.nist.gov has several good resources<br />

for SANS – calculations of scattering length densities & form fac<strong>to</strong>rs as well<br />

as tu<strong>to</strong>rials


Small <strong>An</strong>gle <strong>Neutron</strong> <strong>Scattering</strong> (SANS) Is Used <strong>to</strong><br />

Measure Large Objects (~1 nm <strong>to</strong> ~1 μm)<br />

• Complex fluids, alloys, precipitates,<br />

biological assemblies, glasses,<br />

ceramics, flux lattices, long-wave-<br />

length CDWs and SDWs, critical<br />

scattering, porous media, fractal<br />

structures, etc<br />

<strong>Scattering</strong> at small angles probes<br />

large length scales


Two Views of the Components of a Typical<br />

Reac<strong>to</strong>r-based SANS Diffrac<strong>to</strong>meter


The NIST 30m SANS Instrument Under Construction


Where Does SANS Fit As a Structural Probe?<br />

• SANS resolves structures<br />

on length scales of 1 – 1000<br />

nm<br />

• <strong>Neutron</strong>s can be used with<br />

bulk samples (1-2 mm thick)<br />

• SANS is sensitive <strong>to</strong> light<br />

elements such as H, C & N<br />

• SANS is sensitive <strong>to</strong><br />

iso<strong>to</strong>pes such as H and D


What Is the Largest Object That Can Be Measured by SANS?<br />

• <strong>An</strong>gular divergence of the neutron beam and its lack of monochromaticity contribute <strong>to</strong> finite<br />

transverse & longitudinal coherence lengths that limit the size of an object that can be seen<br />

by SANS<br />

• For waves emerging from slit center,<br />

path difference is hd/L if d


Instrumental Resolution for SANS<br />

Traditionally, neutron scatterers tend <strong>to</strong> think in terms of Q and E resolution<br />

4π<br />

Q =<br />

sin θ<br />

λ<br />

For SANS, ( δλ/<br />

λ)<br />

For equal source - sample & sample - detec<strong>to</strong>r distances<br />

apertures at source and sample of h, δθ<br />

The smallest v alue of θ<br />

At this<br />

δQ<br />

rms<br />

~ ( δθ<br />

The largest<br />

value of θ , angular<br />

rms<br />

⇒<br />

/ θ<br />

min<br />

δQ<br />

rms<br />

Q<br />

)Q<br />

observable<br />

is<br />

~ δθ<br />

This is equal <strong>to</strong> the transvers e coherence length for the neutron and achieves<br />

a maximum of about 5 μm<br />

at the ILL 40 m SANS instrument using 15 Å neutrons.<br />

Note that at the largest va lues of θ , set by the detec<strong>to</strong>r size and distance from the<br />

sample, wavelengt h resolution<br />

2<br />

2<br />

~ 5% andθ<br />

is small,<br />

min<br />

=<br />

δλ<br />

λ<br />

2<br />

determined<br />

resolution<br />

rms<br />

2<br />

+<br />

cos<br />

rms<br />

4π<br />

/ λ ~ ( 2π<br />

/ λ)<br />

h / L<br />

object is ~ 2π/<br />

δQ<br />

sin<br />

dominates.<br />

2<br />

θ.<br />

δθ<br />

so<br />

by the direct<br />

dominates<br />

rms<br />

=<br />

2<br />

θ<br />

2<br />

δQ<br />

2<br />

Q<br />

2<br />

5/<br />

12h/L.<br />

and<br />

~ λh<br />

/ L .<br />

=<br />

0.<br />

0025<br />

of<br />

L<br />

+<br />

and<br />

beam size : θ<br />

δθ<br />

θ<br />

equal<br />

min<br />

2<br />

2<br />

~ 1.<br />

5h<br />

/ L


ecall that<br />

where<br />

The <strong>Scattering</strong> Cross Section for SANS<br />

b<br />

nuclear density<br />

2<br />

ds<br />

dO<br />

=<br />

b<br />

2<br />

NS(<br />

Q)<br />

r r 1<br />

r<br />

−iQ.<br />

r<br />

where<br />

r<br />

S(<br />

Q)<br />

=<br />

r<br />

dr.<br />

e<br />

is the coherent nuclear scattering length and n<br />

r<br />

( r)<br />

is<br />

• Since the length scale probed at small Q is >> inter-a<strong>to</strong>mic spacing we may use the<br />

scattering length density (SLD), ρ, introduced for surface reflection and note that<br />

n nuc (r)b is the local SLD at position r.<br />

• A uniform scattering length density only gives forward scattering (Q=0), thus SANS<br />

measures deviations from average scattering length density.<br />

• If ρ is the SLD of particles dispersed in a medium of SLD ρ 0 , and n p (r) is the<br />

particle number density, we can separate the integral in the definition of S(Q) in<strong>to</strong><br />

an integral over the positions of the particles and an integral over a single particle.<br />

We also measure the particle SLD relative <strong>to</strong> that of the surrounding medium I.e:<br />

N<br />

∫<br />

nuc<br />

n<br />

nuc<br />

r<br />

( r )<br />

2<br />

the


SANS Measures Particle Shapes and Inter-particle Correlations<br />

dσ<br />

dΩ<br />

=<br />

=<br />

b<br />

3<br />

∫ d R ∫<br />

space space<br />

2 3<br />

∫ d r ∫<br />

space space<br />

d<br />

3<br />

R'<br />

n<br />

P<br />

d<br />

3<br />

r'<br />

n<br />

r<br />

( R)<br />

n<br />

N<br />

P<br />

r<br />

( r ) n<br />

r<br />

( R')<br />

dσ<br />

= ( ρ − ρ<br />

dΩ<br />

0<br />

)<br />

2<br />

N<br />

e<br />

v<br />

F(<br />

Q)<br />

r<br />

( r ').<br />

e<br />

r r r<br />

iQ.(<br />

R−<br />

R')<br />

r<br />

F(<br />

Q)<br />

2<br />

r r r<br />

iQ.(<br />

r −r<br />

')<br />

2<br />

where G P is the particle - particle correlation<br />

function (the probability<br />

that the re<br />

r<br />

v 2<br />

is a particle at R if there's<br />

one at the origin) and F( Q)<br />

is the particle form fac<strong>to</strong>r<br />

=<br />

∫<br />

( ρ − ρ<br />

N<br />

d<br />

particle<br />

3<br />

∫<br />

P<br />

space<br />

x.<br />

e<br />

d<br />

0<br />

3<br />

)<br />

r v<br />

iQ.<br />

x<br />

R.<br />

G<br />

2<br />

∫<br />

d<br />

particle<br />

P<br />

3<br />

x.<br />

e<br />

r v<br />

iQ.<br />

x<br />

r<br />

( R).<br />

e<br />

These expressions are the same as those for nuclear scattering except for the addition<br />

of a form fac<strong>to</strong>r that arises because the scattering is no longer from point-like particles<br />

2<br />

r r<br />

iQ.<br />

R<br />

:


<strong>Scattering</strong> for Spherical Particles<br />

particles.<br />

of<br />

number<br />

the<br />

times<br />

volume<br />

particle<br />

the<br />

of<br />

square<br />

the<br />

<strong>to</strong><br />

al<br />

proportion<br />

is<br />

)]<br />

r<br />

(<br />

)<br />

r<br />

G(<br />

when<br />

[i.e.<br />

particles<br />

spherical<br />

ed<br />

uncorrelat<br />

of<br />

assembly<br />

an<br />

from<br />

scattering<br />

<strong>to</strong>tal<br />

the<br />

0,<br />

Q<br />

as<br />

Thus,<br />

0<br />

Q<br />

at<br />

)<br />

(<br />

3<br />

)<br />

(<br />

cos<br />

sin<br />

3<br />

)<br />

(<br />

:<br />

Q<br />

of<br />

magnitude<br />

on the<br />

depends<br />

only<br />

F(Q)<br />

R,<br />

radius<br />

of<br />

sphere<br />

a<br />

For<br />

shape.<br />

particle<br />

by the<br />

determined<br />

is<br />

)<br />

(<br />

fac<strong>to</strong>r<br />

form<br />

particle<br />

The<br />

0<br />

1<br />

0<br />

3<br />

0<br />

2<br />

.<br />

2<br />

v<br />

r<br />

r<br />

r r<br />

r<br />

δ<br />

→<br />

→<br />

=<br />

→<br />

≡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡ −<br />

=<br />

= ∫<br />

V<br />

QR<br />

j<br />

QR<br />

V<br />

QR<br />

QR<br />

QR<br />

QR<br />

V<br />

Q<br />

F<br />

e<br />

r<br />

d<br />

Q<br />

F<br />

sphere<br />

V<br />

r<br />

Q<br />

i<br />

2 4 6 8 10<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

1<br />

3j 1 (x)/x<br />

x<br />

Q<br />

and<br />

(a)<br />

axis<br />

major<br />

the<br />

between<br />

angle<br />

the<br />

is<br />

where<br />

)<br />

cos<br />

sin<br />

(<br />

:<br />

by<br />

R<br />

replace<br />

particles<br />

elliptical<br />

For<br />

2<br />

/<br />

1<br />

2<br />

2<br />

2<br />

2<br />

r<br />

ϑ<br />

ϑ<br />

ϑ b<br />

a<br />

R +<br />


Examples of Spherically-Averaged Form Fac<strong>to</strong>rs<br />

R<br />

H<br />

Fo rm Fact or fo r a Ve s icle<br />

2<br />

2<br />

R j1(<br />

QR)<br />

− r j1(<br />

Qr)<br />

F(<br />

Q,<br />

R,<br />

r)<br />

= 3V0<br />

2 3 3<br />

Q ( R − r )<br />

Form Fac<strong>to</strong>r for Cylinder with Q at angle q <strong>to</strong> cylinder axis<br />

4V<br />

F ( Q,<br />

θ,<br />

H , R)<br />

=<br />

r<br />

0<br />

t = R - r<br />

sin([ QH / 2]<br />

cosθ<br />

) J1(<br />

QR sinθ<br />

)<br />

2<br />

QH cosθ<br />

( QR sinθ<br />

)<br />

R


Determining Particle Size From Dilute Suspensions<br />

• Particle size is usually deduced from dilute suspensions in which inter-particle<br />

correlations are absent<br />

• In practice, instrumental resolution (finite beam coherence) will smear out<br />

minima in the form fac<strong>to</strong>r<br />

• This effect can be accounted for if the spheres are mono-disperse<br />

• For poly-disperse particles, maximum entropy techniques have been used<br />

successfully <strong>to</strong> obtain the distribution of particles sizes


Correlations Can Be Measured in Concentrated Systems<br />

• A series of experiments in the late 1980’s by Hayter et al and Chen et al<br />

produced accurate measurements of S(Q) for colloidal and micellar systems<br />

• To a large extent these data could be fit by S(Q) calculated from the mean<br />

spherical model using a Yukawa potential <strong>to</strong> yield surface charge and screening<br />

length


Size Distributions Have Been Measured<br />

for Helium Bubbles in Steel<br />

• The growth of He bubbles under neutron irradiation is a key fac<strong>to</strong>r limiting<br />

the lifetime of steel for fusion reac<strong>to</strong>r walls<br />

– Simulate by bombarding steel with alpha particles<br />

• TEM is difficult <strong>to</strong> use because bubble are small<br />

• SANS shows that larger bubbles grow as the steel is<br />

annealed, as a result of coalescence of small bubbles<br />

and incorporation of individual He a<strong>to</strong>ms<br />

SANS gives bubble volume (arbitrary units on the plots) as a function of bubble size<br />

at different temperatures. Red shading is 80% confidence interval.


Radius of Gyration Is the Particle “Size” Usually<br />

Deduced From SANS Measurements<br />

result.<br />

general<br />

this<br />

of<br />

case<br />

special<br />

a<br />

is<br />

sphere<br />

a<br />

of<br />

fac<strong>to</strong>r<br />

form<br />

for the<br />

expression<br />

that the<br />

ified<br />

easily ver<br />

is<br />

It<br />

/3.<br />

r<br />

is<br />

Q<br />

of<br />

ues<br />

lowest val<br />

at the<br />

data<br />

the<br />

of<br />

slope<br />

The<br />

.<br />

Q<br />

v<br />

ty)<br />

ln(Intensi<br />

plotting<br />

by<br />

or<br />

region)<br />

Guinier<br />

called<br />

-<br />

so<br />

(in the<br />

Q<br />

low<br />

at<br />

data<br />

SANS<br />

<strong>to</strong><br />

fit<br />

a<br />

from<br />

obtained<br />

usually<br />

is<br />

It<br />

.<br />

/<br />

is<br />

gyration<br />

of<br />

radius<br />

the<br />

is<br />

r<br />

where<br />

...<br />

6<br />

1<br />

...<br />

.<br />

sin<br />

.<br />

sin<br />

cos<br />

2<br />

1<br />

....<br />

)<br />

.<br />

(<br />

2<br />

1<br />

.<br />

)<br />

(<br />

:<br />

Q<br />

small<br />

at<br />

fac<strong>to</strong>r<br />

form<br />

the<br />

of<br />

definition<br />

in the<br />

l<br />

exponentia<br />

the<br />

expand<br />

and<br />

particle<br />

the<br />

of<br />

centroid<br />

the<br />

from<br />

measure<br />

we<br />

If<br />

2<br />

g<br />

2<br />

3<br />

3<br />

2<br />

g<br />

6<br />

0<br />

2<br />

2<br />

0<br />

3<br />

3<br />

2<br />

0<br />

0<br />

2<br />

2<br />

0<br />

3<br />

2<br />

3<br />

0<br />

.<br />

2<br />

2<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

=<br />

≈<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

=<br />

+<br />

−<br />

+<br />

≈<br />

=<br />

−<br />

V<br />

V<br />

g<br />

r<br />

Q<br />

g<br />

V<br />

V<br />

V<br />

V<br />

r<br />

Q<br />

i<br />

V<br />

r<br />

d<br />

r<br />

d<br />

R<br />

r<br />

e<br />

V<br />

r<br />

Q<br />

V<br />

r<br />

d<br />

r<br />

d<br />

r<br />

d<br />

d<br />

Q<br />

V<br />

r<br />

d<br />

r<br />

Q<br />

r<br />

d<br />

r<br />

Q<br />

i<br />

V<br />

e<br />

r<br />

d<br />

Q<br />

F<br />

r<br />

g<br />

π<br />

π<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r


Guinier Approximations: <strong>An</strong>alysis Road Map<br />

* Viewgraph courtesy of Rex Hjelm<br />

2<br />

P(Q) =<br />

d ln P(Q)<br />

d ln(Q)<br />

Generalized Guinier approximation<br />

1; α = 0<br />

απ Q –α ; α = 1,2 ΔM<br />

2 2<br />

α0 exp RαQ –<br />

3 – α<br />

Derivative-log analysis<br />

= Q<br />

P(Q)<br />

d P(Q)<br />

dQ<br />

= –α –<br />

2<br />

3 – α R α 2 Q 2<br />

• Guinier approximations provide a<br />

roadmap for analysis.<br />

• Information on particle<br />

composition, shape and size.<br />

• Generalization allows for<br />

analysis of complex mixtures,<br />

allowing identification of domains<br />

where each approximation<br />

applies.


Contrast & Contrast Matching<br />

Water<br />

O D2O HO 2O * Chart courtesy of Rex Hjelm<br />

Both tubes contain borosilicate beads +<br />

pyrex fibers + solvent. (A) solvent<br />

refractive index matched <strong>to</strong> pyrex;. (B)<br />

solvent index different from both beads<br />

and fibers – scattering from fibers<br />

dominates


Hydrogen<br />

Iso<strong>to</strong>pe<br />

Iso<strong>to</strong>pic Contrast for <strong>Neutron</strong>s<br />

<strong>Scattering</strong> Length<br />

b (fm)<br />

1 H -3.7409 (11)<br />

2 D 6.674 (6)<br />

3 T 4.792 (27)<br />

Nickel<br />

Iso<strong>to</strong>pe<br />

<strong>Scattering</strong> Lengths<br />

b (fm)<br />

58 Ni 15.0 (5)<br />

60 Ni 2.8 (1)<br />

61 Ni 7.60 (6)<br />

62 Ni -8.7 (2)<br />

64 Ni -0.38 (7)


Verification of of the Gaussian Coil Model for a Polymer Melt<br />

• One of the earliest important<br />

results obtained by SANS was<br />

the verification of that r g ~N -1/2<br />

for polymer chains in a melt<br />

• A better experiment was done<br />

3 years later using a small<br />

amount of H-PMMA in D-PMMA<br />

(<strong>to</strong> avoid the large incoherent<br />

background) covering a MW<br />

range of 4 decades


SANS Has Been Used <strong>to</strong> Study Bio-machines<br />

• Capel and Moore (1988) used the fact that<br />

prokaryotes can grow when H is replaced<br />

by D <strong>to</strong> produce reconstituted ribosomes<br />

with various pairs of proteins (but not<br />

rRNA) deuterated<br />

• They made 105 measurements of interprotein<br />

distances involving 93 30S protein<br />

pairs over a 12 year period. They also<br />

measured radii of gyration<br />

• Measurement of inter-protein distances<br />

is done by Fourier transforming the form<br />

fac<strong>to</strong>r <strong>to</strong> obtain G(R)<br />

• They used these data <strong>to</strong> solve the<br />

ribosomal structure, resolving ambiguities<br />

by comparison with electron microscopy


Porod <strong>Scattering</strong><br />

function.<br />

n<br />

correlatio<br />

for the<br />

form<br />

(Debye)<br />

h this<br />

fac<strong>to</strong>r wit<br />

form<br />

the<br />

evaluate<br />

<strong>to</strong><br />

and<br />

r<br />

small<br />

at<br />

V)]<br />

A/(2<br />

a<br />

[with<br />

..<br />

br<br />

ar<br />

-<br />

1<br />

G(r)<br />

expand<br />

<strong>to</strong><br />

is<br />

it<br />

obtain<br />

y <strong>to</strong><br />

<strong>An</strong>other wa<br />

smooth.<br />

is<br />

surface<br />

particle<br />

the<br />

provided<br />

shape<br />

particle<br />

any<br />

for<br />

Q<br />

as<br />

holds<br />

and<br />

law<br />

s<br />

Porod'<br />

is<br />

This<br />

surface.<br />

s<br />

sphere'<br />

the<br />

of<br />

area<br />

the<br />

is<br />

A<br />

where<br />

2<br />

)<br />

(<br />

2<br />

9<br />

Thus<br />

)<br />

resolution<br />

by<br />

out<br />

smeared<br />

be<br />

will<br />

ns<br />

oscillatio<br />

(the<br />

average<br />

on<br />

2<br />

/<br />

9<br />

Q<br />

as<br />

cos<br />

9<br />

cos<br />

sin<br />

9<br />

)<br />

(<br />

)<br />

(<br />

cos<br />

.<br />

sin<br />

9<br />

radius)<br />

sphere<br />

the<br />

is<br />

R<br />

where<br />

1/R<br />

Q<br />

(i.e.<br />

particle<br />

spherical<br />

a<br />

for<br />

Q<br />

of<br />

values<br />

large<br />

at<br />

)<br />

(<br />

F(Q)<br />

of<br />

behavior<br />

the<br />

examine<br />

us<br />

Let<br />

2<br />

4<br />

4<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

4<br />

2<br />

3<br />

2<br />

4<br />

2<br />

4<br />

2<br />

π<br />

π<br />

=<br />

+<br />

+<br />

=<br />

∞<br />

→<br />

=<br />

→<br />

=<br />

∞<br />

→<br />

→<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡ −<br />

=<br />

>><br />

Q<br />

A<br />

QR<br />

V<br />

F(Q)<br />

V<br />

QR<br />

V<br />

QR<br />

QR<br />

QR<br />

V<br />

QR<br />

QR<br />

QR<br />

QR<br />

QR<br />

V<br />

(QR)<br />

F(Q)<br />

QR


<strong>Scattering</strong> From Fractal Systems<br />

• Fractals are systems that are “self-similar” under a change of scale I.e. R -> CR<br />

• For a mass fractal the number of particles within a sphere of radius R is<br />

proportional <strong>to</strong> R D where D is the fractal dimension<br />

Thus<br />

4pR<br />

2<br />

dR.<br />

G(<br />

R)<br />

= number of particles between distance R and R + dR = cR<br />

D−3<br />

∴ G(<br />

R)<br />

= ( c / 4π<br />

) R<br />

r<br />

r r r<br />

iQ.<br />

R 2π<br />

and S(<br />

Q)<br />

= ∫ dR.<br />

e G(<br />

R)<br />

= dR.<br />

R.<br />

sin QR.(<br />

c / 4 ) R<br />

Q ∫ π<br />

c 1<br />

= D<br />

2 Q<br />

dx.<br />

x<br />

const<br />

For a surface fractal, onecan<br />

prove that S(<br />

Q)<br />

∝ which reduces <strong>to</strong> the Porod<br />

6−<br />

Ds<br />

Q<br />

form for smooth surfaces<br />

∫<br />

D−2<br />

const<br />

. sin x = D<br />

Q<br />

of dimension 2.<br />

D−3<br />

D−1<br />

dR


ln(I)<br />

Typical Intensity Plot for SANS From Disordered<br />

Systems<br />

Zero Q intercept - gives particle volume if<br />

concentration is known<br />

Guinier region (slope = -r g 2 /3 gives particle “size”)<br />

ln(Q)<br />

Mass fractal dimension (slope = -D)<br />

Porod region - gives surface area and<br />

surface fractal dimension<br />

{slope = -(6-D s )}


Sedimentary Rocks Are One of the Most<br />

Extensive Fractal Systems*<br />

Variation of the average number of SEM<br />

features per unit length with feature size.<br />

Note the breakdown of fractality (D s =2.8<br />

<strong>to</strong> 2.9) for lengths larger than 4 microns<br />

*A. P. Radlinski (Austr. Geo. Survey)<br />

SANS & USANS data from sedimentary rock<br />

showing that the pore-rock interface is a surface<br />

fractal (D s =2.82) over 3 orders of magnitude in<br />

length scale


References<br />

• Viewgraphs describing the NIST 30-m SANS instrument<br />

– http://www.ncnr.nist.gov/programs/sans/tu<strong>to</strong>rials/30mSANS_desc.pdf


LECTURE 6: Inelastic <strong>Scattering</strong><br />

by<br />

Roger Pynn<br />

Los Alamos<br />

National Labora<strong>to</strong>ry


We Have Seen How <strong>Neutron</strong> <strong>Scattering</strong><br />

Can Determine a Variety of Structures<br />

crystals<br />

X-Ray<br />

β = 3.9(3)<br />

β = 5.2(3)<br />

β = 4.4(2)<br />

β = 3.1(3)<br />

0.20(1)nm<br />

<strong>Neutron</strong><br />

1.9(2)nm a-FeOOH β = 4.4(8)<br />

10.7(2)nm Fe<br />

2.1(2)nm<br />

0.44(2)nm<br />

0.07(1)nm<br />

interface<br />

0.03(1)nm<br />

MgO<br />

but what happens when the a<strong>to</strong>ms are moving?<br />

Can we determine the directions and<br />

time-dependence of a<strong>to</strong>mic motions?<br />

Can well tell whether motions are periodic?<br />

Etc.<br />

β = 8.6(4)<br />

β = 6.9(4)<br />

β = 6.2(5)<br />

surfaces & interfaces disordered/fractals biomachines<br />

These are the types of questions answered<br />

by inelastic neutron scattering


The <strong>Neutron</strong> Changes Both Energy & Momentum<br />

When Inelastically Scattered by Moving Nuclei


The Elastic & Inelastic <strong>Scattering</strong> Cross<br />

Sections Have an Intuitive Similarity<br />

• The intensity of elastic, coherent neutron scattering is proportional <strong>to</strong> the<br />

spatial Fourier Transform of the Pair Correlation Function, G(r) I.e. the<br />

probability of finding a particle at position r if there is simultaneously a<br />

particle at r=0<br />

• The intensity of inelastic coherent neutron scattering is proportional <strong>to</strong><br />

the space and time Fourier Transforms of the time-dependent pair<br />

correlation function function, G(r,t) = probability of finding a particle at<br />

position r at time t when there is a particle at r=0 and t=0.<br />

• For inelastic incoherent scattering, the intensity is proportional <strong>to</strong> the<br />

space and time Fourier Transforms of the self-correlation function, G s (r,t)<br />

I.e. the probability of finding a particle at position r at time t when the<br />

same particle was at r=0 at t=0


The Inelastic <strong>Scattering</strong> Cross Section<br />

Lovesey.<br />

and<br />

Marshal<br />

or<br />

Squires<br />

by<br />

books<br />

in the<br />

example,<br />

for<br />

found,<br />

be<br />

can<br />

Details<br />

us.<br />

ally tedio<br />

mathematic<br />

is<br />

opera<strong>to</strong>rs)<br />

mechanical<br />

quantum<br />

commuting<br />

-<br />

non<br />

as<br />

treated<br />

be<br />

<strong>to</strong><br />

have<br />

functions<br />

-<br />

and<br />

s<br />

'<br />

the<br />

(in which<br />

functions<br />

n<br />

correlatio<br />

the<br />

of<br />

evaluation<br />

The<br />

))<br />

(<br />

(<br />

))<br />

0<br />

(<br />

(<br />

1<br />

)<br />

,<br />

(<br />

and<br />

)<br />

,<br />

(<br />

)<br />

0<br />

,<br />

(<br />

1<br />

)<br />

,<br />

(<br />

:<br />

case<br />

scattering<br />

elastic<br />

for the<br />

those<br />

similar <strong>to</strong><br />

y<br />

intuitivel<br />

are<br />

that<br />

functions<br />

n<br />

correlatio<br />

the<br />

and<br />

)<br />

,<br />

(<br />

2<br />

1<br />

)<br />

,<br />

(<br />

and<br />

)<br />

,<br />

(<br />

2<br />

1<br />

)<br />

,<br />

(<br />

where<br />

)<br />

,<br />

(<br />

'<br />

.<br />

and<br />

)<br />

,<br />

(<br />

'<br />

.<br />

that<br />

Recall<br />

)<br />

.<br />

(<br />

)<br />

.<br />

(<br />

2<br />

2<br />

2<br />

2<br />

δ<br />

ρ<br />

δ<br />

δ<br />

ρ<br />

ρ<br />

π<br />

ω<br />

π<br />

ω<br />

ω<br />

σ<br />

ω<br />

σ<br />

ω<br />

ω<br />

r<br />

d<br />

t<br />

R<br />

R<br />

r<br />

R<br />

r<br />

N<br />

t<br />

r<br />

G<br />

r<br />

d<br />

t<br />

R<br />

r<br />

r<br />

N<br />

t<br />

r<br />

G<br />

dt<br />

r<br />

d<br />

e<br />

t<br />

r<br />

G<br />

Q<br />

S<br />

dt<br />

r<br />

d<br />

e<br />

t<br />

r<br />

G<br />

Q<br />

S<br />

Q<br />

NS<br />

k<br />

k<br />

b<br />

dE<br />

d<br />

d<br />

Q<br />

NS<br />

k<br />

k<br />

b<br />

dE<br />

d<br />

d<br />

j<br />

j<br />

j<br />

s<br />

N<br />

N<br />

t<br />

r<br />

Q<br />

i<br />

s<br />

i<br />

t<br />

r<br />

Q<br />

i<br />

i<br />

inc<br />

inc<br />

coh<br />

coh<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

h<br />

r<br />

r<br />

r<br />

h<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

∑∫<br />

∫<br />

∫∫<br />

∫∫<br />

−<br />

+<br />

−<br />

=<br />

+<br />

=<br />

=<br />

=<br />

=<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

Ω<br />

=<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

Ω<br />

−<br />


Examples of S(Q,ω) and S s(Q,ω)<br />

• Expressions for S(Q,ω) and S s (Q,ω) can be worked out for a<br />

number of cases e.g:<br />

– Excitation or absorption of one quantum of lattice vibrational<br />

energy (phonon)<br />

– Various models for a<strong>to</strong>mic motions in liquids and glasses<br />

– Various models of a<strong>to</strong>mic & molecular translational & rotational<br />

diffusion<br />

– Rotational tunneling of molecules<br />

– Single particle motions at high momentum transfers<br />

– Transitions between crystal field levels<br />

– Magnons and other magnetic excitations such as spinons<br />

• Inelastic neutron scattering reveals details of the shapes of<br />

interaction potentials in materials


A Phonon is a Quantized Lattice Vibration<br />

• Consider linear chain of particles of mass M coupled by<br />

springs. Force on n’th particle is<br />

Fn = α 0 un<br />

+ α1(<br />

un−1<br />

+ un+<br />

1)<br />

+ α 2(<br />

un−2<br />

+ un+<br />

2)<br />

+ ...<br />

• Equation of motion is<br />

• Solution is:<br />

a<br />

First neighbor force constant displacements<br />

2π<br />

4π<br />

N 2π<br />

q =<br />

0 , ± , ± ,...... ±<br />

L L 2 L<br />

F = Mu&<br />

&<br />

i ( qna−ωt<br />

)<br />

2<br />

un ( t)<br />

= Aqe<br />

with ωq<br />

=<br />

Phonon Dispersion Relation:<br />

Measurable by inelastic neutron scattering<br />

n<br />

u<br />

n<br />

4<br />

M<br />

∑<br />

ν<br />

α<br />

ν<br />

sin<br />

2<br />

1<br />

( νqa)<br />

2<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

w<br />

-1 -0.5 0.5 1<br />

qa/2π


Inelastic Magnetic <strong>Scattering</strong> of <strong>Neutron</strong>s<br />

• In the simplest case, a<strong>to</strong>mic spins in a ferromagnet precess<br />

about the direction of mean magnetization<br />

r r r r<br />

+<br />

H = J ( l − l ')<br />

S . S = H + hω<br />

b b<br />

with<br />

hω<br />

q<br />

∑<br />

l,<br />

l'<br />

=<br />

2<br />

q Dq = ω h<br />

exchange coupling<br />

2S(<br />

J<br />

0<br />

−<br />

J<br />

q<br />

l<br />

)<br />

l'<br />

is the dispersion<br />

0<br />

where<br />

∑<br />

q<br />

ground state energy<br />

J<br />

q<br />

=<br />

q<br />

∑<br />

l<br />

q<br />

q<br />

r<br />

J ( l ) e<br />

relation for a ferromagnet<br />

Spin wave animation courtesy of A. Zheludev (ORNL)<br />

r r<br />

iq.<br />

l<br />

spin waves (magnons)<br />

Fluctuating spin is<br />

perpendicular <strong>to</strong> mean spin<br />

direction => spin-flip<br />

neutron scattering


Measured Inelastic <strong>Neutron</strong> <strong>Scattering</strong> Signals in Crystalline<br />

Solids Show Both Collective & Local Fluctuations*<br />

Spin waves – collective<br />

excitations<br />

* Courtesy of Dan Neumann, NIST<br />

Local spin resonances (e.g. ZnCr 2 O 4 )<br />

Crystal Field splittings<br />

(HoPd 2 Sn) – local excitations


Measured Inelastic <strong>Neutron</strong> <strong>Scattering</strong> Signals in Liquids<br />

Generally Show Diffusive Behavior<br />

“Simple” liquids (e.g. water)<br />

Quantum Fluids (e.g. He in porous silica)<br />

Complex Fluids (e.g. SDS)


Measured Inelastic <strong>Neutron</strong> <strong>Scattering</strong> in Molecular<br />

Systems Span Large Ranges of Energy<br />

Vibrational spectroscopy<br />

(e.g. C 60 )<br />

Molecular reorientation<br />

(e.g. pyrazine)<br />

Polymers Proteins<br />

Rotational tunneling<br />

(e.g. CH 3 I)


A<strong>to</strong>mic Motions for Longitudinal & Transverse Phonons<br />

Q Q<br />

Transverse phonon Longitudinal phonon<br />

r<br />

r<br />

= ( 0,<br />

0.<br />

1,<br />

0)<br />

a<br />

= ( 0.<br />

1,<br />

0,<br />

0)<br />

a<br />

e T<br />

r<br />

R<br />

l<br />

r<br />

Q =<br />

=<br />

r<br />

R<br />

l 0<br />

2π<br />

a<br />

a<br />

r<br />

+ e<br />

( 0.<br />

1,<br />

0,<br />

0)<br />

s<br />

e<br />

r r<br />

i(<br />

Q.<br />

R −ωt<br />

)<br />

l<br />

e L


Transverse Optic and Acoustic Phonons<br />

)<br />

.<br />

(<br />

0 t<br />

R<br />

Q<br />

i<br />

s<br />

lk<br />

lk<br />

l<br />

e<br />

e<br />

R<br />

R<br />

ω<br />

−<br />

+<br />

=<br />

r<br />

r<br />

r<br />

r<br />

r<br />

a<br />

e<br />

a<br />

e<br />

blue<br />

red<br />

)<br />

0<br />

,<br />

14<br />

.<br />

0<br />

,<br />

0<br />

(<br />

)<br />

0<br />

,<br />

1<br />

.<br />

0<br />

,<br />

0<br />

(<br />

=<br />

=<br />

r<br />

r<br />

a<br />

e<br />

a<br />

e<br />

blue<br />

red<br />

)<br />

0<br />

,<br />

14<br />

.<br />

0<br />

,<br />

0<br />

(<br />

)<br />

0<br />

,<br />

1<br />

.<br />

0<br />

,<br />

0<br />

(<br />

−<br />

=<br />

=<br />

r<br />

r<br />

Acoustic Optic<br />

Q


Phonons – the Classical Use for Inelastic <strong>Neutron</strong> <strong>Scattering</strong><br />

• Coherent scattering measures scattering from single phonons<br />

2 ⎛ d σ<br />

⎞<br />

⎜<br />

d dE ⎟<br />

⎝ Ω ⎠<br />

coh±<br />

1<br />

= σ<br />

coh<br />

• Note the following features:<br />

k<br />

k<br />

– Energy & momentum delta functions => see single phonons (labeled s)<br />

– Different thermal fac<strong>to</strong>rs for phonon creation (n s +1) & annihilation (n s )<br />

– Can see phonons in different Brillouin zones (different recip. lattice vec<strong>to</strong>rs, G)<br />

– Cross section depends on relative orientation of Q & a<strong>to</strong>mic motions (e s )<br />

– Cross section depends on phonon frequency (ω s ) and a<strong>to</strong>mic mass (M)<br />

– In general, scattering by multiple<br />

excitations is either insignificant<br />

or a small correction (the presence of<br />

other phonons appears in the Debye-<br />

Waller fac<strong>to</strong>r, W)<br />

'<br />

2<br />

π<br />

MV<br />

0<br />

e<br />

− 2W<br />

∑ ∑<br />

r r<br />

( Q.<br />

e<br />

ω<br />

s G s<br />

s<br />

)<br />

2<br />

( n<br />

s<br />

1 ± 1<br />

+ ) δ ( ω m ω<br />

2<br />

s<br />

r r r<br />

) δ ( Q − q − G )


The Workhorse of Inelastic <strong>Scattering</strong> Instrumentation at<br />

Reac<strong>to</strong>rs Is the Three-axis Spectrometer<br />

k F<br />

Q<br />

k I<br />

“scattering triangle”


The Accessible Energy and Wavevec<strong>to</strong>r<br />

Transfers Are Limited by Conservation Laws<br />

• <strong>Neutron</strong> cannot lose more than its initial kinetic energy &<br />

momentum must be conserved


Triple Axis Spectrometers Have Mapped Phonons<br />

Dispersion Relations in Many Materials<br />

• Point by point measurement in (Q,E)<br />

space<br />

• Usually keep either k I or k F fixed<br />

• Choose Brillouin zone (I.e. G) <strong>to</strong> maximize<br />

scattering cross section for phonons<br />

• Scan usually either at constant-Q<br />

(Brockhouse invention) or constant-E<br />

Phonon dispersion of 36 Ar


What Use Have Phonon Measurements Been?<br />

• Quantifying intera<strong>to</strong>mic potentials in metals, rare gas solids, ionic<br />

crystals, covalently bonded materials etc<br />

• Quantifying anharmonicity (I.e. phonon-phonon interactions)<br />

• Measuring soft modes at 2 nd order structural phase transitions<br />

• Electron-phonon interactions including Kohn anomalies<br />

• Ro<strong>to</strong>n dispersion in liquid He<br />

• Relating phonons <strong>to</strong> other properties such as superconductivity,<br />

anomalous lattice expansion etc


Examples of Phonon Measurements<br />

Phonons in 36 Ar – validation<br />

of LJ potential<br />

Phonons in 110 Cd<br />

Ro<strong>to</strong>n dispersion in 4 He<br />

Kohn anomalies<br />

in 110 Cd<br />

Soft mode


Time-of-flight Methods Can Give Complete Dispersion Curves at a<br />

Single Instrument Setting in Favorable Circumstances<br />

CuGeO 3 is a 1-d magnet. With the unique axis parallel <strong>to</strong> the incident<br />

neutron beam, the complete magnon dispersion can be obtained


Much of the Scientific Impact of <strong>Neutron</strong> <strong>Scattering</strong> Has Involved<br />

the Measurement of Inelastic <strong>Scattering</strong><br />

Ene rgy Trans fe r (me V)<br />

10000<br />

100<br />

1<br />

0.01<br />

10-4<br />

10-6<br />

<strong>Neutron</strong>s in Condens ed Matter Res earch<br />

<strong>Spallation</strong> SPSS - Chopper - Chopper Spectrometer<br />

ILL - without s pin-echo<br />

ILL - with s pin-e cho<br />

Elastic <strong>Scattering</strong><br />

[Larger Objects Resolved]<br />

Micelles Polymers<br />

Proteins in Solution<br />

Viruses<br />

Metallurgical<br />

Systems<br />

Colloids<br />

Aggregate<br />

Motion<br />

Polymers<br />

and<br />

Biological<br />

Systems<br />

Coherent<br />

Modes in<br />

Glasses<br />

and Liquids<br />

Molecular<br />

Motions<br />

Membranes<br />

Proteins<br />

Critical<br />

<strong>Scattering</strong><br />

Diffusive<br />

Modes<br />

Spin<br />

Waves<br />

Electron-<br />

phonon<br />

Interactions<br />

Crystal and<br />

Magnetic<br />

Structures<br />

Crystal<br />

Fields<br />

Slower<br />

Motions<br />

Resolved<br />

Molecular<br />

Reorientation<br />

Tunneling<br />

Spectroscopy<br />

Surface<br />

Effects?<br />

Itinerant<br />

Magnets<br />

Hydrogen<br />

Modes<br />

Molecular<br />

Vibrations<br />

Lattice<br />

Vibrations<br />

and<br />

<strong>An</strong>harmonicity<br />

Amorphous<br />

Systems<br />

<strong>Neutron</strong><br />

Induced<br />

Excitations<br />

Momentum<br />

Distributions<br />

Accurate Liquid Structures<br />

Precision Crystallography<br />

<strong>An</strong>harmonicity<br />

0.001 0.01 0.1 1 10 100<br />

Q (Å -1 )<br />

Energy & Wavevec<strong>to</strong>r Transfers accessible <strong>to</strong> <strong>Neutron</strong> <strong>Scattering</strong>


<strong>Neutron</strong> Spin Echo<br />

By<br />

Roger Pynn*<br />

Los Alamos National Labora<strong>to</strong>ry<br />

*With contributions from B. Farago (ILL), S. Longeville (Saclay),<br />

and T. Keller (Stuttgart)


What Do We Need for a Basic <strong>Neutron</strong> <strong>Scattering</strong> Experiment?<br />

• A source of neutrons<br />

• A method <strong>to</strong> prescribe the wavevec<strong>to</strong>r of the neutrons incident on the sample<br />

• (<strong>An</strong> interesting sample)<br />

• A method <strong>to</strong> determine the wavevec<strong>to</strong>r of the scattered neutrons<br />

• A neutron detec<strong>to</strong>r<br />

Detec<strong>to</strong>r<br />

Incident neutrons of wavevec<strong>to</strong>r k i Scattered neutrons of<br />

wavevec<strong>to</strong>r, k f<br />

Q<br />

k i<br />

k f<br />

Sample<br />

2<br />

h 2<br />

E = hω<br />

= ( ki<br />

− k<br />

2m<br />

We usually measure scattering<br />

as a function of energy (E) and<br />

wavevec<strong>to</strong>r (Q) transfer<br />

2<br />

f<br />

)


• Uncertainties in the neutron<br />

wavelength & direction of travel<br />

imply that Q and E can only be<br />

defined with a certain precision<br />

Instrumental Resolution<br />

• When the box-like resolution<br />

volumes in the figure are convolved,<br />

the overall resolution is Gaussian<br />

(central limit theorem) and has an<br />

elliptical shape in (Q,E) space<br />

• The <strong>to</strong>tal signal in a scattering<br />

experiment is proportional <strong>to</strong> the<br />

phase space volume within the<br />

elliptical resolution volume – the better the resolution, the smaller the<br />

resolution volume and the lower the count rate


The Goal of <strong>Neutron</strong> Spin Echo is <strong>to</strong> Break the Inverse<br />

Relationship between Intensity & Resolution<br />

• Traditional – define both incident & scattered wavevec<strong>to</strong>rs in order <strong>to</strong><br />

define E and Q accurately<br />

• Traditional – use collima<strong>to</strong>rs, monochroma<strong>to</strong>rs, choppers etc <strong>to</strong> define<br />

both k i and k f<br />

• NSE – measure as a function of the difference between appropriate<br />

components of k i and k f (original use: measure k i –k f i.e. energy change)<br />

• NSE – use the neutron’s spin polarization <strong>to</strong> encode the difference<br />

between components of k i and k f<br />

• NSE – can use large beam divergence &/or poor monochromatization <strong>to</strong><br />

increase signal intensity, while maintaining very good resolution


The Underlying Physics of <strong>Neutron</strong> Spin Echo (NSE)<br />

Technology is Larmor Precession of the <strong>Neutron</strong>’s Spin<br />

• The time evolution of the expectation value of the spin of a<br />

spin-1/2 particle in a magnetic field can be B<br />

determined classically as:<br />

r<br />

ds<br />

r r<br />

= γs<br />

∧ B ⇒ ω L<br />

dt<br />

= γ B<br />

s<br />

−1<br />

−1<br />

γ = −2913<br />

* 2π<br />

Gauss . s<br />

• The <strong>to</strong>tal precession angle of the spin, φ, depends on the time<br />

the neutron spends in the field: φ = ω t<br />

B(Gauss)<br />

10<br />

ω L (10 3 rad.s -1 )<br />

183<br />

L<br />

N (msec -1 )<br />

29<br />

Turns/m for<br />

4 Å neutrons<br />

~29


Larmor Precession allows the <strong>Neutron</strong> Spin <strong>to</strong> be Manipulated<br />

using π or π/2 Spin-Turn Coils: Both are Needed for NSE<br />

• The <strong>to</strong>tal precession angle of the spin, φ, depends on the time<br />

the neutron spends in the B field<br />

φ = ω t = γBd<br />

/ v<br />

L<br />

d<br />

B<br />

<strong>Neutron</strong> velocity, v<br />

1<br />

Number of turns =<br />

. B[ Gauss].<br />

d[<br />

cm].<br />

λ[<br />

<strong>An</strong>gstroms]<br />

135.65


How does a <strong>Neutron</strong> Spin Behave when the<br />

Magnetic Field Changes Direction?<br />

When H rotates with<br />

frequency ω, H 0 ->H 1<br />

->H 2 …, and the spin<br />

trajec<strong>to</strong>ry is described<br />

by a cone rolling on the<br />

plane in which H moves<br />

• Distinguish two cases: adiabatic and sudden<br />

• Adiabatic –tan(δ) > 1 – large ω – spin precesses around new<br />

field direction – this limit is used <strong>to</strong> design spin-turn devices


<strong>Neutron</strong> Spin Echo (NSE) uses Larmor Precession <strong>to</strong><br />

“Code” <strong>Neutron</strong> Velocities<br />

• A neutron spin precesses at the Larmor frequency in a<br />

magnetic field, B. ω L = γB<br />

• The <strong>to</strong>tal precession angle of the spin, φ, depends on the time<br />

the neutron spends in the field<br />

σ d r r<br />

H,<br />

φ = ω t = γBd<br />

L<br />

/<br />

v<br />

B<br />

<strong>Neutron</strong> velocity, v<br />

1<br />

Number of turns = . B[ Gauss].<br />

d[<br />

cm].<br />

λ[<br />

<strong>An</strong>gstroms]<br />

135.65<br />

The precession angle φ is a measure of the neutron’s speed v


The Principles of NSE are Very Simple<br />

• If a spin rotates anticlockwise & then clockwise by the same<br />

amount it comes back <strong>to</strong> the same orientation<br />

– Need <strong>to</strong> reverse the direction of the applied field<br />

– Independent of neutron speed provided the speed is constant<br />

• The same effect can be obtained by reversing the precession<br />

angle at the mid-point and continuing the precession in the<br />

same sense<br />

– Use a π rotation<br />

• If the neutron’s velocity, v, is changed by the sample, its spin<br />

will not come back <strong>to</strong> the same orientation<br />

– The difference will be a measure of the change in the neutron’s speed or<br />

energy


In NSE*, <strong>Neutron</strong> Spins Precess Before and After <strong>Scattering</strong> & a<br />

y Polarization Echo is Obtained if <strong>Scattering</strong> is Elastic<br />

z x π/2<br />

F S<br />

π/2<br />

π<br />

Initially,<br />

neutrons<br />

are polarized<br />

along z<br />

F<br />

Rotate spins in<strong>to</strong><br />

x-y precession plane<br />

Final Polarization,<br />

P<br />

S<br />

Allow spins <strong>to</strong><br />

precess around z:<br />

slower neutrons<br />

precess further over<br />

a fixed path-length<br />

=<br />

cos( φ −<br />

Rotate spins<br />

through π about<br />

x axis<br />

1 φ2<br />

)<br />

Elastic<br />

<strong>Scattering</strong><br />

Event<br />

Rotate spins<br />

<strong>to</strong> z and<br />

measure<br />

polarization<br />

Allow spins <strong>to</strong> precess<br />

around z: all spins are in<br />

the same direction at the<br />

echo point if ∆E = 0<br />

* F. Mezei, Z. Physik, 255 (1972) 145


For Quasi-elastic <strong>Scattering</strong>, the Echo<br />

Polarization depends on Energy Transfer<br />

• If the neutron changes energy when it scatters, the precession<br />

phases before & after scattering, φ 1 & φ 2, will be different:<br />

1 2 2<br />

using hω<br />

= m(<br />

v1<br />

− v2<br />

) ≈ mvδv<br />

2<br />

2 3<br />

⎛ 1 1 ⎞ γBd<br />

γBdhω<br />

γBdm<br />

λ ω<br />

φ1<br />

−φ<br />

2 = γBd<br />

⎜ − ≈ δv<br />

≈ =<br />

2<br />

3<br />

2<br />

v1<br />

v ⎟<br />

⎝ 2 ⎠ v mv 2πh<br />

• To lowest order, the difference between φ 1 & φ 2 depends only<br />

on ω (I.e. v 1 – v 2) & not on v 1 & v 2 separately<br />

• The measured polarization, , is the average of cos(φ 1 - φ 2)<br />

over all transmitted neutrons I.e.<br />

P<br />

=<br />

∫∫<br />

I<br />

r<br />

λ)<br />

S(<br />

Q,<br />

ω)<br />

cos( φ1<br />

−φ<br />

) dλdω<br />

r<br />

I(<br />

λ)<br />

S(<br />

Q,<br />

ω)<br />

dλdω<br />

( 2<br />

∫∫


<strong>Neutron</strong> Polarization at the Echo Point is a<br />

Measure of the Intermediate <strong>Scattering</strong> Function<br />

r<br />

∫∫ I(<br />

λ)<br />

S(<br />

Q,<br />

ω)<br />

cos( φ1<br />

−φ<br />

2 ) dλdω<br />

r<br />

r<br />

P = r<br />

≈ ∫ S(<br />

Q,<br />

ω)<br />

cos( ωτ ) dω<br />

= I( Q,τ)<br />

∫∫ I(<br />

λ)<br />

S(<br />

Q,<br />

ω)<br />

dλdω<br />

Bd λ τ<br />

2<br />

m 3<br />

where the " spin echo time" τ = γBd<br />

λ<br />

(T.m)<br />

(nm) (ns)<br />

2<br />

2πh<br />

1 0.4 12<br />

• I(Q,t) is called the intermediate scattering function<br />

– Time Fourier transform of S(Q,ω) or the Q Fourier transform of G(r,t), the two<br />

particle correlation function<br />

• NSE probes the sample dynamics as a function of time rather than<br />

as a function of ω<br />

• The spin echo time, τ, is the “correlation time”<br />

1<br />

1<br />

0.6<br />

1.0<br />

40<br />

186


<strong>Neutron</strong> counts ( per 50 sec)<br />

<strong>Neutron</strong> Polarization is Measured using an<br />

Asymmetric Scan around the Echo Point<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 1 2 3 4 5 6 7<br />

Bd Current in coil 3<br />

2 (Arbitrary Units)<br />

Echo Point<br />

The echo amplitude decreases<br />

when (Bd) 1 differs from (Bd) 2<br />

because the incident neutron<br />

beam is not monochromatic.<br />

For elastic scattering:<br />

⎡γm<br />

⎤<br />

P ~ ∫ I(<br />

λ) cos⎢<br />

1 2 . d<br />

h<br />

⎥<br />

⎣<br />

⎦<br />

{ ( Bd)<br />

− ( Bd)<br />

} λ λ<br />

Because the echo point is the same for all neutron wavelengths,<br />

we can use a broad wavelength band and enhance the signal intensity


What does a NSE Spectrometer Look Like?<br />

IN11 at ILL was the First


Field-Integral Inhomogeneities cause τ <strong>to</strong> vary<br />

over the <strong>Neutron</strong> Beam: They can be Corrected<br />

• Solenoids (used as main precession fields) have fields that vary as r 2<br />

away from the axis of symmetry because of end effects (div B = 0)<br />

solenoid<br />

B<br />

• According <strong>to</strong> Ampere’s law, a current<br />

distribution that varies as r 2 can<br />

correct the field-integral inhomogeneities<br />

for parallel paths<br />

• Similar devices can be used<br />

<strong>to</strong> correct the integral along<br />

divergent paths<br />

Fresnel correction coil for IN15


Energy Transfer (meV)<br />

10000<br />

100<br />

1<br />

0.01<br />

10 -4<br />

10 -6<br />

<strong>Neutron</strong>s in Condens ed Matter Res earch<br />

<strong>Spallation</strong> SPSS - Chopper - Chopper Spectrometer<br />

ILL - w ithou t s pin -ec ho<br />

ILL - with s pin-ech o<br />

Elastic <strong>Scattering</strong><br />

[Larger Objects Resolved]<br />

Micelles Polymers<br />

Proteins in Solution<br />

Viruses<br />

Metallurgical<br />

Systems<br />

Colloids<br />

Aggregate<br />

Motion<br />

Polymers<br />

and<br />

Biological<br />

Systems<br />

Coherent<br />

Modes in<br />

Glasses<br />

and Liquids<br />

Molecular<br />

Motions<br />

Membranes<br />

Proteins<br />

Critical<br />

<strong>Scattering</strong><br />

Diffusive<br />

Modes<br />

Spin<br />

Waves<br />

Electron-<br />

phonon<br />

Interactio ns<br />

Crystal and<br />

Magnetic<br />

Structures<br />

Crystal<br />

Fields<br />

Slower<br />

Motions<br />

Resolved<br />

Molecular<br />

Reorientation<br />

Tunneling<br />

Spectroscopy<br />

Surface<br />

Effects?<br />

Itinerant<br />

Magnets<br />

Hydrogen<br />

Modes<br />

Mo lecu lar<br />

Vibrations<br />

Lattice<br />

Vibrations<br />

and<br />

<strong>An</strong>harmonicity<br />

Amorphous<br />

Systems<br />

<strong>Neutron</strong><br />

Induced<br />

Excitations<br />

Momentum<br />

Distributions<br />

Accurate Liquid Structures<br />

Precision Crystallography<br />

<strong>An</strong>harmonicity<br />

0.001 0.01 0.1 1 10 100<br />

Q (Å -1 )<br />

<strong>Neutron</strong> Spin Echo has significantly extended the (Q,E) range <strong>to</strong> which<br />

neutron scattering can be applied


<strong>Neutron</strong> Spin Echo study of Deformations<br />

of Spherical Droplets*<br />

* Courtesy of B. Farago


The Principle of <strong>Neutron</strong> Resonant Spin Echo<br />

• Within a coil, the neutron is subjected <strong>to</strong> a<br />

steady, strong field, B0, and a weak rf field<br />

B1cos(ωt) with a frequency ω = ω0 = γ B0 – Typically, B0 ~ 100 G and B1 ~ 1 G<br />

• In a frame rotating with frequency ω 0, the neutron spin sees a constant field<br />

of magnitude B 1<br />

• The length of the coil region is chosen so that the neutron spin precesses<br />

around B1 thru an angle π.<br />

• The neutron precession phase is:<br />

φ<br />

exit<br />

neutron<br />

= φ<br />

= 2φ<br />

exit<br />

RF<br />

entry<br />

RF<br />

+ ( φ<br />

−φ<br />

entry<br />

RF<br />

−φ<br />

entry<br />

neutron<br />

entry<br />

neutron<br />

)<br />

+ ω d / v<br />

0<br />

S<br />

entry<br />

S<br />

B 0<br />

exit<br />

S<br />

B 1 (t)<br />

rotated π<br />

exit<br />

B 1<br />

entry<br />

B 1


<strong>Neutron</strong> Spin Phases NRSE spectrometer in an NRSE Spectrometer*<br />

n<br />

B= B=0<br />

ÌÐ ËÔÒ ÓÖÒØØÓÒ<br />

ÌÑ Ø È× ¬Ð Ö ÒÙØÖÓÒ ËÔÒ Ô× Ë<br />

Ø Ø<br />

A B C D<br />

B 0<br />

tA tA’ t tB<br />

Sample<br />

B=0<br />

+ + + +<br />

+ + + +<br />

d lAB d d lCD d<br />

Ø Ø<br />

<br />

Ú<br />

Ø Ø <br />

Ú<br />

Ø Ø<br />

Ð<br />

Ú<br />

<br />

Ø Ø <br />

Ú<br />

Ø Ø<br />

Ð<br />

Ú<br />

<br />

Ø Ð<br />

Ú<br />

<br />

Ø Ø Ð<br />

Ú<br />

<br />

Ø Ø<br />

<br />

Ú<br />

Ø <br />

Ú Ø Ð<br />

Ú<br />

<br />

Ø Ø<br />

Ð<br />

Ú<br />

<br />

Ø <br />

Ú Ø Ð<br />

Ú<br />

<br />

Ø Ø<br />

Ð<br />

Ú<br />

<br />

Ø Ð<br />

Ú<br />

Ð<br />

Ú<br />

<br />

B 0<br />

B0<br />

B=0<br />

B0<br />

tC tC’ t tD<br />

Echo occurs for elastic<br />

scattering when<br />

l AB + d = l CD + d<br />

* Courtesy of S. Longeville


H = 0<br />

Just as for traditional NSE, if the<br />

scattering is elastic, all neutron spins<br />

arrive at the analyzer with unchanged<br />

polarization, regardless of neutron<br />

velocity.<br />

If the neutron velocity changes, the<br />

neutron beam is depolarized


The Measured Polarization for NRSE is given by<br />

an Expression Similar <strong>to</strong> that for Classical NSE<br />

• Assume that v’ = v + δv with δv small and expand <strong>to</strong> lowest order, giving:<br />

P<br />

=<br />

where<br />

r<br />

I(<br />

λ)<br />

S(<br />

Q,<br />

ω)<br />

cos( ωτ<br />

∫∫ r<br />

∫∫<br />

the " spin<br />

I(<br />

λ)<br />

S(<br />

Q,<br />

ω)<br />

dλdω<br />

echo<br />

time"<br />

τ<br />

NRSE<br />

NRSE<br />

) dλdω<br />

= 2γB<br />

• Note the additional fac<strong>to</strong>r of 2 in the echo time compared with classical NSE<br />

(a fac<strong>to</strong>r of 4 is obtained with “bootstrap” rf coils)<br />

• The echo is obtained by varying the distance, l, between rf coils<br />

• In NRSE, we measure neutron velocity using fixed “clocks” (the rf coils)<br />

whereas in NSE each neutron “carries its own clock” whose (Larmor) rate is<br />

set by the local magnetic field<br />

0<br />

2<br />

m<br />

( l + d)<br />

2πh<br />

2<br />

λ<br />

3


<strong>An</strong> NRSE Triple Axis Spectrometer at HMI:<br />

Note the Tilted Coils


Measuring Line Shapes for Inelastic <strong>Scattering</strong><br />

• Spin echo polarization is the FT of<br />

scattering within the spectrometer<br />

transmission function<br />

• <strong>An</strong> echo is obtained when<br />

d<br />

dk<br />

1<br />

⎡(<br />

Bd)<br />

⎢<br />

⎣ k1<br />

1<br />

2<br />

• Normally the lines of constant spinecho<br />

phase have no gradient in Q,ω<br />

space because the phase depends<br />

only on<br />

k<br />

( Bd)<br />

−<br />

k<br />

• The phase lines can be tilted by using<br />

“tilted” precession magnets<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

0<br />

⇒<br />

N<br />

k<br />

1<br />

2<br />

1<br />

=<br />

N<br />

k<br />

2<br />

2<br />

2<br />

ω<br />

ω<br />

Q<br />

Q


By “Tilting” the Precession-Field Region, Spin Precession Can Be<br />

Used <strong>to</strong> Code a Specific Component of the <strong>Neutron</strong> Wavevec<strong>to</strong>r<br />

If a neutron passes through a<br />

rectangular field region at an<br />

angle, its <strong>to</strong>tal precession phase<br />

will depend only on k⊥ .<br />

ω<br />

L<br />

= γB<br />

φ = ω t<br />

L<br />

= γB<br />

d<br />

=<br />

vsin<br />

χ<br />

KBd<br />

k<br />

with K = 0.291 (Gauss.cm.Å) -1<br />

⊥<br />

d<br />

B<br />

χ<br />

k //<br />

S<strong>to</strong>p precession here<br />

Start precession here<br />

k<br />

k<br />


“Phonon Focusing”<br />

• For a single incident neutron wavevec<strong>to</strong>r, k I , neutrons are<br />

scattered <strong>to</strong> k F by a phonon of frequency ω o and <strong>to</strong> k f by<br />

neighboring phonons lying on the “scattering surface”.<br />

– The <strong>to</strong>pology of the scattering surface is related <strong>to</strong> that of the phonon dispersion<br />

surface and it is locally flat<br />

• Provided the edges of the NSE precession field region are<br />

parallel <strong>to</strong> the scattering surface, all neutrons with scattering<br />

wavevec<strong>to</strong>rs on the scattering surface will have equal spin-echo<br />

phase<br />

k I<br />

Q 0<br />

k F k f<br />

k f⊥<br />

scattering surface<br />

Precession field region


“Tilted Fields”<br />

• Phonon focusing using tilted fields is available at ILL and in<br />

Japan (JAERI)….however,<br />

• The technique is more easily implemented using the NRSE<br />

method and is installed as an option on a 3-axis spectrometers<br />

at HMI and at Munich<br />

• Tilted fields can also be used can also be used for elastic<br />

scattering and may be used in future <strong>to</strong>:<br />

– Increase the length scale accessible <strong>to</strong> SANS<br />

– Separate diffuse scattering from specular scattering in reflec<strong>to</strong>metry<br />

– Measure in-plane order in thin films<br />

– Improve Q resolution for diffraction


<strong>An</strong> NRSE Triple Axis Spectrometer at HMI:<br />

Note the Tilted Coils


Nanoscience & Biology Need Structural<br />

Probes for 1-100 nm<br />

10 nm holes in PMMA<br />

Actin<br />

1µ<br />

Si colloidal crystal<br />

CdSe nanoparticles<br />

2µ<br />

10µ<br />

Structures over many length<br />

scales in self-assembly of<br />

ZnS and cloned viruses<br />

Peptide-amphiphile nanofiber<br />

Thin copolymer films


“Tilted” Fields for Diffraction: SANS<br />

d<br />

B<br />

χ<br />

χ<br />

B<br />

θ<br />

π/2 π<br />

π/2<br />

• <strong>An</strong>y unscattered neutron (θ=0) experiences the same precession angles<br />

(φ 1 and φ 2) before and after scattering, whatever its angle of incidence<br />

• Precession angles are different for scattered neutrons<br />

KBd<br />

φ1<br />

= and<br />

k sin χ<br />

P<br />

=<br />

∫<br />

φ 1<br />

φ<br />

2<br />

k sin( χ + θ )<br />

⎡ KBd cos χ ⎤<br />

dQ.<br />

S(<br />

Q).<br />

cos⎢<br />

Q<br />

2 2 ⎥<br />

⎢⎣<br />

k sin χ ⎥⎦<br />

=<br />

KBd<br />

Spin Echo Length,<br />

φ 2<br />

⎡ KBd cos χ ⎤<br />

⇒ cos( φ1<br />

−φ<br />

2)<br />

≈ cos⎢<br />

θ<br />

2 ⎥<br />

⎢⎣<br />

k sin χ ⎥⎦<br />

Polarization proportional <strong>to</strong><br />

Fourier Transform of S(Q)<br />

r =<br />

KBd cos χ /( k sin χ)<br />

2


How Large is the Spin Echo Length for SANS?<br />

Bd/sinχ<br />

(Gauss.cm)<br />

3,000<br />

5,000<br />

5,000<br />

5,000<br />

λ<br />

(<strong>An</strong>gstroms)<br />

4<br />

4<br />

6<br />

6<br />

χ<br />

(degrees)<br />

20<br />

20<br />

20<br />

10<br />

r<br />

(<strong>An</strong>gstroms)<br />

1,000<br />

1,500<br />

3,500<br />

7,500<br />

It is relatively straightforward <strong>to</strong> probe length scales of ~ 1 micron


Spin Echo SANS using Magnetic Films:<br />

200 nm Correlation Distance Measured


Close up of SESAME (Spin Echo <strong>Scattering</strong><br />

<strong>An</strong>gle Measurement) Apparatus


Conclusion:<br />

NSE Provides a Way <strong>to</strong> Separate Resolution from<br />

Monochromatization & Beam Divergence<br />

• The method currently provides the best energy resolution for<br />

inelastic neutron scattering (~ neV)<br />

– Both classical NSE and NRSE achieve similar energy resolution<br />

– NRSE is more easily adapted <strong>to</strong> “phonon focusing” I.e. measuring the energy<br />

line-widths of phonon excitations<br />

• The method is likely <strong>to</strong> be used in future <strong>to</strong> improve (Q)<br />

resolution for elastic scattering<br />

– Extend size range for SANS (SESANS)<br />

– May allow 100 – 1000 x gain in measurement speed for some SANS exps<br />

– Separate specular and diffuse scattering in reflec<strong>to</strong>metry<br />

– Measure in-plane ordering in thin films (SERGIS)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!