23.07.2013 Views

New Perspectives in Energy Storage Materials

New Perspectives in Energy Storage Materials

New Perspectives in Energy Storage Materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>New</strong> <strong>Perspectives</strong> <strong>in</strong><br />

<strong>Energy</strong> <strong>Storage</strong><br />

<strong>Materials</strong><br />

Confocal Micro-Raman Microscopy<br />

Jagjit Nanda<br />

<strong>Materials</strong> Science and Technology Division<br />

nandaj@ornl.gov


t<br />

10 3 s<br />

1 s<br />

10 -3 s 10 -6 s<br />

10 -9 s<br />

The Scale of Th<strong>in</strong>gs<br />

Primary<br />

Particles<br />

Secondary<br />

Particles<br />

Cell<br />

Electrode<br />

10 -9 m 10 -6 m 10 -3 m 1 m<br />

• Complex electrode assembly<br />

• Multiple transport regime<br />

• Spatio-temporal variation<br />

Courtesy : Sreekanth Pannala<br />

Battery Pack<br />

x


Work<strong>in</strong>g of a Li-ion full cell


Connect<strong>in</strong>g Fundamental Material Properties<br />

to Macroscopic Parameters<br />

• S<strong>in</strong>gle particle “State of Charge” (SOC).<br />

“Enabler for full capacity utilization”<br />

• Observation of “Lithium Gradient” <strong>in</strong> an <strong>in</strong>homogeneous<br />

medium.<br />

4 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

“ Transport <strong>in</strong> a complex electrode assembly”


5 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

Confocal Raman-AFM Setup<br />

Support from <strong>Energy</strong> <strong>Storage</strong>, OVT, EERE DOE<br />

Spatial Resolution ~ 300 nm<br />

Peizo driven mapp<strong>in</strong>g stage<br />

Multiple excitation wavelength<br />

Raman Imag<strong>in</strong>g plus topography


60 µm 5 µm 700 nm<br />

6 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

High <strong>Energy</strong> and Power Li-ion Electrodes<br />

Electrode Secondary particle Primary particle<br />

Edge<br />

25 µm<br />

LiNi 0.80Co 0.15Al 0.05O 2 (NCA)<br />

LiNi 0.33Co 0.33Mn 0.33O 2 (NCM)<br />

xLi 2MnO 3 (1-x)LiMO 2 ( Excess Lithia compounds)


Counts<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

Orig<strong>in</strong> of spectroscopic “SOC”<br />

475 cm -1<br />

E g<br />

550 cm -1<br />

300 400 500 600 700 800<br />

Raman shift / cm-1<br />

A 1g<br />

Charged NCA cathode (3.77V)<br />

a - NaFeO 2 structure<br />

oxygen<br />

metal<br />

• A1g – oxygen atoms vibrate <strong>in</strong> opposite directions parallel to c-axis<br />

• Eg – oxygen atoms vibrate alternately <strong>in</strong> opposite directions parallel to Li and<br />

transition metal planes.<br />

• SOC proportional to A 1<br />

A 1<br />

/ <br />

475 cm 550cm<br />

a<br />

c<br />

LiMO 2<br />

M = Ni, Co


Counts<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

Micro-Raman Technique<br />

Positive Electrode Negative Electrode<br />

Raman spectrum of charged<br />

Raman Spectrum of Graphite<br />

(3.77 V) NCA Cathode<br />

Anode<br />

~470 cm-1 ~550 cm-1<br />

300 400 500 600 700 800<br />

Raman shift / cm-1<br />

A 470/A 550 ~ to SOC<br />

Counts<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

D1 -Band<br />

G -Band<br />

1200 1300 1400 1500 1600 1700<br />

Raman shift / cm-1<br />

A D1/A G ~ Disorder<br />

Spectra can be obta<strong>in</strong>ed as a function of position on the surface and<br />

edge of the electrode material.<br />

8


9 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

Carbon Coverage : Cont<strong>in</strong>ued<br />

Intensity<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

X = -5, Y=1<br />

X = 5, Y = 1<br />

Fresh Sample (uncycled)<br />

0<br />

200 400 600 800 1000 1200 1400 1600 1800<br />

Raman Shift (cm -1 )<br />

Similar carbon coverage different particle “SOC”<br />

Uncharged<br />

NCA


Intensity Map<br />

Carbon<br />

J. Nanda et al. 2010<br />

10 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

Raman Mapp<strong>in</strong>g : What it can do ?<br />

Optical Micrograph Intensity Map (NCA)<br />

Micron<br />

State of Charge : (A 475 / A 550) × (I 475 / I 550)<br />

SOC Map<br />

NCA


Counts<br />

Counts<br />

Mapp<strong>in</strong>g Lithium Deficiency Regions : Li 1-xNi 0.80Co 0.20Al 0.05<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

Spectroscopic Signature<br />

300 400 500 600 700 800<br />

11 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

A 470/A 550 ~ 0.4<br />

Raman shift / cm-1<br />

A 470/A 550 ~ 1.2<br />

300 400 500 600 700 800<br />

Raman shift / cm-1<br />

Edge<br />

Mapp<strong>in</strong>g Pattern Surface<br />

Microns


Y (µm)<br />

X (µm)<br />

12 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

Severely degraded Sample<br />

SOC Map<br />

Current Current collector collector side side<br />

Count<br />

180<br />

160<br />

140<br />

120<br />

100<br />

J. Nanda et al. Under reveiw 2010<br />

Extreme charged regions<br />

80<br />

60<br />

40<br />

20<br />

degraded band cathode cross-section<br />

0<br />

0 1 2 3 4 5<br />

area x <strong>in</strong>tensity


Counts<br />

Counts<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

A D1/A G ~ 0.1<br />

1200 1300 1400 1500 1600 1700<br />

13 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

Spatial anode maps of A D1/A G -greater<br />

value, more graphite disorder (damage)<br />

Raman shift / cm-1<br />

1200 1300 1400 1500 1600 1700<br />

Raman shift / cm-1<br />

A D1/A G ~ 1.8


In situ Li-transport <strong>in</strong> Li-ion full cell<br />

Al<br />

e -<br />

Li +<br />

Separator<br />

Cathode Anode<br />

14 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

30µm<br />

Cu<br />

current<br />

collector


Counts<br />

Counts<br />

Counts<br />

Counts<br />

Counts<br />

2500<br />

2000<br />

1500<br />

2500<br />

2000<br />

1500<br />

3000<br />

2500<br />

2000<br />

1500<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

S<strong>in</strong>gle Particle Charge-discharge of an <strong>in</strong> situ edge cell<br />

300 400 500 600 700 800<br />

1 – 0.98<br />

Raman shift / cm-1<br />

300 400 500 600 700 800<br />

2 – Raman shift 1.00<br />

/ cm-1<br />

300 400 500 600 700 800<br />

3 – Raman 1.12<br />

shift / cm-1<br />

300 400 500 600 700 800<br />

4 – Raman 1.05<br />

shift / cm-1<br />

300 400 500 600 700 800<br />

Raman shift / cm-1<br />

300 5 – 1.12<br />

15 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong><br />

5<br />

7<br />

Counts<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

3<br />

1 2<br />

Cell voltage 3.7 V<br />

Avg. Area 474/Area 551 = 1.02 ± 0.10<br />

400 500 600 700 800<br />

Raman shift / cm-1 7 – 1.11 300<br />

Counts<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

10<br />

9<br />

6<br />

8<br />

4<br />

8 – 1.12 300<br />

400 500 600 700 800<br />

Raman shift / cm-1<br />

Pos. → 472.1 ± 0.76 cm -1<br />

Width → 56.4 ± 2.2 cm -1<br />

Counts<br />

Counts<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

electrode<br />

300 400 500 600 700 800<br />

10 – 0.99<br />

Raman shift / cm-1<br />

9 – 0.98<br />

400 500 600 700 800<br />

Raman shift / cm-1<br />

x<br />

Pos. → 547.2 ± 0.91 cm -1<br />

Width → 56.9 ± 2.0 cm -1


Intensity<br />

4000<br />

3000<br />

2000<br />

1000<br />

3.93 V<br />

3.77 V<br />

3.6 V<br />

3.52 V<br />

3.47 V<br />

3.1 V<br />

472 (60.8)<br />

Observ<strong>in</strong>g “s<strong>in</strong>gle particle” state of charge<br />

Cathode Particle<br />

475.5 (55.42)<br />

475.9 (51.3)<br />

476.3 (51)<br />

Cathode Particle 2<br />

Near Separator<br />

473.9 (52.9) 550.3 (56.1) 0.84<br />

200 300 400 500 600 700 800<br />

Raman Shift (cm -1 )<br />

547.5 (61.8)<br />

471.33 (54.42) 448.3.5 (61.6) 0.71<br />

550.5 (48.7)<br />

553.1 (50)<br />

553 (50)<br />

0.87<br />

0.94<br />

1.03<br />

1.43<br />

Separator<br />

Intensity<br />

20 µm<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

3.93 V<br />

3.73 V<br />

3.65 V<br />

3.52V<br />

3.34 V<br />

3.0 V<br />

Anode Particle<br />

Galvanostatic at 1C rate<br />

10 µm<br />

Anode Particle Near Separator<br />

1300 1400 1500 1600 1700<br />

Raman Shift (cm -1 )<br />

1581.0 cm -1<br />

1589.0 cm -1<br />

1589.77 cm -1<br />

Graphite<br />

Li xC 6<br />

~ LiC 6


Intensity<br />

4000<br />

3000 3.41 V<br />

2000<br />

3.68 V<br />

1000<br />

3.1 V<br />

3.1 V<br />

3.51 V<br />

3.84 V<br />

4.17 V<br />

4.00 V<br />

3.87 V<br />

474.8 (54.1)<br />

474.8 (51.0)<br />

Dynamical Potentiostatic Condition<br />

In-situ Cell<br />

Cat Spot 3<br />

May 21<br />

0<br />

300 400 500 600 700<br />

Raman Shift (cm -1 )<br />

549 (50.64)<br />

550.1 (53.8)<br />

-145 Ah<br />

-145 Ah<br />

-200 Ah<br />

-200 Ah<br />

-200 Ah<br />

+444 Ah<br />

1.01<br />

+200 Ah<br />

0.89<br />

SOC α<br />

A<br />

Intensity<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

J. Nanda et. al. Manuscript (2010)<br />

4.15V<br />

4.05V<br />

3.75 V<br />

3.5 V<br />

In-Situ Cell<br />

Cat Spot 3<br />

May 21<br />

0<br />

300 400 500 600 700<br />

A<br />

1<br />

/ 1<br />

475 cm 550cm<br />

Raman Shift (cm -1 )<br />

+ 373 A<br />

+ 310 A<br />

+ 386 A<br />

+ 200 A


Intensity<br />

Intensity<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

13000<br />

12000<br />

11000<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Fully Discharged<br />

1b: 700 - 639 A<br />

1c: 471 - 439 A<br />

1 d: 353 - 335 A<br />

Particle 1<br />

1e: PS @ 3.85V (599 - 462 A)<br />

1f: PS @ 3.95V (487 - 404 A)<br />

1g: PS @ 3.95V (228 - 222 A)<br />

1 h: PS @ 3.95V (142 - 137 A)<br />

1I: PS @ 4.05 V (107 - 102 A)<br />

1J PS @ 4.15 V (134 - 111 A)<br />

1 k PS @ 4.2 V( 55 - 54 A)<br />

Dynamical Potentiostatic Condition<br />

Data recorded dur<strong>in</strong>g PS @ 3.75 V<br />

1300 1400 1500 1600 1700<br />

Raman Shift (cm -1 )<br />

1589.45<br />

1589<br />

1586.8 (13.7)<br />

1582 (17)<br />

1589.5<br />

( 30 averages)<br />

J. Nanda et al. (unpublished)<br />

Hardwick et al. Solid State Ionics 177 (2006)


Intensity Intensity<br />

µm<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Si Si<br />

High Capacity Si-C Composite Anode<br />

D D 1 I<br />

Raman Shift (cm-1 Raman Shift (cm ) -1 )<br />

G<br />

G<br />

0<br />

400 600 800 1000 1200 1400 1600<br />

µm<br />

D D II 2<br />

Raman Raman Raman Intensity Intensity Intensity (arbitary (arbitary (arbitary units) units) units)<br />

20000<br />

16000<br />

12000<br />

1st 1 discharge cycle<br />

st 1 discharge cycle<br />

st discharge cycle<br />

0.85 V<br />

0.45 V<br />

0.35 V<br />

0.2 V<br />

0.08 V<br />

0.05 V<br />

1st 1 charge cycle<br />

st 1 charge cycle<br />

st charge cycle<br />

µm In-situ observation of lithiation of silicon-rich region <strong>in</strong> Si-C composite<br />

Ratio of Si area to G-Band area<br />

(a)<br />

Nanda et al. Electrochem. Comm. (2009)<br />

10 µm<br />

(b)<br />

10 µm<br />

475 500 525 550 575<br />

Wave Number (cm -1 475 500 525 550 575<br />

Wave Number (cm )<br />

-1 475 500 525 550 575<br />

Wave Number (cm )<br />

-1 )<br />

1V<br />

0.6V<br />

0.4 V<br />

500 550<br />

19


Conclusions<br />

• Relative measure of spatial SOC distribution of cathode<br />

particle aggregates.<br />

• Raman Intensity versus State of Charge : Sk<strong>in</strong> Depth<br />

Effect.<br />

• Micron level mapp<strong>in</strong>g of electrodes: Observation of Ligradient.<br />

• K<strong>in</strong>etics of lithiation-delithiation at the primarysecondary<br />

particle <strong>in</strong>terface<br />

20 Managed by UT-Battelle<br />

for the U.S. Department of <strong>Energy</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!