23.07.2013 Views

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Asymptotic</strong> <strong>behaviour</strong> <strong>of</strong> <strong>the</strong> <strong>Kazdan</strong>-<strong>Warner</strong><br />

<strong>solution</strong> <strong>in</strong> <strong>the</strong> <strong>annulus</strong> <strong>∗</strong><br />

Massimo Grossi †<br />

Abstract<br />

In this paper we study <strong>the</strong> asymptotic <strong>behaviour</strong> as p → ∞ <strong>of</strong> <strong>the</strong><br />

radial <strong>solution</strong> <strong>of</strong> <strong>the</strong> problem<br />

8<br />

>< −∆u = u<br />

>:<br />

p<br />

<strong>in</strong> Ω<br />

u > 0 <strong>in</strong> Ω<br />

u = 0 on ∂Ω,<br />

where Ω is an <strong>annulus</strong> <strong>of</strong> R N , N ≥ 2.<br />

1 Introduction and statement <strong>of</strong> <strong>the</strong> results<br />

Let us consider <strong>the</strong> follow<strong>in</strong>g problem<br />

⎧<br />

⎪⎨ −∆u = u<br />

⎪⎩<br />

p <strong>in</strong> Ω<br />

u > 0<br />

u = 0<br />

<strong>in</strong> Ω<br />

on ∂Ω,<br />

(1.1)<br />

where Ω is a smooth bounded doma<strong>in</strong> <strong>of</strong> R N , N ≥ 2. This problem was extensively<br />

studied <strong>in</strong> <strong>the</strong> last years ma<strong>in</strong>ly for <strong>the</strong> role <strong>of</strong> <strong>the</strong> geometry <strong>of</strong> <strong>the</strong><br />

doma<strong>in</strong> <strong>in</strong> <strong>the</strong> existence <strong>of</strong> <strong>the</strong> <strong>solution</strong>. Indeed, it is a well known fact that if<br />

1 < p < N+2<br />

N−2 for N ≥ 3, <strong>the</strong>re exists a <strong>solution</strong> to (1.1) <strong>in</strong> any doma<strong>in</strong> Ω ⊂ RN .<br />

On <strong>the</strong> o<strong>the</strong>r hand, if p ≥ N+2<br />

N−2<br />

, us<strong>in</strong>g <strong>the</strong> Pohozaev identity (1.1) does not have<br />

any <strong>solution</strong> <strong>in</strong> H 1 0(Ω) provided Ω is starshaped with respect to some po<strong>in</strong>t.<br />

However, if Ω is not starshaped, we can have <strong>solution</strong> for any p > 1, as stated<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g classical result,<br />

Theorem, (<strong>Kazdan</strong> and <strong>Warner</strong>, [KW]): Let Ω be an <strong>annulus</strong>. Then<br />

(1.1) admits a radial <strong>solution</strong> for any p > 1.<br />

The pro<strong>of</strong> <strong>of</strong> this result is simply based on <strong>the</strong> remark that <strong>the</strong> Sobolev<br />

space H 1 0,r = {u ∈ H 1 0(Ω), u = u(|x|)} is compactly embedded <strong>in</strong> L p (Ω) for<br />

every p > 1.<br />

<strong>∗</strong>Supported by M.I.U.R., project “Variational methods and nonl<strong>in</strong>ear differential equations”.<br />

† Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le A. Moro 2 - 00185<br />

Roma, e-mail grossi@mat.uniroma1.it.<br />

1


In ([NN]) Ni and Nussbaum proved <strong>the</strong> uniqueness <strong>of</strong> this <strong>solution</strong> <strong>in</strong> <strong>the</strong><br />

class <strong>of</strong> <strong>the</strong> radial function.<br />

In this paper we study <strong>the</strong> asymptotic <strong>behaviour</strong> <strong>of</strong> this <strong>solution</strong> as p → ∞.<br />

We hope that this analysis, which is <strong>in</strong>terest<strong>in</strong>g itself, give some useful ideas<br />

to deduce existence results to (1.1) for p large when Ω is a non-spherical doma<strong>in</strong><br />

(for example <strong>the</strong> case where Ω has one hole).<br />

One <strong>of</strong> <strong>the</strong> ma<strong>in</strong> result <strong>of</strong> <strong>the</strong> paper is that <strong>the</strong>re is no concentration phenomenon<br />

as p goes to <strong>in</strong>f<strong>in</strong>ity. This is <strong>in</strong> sharp contrast with similar semil<strong>in</strong>ear<br />

perturbed problems and also with problems <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> same nonl<strong>in</strong>earity <strong>in</strong><br />

R 2 (see ([AG]), ([EG]), ([RW1]), ([RW2]). On <strong>the</strong> o<strong>the</strong>r hand we have some<br />

similarities with a different problem studied <strong>in</strong> ([BM]).<br />

Our first result concerns <strong>the</strong> convergence <strong>of</strong> <strong>the</strong> <strong>solution</strong> up <strong>of</strong> (1.1). In <strong>the</strong><br />

rest <strong>of</strong> <strong>the</strong> paper Ω will denote <strong>the</strong> <strong>annulus</strong> Ω = {x ∈ R N : 0 < a < |x| < b}.<br />

Theorem 1.1. Let up <strong>the</strong> unique radial <strong>solution</strong> <strong>of</strong> (1.1). Then, as p → ∞,<br />

with<br />

ω(|x|) =<br />

2<br />

a 2−N − b 2−N<br />

up(|x|) → ω(|x|) <strong>in</strong> C 0 (Ω), (1.2)<br />

⎧<br />

⎪⎨ a2−N − |x| 2−N for a ≤ |x| ≤ r0<br />

⎪⎩<br />

|x| 2−N − b2−N for r0 ≤ |x| ≤ b<br />

and<br />

⎧<br />

⎪⎨ log |x| − log a for a ≤ |x| ≤ r0<br />

2<br />

ω(|x|) =<br />

log b − log a ⎪⎩<br />

log b − log |x| for r0 ≤ |x| ≤ b<br />

F<strong>in</strong>ally r0 is given by<br />

⎧<br />

1<br />

2−N 2−N 2−N<br />

⎪⎨<br />

a +b<br />

2 if N ≥ 3<br />

r0 =<br />

⎪⎩ √<br />

ab if N = 2<br />

for N ≥ 3 (1.3)<br />

for N = 2 (1.4)<br />

(1.5)<br />

Note that ω is not differentiable at r0 and ω(r0) = max ω(r)=1. Hence <strong>the</strong><br />

r∈[a,b]<br />

previous <strong>the</strong>orem provide <strong>the</strong> limit position <strong>of</strong> <strong>the</strong> set <strong>of</strong> maxima <strong>of</strong> up.<br />

A first estimate <strong>of</strong> this type can be found <strong>in</strong> <strong>the</strong> pioneer<strong>in</strong>g paper <strong>of</strong> Gidas,<br />

Ni and Nirenberg (see [GNN], Theorem 2 and example <strong>in</strong> page 223). Note that<br />

<strong>the</strong> value <strong>of</strong> r0 for N = 2 <strong>in</strong> Theorem 1.1 shows that <strong>the</strong> estimate <strong>in</strong> <strong>the</strong> example<br />

<strong>of</strong> page 223 <strong>of</strong> [GNN] is not sharp for <strong>the</strong> nonl<strong>in</strong>earity f(s) = sp .<br />

Ano<strong>the</strong>r result concern<strong>in</strong>g <strong>the</strong> location <strong>of</strong> <strong>the</strong> maxima if p = N+2<br />

found <strong>in</strong> [Pa].<br />

Now we denote by Ga,b(r, s) <strong>the</strong> Green’s function <strong>of</strong> <strong>the</strong> operator<br />

−u ′′ −<br />

N − 1<br />

u<br />

r<br />

′ , r ∈ (a, b),<br />

2<br />

N−2<br />

can be


(see Section 2 for some remarks on Ga,b(r, s)). Note that us<strong>in</strong>g <strong>the</strong> Green’s<br />

function we can write Theorem 1.1 <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way,<br />

Corollary 1.2. Let up <strong>the</strong> unique radial <strong>solution</strong> <strong>of</strong> (1.1). Then, as p → ∞,<br />

where τ is given by<br />

up(|x|) → τGa,b(|x|, r0) <strong>in</strong> C 0 (Ω). (1.6)<br />

⎧<br />

⎪⎨<br />

τ =<br />

⎪⎩<br />

4(N−2)<br />

N −1<br />

r0 (a2−N −b2−N )<br />

4<br />

r0(log b−log a)<br />

if N > 2<br />

if N = 2<br />

(1.7)<br />

From Theorem 1.1 we deduce <strong>the</strong> follow<strong>in</strong>g sharp Sobolev <strong>in</strong>equality for<br />

radial functions <strong>in</strong> <strong>the</strong> <strong>annulus</strong>,<br />

Theorem 1.3. Let Ω be <strong>the</strong> <strong>annulus</strong> Ω = {x ∈ R N : 0 < a < |x| < b}. Then,<br />

for any radial function u ∈ H 1 0(Ω) <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>equality holds,<br />

where<br />

<br />

|∇u|<br />

Ω<br />

2 ≥ Cp<br />

Cp →<br />

<br />

u<br />

Ω<br />

p<br />

2<br />

p<br />

<br />

ωN 4(N−2)<br />

a2−N −b2−N if N ≥ 3<br />

8π<br />

log b−log a if N = 2<br />

, for any p > 1 (1.8)<br />

as p → ∞. Here ωN denotes <strong>the</strong> area <strong>of</strong> <strong>the</strong> unit sphere <strong>in</strong> R N .<br />

(1.9)<br />

Observe that Theorem 1.1 implies that ||up||∞ → 1. Next results gives a<br />

more precise estimate.<br />

Theorem 1.4. The follow<strong>in</strong>g estimate holds<br />

1<br />

where γ = lim 2 r→r0<br />

ω′ (r) 2 =<br />

||up||∞ = 1 +<br />

log p<br />

p<br />

⎧ <br />

⎪⎨<br />

log (N − 2) 22 2<br />

⎪⎩<br />

<br />

log<br />

2<br />

ab(log b−log a) 2<br />

<br />

γ 1<br />

+ + o<br />

p p<br />

2−N (a2−N +b 2−N N −1<br />

2<br />

) N −2<br />

(a2−N −b2−N ) 2<br />

<br />

<br />

(1.10)<br />

if N ≥ 3<br />

if N = 2<br />

We po<strong>in</strong>t out that Theorems 1.3 and 1.4 are proved us<strong>in</strong>g <strong>the</strong> ”global” convergence<br />

result <strong>in</strong> Theorem 1.1. Moreover <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong>se results just use<br />

elementary arguments.<br />

The limit function ω(r) <strong>in</strong> Theorem 1.1 is not differentiable at r = r0.<br />

Actually, it is <strong>in</strong>terest<strong>in</strong>g to study more carefully <strong>the</strong> <strong>behaviour</strong> <strong>of</strong> <strong>the</strong> <strong>solution</strong><br />

up(r) near <strong>the</strong> maximum r0. This leads to analyze <strong>the</strong> ”local” convergence <strong>of</strong><br />

<strong>the</strong> <strong>solution</strong> up(r) near its maximum. In order to do this we use a blow-up<br />

3


procedure <strong>in</strong>troduced <strong>in</strong> [AS] and also used <strong>in</strong> [AG]. Then, up to a suitable<br />

scal<strong>in</strong>g, it is possible to associate to (1.1) <strong>the</strong> follow<strong>in</strong>g limit problem def<strong>in</strong>ed <strong>in</strong><br />

all R.<br />

− u ′′ = e u <strong>in</strong> R (1.11)<br />

A straightforward computation shows that this equation admits <strong>the</strong> follow<strong>in</strong>g<br />

two-parameter <strong>solution</strong><br />

Uα,y(r) = log 4α2 e √ 2(αr+y)<br />

(1 + e √ 2(αr+y) ) 2<br />

for any α > 0 and y ∈ R. Note <strong>the</strong> similarities with equations <strong>in</strong>volv<strong>in</strong>g critical<br />

Sobolev exponent or two-dimensional problems <strong>in</strong>volv<strong>in</strong>g exponential nonl<strong>in</strong>earities.<br />

This analysis will be carried out <strong>in</strong> Section 3.<br />

In Section 4 we use <strong>the</strong> previous ”local” result to prove <strong>the</strong> nondegeneracy<br />

<strong>of</strong> <strong>the</strong> <strong>solution</strong> u for p large. We recall that <strong>the</strong> <strong>solution</strong> <strong>of</strong> problem (1.1) is<br />

nondegenerate if <strong>the</strong> follow<strong>in</strong>g problem<br />

<br />

−∆v = pup−1v <strong>in</strong> Ω<br />

(1.12)<br />

v = 0 on ∂Ω,<br />

admits only <strong>the</strong> trivial <strong>solution</strong> v ≡ 0. We have <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem,<br />

Theorem 1.5. The <strong>solution</strong> u <strong>of</strong> problem (1.1) is nondegenerate provided p is<br />

large enough.<br />

The paper is organized as follows: <strong>in</strong> Section 2 we give <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorems<br />

1.1, 1.3, 1.4 and Corollary 1.2. In Section 3 we discuss <strong>the</strong> blow-up argument<br />

near <strong>the</strong> maximum <strong>of</strong> up. In Section 4 we prove Theorem 1.5.<br />

2 The ”global” convergence result<br />

Let us denote by H1 0,r(Ω) = {u ∈ H1 0(Ω) : u = u(|x|)}. S<strong>in</strong>ce <strong>the</strong> radial <strong>solution</strong><br />

up to (1.1) is unique ([NN]), we can assume that it m<strong>in</strong>imizes <strong>the</strong> follow<strong>in</strong>g ratio<br />

<br />

<br />

We have <strong>the</strong> follow<strong>in</strong>g<br />

<strong>in</strong>f<br />

u∈H 1 0,r (Ω)<br />

<br />

Ω<br />

Ω |∇u|2<br />

up+1 2<br />

p+1<br />

= Proposition 2.1. For p > 1 let us denote by<br />

<br />

Ω |∇u|2<br />

<br />

Then we have that<br />

Ip = <strong>in</strong>f<br />

u∈H 1 0,r (Ω)<br />

Ip ≤<br />

Ω<br />

Ω<br />

|∇up| 2<br />

Ω up+1 p<br />

up+1 2<br />

p+1<br />

<br />

ωN 4(N−2)<br />

a2−N −b2−N if N ≥ 3<br />

1 8π log b−log a if N = 2<br />

where ωN is <strong>the</strong> measure <strong>of</strong> <strong>the</strong> unit sphere <strong>in</strong> R N .<br />

4<br />

2<br />

p+1<br />

. (2.1)<br />

(2.2)


Pro<strong>of</strong>. Let us consider <strong>the</strong> functions<br />

2<br />

ω(x) =<br />

a2−N − b2−N ⎧<br />

⎪⎨<br />

⎪⎩<br />

a 2−N − |x| 2−N for a ≤ |x| ≤ r0<br />

|x| 2−N − b 2−N for r0 ≤ |x| ≤ b<br />

and<br />

⎧<br />

⎪⎨ log |x| − log a for a ≤ |x| ≤ r0<br />

2<br />

ω(x) =<br />

log b − log a ⎪⎩<br />

log b − log |x| for r0 ≤ |x| ≤ b<br />

where r0 is given by<br />

⎧<br />

1<br />

2−N 2−N 2−N<br />

⎪⎨<br />

a +b<br />

2 if N ≥ 3<br />

r0 =<br />

⎪⎩ √<br />

ab if N = 2<br />

for N ≥ 3 (2.3)<br />

for N = 2 (2.4)<br />

(2.5)<br />

Note that ω ∈ H1 0,r(Ω) and ||ω||∞ = 1. Recall<strong>in</strong>g that lim<br />

p→∞ ||ω|| Lp (Ω) =<br />

||ω|| L∞ (Ω) = 1 we get, for N ≥ 3,<br />

<br />

<br />

b<br />

<strong>in</strong>f<br />

u∈H 1 0,r (Ω)<br />

<br />

Ω<br />

4(N − 2)<br />

Ω |∇u|2<br />

ωN<br />

a2−N − b2−N up+1 2<br />

p+1<br />

Ω ≤<br />

|∇ω|2<br />

<br />

Ω<br />

ωp+1 2<br />

p+1<br />

→ ωN<br />

a<br />

ω ′ (r) 2 r N−1 dr =<br />

(2.6)<br />

as p → ∞. This gives <strong>the</strong> claim <strong>in</strong> <strong>the</strong> case N ≥ 3. The case N = 2 is handled<br />

<strong>in</strong> <strong>the</strong> same way. ⊓⊔<br />

Corollary 2.2. Let up <strong>the</strong> function which m<strong>in</strong>imizes Ip. Then we have<br />

<br />

|∇up| 2 <br />

≤ C and ≤ C. (2.7)<br />

Ω<br />

where C is a positive constant <strong>in</strong>dependent <strong>of</strong> p.<br />

Ω<br />

u p+1<br />

p<br />

In <strong>the</strong> next lemma we recall a well known estimate, which implies that <strong>the</strong><br />

maximum <strong>of</strong> <strong>the</strong> <strong>solution</strong> up is far away from zero.<br />

Lemma 2.3. We have that<br />

where λ1 denotes <strong>the</strong> first eigenvalue <strong>of</strong> −∆ <strong>in</strong> H 1 0 (Ω).<br />

||up|| p−1<br />

∞ ≥ λ1 (2.8)<br />

Pro<strong>of</strong>. Let us denote by e1 <strong>the</strong> first positive eigenfunction <strong>of</strong> −∆ <strong>in</strong> H1 0(Ω) and<br />

multiply (1.1) by e1. Integrat<strong>in</strong>g we have<br />

<br />

<br />

(2.9)<br />

λ1<br />

upe1 =<br />

Ω<br />

Ω<br />

u p pe1 ≤ ||up|| p−1<br />

∞<br />

upe1<br />

Ω<br />

and <strong>the</strong> claim follows. ⊓⊔<br />

5


Proposition 2.4. Let us denote by up a m<strong>in</strong>imizer to Ip. Then we have that<br />

where C is a constant <strong>in</strong>dependent <strong>of</strong> p.<br />

Pro<strong>of</strong>. Sett<strong>in</strong>g r = |x| we have that up(r) satisfies<br />

From (2.11) we derive<br />

− u ′′<br />

p<br />

|∇up| ≤ C (2.10)<br />

N − 1<br />

− u<br />

r<br />

′ p = upp <strong>in</strong> (a, b) (2.11)<br />

|u ′ p(r)| ≤ 1<br />

r N−1<br />

b<br />

u p p(t)t N−1 dt (2.12)<br />

By Corollary 2.2 <strong>the</strong> claim follows ⊓⊔<br />

Corollary 2.5. Let up <strong>the</strong> function which m<strong>in</strong>imizes Ip. Then we have<br />

a<br />

up → ū ≡ 0 <strong>in</strong> C 0 (Ω). (2.13)<br />

Pro<strong>of</strong>. From <strong>the</strong> previous proposition and Ascoli-Arzela’s Theorem we get that<br />

up → ū <strong>in</strong> C 0 (Ω). By Lemma 2.3 we derive that ū ≡ 0 . ⊓⊔<br />

Let us denote by rp ∈ (a, b) <strong>the</strong> po<strong>in</strong>t where up(rp) = ||up||∞ and by r0 =<br />

lim<br />

p→∞ rp. Note that, by Proposition 2.4, Lemma 2.3 and <strong>the</strong> boundary condition<br />

we deduce that r0 ∈ (a, b). Moreover, it is not difficult to see that u ′ (r) < 0<br />

for r ∈ [a, rp) and u ′ (r) > 0 for r ∈ (rp]. Next lemma gives an important<br />

<strong>in</strong>formation on <strong>the</strong> m<strong>in</strong>imizer up.<br />

Lemma 2.6. For any r = r0 <strong>the</strong>re exists p0 such that for any p > p0 we have<br />

up(r) < 1 (2.14)<br />

Pro<strong>of</strong>. Let us consider <strong>the</strong> case r < r0 (<strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> case r > r0 is <strong>the</strong> same).<br />

By contradiction let us suppose that <strong>the</strong>re exist ¯r < r0 and a sequence pn → ∞<br />

such that<br />

upn(¯r) ≥ 1<br />

S<strong>in</strong>ce any m<strong>in</strong>imizer upn is strictly <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> [a, rp] we also derive that<br />

Then, us<strong>in</strong>g <strong>the</strong> equation (2.11) we get<br />

upn(r) > 1 for any r ∈ (¯r, r0). (2.15)<br />

u ′ 1<br />

pn (¯r) =<br />

¯r N−1<br />

rp<br />

u<br />

¯r<br />

pn<br />

pn (t)tN−1dt → ∞ as n → ∞ (2.16)<br />

by (2.15). This gives a contradiction with Proposition 2.4. ⊓⊔<br />

6


Lemma 2.7. Let ū <strong>the</strong> function def<strong>in</strong>ed <strong>in</strong> (2.13). Then we have<br />

and<br />

ū(r) < 1 for any r = r0 (2.17)<br />

ū(r0) = 1 (2.18)<br />

Pro<strong>of</strong>. By Lemma 2.6 we have that ū(r) ≤ 1. Let us suppose that <strong>the</strong>re exists<br />

r ′ = r0 such that ω(r ′ ) = 1. S<strong>in</strong>ce u ′ p(r) is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> [a, rp] we have that<br />

ū(r) ≡ 1 for any r ∈ (r ′ , r0). By (2.10) we can pass to <strong>the</strong> limit <strong>in</strong> (2.11) and<br />

<strong>the</strong>n ū satisfies<br />

− ū ′′ −<br />

N − 1<br />

ū<br />

r<br />

′ = 1 <strong>in</strong> (r ′ , r0) (2.19)<br />

This leads to a contradiction with ū(r) ≡ 1 <strong>in</strong> r ∈ (r ′ , r0). This proves (2.17).<br />

F<strong>in</strong>ally (2.18) follows by (2.8). ⊓⊔<br />

Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Theorem 1.1<br />

Let us consider only <strong>the</strong> case N ≥ 3 (<strong>the</strong> case N = 2 is analogous).<br />

By (2.10) and Lemma (2.6) we can pass to <strong>the</strong> limit <strong>in</strong> (2.11). Then <strong>the</strong><br />

limit ū satisfies ⎧ ⎪⎨<br />

−ū ′′ − N−1<br />

r ū′ = 0 <strong>in</strong> (a, r0)<br />

⎪⎩<br />

ū(a) = 0, ū(r0) = 1<br />

(2.20)<br />

and <strong>the</strong> same happens for r ∈ (r0, b). A straightforward computation shows<br />

that ū = ω. We f<strong>in</strong>ish <strong>the</strong> pro<strong>of</strong> comput<strong>in</strong>g <strong>the</strong> value <strong>of</strong> r0.<br />

By Proposition 2.4 we have that up converges strongly to ω <strong>in</strong> H1 0(a, b).<br />

Then<br />

<br />

2 <br />

Ω |∇up|<br />

Ipn = =<br />

<br />

Ω<br />

Ω up p<br />

2<br />

p<br />

|∇ω| 2 = (2 − N)ωN<br />

|∇up|<br />

Ω<br />

2<br />

2 1− p<br />

≥<br />

<br />

1<br />

b2−N +<br />

− |r0| 2−N<br />

1<br />

|r0| 2−N − a2−N <br />

(2.21)<br />

If r 2−N<br />

0 = a2−N +b 2−N<br />

1<br />

2 we deduce that b2−N −|r0| 2−N 1 + |r0| 2−N −a2−N > 4(2−N)<br />

b2−N −a2−N and this is a contradiction with Proposition 2.1. Hence r 2−N<br />

0 = a2−N +b 2−N<br />

2 ant<br />

this f<strong>in</strong>ishes <strong>the</strong> pro<strong>of</strong> ⊓⊔<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 1.3<br />

It follows by Theorem 1.1 observ<strong>in</strong>g that<br />

<br />

Ω |∇u|2<br />

<br />

2 |∇up| Ω<br />

<br />

≥ Cp = Ω<br />

up+1 2<br />

p+1<br />

7<br />

Ω up+1 p<br />

2<br />

p+1<br />

<br />

→<br />

Ω<br />

|∇ω| 2 . (2.22)


Pro<strong>of</strong> <strong>of</strong> Theorem 1.4 Let us multiply <strong>the</strong> equation (2.11) by u ′ p and <strong>in</strong>tegrate<br />

from a to rp. We get<br />

pu ′ rp<br />

p − (N − 1)<br />

a<br />

rp<br />

rp<br />

− u<br />

a<br />

′′<br />

1<br />

2 u′ p (a)2 − (N − 1)<br />

a<br />

(u ′ p )2<br />

r<br />

(u ′ p )2<br />

r<br />

1 p+1<br />

= up(rp)<br />

p + 1<br />

p+1 ||up|| ∞<br />

=<br />

p + 1<br />

(2.23)<br />

Us<strong>in</strong>g Proposition 2.4 and Theorem 2.2 we can pass to <strong>the</strong> limit <strong>in</strong> (2.23) and<br />

we get, for N ≥ 3,<br />

||up||<br />

lim<br />

p→∞<br />

p+1<br />

∞ 1<br />

=<br />

p + 1 2 ω′ (a) 2 r0<br />

(ω<br />

− (N − 1)<br />

′ (r)) 2<br />

r<br />

= (N − 2) 2 2 N<br />

2−N<br />

From (2.24) we easily deduce that<br />

<br />

2−N 2−N a + b N −1<br />

2 N −2<br />

(a 2−N − b 2−N ) 2<br />

(p + 1)log ||up||∞ − log(p + 1) =<br />

⎛<br />

log<br />

⎝(N − 2) 2 2 N<br />

2−N<br />

log ||up||∞ =<br />

log(p + 1)<br />

p + 1<br />

<br />

2−N 2−N a + b N −1<br />

2 N −2<br />

a<br />

(a 2−N − b 2−N ) 2<br />

⎞<br />

= lim<br />

r→r −<br />

1<br />

2 0<br />

ω′ (r) 2<br />

⎠ + o(1) ⇒<br />

(2.24)<br />

<br />

log γ 1<br />

+ + o , (2.25)<br />

p + 1 p<br />

and <strong>the</strong>n <strong>the</strong> claim <strong>of</strong> Theorem 1.4 follows. ⊓⊔<br />

We now recall some elementary fact about <strong>the</strong> Green’s function Ga,b(r, s) <strong>of</strong><br />

<strong>the</strong> operator<br />

−u ′′ N − 1<br />

− u<br />

r<br />

′ , r ∈ (a, b),<br />

.<br />

By def<strong>in</strong>ition, we have that for any smooth function f, we have that<br />

b<br />

v(r) = Ga,b(r, s)f(s)ds<br />

is <strong>the</strong> <strong>solution</strong> <strong>of</strong> <strong>the</strong> problem<br />

<br />

−u ′′ − N−1<br />

r u′ = f <strong>in</strong> (a, b)<br />

u(a) = u(b) = 0<br />

a<br />

It is not difficult to write down explicitly <strong>the</strong> function Ga,b(r, s). Indeed for<br />

N ≥ 3 we have<br />

s<br />

Ga,b(r, s) =<br />

N−1<br />

(N − 2)(a2−N − b2−N ⎧<br />

⎪⎨<br />

2−N 2−N b − s<br />

) ⎪⎩<br />

r2−N − a2−N for a < r ≤ s<br />

<br />

2−N 2−N s − a b2−N − r2−N for s < r < b<br />

8


and for N = 2,<br />

Ga,b(r, s) =<br />

s<br />

log b − log a<br />

⎧<br />

⎪⎨ (log r − log a)(log b − log s) for a < r ≤ s<br />

⎪⎩<br />

(log s − log a)(log b − log r) for s < r < b<br />

(2.26)<br />

Pro<strong>of</strong> <strong>of</strong> Corollary 1.2 It is enough to compare directly <strong>the</strong> function ω <strong>in</strong><br />

Theorem 1.1 with <strong>the</strong> function Ga,b(r, r0). ⊓⊔<br />

3 The ”local” convergence result<br />

Let us beg<strong>in</strong> this section with <strong>the</strong> follow<strong>in</strong>g classification result,<br />

Proposition 3.1. All <strong>the</strong> <strong>solution</strong> <strong>of</strong> <strong>the</strong> problem<br />

are given by<br />

with α and y real constants.<br />

− z ′′ = e z <strong>in</strong> R (3.1)<br />

Uα,y(r) = log 4α2 e √ 2(αr+y)<br />

(1 + e √ 2(αr+y) ) 2<br />

Pro<strong>of</strong>. It is a straightforward computation. ⊓⊔<br />

Let us consider <strong>the</strong> function<br />

with up(rp) = ||up||∞ and pε 2 p<br />

p<br />

ũp(r) = (up(εpr + rp) − ||up||∞) (3.2)<br />

||up||∞<br />

p−1 ||up|| ∞ = 1.<br />

We have that ũp solves <strong>the</strong> problem<br />

⎧<br />

⎪⎨ −ũ ′′<br />

p − N−1<br />

εpr+rp εpũ ′ <br />

p = 1 + ũp<br />

p p<br />

⎪⎩<br />

ũp(0) = ũ ′ p<br />

(0) = 0,<br />

<strong>in</strong><br />

a−rp<br />

In <strong>the</strong> next proposition we study <strong>the</strong> limit <strong>of</strong> <strong>the</strong> function ũp.<br />

Proposition 3.2. We have that<br />

√<br />

2r<br />

4e<br />

where U(r) = log<br />

(1+e √ 2r ) 2<br />

εp<br />

<br />

b−rp<br />

, εp<br />

(3.3)<br />

ũp → U uniformly <strong>in</strong> C 1 loc(R) (3.4)<br />

is <strong>the</strong> only <strong>solution</strong> <strong>of</strong> <strong>the</strong> problem.<br />

⎧<br />

⎪⎨ −z ′′ = ez <strong>in</strong> R<br />

⎪⎩<br />

z(0) = z ′ (0) = 0<br />

9<br />

(3.5)


Pro<strong>of</strong>. We observe that ũ ′ p verifies, for some positive constant C ∈ R,<br />

|ũ ′ pεp <br />

p | = ′<br />

u p (εpr + rp)<br />

||up||∞<br />

<br />

=<br />

p<br />

||up|| p−1<br />

∞<br />

1<br />

2 u ′ p (εpr + rp) ≤ C (3.6)<br />

by Theorem 1.4 and Proposition 2.4. Then, aga<strong>in</strong> by Ascoli-Arzelá Theorem,<br />

we have that ũp converges uniformly on compact sets <strong>of</strong> R. Us<strong>in</strong>g <strong>the</strong> equation<br />

(2.4) we also derive<br />

|ũ ′′<br />

p| ≤ C. (3.7)<br />

<strong>in</strong> any compact <strong>in</strong>terval <strong>of</strong> R.<br />

Hence ũp → U uniformly <strong>in</strong> C 1 loc<br />

deduce that U solves (3.5).<br />

4 The nondegeneracy result<br />

(R) and, pass<strong>in</strong>g to <strong>the</strong> limit <strong>in</strong> (3.3), we<br />

In this section we prove that <strong>the</strong> radial <strong>solution</strong> up <strong>of</strong> problem (1.1) is nondegenerate<br />

<strong>in</strong> <strong>the</strong> space <strong>of</strong> <strong>the</strong> radial function. We argue by contradiction and let<br />

us suppose that problem<br />

<br />

−∆v = pup−1v <strong>in</strong> Ω<br />

(4.1)<br />

v = 0 on ∂Ω,<br />

admits a nontrivial <strong>solution</strong>. S<strong>in</strong>ce up m<strong>in</strong>imizes <strong>the</strong> ratio (2.1) <strong>the</strong>n <strong>the</strong> <strong>solution</strong><br />

vp changes sign exactly twice.<br />

We start with two lemmas. The first one will be stated <strong>in</strong> a more general<br />

sett<strong>in</strong>g.<br />

Lemma 4.1. Let us consider a radial <strong>solution</strong> u <strong>of</strong> <strong>the</strong> problem<br />

⎧<br />

⎪⎨ −∆u = f(u) <strong>in</strong> Ω = {x ∈ R<br />

⎪⎩<br />

N : 0 < a < |x| < b}<br />

u > 0<br />

u = 0<br />

<strong>in</strong> Ω<br />

on ∂Ω,<br />

(4.2)<br />

with f ≥ 0. Let us denote by rmax <strong>the</strong> po<strong>in</strong>t where <strong>the</strong> maximum <strong>of</strong> u is achieved.<br />

Then if v = v(|x|) solves<br />

⎧<br />

⎪⎨ −∆v = f<br />

⎪⎩<br />

′ (u)v <strong>in</strong> Ω<br />

u > 0<br />

u = 0<br />

<strong>in</strong> Ω<br />

on ∂Ω,<br />

(4.3)<br />

we have that v ′ (rmax) = 0.<br />

Pro<strong>of</strong>. Let us denote by [a ′ , b ′ ] <strong>the</strong> maximal <strong>in</strong>terval where v does not change<br />

sign which conta<strong>in</strong>s rmax.<br />

By contradiction let us suppose that v ′ (rmax) = 0 and consider ¯r ∈ [a ′ , b ′ ]<br />

such that v ′ (¯r) = 0. Without loss <strong>of</strong> generality we can assume that rmax < ¯r.<br />

10


Let us write down <strong>the</strong> equation satisfied by w(r) = u ′ (r) and v = v(r). We<br />

have<br />

and<br />

− w ′′ −<br />

N − 1<br />

r w′ N − 1<br />

+<br />

r2 w = f ′ (u)w (4.4)<br />

− v ′′ −<br />

N − 1<br />

v<br />

r<br />

′ = f ′ (u)v (4.5)<br />

Multiply<strong>in</strong>g (4.4) by r N−1 v and (4.5) by r N−1 w and <strong>in</strong>tegrat<strong>in</strong>g on [rmax, ¯r] we<br />

get<br />

¯r<br />

(N − 1)<br />

rmax<br />

r N−3 u ′ (r)v(r)dr = u ′ (rmax)v ′ (rmax)r N−1<br />

max − u ′ (¯r)v ′ (¯r)¯r N−1 = 0<br />

This gives a contradiction s<strong>in</strong>ce v does not change sign <strong>in</strong> [rmax, ¯r] ⊂ [a ′ , b ′ ] and<br />

u ′ (r) < 0 for r > rmax. ⊓⊔<br />

Next lemma characterizes <strong>the</strong> set <strong>of</strong> <strong>the</strong> <strong>solution</strong>s <strong>of</strong> <strong>the</strong> l<strong>in</strong>earized equation<br />

<strong>of</strong> (3.1) at U.<br />

Lemma 4.2. All <strong>the</strong> <strong>solution</strong>s <strong>of</strong> <strong>the</strong> equation<br />

are given by<br />

for some constant α, β ∈ R.<br />

− v ′′ =<br />

4e √ 2r<br />

(1 + e √ 2r ) 2<br />

v(r) = α 1 − e√ 2r<br />

1 + e √ <br />

√2r1 − e<br />

+ β<br />

2r √ 2r<br />

1 + e √ <br />

+ 2<br />

2r<br />

Pro<strong>of</strong>. S<strong>in</strong>ce <strong>the</strong> functions v1(r) = 1−e<br />

√<br />

2r<br />

1+e √ 2r and v2(r) =<br />

v <strong>in</strong> R (4.6)<br />

(4.7)<br />

√ √2r 2r<br />

1−e<br />

1+e √ <br />

+ 2 verify<br />

2r<br />

<strong>the</strong> equation (4.3) <strong>the</strong> claim follows by classical ODE results. ⊓⊔<br />

<br />

a−rp b−rp<br />

Proposition 4.3. Let us consider, for r ∈ , , <strong>the</strong> function<br />

εp εp<br />

Then, we have that<br />

˜vp(r) → z(r) = α 1 − e√ 2r<br />

+ β<br />

for some constant α, β ∈ R.<br />

˜vp(r) = vp(εpr + rp). (4.8)<br />

1 + e √ 2r<br />

√2r 1 − e √ 2r<br />

Pro<strong>of</strong>. Let us write down <strong>the</strong> equation satisfied by ˜vp,<br />

˜v ′ p<br />

1 + e √ 2r<br />

+ 2<br />

˜v ′′<br />

p − (N − 1)εp = pε<br />

εpr + rp<br />

2 pup(εpr + rp) p−1 ˜vp<br />

11<br />

<br />

(4.9)<br />

(4.10)


Note that, by Theorem 1.4 and Proposition 3.2 we get<br />

up(εpr + rp) p−1 = e (p−1)(log up(εpr+rp)−||up||∞+||up||∞) = (4.11)<br />

log p γ 1<br />

(p−1)(log up(εpr+rp)−||up||∞+1+ p + p +o(<br />

e p))<br />

<br />

=<br />

s<strong>in</strong>ce up(εpr + rp) − ||up||∞ = ũp(r)<br />

<br />

1<br />

+ o<br />

p p<br />

p γ p<br />

(p−1)(ũp(r)+log p + p<br />

+o(log<br />

p )) =<br />

e<br />

e ũp(r) pe γ (1 + o(1)), (4.12)<br />

with ũp and γ as <strong>in</strong> Theorem 1.4 and Proposition 3.2 respectively. Us<strong>in</strong>g now<br />

<strong>the</strong> def<strong>in</strong>ition <strong>of</strong> εp and Theorem 1.4 we derive that<br />

pε 2 pup(εpr + rp) p−1 → e v(r) 4e<br />

=<br />

√ 2r<br />

(1 + e √ 2r ) 2<br />

(4.13)<br />

because ||up||p ∞<br />

p → eγ aga<strong>in</strong> by Theorem 1.4.<br />

S<strong>in</strong>ce vp is bounded, by Ascoli-Arzelá Theorem, we get that vp → v <strong>in</strong><br />

(R) and by (4.10), (4.11), we deduce that v satisfies<br />

C 1 loc<br />

− v ′′ =<br />

4e √ 2r<br />

(1 + e √ 2r ) 2<br />

v <strong>in</strong> R. (4.14)<br />

By Lemma 4.2 <strong>the</strong> claim follows. ⊓⊔<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 1.5 By Lemma 4.1 we can suppose that <strong>the</strong> po<strong>in</strong>t where<br />

v achieves its maximum co<strong>in</strong>cides with rp (o<strong>the</strong>rwise we multiply (4.1) by −1).<br />

Let us suppose that <strong>the</strong>re exists a sequence pn → ∞ and a <strong>solution</strong> vpn ≡<br />

vn ≡ 0 <strong>of</strong> <strong>the</strong> problem<br />

⎧<br />

⎪⎨ −v<br />

⎪⎩<br />

′′ N−1<br />

n − r v′ pn−1<br />

n = pnu vn <strong>in</strong> Ω<br />

pn<br />

vn(rpn) = 1<br />

(4.15)<br />

vn = 0 on ∂Ω,<br />

Let us set upn ≡ un, ε 2 pn =<br />

1<br />

pn||un|| pn−1<br />

∞<br />

and ||un||∞ = un(rn). F<strong>in</strong>ally let us set<br />

˜vn(r) = vn(εpnr + rn).<br />

By Proposition 4.3 we have that <strong>the</strong>re exist real constant α and β such that<br />

˜vn(r) → v(r) = α 1 − e√ <br />

2r √2r1 − e<br />

+ β<br />

√ <br />

2r<br />

+ 2<br />

Step 1: β = 0 <strong>in</strong> (4.16).<br />

By (4.16) we get that<br />

and<br />

1 + e √ 2r<br />

lim<br />

r→±∞ ˜vn(r) =<br />

1 + e √ 2r<br />

<strong>in</strong> C 1 loc (R) (4.16)<br />

lim<br />

r→0 ˜vn(r) = 2β (4.17)<br />

⎧<br />

⎪⎨ +∞ if β < 0<br />

⎪⎩<br />

−∞ if β > 0<br />

12<br />

(4.18)


From (4.17) and (4.18) we derive that <strong>the</strong>re exist R1 < 0 < R2 such that<br />

˜vn(R1) = ˜vn(R2) = 0. Then, com<strong>in</strong>g back to <strong>the</strong> function vn we get that<br />

vn(εnR1 + rpn) = vn(εnR2 + rpn) = 0. But we would get <strong>the</strong> existence <strong>of</strong> three<br />

nodal region to <strong>the</strong> function vn and this is impossible.<br />

Step 2: A contradiction arises.<br />

By <strong>the</strong> previous steps we get that (4.16) becomes<br />

˜vn(r) → α 1 − e√ 2r<br />

1 + e √ 2r<br />

<strong>in</strong> C 1 loc (R) (4.19)<br />

From (4.19) we get that vn(0) → 0. On <strong>the</strong> o<strong>the</strong>r hand, s<strong>in</strong>ce vn(rn) = 1 a<br />

contradiction arises. Then vn ≡ 0 for n large enough. ⊓⊔<br />

References<br />

[AG] Adimurthi and M. Grossi, <strong>Asymptotic</strong> estimates for a two-dimensional<br />

problem with polynomial nonl<strong>in</strong>earity, Proc. Amer. Math. Soc., 132,<br />

(2004), 1013-1019.<br />

[AS] Adimurthi and M. Struwe, Global compactness properties <strong>of</strong> semil<strong>in</strong>ear<br />

elliptic equations with critical exponential growth, J. Funct. Anal., 175<br />

(2000), 125-167.<br />

[BM] L. Boccardo and F. Murat, Increase <strong>of</strong> power leads to bilateral<br />

problems, Composite media and homogenization <strong>the</strong>ory, Dal Maso and<br />

Dell’Antonio editors, (1995), World Scientific.<br />

[EG] K. El Mehdi and M. Grossi, <strong>Asymptotic</strong> estimates and qualitative<br />

properties <strong>of</strong> an elliptic problem <strong>in</strong> dimension two, Adv. Nonl<strong>in</strong>ear Stud.,<br />

4, (2004), 15-36.<br />

[GNN] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties<br />

via <strong>the</strong> maximum pr<strong>in</strong>ciple, Comm. Math. Phys. 68 (1979), 209-243.<br />

[KW] J.L. <strong>Kazdan</strong> and F.W. <strong>Warner</strong>, Remarks on some quasil<strong>in</strong>ear elliptic<br />

equations, Comm. Pure Appl. Math., 28, (1975), 567-597.<br />

[NN] W.M. Ni and R. Nussbaum, Uniqueness and nonuniqueness for positive<br />

radial <strong>solution</strong>s <strong>of</strong> ∆u + f(u, r) = 0,Comm. Pure Appl. Math., 38 (1985),<br />

67-108.<br />

[Pa] P. Padilla, Symmetry properties <strong>of</strong> positive <strong>solution</strong>s <strong>of</strong> elliptic equations<br />

on symmetric doma<strong>in</strong>s, Appl. Anal., 64 (1997), 153-169.<br />

[P] S. Pohozaev, Eigenfunctions <strong>of</strong> <strong>the</strong> equation ∆u + λf(u) = 0, Soviet.<br />

Math. Dokl. 6 (1965), 1408-1411.<br />

[RW1] X. Ren and J. Wei, On a two-dimensional elliptic problem with large<br />

exponent <strong>in</strong> nonl<strong>in</strong>earity, Trans. Amer. Math. Soc., 343, (1994), 749-763.<br />

[RW2] X. Ren and J. Wei, S<strong>in</strong>gle-po<strong>in</strong>t condensation and least-energy <strong>solution</strong>s,<br />

Proc. Amer. Math. Soc., 124, (1996), 111-120.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!