24.07.2013 Views

Water Management Scenarios and Clams - Jan Thompson, U.S.G.S.

Water Management Scenarios and Clams - Jan Thompson, U.S.G.S.

Water Management Scenarios and Clams - Jan Thompson, U.S.G.S.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chlorophyll a (μg/L)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Bivalves: The Scourge of the Estuary?<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

00<br />

<strong>Jan</strong> <strong>Thompson</strong><br />

US Geological Survey<br />

Menlo Park, California<br />

Selenium<br />

Using Conceptual <strong>and</strong> Numerical<br />

Models to Inform Our <strong>Water</strong><br />

<strong>Management</strong> Options<br />

http://www.dfg.ca.gov/marine/status/green_sturgeon.pdf


My charge<br />

Any good models on the shelf? No<br />

How can we use conceptual models like those<br />

developed in DRERIP? Strengths? Weaknesses?<br />

How do conceptual models differ from numerical<br />

models being developed in CASCADE? Strengths?<br />

Weaknesses?<br />

What’s the future for bivalve models?<br />

Status:<br />

Invaded 1986 <strong>and</strong> limited laboratory studies<br />

DRERIP conceptual model<br />

STELLA population model – not dynamically linked<br />

Invaded 1940 <strong>and</strong> more laboratory studies<br />

DRERIP conceptual model<br />

STELLA population model – not dynamically linked


Bivalve models are connected to many submodels<br />

but must be connected to hydrodynamic models<br />

at a minimum to<br />

Distribute gametes <strong>and</strong> young<br />

Maintain/change water quality<br />

Deliver food to the sedentary animals


Conceptual models such as DRERIP<br />

models are critical for:<br />

Designing numerical models – particularly<br />

valuable in making connections between bivalves<br />

<strong>and</strong> other factors (physical transport & mixing,<br />

phytoplankton etc)<br />

Highlighting data needs <strong>and</strong> prioritizing<br />

research needs <strong>and</strong> dollars<br />

Examining processes which may not be modeled<br />

in the near term


DRERIP: We have developed Corbul <strong>and</strong> Corbicula Life<br />

Cycle Models, the first step in building conceptual models<br />

Reproductive<br />

Adult<br />

(5mm long)<br />

Recruit<br />

(135 µm long)<br />

17-19 days<br />

Corbula<br />

Pelagic<br />

Veliger<br />

Larvae*<br />

Spawning &<br />

Fertilization<br />

Pelagic<br />

Trochophore<br />

Larvae*<br />

*From Nicolini, MH <strong>and</strong> DL Penry. 2000. Spawning, fertilization, <strong>and</strong> larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California. Pacific Science:<br />

54(4):377-388 NO PERMISSION FOR PUB.<br />

24 hours<br />

Gametogenesis<br />

24 hours


DRERIP sub-models have been connected to each Life<br />

Cycle Model <strong>and</strong> coded for habitat <strong>and</strong> critical processes<br />

physical processes dominate<br />

Adult<br />

Transport<br />

Model<br />

Mortality<br />

Model<br />

Reproductive<br />

Adult<br />

(5mm long)<br />

Growth<br />

Model<br />

Recruit<br />

(135 µm long)<br />

Larval<br />

Recruit<br />

Model<br />

benthic habitat<br />

17-19 days<br />

pelagic habitat<br />

Pelagic<br />

Veliger<br />

Larvae*<br />

Mortality<br />

Model<br />

Gametogenesis<br />

physical processes critical<br />

Spawning &<br />

Fertilization<br />

Pelagic<br />

Trochophore<br />

Larvae*<br />

Larval<br />

Transport<br />

Model<br />

Reproduction<br />

Model<br />

*From Nicolini, MH <strong>and</strong> DL Penry. 2000. Spawning, fertilization, <strong>and</strong> larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California. Pacific Science:<br />

54(4):377-388 NO PERMISSION FOR PUB.<br />

24 hours<br />

24 hours


Each DRERIP sub-model includes triggers or forcing<br />

factors <strong>and</strong> stressors<br />

Food Quantity<br />

Food Quality<br />

<strong>Water</strong> Quality<br />

Toxics<br />

Adult Health<br />

<strong>Water</strong> Quality<br />

Adult Health<br />

<strong>Water</strong> Quality<br />

Gametogenesis<br />

Internal<br />

Fertilization<br />

Release Brood<br />

el.erdc.usace.army<br />

Gametogenesis<br />

Broadcast<br />

Spawning<br />

External<br />

Fertilization<br />

Pelagic<br />

Trochophore<br />

Larvae<br />

Food Quantity<br />

Food Quality<br />

<strong>Water</strong> Quality<br />

Toxics<br />

Adult Health<br />

Stress/ no food<br />

<strong>Water</strong> Quality<br />

<strong>Water</strong> Quality<br />

Transport


DRERIP models help us build numerical models AND tell<br />

us what we know, how well we know it, <strong>and</strong> what critical<br />

data are lacking<br />

Importance<br />

High<br />

Medium<br />

Low<br />

Underst<strong>and</strong>ing<br />

High<br />

Medium<br />

Low<br />

Predictability<br />

High<br />

Medium<br />

Low<br />

Food Quantity<br />

Food Quality<br />

<strong>Water</strong> Quality<br />

Toxics<br />

Adult Health<br />

<strong>Water</strong> Quality<br />

Adult Health<br />

<strong>Water</strong> Quality<br />

Gametogenesis<br />

Internal<br />

Fertilization<br />

Release Brood<br />

el.erdc.usace.army


A similar exercise for Corbula shows different data gaps<br />

<strong>and</strong> needs<br />

Importance<br />

High<br />

Medium<br />

Low<br />

Underst<strong>and</strong>ing<br />

High<br />

Medium<br />

Low<br />

Predictability<br />

High<br />

Medium<br />

Low<br />

Gametogenesis<br />

Broadcast<br />

Spawning<br />

External<br />

Fertilization<br />

Pelagic<br />

Trochophore<br />

Larvae<br />

Food Quantity<br />

Food Quality<br />

<strong>Water</strong> Quality<br />

Toxics<br />

Adult Health<br />

Stress/ no food<br />

<strong>Water</strong> Quality<br />

<strong>Water</strong> Quality<br />

Transport


Salinity<br />

Food<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Year Class 1 Gametogenesis<br />

underst<strong>and</strong>ing of controls on a species distribution<br />

0<br />

Spawn<br />

Fertilization<br />

Days<br />

1 2 17-19 80+ Fall<br />

Spring Extended Life Cycle Models further our<br />

Pelagic Larva<br />

Pelagic Swimming Larva<br />

Settled Juvenile<br />

Some times &<br />

places >1/season<br />

Pelagic Infaunal<br />

Reproductively Mature Adult<br />

Year Class 2 Gametogenesis


Temperature<br />

Food<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Year Class 1 Oogenesis<br />

And allow us to contrast controls on different<br />

species<br />

Always<br />

Spring<br />

Spermatogenesis<br />

0<br />

Self -Fertilization<br />

Pediveliger<br />

Days<br />

Fall<br />

5 7 12 17 19<br />

90+<br />

Spermatogenesis<br />

Self -Fertilization<br />

Pediveliger<br />

Spermatogenesis<br />

Stop when ≈26°C<br />

or insufficient food<br />

Epibenthic/Pelagic Infaunal<br />

Juveniles Reproductively Mature<br />

Year Class 2 Oogenesis<br />

Spermatogenesis


DRERIP can help us discover critical processes<br />

before we are ready to model them. Eg. Eg.<br />

Why do<br />

the clams disappear in winter? Does it matter?<br />

Net Outflow (m 3 /s)<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

Grizzly Bay Corbula<br />

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06<br />

Samples courtesy of DWR (D7)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Corbula Biomass<br />

(g AFDW/m 2 )


Migratory ducks heavily prey upon<br />

shallow water Corbula Corbula <strong>and</strong> they are<br />

bio-accumulating bio accumulating Se.<br />

Mortality<br />

Benthic Predation<br />

Pelagic Larvae<br />

Predation<br />

Starvation<br />

Burial<br />

<strong>Water</strong> Quality Stress<br />

Natural Death - Age<br />

Fish<br />

Resident Birds<br />

Migratory Birds<br />

Invertebrates<br />

Corbula<br />

Mortality<br />

Model<br />

White Sturgeon<br />

Sacramento Splittail<br />

Ducks<br />

Opisthobranchs<br />

Dungeness Crab<br />

physical processes<br />

dominate<br />

physical processes<br />

critical<br />

biological variables


However DRERIP models can’t can t explain the inter-<br />

annual variability in biomass (<strong>and</strong> thus grazing)<br />

peaks<br />

Net Outflow (m 3 /s)<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

Grizzly Bay Corbula<br />

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06<br />

Samples courtesy of DWR (D7)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Corbula Biomass<br />

(g AFDW/m 2 )


DRERIP models also can’t can t tell us why Corbicula Corbicula<br />

juveniles occur throughout the Delta but only<br />

grow-up grow up in the central Delta.


To do that we need to look at growth<br />

models <strong>and</strong> it becomes obvious that we<br />

need more than a conceptual model.<br />

Tissue Growth<br />

Energy for<br />

Growth<br />

Carbon Available<br />

for Assimilation<br />

Growth<br />

(increase in<br />

Carbon)<br />

Shell Growth<br />

Energy for<br />

Reproduction<br />

Energy for<br />

Respiration<br />

Energy for<br />

Excretion<br />

Consumption<br />

Rate<br />

Physiological<br />

Stressors<br />

Food Quality<br />

Filtration Efficiency<br />

Filtration Rate<br />

<strong>Water</strong> Quality<br />

Food Quantity<br />

Suspended Sediment<br />

Population Size of<br />

Filter Feeders<br />

Current Speed<br />

Behavior<br />

Pumping Rate<br />

Zooplankton<br />

Phytoplankton<br />

Bacteria<br />

DOM<br />

Zooplankton<br />

Phytoplankton<br />

Bacteria<br />

DOM<br />

Corbula<br />

Growth<br />

Model<br />

<strong>Water</strong> Quality<br />

physical processes<br />

dominate<br />

physical processes<br />

critical<br />

biological variables<br />

Species<br />

Size<br />

Species<br />

Size<br />

Attached/Free?<br />

Size


In Summary, conceptual models such<br />

as DRERIP models do not<br />

Tell us the magnitude of the bivalves ecological<br />

functions (eg. consuming phytoplankton)<br />

Tell us the temporal <strong>and</strong> spatial variability of<br />

those ecological functions, the causes of which<br />

might be exploited by water management<br />

Tell us if the model is wrong – surprises are when<br />

we learn<br />

Allow us to dynamically link <strong>and</strong> manipulate<br />

variables


Numerical models within CASCADE<br />

We are using STELLA models until we know<br />

more – adapted to be spatially variable <strong>and</strong><br />

responsive to stressors<br />

Will tell us about processes <strong>and</strong> limits on<br />

populations – I will discuss some today<br />

Allow us to dynamically link <strong>and</strong> manipulate some<br />

variables<br />

We expect <strong>and</strong> look forward to surprises


We are simplifying STELLA models to operate with<br />

statistical relationships instead of using energetic<br />

principles.<br />

St<strong>and</strong>ard Stella<br />

Energetic Growth<br />

Model<br />

Statistical Stella<br />

Growth Model<br />

Adapted from Grant <strong>and</strong> Bacher 1998


Spatial resolution <strong>and</strong> physical variables known to<br />

dynamically interact with clam functions will be run<br />

sequentially to produce a “look up” table for other<br />

models.<br />

habitat<br />

1<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

20<br />

1 . . . . . 5<br />

phytoplankton<br />

biomass<br />

1 . . . . . 4<br />

temperature<br />

Output: Temporally <strong>and</strong> spatially<br />

varying growth rate, biomass,<br />

grazing rate for phytoplankton <strong>and</strong><br />

contaminant models


Step 1: Initial Conditions: Where are the two species in<br />

space? Corbula recruits settle downstream of X2<br />

(Corbicula juveniles settle upstream of X2!)<br />

X2 at 4.1 # Recruits/0.05m2<br />

physical processes dominate<br />

# Adults/0.05m 2<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

station is at X2 of 72; as<br />

long as X2 meets or exceeds<br />

that level we get recruits<br />

40 45 50 55 60 65 70 75 80 85 90 95 100<br />

Older year class shows wider<br />

spread which we expect<br />

because they are tolerant of<br />

lower salinities<br />

40 45 50 55 60 65 70 75 80 85 90 95 100


In order to establish some statistical bounds to our<br />

results, we will use an ensemble of salinity <strong>and</strong><br />

temperature distributions in time <strong>and</strong> space to establish<br />

a range of distributions for each scenario<br />

Δ<strong>Water</strong> Temp / ΔAir Temp<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

-122.3 -122.2 -122.1 -122 -121.9 -121.8<br />

Longitude<br />

-121.7 -121.6 -121.5 -121.4 -121.3<br />

Grantline Tracy<br />

SJ Antioch<br />

Middle Tracy<br />

SJ Prisoner<br />

Wickl<strong>and</strong> Pier<br />

Sac Martinez<br />

Stockton Burns<br />

Old Tracy<br />

SJ Navy Bridge<br />

Sac Mallard<br />

SJ Mossdale<br />

Sac Rio Vista<br />

Sac Hood<br />

Preliminary data from Wayne Wagner & Mark Stacey


physical processes critical<br />

biological variables<br />

Initial Conditions: Number of recruits is<br />

partially dependent on the biomass of adults<br />

present; there is a physical <strong>and</strong> biological basis<br />

for this relationship<br />

# Recruits/0.05m 2<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

Biomass Adults/0.05m 2


Net Outflow (m 3 /s)<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

We assign Corbula recruit abundance based on<br />

biomass of adults <strong>and</strong> antecedent outflow<br />

events – note the grouping of abundances<br />

around 100, 200 <strong>and</strong>


# Recruits ( ≤2.5 mm/0.05m 2 )<br />

# Recruits ( ≤2.5 mm/0.05m 2 )<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Apr<br />

<strong>Jan</strong>-98<br />

May<br />

Apr-98<br />

We observe Corbicula recruit abundance at<br />

≈20 recruits/0.05 m2 throughout the year at<br />

monitoring stations<br />

Franks Tract Near Old River<br />

Jun<br />

Jul-98<br />

Jul<br />

Oct-98<br />

Aug<br />

<strong>Jan</strong>-99<br />

Sep<br />

Apr-99<br />

Oct<br />

Jul-99<br />

Nov<br />

Oct-99<br />

Dec<br />

<strong>Jan</strong>-00<br />

<strong>Jan</strong><br />

Sacramento River Near Rio Vista<br />

No data<br />

Apr-00<br />

Feb<br />

Jul-00<br />

Mar<br />

Oct-00<br />

We are determining if transport<br />

of larvae from non-local sites,<br />

where temperature regimes may<br />

be staggered, accounts for the<br />

near continuous pattern of<br />

recruitment observed in areas like<br />

the central delta where many<br />

sources of water are mixed.<br />

If so changing temperatures<br />

throughout the tributaries <strong>and</strong><br />

Delta could alter this population<br />

distribution<br />

physical processes critical


Corbicula’s present <strong>and</strong> potential biomass<br />

distribution is likely based on food limitation so a<br />

growth relationship is critical to our model<br />

Feb-Dec 1981<br />

Foe & Knight 1985<br />

Corbicula growth is food limited at<br />

20 mg/L chlorophyll a at 15°C <strong>and</strong> 47<br />

mg/L at 20-24°C. Growth was limited<br />

in the San Joaquin River except for two<br />

months in 1981 so this relationship is<br />

probably as good as is available for this<br />

system<br />

Chlorophyll a<br />

(mg/L)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

San Joaquin River at Antioch Ship Channel<br />

<strong>Jan</strong> Feb Mar Apr Ma<br />

y<br />

Jun Jul Aug Sep Oct Nov Dec<br />

physical processes critical


Shell Length<br />

Growth Rate<br />

(mm/d)<br />

We believe that Corbula is also food limited in<br />

this system but we do not have laboratory data<br />

similar to that for Corbicula to verify our beliefs.<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

y = 0.0121e 0.6072x<br />

R 2 = 0.9791<br />

Recruits in Grizzly Bay<br />

0 0.5 1 1.5 2 2.5 3<br />

Average Chlorophyll a (mg/L)<br />

Our preliminary analyses of field data confirm food<br />

limitation in bivalves in the shallow water.


Summary<br />

Our skill with both bivalve models is limited by<br />

data<br />

Data gaps <strong>and</strong> priorities are well summarized by<br />

conceptual models (DRERIP)<br />

Developing relationships for use in the numerical<br />

models is ongoing <strong>and</strong> is helping us define important<br />

processes <strong>and</strong> thresholds<br />

Given the best data <strong>and</strong> models, ecologists are<br />

still struggling with multi-generation, spatially<br />

explicit population models of benthic animals. We<br />

also expect to have problems so we are taking it<br />

slow, linking sub-models one step at a time


Net Outflow (m 3 /s)<br />

Net Outflow (m 3 /s)<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

800+<br />

87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06<br />

87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

# Recruits (/0.05m 2 )<br />

Adult Corbula Biomass<br />

(g AFDW/m 2 )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!