26.07.2013 Views

Katrin FAESSLER

Katrin FAESSLER

Katrin FAESSLER

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A stretch map on the Heisenberg group<br />

<strong>Katrin</strong> Fässler<br />

joint work with<br />

Zoltán Balogh and Ioannis Platis<br />

HCAA 2012<br />

March 5–9, 2012<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 1 / 23


Radial stretch maps<br />

On the complex plane<br />

fk(z) = |z| k−1 z, (0 < k < 1).<br />

a prototype for quasiconformal mappings<br />

extremal for various problems.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 2 / 23


Radial stretch maps<br />

On the complex plane<br />

fk(z) = |z| k−1 z, (0 < k < 1).<br />

a prototype for quasiconformal mappings<br />

extremal for various problems.<br />

Question<br />

Radial stretch map on the sub-Riemannian Heisenberg group?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 2 / 23


The setting: Heisenberg group<br />

Definition<br />

The Heisenberg group H 1 can be modeled on C × R such that the group<br />

law reads<br />

p ∗ p ′ = (z + z ′ , t + t ′ + 2 Im(zz ′ )),<br />

for p = (z, t), p ′ = (z ′ , t ′ ) ∈ H 1 with z, z ′ ∈ C, t, t ′ ∈ R.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 3 / 23


The setting: Heisenberg group<br />

Definition<br />

The Heisenberg group H 1 can be modeled on C × R such that the group<br />

law reads<br />

p ∗ p ′ = (z + z ′ , t + t ′ + 2 Im(zz ′ )),<br />

for p = (z, t), p ′ = (z ′ , t ′ ) ∈ H 1 with z, z ′ ∈ C, t, t ′ ∈ R.<br />

H 1 can be endowed with a left invariant metric<br />

where pH = (|z| 4 + t 2 ) 1<br />

4 .<br />

dH(p, q) := q −1 ∗ pH, p, q ∈ H 1 ,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 3 / 23


The setting: Heisenberg group<br />

Definition<br />

The Heisenberg group H 1 can be modeled on C × R such that the group<br />

law reads<br />

p ∗ p ′ = (z + z ′ , t + t ′ + 2 Im(zz ′ )),<br />

for p = (z, t), p ′ = (z ′ , t ′ ) ∈ H 1 with z, z ′ ∈ C, t, t ′ ∈ R.<br />

H 1 can be endowed with a left invariant metric<br />

where pH = (|z| 4 + t 2 ) 1<br />

4 .<br />

For fixed s > 0, one has<br />

where δs(z, t) = (sz, s 2 t).<br />

dH(p, q) := q −1 ∗ pH, p, q ∈ H 1 ,<br />

dH(δs(p), δs(q)) = s dH(p, q), p, q ∈ H 1 ,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 3 / 23


Objects of study: quasiconformal maps on (H 1 , dH)<br />

Definition (metric definition)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is called<br />

quasiconformal (QC) if there is 1 ≤ H < ∞ such that<br />

H(p, f ) := lim sup<br />

r→0+<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

supdH(p,q)=r dH(f (p), f (q))<br />

< H, for all p ∈ Ω.<br />

infdH(p,q)=r dH(f (p), f (q))<br />

HCAA 2012 4 / 23


Objects of study: quasiconformal maps on (H 1 , dH)<br />

Definition (metric definition)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is called<br />

quasiconformal (QC) if there is 1 ≤ H < ∞ such that<br />

H(p, f ) := lim sup<br />

r→0+<br />

supdH(p,q)=r dH(f (p), f (q))<br />

< H, for all p ∈ Ω.<br />

infdH(p,q)=r dH(f (p), f (q))<br />

Motivated by Mostow’s work on rigidity of locally symmetric spaces.<br />

Rich theory developed by Korányi, Pansu and Reimann.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 4 / 23


Horizontal structure on the Heisenberg group<br />

A contact structure on H 1 is given by<br />

τ = −izdz + izdz + dt.<br />

The horizontal bundle HH 1 is the subbundle of the tangent bundle T H 1<br />

with fibers<br />

HpH 1 = kerτp.<br />

A complex basis for the complexified space H C p H 1 is given by<br />

Z = ∂<br />

∂z<br />

∂ ∂<br />

+ iz , Z =<br />

∂t ∂z<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

− iz ∂<br />

∂t .<br />

HCAA 2012 5 / 23


Horizontal structure on the Heisenberg group<br />

A contact structure on H 1 is given by<br />

τ = −izdz + izdz + dt.<br />

The horizontal bundle HH 1 is the subbundle of the tangent bundle T H 1<br />

with fibers<br />

HpH 1 = kerτp.<br />

A complex basis for the complexified space H C p H 1 is given by<br />

Z = ∂<br />

∂z<br />

∂ ∂<br />

+ iz , Z =<br />

∂t ∂z<br />

− iz ∂<br />

∂t .<br />

Objects which behave well with respect to this structure:<br />

Horizontal curves: γ : [a, b] → H 1 with ˙γ(s) ∈ H γ(s)H 1 a.e.<br />

Contact transformations: f : H 1 ⊇ Ω → Ω ′ ⊆ H 1 , with f ∗ τ = λτ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 5 / 23


Contact property of QC maps<br />

Contact condition (f∗,pHpH 1 ⊆ H f (p)H 1 ) for a map f = (fI , f3) reads<br />

f I ZfI − fI Zf I = −iZf3.<br />

Quasiconformal maps on H 1 are contact.<br />

First proved by Korányi and Reimann for differentiable QC maps. It holds<br />

for arbitrary QC maps in a weak sense.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 6 / 23


Contact property of QC maps<br />

Contact condition (f∗,pHpH 1 ⊆ H f (p)H 1 ) for a map f = (fI , f3) reads<br />

f I ZfI − fI Zf I = −iZf3.<br />

Quasiconformal maps on H 1 are contact.<br />

First proved by Korányi and Reimann for differentiable QC maps. It holds<br />

for arbitrary QC maps in a weak sense.<br />

Contact property of QC maps on H 1 . . .<br />

extra information on the form of such maps,<br />

obstruction for the construction of such maps.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 6 / 23


Definition of a Heisenberg stretch<br />

First try:<br />

gk(p) := δ k−1<br />

p (p)<br />

H<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 7 / 23


Definition of a Heisenberg stretch<br />

First try:<br />

gk(p)H = p k H ,<br />

gk(p) := δ k−1<br />

p (p)<br />

H<br />

BUT gk is not contact, hence not QC.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 7 / 23


Definition of a Heisenberg stretch<br />

First try:<br />

gk(p)H = p k H ,<br />

gk(p) := δ k−1<br />

p (p)<br />

H<br />

BUT gk is not contact, hence not QC.<br />

More general<br />

does not work either.<br />

hk(p) := δ ϕk(p)(p)<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 7 / 23


Definition of a Heisenberg stretch II<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 8 / 23


Definition of a Heisenberg stretch II<br />

The planar stretch fk(z) = |z| k−1 z is<br />

given in logarithmic coordinates by<br />

(ln |z|, arg(z)) ↦→ (k ln |z|, arg(z)).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 8 / 23


Definition of a Heisenberg stretch II<br />

The planar stretch fk(z) = |z| k−1 z is<br />

given in logarithmic coordinates by<br />

(ln |z|, arg(z)) ↦→ (k ln |z|, arg(z)).<br />

Second try:<br />

Use “logarithmic coordinates” on the Heisenberg group!<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 8 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

Particular horizontal curves:<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

Particular horizontal curves:<br />

◮ s ↦→ (ξ(s), ψ(s), η(s)) = (ξ, s, η);<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Picture<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

Particular horizontal curves:<br />

◮ s ↦→ (ξ(s), ψ(s), η(s)) = (ξ, s, η);<br />

◮ s ↦→ (ξ(s), ψ(s), η(s)) = (s, ψ, η −<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Picture<br />

tan ψ<br />

3 s) (“radials”). Picture<br />

HCAA 2012 9 / 23


Figure: “Radials” connecting two Korányi spheres, each curve belongs to the<br />

Legendrian foliation of a Heisenberg cone associated to the parameter ψ.


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

To define a stretch map fk, 0 < k < 1, set<br />

Ξ(ξ, ψ, η) = kξ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

To define a stretch map fk, 0 < k < 1, set<br />

Ξ(ξ, ψ, η) = kξ.<br />

Then the contact condition yields<br />

H(ξ, ψ, η) = H(ξ, η), Ψ(ξ, ψ, η) = tan −1<br />

<br />

Hη(ξ, η) tan ψ − 3Hξ(ξ, η)<br />

.<br />

k<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

To define a stretch map fk, 0 < k < 1, set<br />

Ξ(ξ, ψ, η) = kξ.<br />

Then the contact condition yields<br />

H(ξ, ψ, η) = H(ξ, η), Ψ(ξ, ψ, η) = tan −1<br />

<br />

Hη(ξ, η) tan ψ − 3Hξ(ξ, η)<br />

.<br />

k<br />

The stretch map is obtained by setting<br />

H(ξ, η) = η.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 12 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

Properties:<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

fk is quasiconformal with fk(p)H = p k H ,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 12 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

Properties:<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

fk is quasiconformal with fk(p)H = p k H ,<br />

fk preserves C × {0}, moreover fk(z, 0) = (z|z| k−1 , 0),<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 12 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

Properties:<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

fk is quasiconformal with fk(p)H = p k H ,<br />

fk preserves C × {0}, moreover fk(z, 0) = (z|z| k−1 , 0),<br />

<br />

z<br />

f−1(z, t) = |z| 2 −t , −it |z| 4 +t2 <br />

is 1-QC inversion in the Korányi unit<br />

sphere with inversion relations<br />

dH(f−1(p), f−1(q)) = dH(p, q)<br />

pHqH<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

and f−1(p)H = 1<br />

.<br />

pH<br />

HCAA 2012 12 / 23


Analytic characterization of QC maps on H 1<br />

Theorem (Korányi, Reimann, Pansu, Vodop’yanov)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is quasiconformal if<br />

and only if<br />

f ∈ HW 1,4<br />

loc (Ω),<br />

f is a weakly contact map,<br />

Here,<br />

∃ 1 ≤ K < ∞ such that DHf (p) 4 ≤ KJ(p, f ) a.e.<br />

DHf 4 = (|ZfI | + |¯ZfI |) 4<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

and J(·, f ) = (|ZfI | 2 − |¯ZfI | 2 ) 2 .<br />

HCAA 2012 13 / 23


Analytic characterization of QC maps on H 1<br />

Theorem (Korányi, Reimann, Pansu, Vodop’yanov)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is quasiconformal if<br />

and only if<br />

f ∈ HW 1,4<br />

loc (Ω),<br />

f is a weakly contact map,<br />

Here,<br />

∃ 1 ≤ K < ∞ such that DHf (p) 4 ≤ KJ(p, f ) a.e.<br />

DHf 4 = (|ZfI | + |¯ZfI |) 4<br />

and J(·, f ) = (|ZfI | 2 − |¯ZfI | 2 ) 2 .<br />

Definition (Distortion)<br />

<br />

<br />

|ZfI<br />

K(·, f ) = <br />

| + |ZfI | <br />

<br />

<br />

|ZfI | − |ZfI |<br />

and Kf = K(·, f )∞.<br />

Note: H(·, f ) = K(·, f ) a.e.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 13 / 23


Proposition<br />

The stretch map fk, 0 < k < 1 is a QC map of H 1 with distortion<br />

K((ξ, ψ, η), fk) = 1 + tan2 ψ<br />

k 2 + tan 2 ψ<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

1<br />

and Kfk = .<br />

k2 HCAA 2012 14 / 23


Proposition<br />

The stretch map fk, 0 < k < 1 is a QC map of H 1 with distortion<br />

K((ξ, ψ, η), fk) = 1 + tan2 ψ<br />

k 2 + tan 2 ψ<br />

Let F be the class of QC maps<br />

1<br />

and Kfk = .<br />

k2 g : A(a, b) := {p ∈ H 1 : a < pH < b} → A(a k , b k )<br />

which map the inner and outer boundary components of A(a, b)<br />

homeomorphically to the respective boundary components of A(a k , b k ).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 14 / 23


Proposition<br />

The stretch map fk, 0 < k < 1 is a QC map of H 1 with distortion<br />

K((ξ, ψ, η), fk) = 1 + tan2 ψ<br />

k 2 + tan 2 ψ<br />

Let F be the class of QC maps<br />

1<br />

and Kfk = .<br />

k2 g : A(a, b) := {p ∈ H 1 : a < pH < b} → A(a k , b k )<br />

which map the inner and outer boundary components of A(a, b)<br />

homeomorphically to the respective boundary components of A(a k , b k ).<br />

Question<br />

Is fk extremal (i.e., a minimizer for maximal or mean distortion) in F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 14 / 23


Extremality of the stretch I (mean distortion)<br />

Theorem<br />

For all g ∈ F we have that<br />

<br />

K(p, fk)<br />

A(a,b)<br />

2 ρ0(p) 4 <br />

dµ(p) ≤<br />

with ρ0 = (log b<br />

Here <br />

Ω hρ4 0<br />

a )−1 ∇0 log( · H)0.<br />

dµ =<br />

Proof by modulus method.<br />

K(p, g)<br />

A(a,b)<br />

2 ρ0(p) 4 dµ(p)<br />

<br />

Ω hρ4 0 dµ<br />

<br />

Ω ρ4 0 dµ and µ denotes the Haar measure on H1 .<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 15 / 23


Modulus of curve families – a ‘quasi-invariant’ for QC maps<br />

Definition<br />

The 4-modulus of a curve family Γ on H1 is given by<br />

<br />

M4(Γ) = inf ρ<br />

ρ∈adm(Γ)<br />

4 dµ,<br />

adm(Γ) = {ρ : H 1 → [0, ∞] Borel with <br />

For γ = (z, t) horizontal: <br />

γ ρ dℓ = b<br />

a ρ(γ(s))|˙z(s)| ds.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

γ<br />

H 1<br />

ρ dℓ ≥ 1 for γ ∈ Γ loc. rectif.}.<br />

HCAA 2012 16 / 23


Modulus of curve families – a ‘quasi-invariant’ for QC maps<br />

Definition<br />

The 4-modulus of a curve family Γ on H1 is given by<br />

<br />

M4(Γ) = inf ρ<br />

ρ∈adm(Γ)<br />

4 dµ,<br />

adm(Γ) = {ρ : H 1 → [0, ∞] Borel with <br />

For γ = (z, t) horizontal: <br />

γ ρ dℓ = b<br />

a ρ(γ(s))|˙z(s)| ds.<br />

Cf. work by Markina and Vodop’yanov, and by Tang.<br />

Theorem<br />

γ<br />

H 1<br />

ρ dℓ ≥ 1 for γ ∈ Γ loc. rectif.}.<br />

Let f : Ω → Ω ′ be a QC map between domains in H1 and let Γ be a family<br />

of curves in Ω. Then<br />

<br />

M4(f (Γ)) ≤ K((z, t), f ) 2 ρ 4 (z, t) dµ(z, t) for all ρ ∈ adm(Γ).<br />

Ω<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 16 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2 ρ 4 0 dµ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2ρ4 0 dµ.<br />

Thus,<br />

<br />

K(·, fk) 2 ρ 4 <br />

0 dµ ≤ K(·, g) 2 ρ 4 0 dµ for all g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|<br />

For arbitrary f QC (diffeo) and γ horiz: |(fI ◦ γ) · | ≥ ||ZfI (γ)| − |ZfI (γ)|| · |˙z| and<br />

thus <br />

f ◦γ ρ′ dℓ ≥ <br />

γ ρ dℓ with ρ′ ρ<br />

=<br />

||ZfI |−|¯ZfI || ◦ f −1 .<br />

<br />

With MSP: M4(f (Γ)) = infρ∈adm(Γ) Ω ′ ρ ′4 <br />

dµ = infρ∈adm(Γ) Ω ρ4K(·, f ) 2 dµ


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|<br />

For arbitrary f QC (diffeo) and γ horiz: |(fI ◦ γ) · | ≥ ||ZfI (γ)| − |ZfI (γ)|| · |˙z| and<br />

thus <br />

f ◦γ ρ′ dℓ ≥ <br />

γ ρ dℓ with ρ′ ρ<br />

=<br />

||ZfI |−|¯ZfI || ◦ f −1 .<br />

<br />

With MSP: M4(f (Γ)) = infρ∈adm(Γ) Ω ′ ρ ′4 <br />

dµ = infρ∈adm(Γ) Ω ρ4K(·, f ) 2 dµ<br />

◮ K(·, fk) is constant along each γψ,η ∈ Γ0;


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|<br />

For arbitrary f QC (diffeo) and γ horiz: |(fI ◦ γ) · | ≥ ||ZfI (γ)| − |ZfI (γ)|| · |˙z| and<br />

thus <br />

f ◦γ ρ′ dℓ ≥ <br />

γ ρ dℓ with ρ′ ρ<br />

=<br />

||ZfI |−|¯ZfI || ◦ f −1 .<br />

<br />

With MSP: M4(f (Γ)) = infρ∈adm(Γ) Ω ′ ρ ′4 <br />

dµ = infρ∈adm(Γ) Ω ρ4K(·, f ) 2 dµ<br />

◮ K(·, fk) is constant along each γψ,η ∈ Γ0;<br />

◮ integration formula:<br />

<br />

2 ln b<br />

h dµ =<br />

h(γψ,η(s))|˙zψ,η(s)| 4 <br />

ds 12 cos 2 (ψ)dψdη.<br />

A(a,b)<br />

Q<br />

2 ln a


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2 ρ 4 0 dµ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2ρ4 0 dµ.<br />

Thus,<br />

<br />

K(·, fk) 2 ρ 4 <br />

0 dµ ≤ K(·, g) 2 ρ 4 0 dµ for all g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

Question<br />

Is the stretch map fk extremal for the maximal distortion within F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

Question<br />

Is the stretch map fk extremal for the maximal distortion within F?<br />

Proposition<br />

The stretch map fk is extremal for the maximal distortion in the class F0<br />

of C 1 orientation- and sphere-preserving maps g ∈ F which map the t-axis<br />

to the t-axis, i.e., Kfk ≤ Kg for all g ∈ F0.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

Question<br />

Is the stretch map fk extremal for the maximal distortion within F?<br />

Proposition<br />

The stretch map fk is extremal for the maximal distortion in the class F0<br />

of C 1 orientation- and sphere-preserving maps g ∈ F which map the t-axis<br />

to the t-axis, i.e., Kfk ≤ Kg for all g ∈ F0.<br />

Proof idea: write contact transformation g ∈ F0 in logarithmic<br />

coordinates. Sphere-preserving: Ξ = Ξ(ξ), apply MVT: ∃ξ0 with<br />

Ξξ(ξ0) = k. Formula for distortion. Find p0 with K(p0, g) ≥ Kfk .<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Thank you for your attention!<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 21 / 23


References<br />

A. Korányi and H. M. Reimann<br />

Horizontal normal vectors and conformal capacity of spherical rings in<br />

the Heisenberg group<br />

Bull. Sci. Math. (2), 111(1):3–21, 1987<br />

A. Korányi and H. M. Reimann<br />

Foundations for the theory of quasiconformal mappings on the<br />

Heisenberg group<br />

Adv. Math, 111(1):1–87, 1995<br />

I. D. Platis<br />

The geometry of complex hyperbolic packs<br />

Math. Proc. Cambridge Philos. Soc., 147(1):205–234, 2009<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 22 / 23


Return<br />

Figure: Curves in the Legendrian foliation of a Korányi sphere

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!