26.07.2013 Views

Katrin FAESSLER

Katrin FAESSLER

Katrin FAESSLER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A stretch map on the Heisenberg group<br />

<strong>Katrin</strong> Fässler<br />

joint work with<br />

Zoltán Balogh and Ioannis Platis<br />

HCAA 2012<br />

March 5–9, 2012<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 1 / 23


Radial stretch maps<br />

On the complex plane<br />

fk(z) = |z| k−1 z, (0 < k < 1).<br />

a prototype for quasiconformal mappings<br />

extremal for various problems.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 2 / 23


Radial stretch maps<br />

On the complex plane<br />

fk(z) = |z| k−1 z, (0 < k < 1).<br />

a prototype for quasiconformal mappings<br />

extremal for various problems.<br />

Question<br />

Radial stretch map on the sub-Riemannian Heisenberg group?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 2 / 23


The setting: Heisenberg group<br />

Definition<br />

The Heisenberg group H 1 can be modeled on C × R such that the group<br />

law reads<br />

p ∗ p ′ = (z + z ′ , t + t ′ + 2 Im(zz ′ )),<br />

for p = (z, t), p ′ = (z ′ , t ′ ) ∈ H 1 with z, z ′ ∈ C, t, t ′ ∈ R.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 3 / 23


The setting: Heisenberg group<br />

Definition<br />

The Heisenberg group H 1 can be modeled on C × R such that the group<br />

law reads<br />

p ∗ p ′ = (z + z ′ , t + t ′ + 2 Im(zz ′ )),<br />

for p = (z, t), p ′ = (z ′ , t ′ ) ∈ H 1 with z, z ′ ∈ C, t, t ′ ∈ R.<br />

H 1 can be endowed with a left invariant metric<br />

where pH = (|z| 4 + t 2 ) 1<br />

4 .<br />

dH(p, q) := q −1 ∗ pH, p, q ∈ H 1 ,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 3 / 23


The setting: Heisenberg group<br />

Definition<br />

The Heisenberg group H 1 can be modeled on C × R such that the group<br />

law reads<br />

p ∗ p ′ = (z + z ′ , t + t ′ + 2 Im(zz ′ )),<br />

for p = (z, t), p ′ = (z ′ , t ′ ) ∈ H 1 with z, z ′ ∈ C, t, t ′ ∈ R.<br />

H 1 can be endowed with a left invariant metric<br />

where pH = (|z| 4 + t 2 ) 1<br />

4 .<br />

For fixed s > 0, one has<br />

where δs(z, t) = (sz, s 2 t).<br />

dH(p, q) := q −1 ∗ pH, p, q ∈ H 1 ,<br />

dH(δs(p), δs(q)) = s dH(p, q), p, q ∈ H 1 ,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 3 / 23


Objects of study: quasiconformal maps on (H 1 , dH)<br />

Definition (metric definition)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is called<br />

quasiconformal (QC) if there is 1 ≤ H < ∞ such that<br />

H(p, f ) := lim sup<br />

r→0+<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

supdH(p,q)=r dH(f (p), f (q))<br />

< H, for all p ∈ Ω.<br />

infdH(p,q)=r dH(f (p), f (q))<br />

HCAA 2012 4 / 23


Objects of study: quasiconformal maps on (H 1 , dH)<br />

Definition (metric definition)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is called<br />

quasiconformal (QC) if there is 1 ≤ H < ∞ such that<br />

H(p, f ) := lim sup<br />

r→0+<br />

supdH(p,q)=r dH(f (p), f (q))<br />

< H, for all p ∈ Ω.<br />

infdH(p,q)=r dH(f (p), f (q))<br />

Motivated by Mostow’s work on rigidity of locally symmetric spaces.<br />

Rich theory developed by Korányi, Pansu and Reimann.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 4 / 23


Horizontal structure on the Heisenberg group<br />

A contact structure on H 1 is given by<br />

τ = −izdz + izdz + dt.<br />

The horizontal bundle HH 1 is the subbundle of the tangent bundle T H 1<br />

with fibers<br />

HpH 1 = kerτp.<br />

A complex basis for the complexified space H C p H 1 is given by<br />

Z = ∂<br />

∂z<br />

∂ ∂<br />

+ iz , Z =<br />

∂t ∂z<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

− iz ∂<br />

∂t .<br />

HCAA 2012 5 / 23


Horizontal structure on the Heisenberg group<br />

A contact structure on H 1 is given by<br />

τ = −izdz + izdz + dt.<br />

The horizontal bundle HH 1 is the subbundle of the tangent bundle T H 1<br />

with fibers<br />

HpH 1 = kerτp.<br />

A complex basis for the complexified space H C p H 1 is given by<br />

Z = ∂<br />

∂z<br />

∂ ∂<br />

+ iz , Z =<br />

∂t ∂z<br />

− iz ∂<br />

∂t .<br />

Objects which behave well with respect to this structure:<br />

Horizontal curves: γ : [a, b] → H 1 with ˙γ(s) ∈ H γ(s)H 1 a.e.<br />

Contact transformations: f : H 1 ⊇ Ω → Ω ′ ⊆ H 1 , with f ∗ τ = λτ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 5 / 23


Contact property of QC maps<br />

Contact condition (f∗,pHpH 1 ⊆ H f (p)H 1 ) for a map f = (fI , f3) reads<br />

f I ZfI − fI Zf I = −iZf3.<br />

Quasiconformal maps on H 1 are contact.<br />

First proved by Korányi and Reimann for differentiable QC maps. It holds<br />

for arbitrary QC maps in a weak sense.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 6 / 23


Contact property of QC maps<br />

Contact condition (f∗,pHpH 1 ⊆ H f (p)H 1 ) for a map f = (fI , f3) reads<br />

f I ZfI − fI Zf I = −iZf3.<br />

Quasiconformal maps on H 1 are contact.<br />

First proved by Korányi and Reimann for differentiable QC maps. It holds<br />

for arbitrary QC maps in a weak sense.<br />

Contact property of QC maps on H 1 . . .<br />

extra information on the form of such maps,<br />

obstruction for the construction of such maps.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 6 / 23


Definition of a Heisenberg stretch<br />

First try:<br />

gk(p) := δ k−1<br />

p (p)<br />

H<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 7 / 23


Definition of a Heisenberg stretch<br />

First try:<br />

gk(p)H = p k H ,<br />

gk(p) := δ k−1<br />

p (p)<br />

H<br />

BUT gk is not contact, hence not QC.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 7 / 23


Definition of a Heisenberg stretch<br />

First try:<br />

gk(p)H = p k H ,<br />

gk(p) := δ k−1<br />

p (p)<br />

H<br />

BUT gk is not contact, hence not QC.<br />

More general<br />

does not work either.<br />

hk(p) := δ ϕk(p)(p)<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 7 / 23


Definition of a Heisenberg stretch II<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 8 / 23


Definition of a Heisenberg stretch II<br />

The planar stretch fk(z) = |z| k−1 z is<br />

given in logarithmic coordinates by<br />

(ln |z|, arg(z)) ↦→ (k ln |z|, arg(z)).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 8 / 23


Definition of a Heisenberg stretch II<br />

The planar stretch fk(z) = |z| k−1 z is<br />

given in logarithmic coordinates by<br />

(ln |z|, arg(z)) ↦→ (k ln |z|, arg(z)).<br />

Second try:<br />

Use “logarithmic coordinates” on the Heisenberg group!<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 8 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

Particular horizontal curves:<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

Particular horizontal curves:<br />

◮ s ↦→ (ξ(s), ψ(s), η(s)) = (ξ, s, η);<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Picture<br />

HCAA 2012 9 / 23


“Logarithmic coordinates”<br />

(z, t) =<br />

where (ξ, ψ, η) ∈ R × (− π π<br />

2 , 2 ) × R.<br />

<br />

i cos ψe ξ+i(ψ−3η)<br />

2 , − sin ψe ξ<br />

,<br />

Simple description of Korányi spheres ξ = 2 ln ((z, t)H).<br />

Derived from coordinates on H 2 C which extend to ∂H2 C (Platis)<br />

◮ η = 0: boundary of “standard flat pack”<br />

◮ ψ = 0: plane C × {0}<br />

◮ ξ = 0: Korányi unit sphere<br />

Related to the spherical coordinates (z, t) = (r cos1/2 θeiφ , r 2 sin θ)<br />

(Korányi, Reimann) via ξ = 2 ln r, ψ = −θ, η = 1<br />

3 (π − θ − 2φ).<br />

Particular horizontal curves:<br />

◮ s ↦→ (ξ(s), ψ(s), η(s)) = (ξ, s, η);<br />

◮ s ↦→ (ξ(s), ψ(s), η(s)) = (s, ψ, η −<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Picture<br />

tan ψ<br />

3 s) (“radials”). Picture<br />

HCAA 2012 9 / 23


Figure: “Radials” connecting two Korányi spheres, each curve belongs to the<br />

Legendrian foliation of a Heisenberg cone associated to the parameter ψ.


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

To define a stretch map fk, 0 < k < 1, set<br />

Ξ(ξ, ψ, η) = kξ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

To define a stretch map fk, 0 < k < 1, set<br />

Ξ(ξ, ψ, η) = kξ.<br />

Then the contact condition yields<br />

H(ξ, ψ, η) = H(ξ, η), Ψ(ξ, ψ, η) = tan −1<br />

<br />

Hη(ξ, η) tan ψ − 3Hξ(ξ, η)<br />

.<br />

k<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Contact transformations in logarithmic coordinates<br />

Contact form<br />

We write mappings on H 1 as<br />

τ = −e ξ (sin ψ dξ + 3 cos ψ dη).<br />

(ξ, ψ, η) ↦→ (Ξ(ξ, ψ, η), Ψ(ξ, ψ, η), H(ξ, ψ, η))<br />

To define a stretch map fk, 0 < k < 1, set<br />

Ξ(ξ, ψ, η) = kξ.<br />

Then the contact condition yields<br />

H(ξ, ψ, η) = H(ξ, η), Ψ(ξ, ψ, η) = tan −1<br />

<br />

Hη(ξ, η) tan ψ − 3Hξ(ξ, η)<br />

.<br />

k<br />

The stretch map is obtained by setting<br />

H(ξ, η) = η.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 11 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 12 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

Properties:<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

fk is quasiconformal with fk(p)H = p k H ,<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 12 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

Properties:<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

fk is quasiconformal with fk(p)H = p k H ,<br />

fk preserves C × {0}, moreover fk(z, 0) = (z|z| k−1 , 0),<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 12 / 23


Heisenberg stretch map<br />

Definition<br />

Let 0 < k < 1. The Heisenberg stretch map is given by<br />

Properties:<br />

fk(ξ, ψ, η) = (kξ, tan −1 tan ψ<br />

( k ), η).<br />

fk is quasiconformal with fk(p)H = p k H ,<br />

fk preserves C × {0}, moreover fk(z, 0) = (z|z| k−1 , 0),<br />

<br />

z<br />

f−1(z, t) = |z| 2 −t , −it |z| 4 +t2 <br />

is 1-QC inversion in the Korányi unit<br />

sphere with inversion relations<br />

dH(f−1(p), f−1(q)) = dH(p, q)<br />

pHqH<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

and f−1(p)H = 1<br />

.<br />

pH<br />

HCAA 2012 12 / 23


Analytic characterization of QC maps on H 1<br />

Theorem (Korányi, Reimann, Pansu, Vodop’yanov)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is quasiconformal if<br />

and only if<br />

f ∈ HW 1,4<br />

loc (Ω),<br />

f is a weakly contact map,<br />

Here,<br />

∃ 1 ≤ K < ∞ such that DHf (p) 4 ≤ KJ(p, f ) a.e.<br />

DHf 4 = (|ZfI | + |¯ZfI |) 4<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

and J(·, f ) = (|ZfI | 2 − |¯ZfI | 2 ) 2 .<br />

HCAA 2012 13 / 23


Analytic characterization of QC maps on H 1<br />

Theorem (Korányi, Reimann, Pansu, Vodop’yanov)<br />

A homeomorphism f : Ω → Ω ′ between domains in H 1 is quasiconformal if<br />

and only if<br />

f ∈ HW 1,4<br />

loc (Ω),<br />

f is a weakly contact map,<br />

Here,<br />

∃ 1 ≤ K < ∞ such that DHf (p) 4 ≤ KJ(p, f ) a.e.<br />

DHf 4 = (|ZfI | + |¯ZfI |) 4<br />

and J(·, f ) = (|ZfI | 2 − |¯ZfI | 2 ) 2 .<br />

Definition (Distortion)<br />

<br />

<br />

|ZfI<br />

K(·, f ) = <br />

| + |ZfI | <br />

<br />

<br />

|ZfI | − |ZfI |<br />

and Kf = K(·, f )∞.<br />

Note: H(·, f ) = K(·, f ) a.e.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 13 / 23


Proposition<br />

The stretch map fk, 0 < k < 1 is a QC map of H 1 with distortion<br />

K((ξ, ψ, η), fk) = 1 + tan2 ψ<br />

k 2 + tan 2 ψ<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

1<br />

and Kfk = .<br />

k2 HCAA 2012 14 / 23


Proposition<br />

The stretch map fk, 0 < k < 1 is a QC map of H 1 with distortion<br />

K((ξ, ψ, η), fk) = 1 + tan2 ψ<br />

k 2 + tan 2 ψ<br />

Let F be the class of QC maps<br />

1<br />

and Kfk = .<br />

k2 g : A(a, b) := {p ∈ H 1 : a < pH < b} → A(a k , b k )<br />

which map the inner and outer boundary components of A(a, b)<br />

homeomorphically to the respective boundary components of A(a k , b k ).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 14 / 23


Proposition<br />

The stretch map fk, 0 < k < 1 is a QC map of H 1 with distortion<br />

K((ξ, ψ, η), fk) = 1 + tan2 ψ<br />

k 2 + tan 2 ψ<br />

Let F be the class of QC maps<br />

1<br />

and Kfk = .<br />

k2 g : A(a, b) := {p ∈ H 1 : a < pH < b} → A(a k , b k )<br />

which map the inner and outer boundary components of A(a, b)<br />

homeomorphically to the respective boundary components of A(a k , b k ).<br />

Question<br />

Is fk extremal (i.e., a minimizer for maximal or mean distortion) in F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 14 / 23


Extremality of the stretch I (mean distortion)<br />

Theorem<br />

For all g ∈ F we have that<br />

<br />

K(p, fk)<br />

A(a,b)<br />

2 ρ0(p) 4 <br />

dµ(p) ≤<br />

with ρ0 = (log b<br />

Here <br />

Ω hρ4 0<br />

a )−1 ∇0 log( · H)0.<br />

dµ =<br />

Proof by modulus method.<br />

K(p, g)<br />

A(a,b)<br />

2 ρ0(p) 4 dµ(p)<br />

<br />

Ω hρ4 0 dµ<br />

<br />

Ω ρ4 0 dµ and µ denotes the Haar measure on H1 .<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 15 / 23


Modulus of curve families – a ‘quasi-invariant’ for QC maps<br />

Definition<br />

The 4-modulus of a curve family Γ on H1 is given by<br />

<br />

M4(Γ) = inf ρ<br />

ρ∈adm(Γ)<br />

4 dµ,<br />

adm(Γ) = {ρ : H 1 → [0, ∞] Borel with <br />

For γ = (z, t) horizontal: <br />

γ ρ dℓ = b<br />

a ρ(γ(s))|˙z(s)| ds.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

γ<br />

H 1<br />

ρ dℓ ≥ 1 for γ ∈ Γ loc. rectif.}.<br />

HCAA 2012 16 / 23


Modulus of curve families – a ‘quasi-invariant’ for QC maps<br />

Definition<br />

The 4-modulus of a curve family Γ on H1 is given by<br />

<br />

M4(Γ) = inf ρ<br />

ρ∈adm(Γ)<br />

4 dµ,<br />

adm(Γ) = {ρ : H 1 → [0, ∞] Borel with <br />

For γ = (z, t) horizontal: <br />

γ ρ dℓ = b<br />

a ρ(γ(s))|˙z(s)| ds.<br />

Cf. work by Markina and Vodop’yanov, and by Tang.<br />

Theorem<br />

γ<br />

H 1<br />

ρ dℓ ≥ 1 for γ ∈ Γ loc. rectif.}.<br />

Let f : Ω → Ω ′ be a QC map between domains in H1 and let Γ be a family<br />

of curves in Ω. Then<br />

<br />

M4(f (Γ)) ≤ K((z, t), f ) 2 ρ 4 (z, t) dµ(z, t) for all ρ ∈ adm(Γ).<br />

Ω<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 16 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2 ρ 4 0 dµ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2ρ4 0 dµ.<br />

Thus,<br />

<br />

K(·, fk) 2 ρ 4 <br />

0 dµ ≤ K(·, g) 2 ρ 4 0 dµ for all g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 17 / 23


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|<br />

For arbitrary f QC (diffeo) and γ horiz: |(fI ◦ γ) · | ≥ ||ZfI (γ)| − |ZfI (γ)|| · |˙z| and<br />

thus <br />

f ◦γ ρ′ dℓ ≥ <br />

γ ρ dℓ with ρ′ ρ<br />

=<br />

||ZfI |−|¯ZfI || ◦ f −1 .<br />

<br />

With MSP: M4(f (Γ)) = infρ∈adm(Γ) Ω ′ ρ ′4 <br />

dµ = infρ∈adm(Γ) Ω ρ4K(·, f ) 2 dµ


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|<br />

For arbitrary f QC (diffeo) and γ horiz: |(fI ◦ γ) · | ≥ ||ZfI (γ)| − |ZfI (γ)|| · |˙z| and<br />

thus <br />

f ◦γ ρ′ dℓ ≥ <br />

γ ρ dℓ with ρ′ ρ<br />

=<br />

||ZfI |−|¯ZfI || ◦ f −1 .<br />

<br />

With MSP: M4(f (Γ)) = infρ∈adm(Γ) Ω ′ ρ ′4 <br />

dµ = infρ∈adm(Γ) Ω ρ4K(·, f ) 2 dµ<br />

◮ K(·, fk) is constant along each γψ,η ∈ Γ0;


Choice of the curve family Γ0<br />

Motivation:<br />

Curves in Γ0 play the role of radial segments (Korányi, Reimann),<br />

Γ0 and fk are related in the following way (these are general conditions<br />

which guarantee “=” in the modulus-distortion estimate.):<br />

◮ “minimal stretching property” (MSP): For γψ,η = γ = (z, t) ∈ Γ0:<br />

|((fk)I ◦ γ) · (s)| = ||Z(fk)I (γ(s))| − |Z(fk)I (γ(s))|| · |˙z(s)|<br />

For arbitrary f QC (diffeo) and γ horiz: |(fI ◦ γ) · | ≥ ||ZfI (γ)| − |ZfI (γ)|| · |˙z| and<br />

thus <br />

f ◦γ ρ′ dℓ ≥ <br />

γ ρ dℓ with ρ′ ρ<br />

=<br />

||ZfI |−|¯ZfI || ◦ f −1 .<br />

<br />

With MSP: M4(f (Γ)) = infρ∈adm(Γ) Ω ′ ρ ′4 <br />

dµ = infρ∈adm(Γ) Ω ρ4K(·, f ) 2 dµ<br />

◮ K(·, fk) is constant along each γψ,η ∈ Γ0;<br />

◮ integration formula:<br />

<br />

2 ln b<br />

h dµ =<br />

h(γψ,η(s))|˙zψ,η(s)| 4 <br />

ds 12 cos 2 (ψ)dψdη.<br />

A(a,b)<br />

Q<br />

2 ln a


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2 ρ 4 0 dµ.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch I (mean distortion)<br />

Proof (1): The family of “radial curves”<br />

Γ0 := {γψ,η}, where γψ,η(s) = (s, ψ, η −<br />

satisfies<br />

<br />

K(·, fk) 2ρ4 0 dµ = M4(fk(Γ0)).<br />

Explanation<br />

tan ψ<br />

3 s), s ∈ [2 ln a, 2 ln b],<br />

Proof (2): How are M4(fk(Γ0)), M4(g(Γ0)) related for arbitrary g ∈ F?<br />

For Γ = {horiz. curves in A(a, b) connecting the two bdry components}:<br />

ρ0 ∈ adm(Γ)<br />

M4(fk(Γ0)) ≤ M4(g(Γ)) ∀g ∈ F.<br />

Apply the modulus inequality M4(g(Γ)) ≤ K(·, g) 2ρ4 0 dµ.<br />

Thus,<br />

<br />

K(·, fk) 2 ρ 4 <br />

0 dµ ≤ K(·, g) 2 ρ 4 0 dµ for all g ∈ F.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 19 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

Question<br />

Is the stretch map fk extremal for the maximal distortion within F?<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

Question<br />

Is the stretch map fk extremal for the maximal distortion within F?<br />

Proposition<br />

The stretch map fk is extremal for the maximal distortion in the class F0<br />

of C 1 orientation- and sphere-preserving maps g ∈ F which map the t-axis<br />

to the t-axis, i.e., Kfk ≤ Kg for all g ∈ F0.<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Extremality of the stretch II (maximal distortion)<br />

M4(Γ) = π 2 ln <br />

b −3<br />

a<br />

(cf. Korányi, Reimann) and thus<br />

and M4(fk(Γ)) = k −3 π 2 ln <br />

b −3<br />

a ,<br />

M4(fk(Γ)) K 2<br />

fk M4(Γ).<br />

Question<br />

Is the stretch map fk extremal for the maximal distortion within F?<br />

Proposition<br />

The stretch map fk is extremal for the maximal distortion in the class F0<br />

of C 1 orientation- and sphere-preserving maps g ∈ F which map the t-axis<br />

to the t-axis, i.e., Kfk ≤ Kg for all g ∈ F0.<br />

Proof idea: write contact transformation g ∈ F0 in logarithmic<br />

coordinates. Sphere-preserving: Ξ = Ξ(ξ), apply MVT: ∃ξ0 with<br />

Ξξ(ξ0) = k. Formula for distortion. Find p0 with K(p0, g) ≥ Kfk .<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 20 / 23


Thank you for your attention!<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 21 / 23


References<br />

A. Korányi and H. M. Reimann<br />

Horizontal normal vectors and conformal capacity of spherical rings in<br />

the Heisenberg group<br />

Bull. Sci. Math. (2), 111(1):3–21, 1987<br />

A. Korányi and H. M. Reimann<br />

Foundations for the theory of quasiconformal mappings on the<br />

Heisenberg group<br />

Adv. Math, 111(1):1–87, 1995<br />

I. D. Platis<br />

The geometry of complex hyperbolic packs<br />

Math. Proc. Cambridge Philos. Soc., 147(1):205–234, 2009<br />

<strong>Katrin</strong> Fässler (University of Helsinki) A stretch map on H 1<br />

HCAA 2012 22 / 23


Return<br />

Figure: Curves in the Legendrian foliation of a Korányi sphere

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!