27.07.2013 Views

Cisco Presentation Guide

Cisco Presentation Guide

Cisco Presentation Guide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ethernet<br />

Petr Grygárek Gryg rek<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies 1


Ethernet History Histor<br />

•Research Research background: AlohaNet<br />

•University University of Hawai, 1970: 1970:<br />

common (radio) channel<br />

sharing methods – basis for CSMA/CD<br />

•1980: 1980: DIX published Ethernet standard<br />

(Metcalfe)<br />

•1985: 1985: IEEE 802.3 802.3<br />

(MAC and LLC layers)<br />

•10Base5, 10Base5, 10Base2, 10BaseT<br />

•1995 1995 IEEE 802.3u (Fast Ethernet)<br />

•1998 1998 IEEE 802.3z (Gigabit Ethernet)<br />

•2002 2002 IEEE 802.3ae (10Gb Ethernet)<br />

•... ...<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

2


Ethernet Naming Rules<br />

(IEEE Standard)<br />

Mbps [Base|Broad] [segment_length<br />

[segment_length_m<br />

_m | -medium] -medium<br />

-T T - Twisted Pair, -F F - Fiber optic, ...<br />

e.g. 10Base5, 10BaseT, 100BaseF<br />

Name of each particular Ethernet<br />

technology defined in individual<br />

supplements supplement of 802.3 standard<br />

•e.g e.g 802.3u, 802.3ab, 802.3z<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

3


Half-duplex and Full-duplex<br />

Ethernet<br />

•Half Half duplex – colission envirnment<br />

(CSMA/CD)<br />

•Full Full duplex - colission-free<br />

(switched) environment<br />

In half-duplex mode we have to adhere CSMA/<br />

CD timing that implies the maximum cable<br />

lengths<br />

For compatibility with half-duplex NICs, P2P<br />

links may also operate in half-duplex mode<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

4


Historical Ethernet<br />

Implementations<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

5


10Base5<br />

= Thick Ethernet = DIX Ethernet =<br />

ETHERNET II<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

6


10Base5 Capabilities<br />

•Bus Bus (coax) „Yellow Cable“<br />

•50ohm, 50ohm, diameter of 10 mm<br />

•Max Max segment length 500m, terminated<br />

•Max Max 5 segments interconnected by 4 repeaters,<br />

stations may be placed only on 3 segments (5-4-3<br />

rule)<br />

•Max Max 100 stations per segment, minimum distance<br />

of 2.5 m<br />

•Manchester Manchester encoding<br />

•Utilizes Utilizes external transceivers (AUI interface)<br />

•Attached Attached to bus by T-connector or wampire tap<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

7


10Base2<br />

= Thin Ethernet = CheaperNet<br />

•bus, bus, coax RG58<br />

•50ohm, 50ohm, diameter of 5 mm)<br />

•Max Max segment length 185m, terminated<br />

•5-4-3 5-4-3 rule<br />

•Max Max 30 stations per segment, minimum<br />

distance 0.5m<br />

•Interconnection: Interconnection: BNC and T<br />

connectors<br />

•Transceiver Transceiver is integrated on the NIC<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

8


10BaseT<br />

•Star Star (tree) topology<br />

•2 2 twisted pairs (UTP3) + RJ-45 connectors<br />

•May May operate in full-duplex mode when switches<br />

are applied<br />

•Stations Stations interconnected with hubs<br />

•5-4-(3) 5-4-(3) rule<br />

•max. ax. 512 stations in the whole tree<br />

•Max Max 100m between hub and NIC<br />

•min min 0.6m<br />

•Crossing Crossing of transmitter and receiver<br />

cable pairs<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

9


Fast Ethernet (100Mbps)<br />

•IEEE IEEE 802.3u<br />

•Based Based on 10BaseT<br />

•the the same MAC address protocol and<br />

frame format<br />

•NICs NICs are obviously backward compatible with<br />

10BaseT<br />

•Speed Speed autonegotiation capability<br />

•different different line encoding<br />

•Uses Uses UTP5, 100m between network<br />

devices<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

10


Physical Layer of Fast<br />

Ethernet<br />

•100BaseTX: 100BaseTX: UTP5, STP – UTP5, max<br />

100m, 4B5B + MLT3, 125 MHz<br />

•100BaseFX: 100BaseFX: FO, max. distance NICNIChub is 200m (because of CSMA/CD)<br />

•Other Other sparsely used options<br />

•Developed Developed for compatibility with older<br />

cablings - 100BaseT2, 100BaseT4<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

11


Fast Ethernet Topologies<br />

(half-duplex)<br />

•2 2 directly connected NICs<br />

•Star Star with Class I hub<br />

•Two Two Class II hubs interconnected by line<br />

of maximum 10 m in length<br />

Hub class I and II differ in<br />

•Maximum Maximum allowed signal delay<br />

•Capability Capability of encoding transformation, i.e. the<br />

ability of using different media in a single<br />

collision domain<br />

•e.g. e.g. transformaiton of 100BaseTX to 100BaseT4<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

12


Ethernet Today<br />

•Ethernet Ethernet today is a whole family of<br />

networking technologies (100Mbps+)<br />

•LAN, LAN, MAN, WAN<br />

•Compatibility Compatibility still maintained<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

13


Gigabit Ethernet (802.3z)<br />

•Developed Developed since 1995, originally supposed<br />

to require fiber optic or coax cable,<br />

standard later extended for twisted pair<br />

•802.3ab 802.3ab – compatible with existing wirings<br />

(Cat5e)<br />

•Makes Makes the standard Ethernet faster again<br />

• CSMA or switching, IEEE 802.3 frame, simple<br />

star topology<br />

•Problems Problems with minimum frame length in<br />

collision-mode when trying to keep the<br />

same maximum cable lengths as with<br />

10BaseT<br />

•Appends Appends a padding to 512B into a frame if<br />

necessary or applies packet bursting.<br />

• Most commonly used for backbone links<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

14


Physical Layer of the Gigabit<br />

• 1000Base-T: UTP5e<br />

Ethernet<br />

• All 4 pairs used simultaneously in both directions<br />

(PAM5, echo cancellation), max. 100m<br />

• Problems with reflections connectors (the cabling<br />

system may start to resonate)<br />

• 1000Base-SX (short wavelength-850 nm) – used<br />

more often<br />

• 8B10B encoding<br />

• 62.5 um MMF 440m, 50 um MMF 550m<br />

• 1000Base-LX (long wavelength-1300 nm)<br />

• 8B10B encoding<br />

• SMF 3 km, 62.5 um MMF 440m, 50 um MMF 550m.<br />

• Usage of „offsets“ to limit transversal modes on MMF<br />

(decreases dispersion)<br />

• ANSI Fibre Channel<br />

• Supports bandwidths of 133Mpbs to 1Gbps on various<br />

cable types (MMF, STP, coax)<br />

© 2009 Petr Grygárek, FEI VŠB-TU Ostrava, Computer Networks (Bc.)<br />

15


1000BaseX (802.3z ( 802.3z): : Fiber Optics<br />

•extends extends the original LAN technology to<br />

distances that make Ethernet a WAN/MAN<br />

standard<br />

•1000BASE-<br />

1000BASE-SX SX<br />

•850nm 850nm laser/LED, laser/LED,<br />

MM fiber, SC – low cost<br />

•distances distances 220-550m (better better for 50/125 than 62.5/50<br />

fiber) fiber)<br />

•1000BASE-<br />

1000BASE- LX<br />

•1310nm 1310nm laser SM fiber (5km) or MM fiber (500m), (500m) ,<br />

SC<br />

•8B10B+NRZ 8B10B+NRZ ("level-driven") encoding<br />

•Some Some bit combination have alternative 8B10B<br />

codewords<br />

•chosen chosen dynamically to reach balanced bit pattern<br />

•Because Because of high rate,1s rate, s and 0s 0 encoded with low and<br />

high power instead of presence/absence of light<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

16


1000BaseT (802.3ab)<br />

• uses TP Category 5e or higher<br />

• cat5e at5e allows 125Mbps<br />

• all four pairs, 125 Mbd each<br />

• 4D-PAM5 line encoding<br />

• pulse amplitude modulation, 5 states<br />

•2bits/symbol 2bits/symbol + Forward Error Correction (8-state ( 8-state Trellis<br />

code)<br />

• control and data symbols<br />

•250 250 Mbps/pair if 125 Mbd used<br />

• 4x in parallel (for each pair)<br />

• See http://www.reed<br />

electronics.com/tmworld/article/CA287078.html<br />

• Full ull duplex: duplex:<br />

echo cancellation, cancellation,<br />

on all pairs<br />

• 9 voltage levels in idle periods, 17 during data<br />

transmission<br />

• need to synchronize clocks (clock master elected)<br />

• probl roblems ems with reflections (danger of resonance)<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

17


Ethernet in Depth<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

18


Ethernet Advantages<br />

•Simplicity<br />

Simplicity<br />

•lower lower learning and implementation cost<br />

•preferred preferred over (more sophisticated) FDDI,<br />

ATM etc.<br />

•Scalability<br />

Scalability<br />

•maintains maintains the same frame format at all<br />

transfer rates<br />

•Compatibility<br />

Compatibility<br />

•frame frame format (including MAC address format)<br />

•CSMA/CD CSMA/CD (until ( until 1000Base-T)<br />

1000Base T)<br />

•Modularity<br />

Modularity<br />

•Only Only physical layers differs<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

19


Legacy Ethernet:<br />

Common Characteristics<br />

•10Base5-1980, 10Base5-1980, 10Base2-1985,<br />

10BaseT-1990<br />

•Timing Timing parameters (100ns bit timeslot,<br />

51.2us slot time)<br />

•Frame Frame format<br />

•Transmission Transmission processes<br />

•Manchester Manchester encoding<br />

•CSMA/CD CSMA/CD (half duplex)<br />

•full full duplex defined later for 10BaseT (1997)<br />

•Basic Basic design rule (5-4-3)<br />

•No No more than four repeaters can be used in<br />

series between any two stations. There can<br />

also be no more than three populated<br />

segments between any two stations.<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

20


Ethernet Frame<br />

•Preamble: Preamble: 7x 10101010, 1x 10101011 (SFD)<br />

•necessary necessary only for (asynchronous) 10Mbps Ethernet<br />

•Type Type


802.1q Frame Header<br />

•extra extra 2+2 bytes (priority, VLAN ID)<br />

•Inserted Inserted behind TYPE field<br />

•Indicated Indicated by TYPE=8100h<br />

•Original Original TYPE repeated just behind<br />

802.1q header<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

22


Timing<br />

•Propagation Propagation delay (UTP): (UTP) : 20.3 cm/ns,<br />

•100m 100m UTP = 5 bit times (10Mbps)<br />

•Slot Slot time = minimum mi um frame duration<br />

•512bit 512bit times (64B ( 64B) ) for 10 and 100 Mbps bps<br />

Ethernet<br />

•4096 4096 bit time time<br />

slots (512 B) for 1000 Mbps Mbps<br />

•calcula calculated ed assuming maximum maximu cable lengths<br />

(and repeater delay)<br />

•max max delay defined as 51,2 micro mi roseconds seconds<br />

•32bit 32bit “jam jam” signal<br />

•Interframe Interframe spacing 96 bit timeslots timeslots<br />

•time time that allows receiver(s) to process frame<br />

and prepare for another frame reception<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

23


Timing Considerations<br />

for Mixed-media Network Design<br />

•Cable Cable length<br />

•Velocity Velocity of signal propagation<br />

•Transceiver Transceiver delay<br />

•Repeater Repeater delay<br />

•Interframe Interframe gap shrinkage due to<br />

repeaters<br />

•repeater repeater is expected to regenerate all 64 bits<br />

of preamble, despite the potential loss of some<br />

of the strarting preamble bits because of slow<br />

synchronization<br />

•this his forced reintroduction of timing bits<br />

reduces original interframe gap<br />

•Processing Processing delay in station NIC’s CPU<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

24


Collisions<br />

•When hen a transmitting station detects a<br />

collision, it stops sending it's frame and<br />

sends 32bit Jam sequence to announce<br />

collision to other stations<br />

•jam jam signal may be composed of any binary<br />

data that do not form the proper checksum for<br />

the portion of the frame already transmitted<br />

•most most commonly 101010…<br />

•The The majority of collisions occurs occur very<br />

early in the frame, often before the SFD<br />

•Collision Collision fragments = frames


Collision Detection<br />

•Coax: Coax: amplitude of the signal on the<br />

network media increases<br />

•Manchester Manchester characteristics:<br />

number of High level intervals =number<br />

of Low level intervals, average should<br />

be 0<br />

•If If two Manchester waveform mix,<br />

average level moves<br />

•waveform waveform can be smoothed and level<br />

measured on capacitor<br />

•UTP: UTP: signal on RX pair while<br />

transmitting on TX pair<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

26


•Local Local collision<br />

Collision Types<br />

•simultaneous simultaneous transmission of multiple stations<br />

on the same coaxial segment, detected as<br />

amplitude increase (signal “sums up” on<br />

terminators)<br />

•Remote Remote collision<br />

•collision collision behind repeater<br />

•cannot cannot be detected by amplitude increase<br />

(repeater will not pass it) or by simultaneous<br />

signal on RX and TX pair<br />

•identified identified by presence of collision fragment<br />

(short frame with wrong CRC)<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

27


Late Collision<br />

•Collision Collision out of the timeslot (after<br />

first 64B) 64B<br />

•NIC NIC will not repeat the transmitted<br />

frame<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

28


Bit Synchronization<br />

•10Mbps: 10Mbps: synchronizes before every<br />

frame independently using preamble<br />

(“asynchronous Ethernet”)<br />

•faster faster versions: synchronization<br />

always maintained<br />

•using using reserved “idle” symbols<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

29


100BaseTX, 100BaseFX<br />

•100BaseTX<br />

100BaseTX (UTP5 ( UTP5)<br />

•4B5B 4B5B<br />

(1995)<br />

•reserved reserved symbols for frame delimitation and idle link<br />

indication<br />

•125 125 Mbaud<br />

•Scrambl Scrambling ing<br />

•MLT3 MLT3 - MuLTilevel encoding<br />

•3-level 3-level code, cycles in sine-like style,<br />

change represents 1, same level represents 0<br />

•100BaseFX 100BaseFX (FO)<br />

•4B5B 4B5B<br />

•NRZI NRZI<br />

•change change in the middle of bit time represents 1,<br />

change absence represents 0<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

30


100BaseT2, 100BaseT4 (1)<br />

•Proposed Proposed technologies for UTP3<br />

•Did Did not reached a widespread usage<br />

•US US UTP Cat 3 installations only<br />

•Helped Helped to develop technologies applicable in<br />

Gigabit Ethernet<br />

•multilevel multilevel encoding, echo cancellation<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

31


100BaseT2, 100BaseT4 (2)<br />

•100Base-T4<br />

100Base-T4<br />

•1 1 pair -> 1 pair


Ethernet Capability<br />

Autonegotiation<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

33


Autonegotiation of<br />

Capabilities<br />

•10BaseT: 10BaseT: Normal Link Pulse (NLP)<br />

every 16.8 ms– ms–<br />

used for link integrity<br />

test only<br />

•pulses pulses present when a station has<br />

nothing to send<br />

•Fast Fast Ethernet & later: Fast Link<br />

Pulses (FLP)<br />

•FLP FLP burst - sent in NLP intervals for<br />

compatibility reasons<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

34


FLP Bursts<br />

•data data pulses interleaved with clock<br />

pulses and carry 16 bit Link Code<br />

Word (LCW)<br />

•LCW LCW consists of 17 to 33 NLPs and<br />

takes 2ms in total<br />

•LCW LCW announces device’s capabilities<br />

to it’s link partner<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

35


Link Code Word (LCW)<br />

Selector implies how to interpret<br />

Technology Ability Field<br />

• selector value 00001 assigned to IEEE<br />

802.3<br />

• For details, see http://www.scyld<br />

http://www. scyld.com com/<br />

NWay.html<br />

NWay html<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

36


Negotiated capabilities<br />

•speed speed (+modulation/pair usage)<br />

•duplex duplex<br />

•clock clock master (Gigabit Ethernet)<br />

•…<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

37


Capability Negotiation Process (1)<br />

• After both link partners have interpreted other side’s<br />

LCWs, they start to use “highest” capabilities<br />

supported by both of them<br />

• Capability priorities:<br />

• 1000Base-T FD<br />

• 1000Base-T HD<br />

• 100Base-TX FD<br />

• 100BASE-T4<br />

• 100BASE-TX HD<br />

• 10BASE-T FD<br />

• 10BASE-T HD<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

38


Capability negotiation<br />

process (2)<br />

•Station Station attempt attempts<br />

to detect and use<br />

100BaseTX signalling before<br />

autonegotiation<br />

•If f link partner does’n does offer FLPs FLP but<br />

offers NLPs, NLP , 10BaseT is assumed<br />

•If If the link is lost, link partners first<br />

attempt to connect at the last negotiated<br />

speed. If that fails, or link was down for<br />

long, long,<br />

autonegotiation autonegotiation<br />

starts again.<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

39


802.3x Flow Control<br />

•Link Link layer<br />

•PAUSE PAUSE frame<br />

(full duplex)<br />

•EtherType EtherType 8808h<br />

•Reserved Reserved destination MAC address<br />

•not not forwarded by switch<br />

•Similar Similar to Xon/Xoff, but with timeout for<br />

Xoff<br />

•Parameter Parameter specifies number of units to wait<br />

•0 0 cancels PAUSE request<br />

unit corresponds to 1 time slot (512ns)<br />

•unit © 2005 Petr corresponds Grygarek, Advanced Computer Networks to 1 Technologies time slot (512ns)<br />

40


Modern Ethernet<br />

Technologies<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

41


10Gbps Ethernet<br />

•Bit Bit time 0.1 ns (=100ps (!)), IFG 96 bits<br />

•Full Full duplex only<br />

•no no more collision timing calculation<br />

•Much Much more WAN/MAN WAN MAN or data center<br />

technology<br />

•but but still interoparable with Ethernet LAN‘s<br />

frame format (!)<br />

•Physical Physical layer:<br />

• Fiber<br />

• Copper (Cat6a)<br />

• Twinax (similar to 2x coax)<br />

• WAN PHY<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

42


10GE on Fiber (10GBase-R)<br />

802.3ae<br />

• 10GBASE-SR (short reach)<br />

•MMF, MMF, 850nm laser, 64B/66B<br />

•26 26-82m -82m<br />

• 10GBASE-LR (long reach)<br />

•SMF, SMF, 1310nm laser, 64B/66B<br />

•10 10 km and 40 km over SMF<br />

• 10GBASE-ER (extended reach)<br />

•SMF, SMF, 1550nm laser, 64B/66B<br />

•40 40 km over SMF<br />

• 10GBASE-LX4<br />

•coarse coarse WDM (4x 1300nm laser)<br />

•MMF, MMF, 240-300m<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

43


10GE on Copper (10GBase-T)<br />

802.3ab<br />

•10GBASE-CX4 10GBASE-CX4 – special cable<br />

•10GBASE-T 10GBASE-T – STP/UTP<br />

•45m 45m on Cat5e, 55m on Cat6<br />

•100m 100m on Cat6a (partitioned)<br />

•PAM16+complicated PAM16+complicated encoding<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

44


Ethernet WAN PHYs<br />

(10GBASE-W)<br />

10GBASE-W)<br />

• 10GBASE-SW, 10GBASE-LW, 10GBASE-EW, and<br />

10GBASE-Z<br />

•Correspond Correspond to 10GBASE-SR, 10GBASE-LR,<br />

10GBASE-ER and 10GBASE-ZR<br />

• Use OC-192/STM-64 SDH/SONET (9.953 Gbit/s)<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

45


Emerging Ethernet<br />

Technologies<br />

echnologies<br />

• 40 GB using DWDM<br />

•4x 4x 10Gbps carriers<br />

• Upcoming standards:<br />

•40/100 40/100 GbE - IEEE P802.3ba<br />

•under under development<br />

•single single light source<br />

•various various PHY types<br />

•maximum maximum compatibility with 803.3 framing<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

46


Additional Information<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

47


Ethernet Statistics Statistics<br />

Terminology (1)<br />

• Collision - simultaneous imultaneous transmission occurring<br />

before slot time (64/512B) has elapsed<br />

• Late collision - simultaneous imultaneous transmission<br />

occurring after slot time has elapsed<br />

• NIC does not retransmit the frame (!)<br />

• Jabber, abber, long frame, frame,<br />

range errors - excessively xcessively or<br />

illegally long transmission<br />

• Short hort frame, collision fragment, fragment,<br />

runt - illegally llegally<br />

short transmission<br />

• collision fragment - partial frames < 64B 64B<br />

with invalid<br />

CRC<br />

•typically typically result of remote collision<br />

• if signal it does not exhibit the local collision symptoms<br />

symptom<br />

• runt =


Ethernet statistics terminology (2)<br />

•Alignment Alignment error - Insufficient or excessive<br />

number of bits transmitted<br />

•Out Out of range error - illegal Length value (too<br />

large)<br />

•Range Range error - actual ctual and reported (Length<br />

field) number of octets in frame do not match<br />

•too too small Length value or Length does not match<br />

the actual number of octets received<br />

•Ghost Ghost or jabber - Unusually long Preamble or<br />

Jam signal<br />

•Ghost: Ghost: noise >72B, without valid SFD<br />

•Jabber: Jabber: >20000 bit times<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

49


Signal Quality Error (SQE)<br />

signal of AUI transceivers<br />

• sent by a transceiver back to the controller to let<br />

the controller know whether the collision<br />

circuitry is functional.<br />

• designed to fix the problem in earlier versions of<br />

Ethernet where a host does not know if a<br />

transceiver is connected.<br />

• SQE is active:<br />

• Within 4 to 8 microseconds after a normal transmission<br />

to indicate that the outbound frame was successfully<br />

transmitted<br />

• Whenever there is a collision on the medium<br />

• Whenever there is an improper signal on the medium<br />

(jabber, cable short)<br />

• Whenever a transmission has been interrupted<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

50


Useful Ethernet<br />

information<br />

•http://www.ieee.org<br />

http://www.ieee.org<br />

•http://www.<br />

http://www.ethermanage<br />

ethermanage.com com/<br />

ethernet<br />

© 2005 Petr Grygarek, Advanced Computer Networks Technologies<br />

51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!