30.07.2013 Views

QM - Accelrys

QM - Accelrys

QM - Accelrys

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Towards Increased<br />

Accuracy in<br />

Computational Drug<br />

Discovery with <strong>QM</strong>/MM<br />

Dipesh Risal, Ph. D.<br />

Life Sciences Product Manager<br />

June 26, 2008<br />

This presentation and/or any related documents contains statements regarding our plans or expectations for future features,<br />

enhancements or functionalities of current or future products (collectively "Enhancements"). Our plans or expectations are subject<br />

to change at any time at our discretion. Accordingly, <strong>Accelrys</strong> is making no representation, undertaking no commitment or legal<br />

obligation to create, develop or license any product or Enhancements. The presentation, documents or any related statements are<br />

not intended to, nor shall, create any legal obligation upon <strong>Accelrys</strong>, and shall not be relied upon in purchasing any product. Any<br />

such obligation shall only result from a written agreement executed by both parties. In addition, information disclosed in this<br />

presentation and related documents, whether oral or written, is confidential or proprietary information of <strong>Accelrys</strong>. It shall be used<br />

only for the purpose of furthering our business relationship, and shall not be disclosed to third parties.


Overview<br />

• <strong>QM</strong>/MM background<br />

• <strong>QM</strong>/MM implementation<br />

• Validation: Scientific applications of <strong>QM</strong>/MM<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

2


<strong>QM</strong>/MM overview<br />

• Combine <strong>QM</strong> and MM methods<br />

to achieve good accuracy at<br />

low cost<br />

– Treat ‘chemically<br />

significant’ region with <strong>QM</strong><br />

– Treat the bulk with MM<br />

– Combine the results<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

MM region<br />

<strong>QM</strong> region<br />

Ligand<br />

3


<strong>QM</strong>/MM in Discovery Studio<br />

• A <strong>QM</strong>/MM method has been<br />

implemented that<br />

incorporates<br />

– DMol3 (DFT) for the <strong>QM</strong><br />

region<br />

– CHARMm for the MM region<br />

– QUANTUMm, a<br />

communication program<br />

between the two regions<br />

• How do each of these<br />

programs work?<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

MM region<br />

<strong>QM</strong> region<br />

Ligand<br />

4


<strong>QM</strong>/MM Overview<br />

Anatomy of <strong>QM</strong>/MM machinery<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

xyz<br />

<strong>QM</strong><br />

Engine<br />

E<br />

∇E<br />

q<br />

<strong>QM</strong>/MM<br />

Driver<br />

xyz<br />

q<br />

MM<br />

Engine<br />

E<br />

∇E<br />

<strong>QM</strong>/MM<br />

Driver<br />

Call <strong>QM</strong> Call MM<br />

<strong>QM</strong>/MM<br />

Driver<br />

Geometry<br />

optimization or<br />

MD step<br />

Repeat<br />

• <strong>QM</strong> and MM servers only provide energies and gradients<br />

• Propagation algorithms (geometry optimization, MD, TS search ...)<br />

operate on data received from compute engines<br />

5


DMol3 DMol Overview<br />

3 Overview<br />

• DMol 3 uses DFT to predict structures, energies,<br />

electronic properties<br />

• Works for molecular and periodic systems<br />

• Extremely fast<br />

– Numerical basis sets provide a rapid means of evaluating<br />

Coulomb and exchange-correlation potentials<br />

– Provides options to trade off between computational cost<br />

and accuracy<br />

• Delley, J. Chem. Phys.113, 7756 (2000)<br />

– Energy calculations on drug-size molecules require few<br />

minutes on typical laptop<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

6


DMol3 DMol Functionals<br />

3 Functionals<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

H-bonded complexes Dispersion-dominated<br />

complexes<br />

Type of<br />

complex DMol 3 /PBE DMol 3 /HCTH Z-T B3LYP 1 Z-T PBE 1<br />

H-bond 1.0 3.4 2.0 1.3<br />

Dispersion 3.2 2.8 6.5 4.9<br />

Mixed 1.2 0.9 2.9 1.9<br />

1. J. Chem. Theory Comput. (2007), 3, 289-300.<br />

Mixed<br />

complexes<br />

Avg. Error (kcal/mol)<br />

of binding energies<br />

in loose complexes<br />

7


MM engine: CHARMm<br />

• CHARMm: the industry standard for simulation of macromolecules and protein-ligand systems<br />

• Constant Forcefield development<br />

– Alex MacKerell, Charlie Brooks, Bernard Brooks, <strong>Accelrys</strong>, Others<br />

• Most comprehensive simulation package available<br />

– MM, MD<br />

– CDOCKER<br />

– Free Energy Perturbation (FEP)<br />

– MM-PB/GB SA Scoring<br />

– Normal Mode analysis<br />

– RDOCK (refinement of Protein-Protein docking)<br />

– ChiRotor, Looper<br />

– Replica Exchange Molecular Dynamics (REMD)<br />

– Three implicit membrane models<br />

• GBSW, GBSA-IM, IMM1<br />

– Umbrella sampling<br />

– Monte Carol simulations<br />

– Physics-based pK Prediction and Protein Ionization<br />

– Constant-pH MD<br />

– And many more!<br />

• Strong UI support in Discovery Studio<br />

– Antibody Modeling<br />

– Implicit Membrane Modeling<br />

– Receptor-Flexible Docking<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

8


QUANTUMm Overview<br />

• Total energy ...<br />

Etotal MM<br />

<strong>QM</strong> <strong>QM</strong> MM<br />

• Scientific requirements for biological<br />

<strong>QM</strong>/MM:<br />

– <strong>QM</strong> region “feels” MM atom<br />

environment<br />

– Minimal number of FF parameters<br />

for <strong>QM</strong> region<br />

• Issues to address<br />

– Embedding: how does the <strong>QM</strong> region<br />

interact with the MM region?<br />

– Boundary region: what happens to<br />

bonds that cross between regions?<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

( O,<br />

I)<br />

=<br />

E ( O)<br />

+ E ( I)<br />

+ E / ( O ↔ I)<br />

E total = E(<br />

RMM,<br />

R<strong>QM</strong>)<br />

9


<strong>QM</strong> ↔ MM Coupling: Electrostatics<br />

<strong>QM</strong> density is polarized by MM point charges:<br />

electronic embedding<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

MM → <strong>QM</strong><br />

<strong>QM</strong> → MM<br />

elec<br />

E <strong>QM</strong> /<br />

MM<br />

O charges polarize I density<br />

I gradients induce forces on O<br />

Part of <strong>QM</strong> energy expression<br />

10


QUANTUMm Issue: Broken <strong>QM</strong> ↔ MM bonds<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Problem: <strong>QM</strong> calculation on I region yields unrealistic species<br />

→ add link atom (L) to <strong>QM</strong> calculation<br />

• Link atom is absent in MM calculation<br />

• Position restrained onto C A -C B vector<br />

• <strong>QM</strong>/MM server program handles link atoms transparently<br />

[Field, JCC 1990]<br />

11


Complications: Electrostatics<br />

Electronic embedding and link atoms<br />

Problem: <strong>QM</strong> overpolarization near link atoms: MM host too close<br />

Solution: the <strong>QM</strong> fragment should see no charge from MM host atom<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

[Bakowies, JPC 1996; Sinclair, J Chem Soc Faraday 1998]<br />

12


QUANTUMm User Interface<br />

• DS QUANTUMm allows easy job setup<br />

• Select <strong>QM</strong> region<br />

• Set DFT options<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

– Charge on <strong>QM</strong> region<br />

– Spin multiplicity of <strong>QM</strong> region<br />

– Relative precision (basis set, integration grid, SCF<br />

convergence)<br />

• Number of processors for parallel calculation<br />

• Provides the tools you need to balance the size of the<br />

problem, relative accuracy, and computational cost<br />

13


<strong>QM</strong>/MM Implementation I<br />

• Methods available for first release<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

– <strong>QM</strong>/MM Minimization<br />

– <strong>QM</strong>/MM Energy Calculation (Single Point Energy)<br />

• If only the ligand is in the <strong>QM</strong> region, both protocols output<br />

ESP, Hirshfeld and Mulliken charges for ligand<br />

– Recharge Ligand Pipeline Pilot Component<br />

• Point charges from a protein model used in the electronic<br />

structure calculation, causing polarization of the ligand<br />

14


<strong>QM</strong>/MM Calculation: Setup in Discovery Studio<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

15


<strong>QM</strong>/MM Applications for Life Science<br />

• <strong>QM</strong>/MM-derived ligand partial charges for:<br />

– improved docking accuracy (and simulation)<br />

• Optimization of hydrogen bonds<br />

– Post-processing of docked poses<br />

• Modeling of special electrostatic interactions not fully captured<br />

by force fields<br />

– Cation-Pi interactions<br />

– Pi-Pi interactions<br />

– Charge transfer<br />

– Metal-ligand-protein interactions<br />

• Improved estimate of interaction energy between protein and<br />

ligand<br />

• <strong>QM</strong>/MM in conjunction with MD 1 , <strong>QM</strong>-PBSA 2<br />

• Preparing ligands and cofactors for MM calculations 3<br />

– Heme, others<br />

• Studying reaction mechanisms 3<br />

– individual steps (hydrolysis, etc.)<br />

– transition state<br />

– entire catalytic cycle<br />

• Activation free energy 3<br />

• <strong>QM</strong>/MD (dynamics)<br />

• Semi-empirical method in <strong>QM</strong>/MM<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Possible Today. Some validation<br />

Already available<br />

Possible Today. Validation<br />

ongoing<br />

Possible in future releases based<br />

on customer prioritization<br />

1. J Comput Aided Mol Des. 2007 Jan-Mar;21(1-3):131-7<br />

2. J Phys Chem B, 109 (2):10474-83.<br />

3. Chem Rev. 2006 Sep;106(9):3497-519<br />

4. Drug Discov Today: Technologies, 2004 Dec; 1(3), 253-260<br />

5. Drug Discov Today. 2007 Sep;12(17-18):725-31 .<br />

16


<strong>QM</strong>/MM Background: Partial Charge Analysis<br />

Partial charges on ligand after MM and <strong>QM</strong>/MM Minimization, 1STP-1: Streptavidin/Biotin<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

0<br />

MM Min <strong>QM</strong>/MM Min<br />

C11<br />

O11<br />

O12<br />

C10<br />

C9<br />

C8<br />

C7<br />

C2<br />

S1<br />

C6<br />

C5<br />

N1<br />

C3<br />

O3<br />

N2<br />

C4<br />

H1<br />

H2<br />

H3<br />

H4<br />

Generally, H-bond donors become increase in δ+<br />

H-bond acceptors increase in δ-<br />

CHA RMm M-Rone<br />

CFF<br />

<strong>QM</strong>/MM Min<br />

H5<br />

H6<br />

H7<br />

H8<br />

H9<br />

H10<br />

H11<br />

H12<br />

H13<br />

H14<br />

H15<br />

H16<br />

17


<strong>QM</strong>/MM Applications: Background<br />

• CDOCKER is a CHARMm-based small molecule docking refinement<br />

algorithm 1<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

– Uses soft-core potentials<br />

– Grid-based (optional)<br />

Generate ligand conformations<br />

through high temperature MD<br />

Random (rigid-body) rotation<br />

(grid-based) simulated annealing<br />

Full minimization<br />

Output # of refined ligand poses<br />

sorted by energy<br />

(vdW+ e/s + ligand strain)<br />

1. Wu et al. J Comput Chem (2003) 24:1549-62<br />

18


<strong>QM</strong>/MM Applications: Improving Docking Accuracy*<br />

• CDOCKER on AstexDiverse Dataset** (85<br />

diverse, high-resolution protein-ligand<br />

complexes)<br />

Prepared X-ray<br />

Protein- Ligand<br />

Complex<br />

Calculate CDOCKER <strong>QM</strong> charges<br />

for ligand<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Randomize<br />

Ligand Conformation<br />

Top<br />

Pose<br />

Dock with<br />

CDOCKER<br />

CDOCKER<br />

Dock with<br />

CDOCKER<br />

CDOCKER-<br />

<strong>QM</strong>-CDOCKER<br />

* Cho et al, J Comput Chem 26: 915–931, 2005<br />

** Hartshorn et al. JMC 2007<br />

Top<br />

Pose<br />

Top<br />

Pose<br />

Calculate RMSD<br />

to X-ray<br />

Calculate RMSD<br />

to X-ray<br />

Success<br />

Avg.<br />

RMSD<br />

Success<br />

Avg.<br />

RMSD<br />

First<br />

Pose<br />

72.62% 73% 72.62% 73%<br />

1.6331 1.6 1.6331 1.6<br />

First<br />

Pose<br />

77.38% 79%<br />

1.3856 1.4<br />

Poses are scored with CDOCKER Energy:<br />

sum of electrostatics+vdW interaction energy + ligand strain E<br />

X-Ray (A)<br />

Best<br />

Pose<br />

88.10% 88% 88.10% 88%<br />

1.0289 1.0 1.0289 1.0<br />

X-Ray (B)<br />

Best<br />

Pose<br />

90.48% 88%<br />

0.9114 1.3<br />

19


<strong>QM</strong>/MM Applications: Improving Docking Accuracy<br />

•<br />

• Pipeline Pilot workflow for CDOCKER-<strong>QM</strong>-CDOCKER<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Available options:<br />

ESP, Hirshfeld, Mulliken<br />

Available Options:<br />

Coarse/Medium/Fine.<br />

Affects the basis set, k-point,<br />

and SCF convergence criteria<br />

Available Options: local<br />

(LDA) potentials (PWC,<br />

VWN) and gradientcorrected<br />

(GGA) potentials<br />

(PW91, BP, PBE, BLYP, BOP,<br />

VWN-BP, RPBE, HCTH).<br />

20


<strong>QM</strong>/MM Applications: Improving Docking Accuracy<br />

• CDOCKER-<strong>QM</strong>-CDOCKER on AstexDiverse dataset:<br />

success by RMSD bin<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

< 0.5 Å < 1.0 Å < 1.5 Å < 2.0 Å<br />

Only single, top-ranked<br />

pose for each PDB complex considered<br />

CDOCKER First Pose<br />

<strong>QM</strong>-CDOCKER First Pose<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

CDOCKER Best Pose<br />

<strong>QM</strong>-CDOCKER Best<br />

< 0.5 Å < 1.0 Å < 1.5 Å < 2.0 Å<br />

Best-RMSD pose (to X-ray)<br />

out of 10 docked poses considered<br />

21


<strong>QM</strong>/MM Application: Cation-Pi Interaction Modeling<br />

• Investigate the binding of Compound 1(active<br />

against Histamine H3 receptor) on AChE 1<br />

• Goal was to design dual-acting compound<br />

• Hypothesis of two cation-pi interactions<br />

between ligand and receptor<br />

• Docking (CDOCKER) of Compound 1 into AChE<br />

receptor (PDB ID 1EVE) yielded a pose in<br />

position to make cation-Pi interactions<br />

• Cation-Pi not modeled well by force fields<br />

• <strong>QM</strong>/MM geometry optimization suggests<br />

cation-Pi interactions<br />

– 51 hrs on 2 processors<br />

– Multiplicity: Smart<br />

– Quality: Ultra Coarse<br />

– Infinite nonbonded cutoffs<br />

– No constraints/restraints<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Einitial = -15676.278608 kcal/mol<br />

Efinal = -16904.454283 kcal/mol<br />

1. Bembenek, S. D.. et al., Bioorg. Med Chem. (2008),<br />

22


<strong>QM</strong>/MM Application: Optimizing Heme systems<br />

• Starting Structure: PDB ID 1P2Y 1 , Cytochrome P450CAM<br />

in complex with (S)-(-)-Nicotine<br />

nicotine<br />

Cys 357<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Arg 112<br />

His 355<br />

1. Biochemistry 42: 11943-11950<br />

Arg 299<br />

<strong>QM</strong>/MM min.<br />

2 proc. 2.6 GHz<br />

Xeon ca. 4 days<br />

nicotine<br />

Cys 357<br />

Arg 112<br />

His 355<br />

• improved coordination between Arg and<br />

heme carboxyl groups<br />

• coordination of Fe (II)<br />

Arg 299<br />

23


<strong>QM</strong>/MM Application: Optimizing Heme systems<br />

• Starting Structure: PDB ID 1P2Y 1 , Cytochrome P450CAM<br />

in complex with (S)-(-)-Nicotine<br />

6-coordination of Zinc in <strong>QM</strong>/MM optimized structure<br />

No constraints/restraints were used in the <strong>QM</strong>/MM optimization experiment<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

1. Biochemistry 42: 11943-11950<br />

Initial QUANTUMm Energy = -29288.570302 kcal/mol<br />

Initial <strong>QM</strong> Energy = -13252.109685 kcal/mol<br />

Initial MM Energy = -16036.460617 kcal/mol<br />

QUANTUMm Energy = -33719.154699 kcal/mol<br />

<strong>QM</strong> Energy = -14279.192571 kcal/mol<br />

MM Energy = -19439.962129 kcal/mol<br />

24


<strong>QM</strong>/MM Application: Modeling Metals in Proteins<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Zinc Metalloproteins: important drug targets<br />

ligand bound to zinc ion<br />

development of zinc force field difficult<br />

coordination pattern<br />

electrostatics<br />

vdW interactions<br />

<strong>QM</strong>/MM description challenging<br />

large <strong>QM</strong> zone<br />

<strong>QM</strong>/MM bonds<br />

From Jain et al , PROTEINS 2007<br />

25


<strong>QM</strong>/MM Application: Optimization of MMP Binding Sites<br />

• Previous study 1 describes design and docking studies with matrix<br />

metalloproteinase-9 (MMP-9) and a set of hydroxamate inhibitors<br />

• The study was replicated in Discovery Studio 2.1<br />

– Sketch “Compound 1”<br />

– Dock to MMP9 receptor (PDB ID 1GKC) with CDOCKER<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Top docked pose using CDOCKER<br />

1. J. Med. Chem, 2005, 48, 5437-5447<br />

2. J. Med. Chem. 2002, 45, 919-929<br />

Known hydroxamate interactions in MMP-9<br />

binding site 2<br />

26


<strong>QM</strong>/MM Application: Optimization of MMP Binding Sites<br />

• Previous study 1 describes design and docking studies with matrix<br />

metalloproteinase-9 (MMP-9) and a set of hydroxamate inhibitors<br />

• The study was replicated in Discovery Studio 2.1<br />

– Sketch “Compound 1”<br />

– Dock to MMP9 receptor (PDB ID 1GKC)<br />

– Take First Pose, optimize protein-ligand complex with <strong>QM</strong>/MM<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

1. J. Med. Chem, 2005, 48, 5437-5447<br />

2. J. Med. Chem. 2002, 45, 919-929<br />

27


<strong>QM</strong>/MM Application: Optimization of MMP Binding Sites<br />

• Some details of <strong>QM</strong>/MM experiment<br />

– 3 His, Zinc, Glu402, Ligand included in <strong>QM</strong> region<br />

– Cut between <strong>QM</strong> and MM region made at the CA-CB bond of residue<br />

side chains<br />

– 5Å shell around <strong>QM</strong> region subjected to MM (CHARMm)<br />

– Rest of the system kept frozen (as per published study 1 )<br />

– 2000 steps of minimization, PBE Functional, Ultra-Coarse setting<br />

(Basis Set: minimal, Integration Grid: xcoarse, DMol3 Cutoff 3.0 Å,<br />

SCF Density Convergence 5.0e-4)<br />

– 7 hours on 4 CPU 1.8GHz Opteron machine<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

1. J. Med. Chem, 2005, 48, 5437-5447<br />

28


<strong>QM</strong>/MM Application: Optimization of MMP Binding Sites<br />

• Previous study 1 describes design and docking studies with matrix<br />

metalloproteinase-9 (MMP-9) and a set of hydroxamate inhibitors<br />

• The study was replicated in Discovery Studio 2.1<br />

– Sketch “Compound 1”<br />

– Dock to MMP9 receptor (PDB ID 1GKC)<br />

– Take First Pose, optimize protein-ligand complex with <strong>QM</strong>/MM<br />

His411<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Zn<br />

Before <strong>QM</strong>/MM (Docked Pose)<br />

His405<br />

1. J. Med. Chem, 2005, 48, 5437-5447<br />

2. J. Med. Chem. 2002, 45, 919-929<br />

Glu402<br />

His401 Zn<br />

His411<br />

After <strong>QM</strong>/MM<br />

His405<br />

Glu402<br />

His401<br />

29


<strong>QM</strong>/MM Application: Optimization of MMP Binding Sites<br />

• Previous study 1 describes design and docking studies with matrix<br />

metalloproteinase-9 (MMP-9) and a set of hydroxamate inhibitors<br />

• The study was replicated in Discovery Studio 2.1<br />

– Sketch “Compound 1”<br />

– Dock to MMP9 receptor (PDB ID 1GKC)<br />

– Take First Pose, optimize protein-ligand complex with <strong>QM</strong>/MM<br />

His411<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Zn<br />

His405<br />

1. J. Med. Chem, 2005, 48, 5437-5447<br />

2. J. Med. Chem. 2002, 45, 919-929<br />

Glu402<br />

His401<br />

<strong>QM</strong>/MM optimized distances and partial charges in a<br />

hydroxamate-MMP9 complex from a published study 1<br />

30


<strong>QM</strong>/MM Application: Optimization of MMP Binding Sites<br />

• Comparison of post-optimized interactions of two MMP-9 actives<br />

– Ongoing work: <strong>QM</strong>/MM-based scoring and rank-ordering of actives in the series 1,2<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

His411<br />

“Compound 1”<br />

K i = 5.05 nM<br />

<strong>QM</strong>/MM Inter E =<br />

-246.95 Kcal/mol<br />

Zn<br />

His405<br />

1. J. Med. Chem, 2005, 48, 5437-5447<br />

2. J. Med. Chem. 2002, 45, 919-929<br />

Glu402<br />

His401<br />

His411<br />

“Compound 20”<br />

K i = 0.08 nM<br />

<strong>QM</strong>/MM Inter E =<br />

-266.92 Kcal/mol<br />

Zn<br />

Glu402<br />

His401<br />

<strong>QM</strong>/MM optimized distances and partial charges in a<br />

hydroxamate-MMP9 complex from a published study1 <strong>QM</strong>/MM optimized distances and partial charges in a<br />

hydroxamate-MMP9 complex from a published study<br />

His405<br />

1<br />

His405<br />

31


Summary/ Future Plans<br />

• <strong>QM</strong>/MM methods have been shown to provide improvement over<br />

pure force field (CHARMm) calculations<br />

• <strong>QM</strong>/MM methods have been applied in real-life computational tasks<br />

– Improved partial charges for docking<br />

– Modeling of special interactions such as cation-pi<br />

– Refinement of heme-containing systems<br />

– Optimization of metalloprotein active sites<br />

• accurate interaction energies<br />

• Ongoing validation<br />

– <strong>QM</strong>/MM-based scoring function<br />

– Comparison of DMol3 ESP charges with AM1-BCC, others<br />

– Torsion profiles (ΔE vs. torsional angle) for select small molecules<br />

• Future developments on <strong>QM</strong>/MM will be exclusively based on<br />

customer feedback<br />

– <strong>QM</strong>/MM based scoring function<br />

– Semi-empirical methods for <strong>QM</strong><br />

– Modeling reaction mechanisms<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

32


Thank you!!!<br />

• Thank You for attending today’s webinar. If you have any further questions please<br />

e-mail me at: drisal@accelrys.com<br />

• You can also contact us using the form on our website:<br />

http://accelrys.com/company/contact/<br />

• We will be exhibiting at the following upcoming events:<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

– CHI Protein Kinase Targets (June 23 – 25, Boston, Booth #4)<br />

– CHI Structure Based Design (June 25 – 27, Boston, Booth #7)<br />

– Drug Discovery Technology and Development (August 4 – 7, Boston, Booth #512)<br />

– ACS Fall 2008 (August 17 – 21, Philadelphia, Booth #211)<br />

• Reminder: the next webinar in this series will be:<br />

– Pharmacophore Guided Fragment-Based Drug Design<br />

Dr. Tien Luu – July 10, 2008 at 7am PST and 10am PST<br />

33


<strong>QM</strong> ↔ MM coupling: Short-range<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

•<strong>QM</strong> ↔ MM van-der-Waals<br />

interactions<br />

handled classically (i.e., by<br />

MM server)<br />

•Requires Lennard-Jones<br />

parameters for <strong>QM</strong> region<br />

34


HOMO/LUMO Visualization (Work in Progress…)<br />

© 2007 <strong>Accelrys</strong>, Inc.<br />

Diene Dienophile<br />

Diels-Alder Reaction<br />

The electron-rich HOMO of the diene and the<br />

Electron-vacant LUMO of the dienophile must<br />

be in a stacked orientation (top-bottom) for<br />

maximal overlap of the orbitals for the reaction<br />

to proceed<br />

HOMO LUMO<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!