31.07.2013 Views

Peng, Y.K.M. - Advanced Projects Homepage

Peng, Y.K.M. - Advanced Projects Homepage

Peng, Y.K.M. - Advanced Projects Homepage

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ST startup & plasma<br />

source R&D for FNSF<br />

Y.-K. M. <strong>Peng</strong>, for<br />

R.H. Goulding, J.B. Caughman, L.W. Owen,<br />

T. S. Bigelow, S.J. Diem, G.Y. Chen, J.M. Canik,<br />

T.M. Biewer, S.J. Meitner, W.D. McGinnis (ORNL,<br />

USA)<br />

J. Mailloux, C. Gurl, J. R. Hawes, V. Chevchenko,<br />

J.H. Griffiths, P, Finburg (CCFE, U.K.)<br />

G.N. Luo, B. Li, X. Zhu, F. Ding (ASIPP, PRC)<br />

First IAEA DEMO Program Workshop<br />

UCLA, Los Angeles, CA, USA<br />

15-18 October 2012


Example fusion nuclear science facility<br />

(FNSF) considerations<br />

• Objective: Develop experimental data base for all fusion reactor<br />

internals and, in parallel with ITER, provide the basis for DEMO<br />

• Some important up-front questions<br />

– FNSF geometry: aspect ratio; other confinement configurations?<br />

– Materials: what to be used, and tested, in FNSF?<br />

• Measures of required performance<br />

– Research in full fusion nuclear environment?<br />

– How much power demonstration tests to include?<br />

– What results to deliver, at what cost and risk?<br />

2 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


Adjacent possible, compact normal<br />

conducting FNSF concepts include ST<br />

N/C Concepts I II III<br />

R (m) 0.85 1.3 2.7<br />

P DT (MW) 35 25 – 75 100 – 200<br />

W L (MW/m 2 ) 1.0 0.3 – 1.0 0.5 – 1.0<br />

Q DT ≤ 1 ≤ 3 ≤ 7<br />

Poten


Outline: ST startup and plasma source<br />

research to reduce cost and risk of FNSF<br />

• Of interest to compact FNSF options that use steady state<br />

normal conducting magnets<br />

• RF plasma startup free of central solenoid<br />

– Smallest possible size and fusion power for given neutron flux<br />

– Intense plasma source research expected to result in higher heat<br />

fluxes<br />

• RF-driven, intense plasma source research in linear<br />

configuration<br />

– No solid electrodes → intrinsically steady state; add no impurities<br />

– Flexibility to test different PMI/PFC options at reduced size & cost<br />

• Summary<br />

4 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


ST NSTX, research Pegasus, increased MAST, QUEST, to 24 LATE, experiments TST-2, TS-3, in two TS-4,<br />

decades, HIST, SUNIST preparing are conducting NSTX-U start-up & MAST-U research<br />

for 2015-16<br />

NSTX (US)<br />

Pegasus (US)<br />

LTX (US)<br />

Globus-M (RF)<br />

Proto-<br />

Sphera (It)<br />

5 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22nd ETE (Brazil) SUNIST (PRC) UTST (J)<br />

2012<br />

LATE (J) HIST (J)<br />

TS-4 (J)<br />

MAST (UK)<br />

QUEST (J)<br />

TST-2 (J)


6 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


7 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


8 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


9 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


10 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


11 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


ORNL gyrotron & wave guide components to be added<br />

and commissioned for MAST experiments in early 2013<br />

12 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012<br />

• Gyrotron: 350 kW, 28 GHz, 300<br />

ms<br />

• Improved wave guide<br />

– Loss measurement & reduction<br />

– New route<br />

– Mitre bends<br />

– Corrugated wave guide<br />

• Goal: test delivering 200 kW to<br />

plasma for 200 ms → 100kA


Summary – ST start-up research<br />

• Solenoid-free plasma start-up test: a major worldwide research<br />

collaboration<br />

• Produced 30-50 kA currents at 0.2-0.4 A/W for R=0.5-0.8m<br />

• Progressing toward 100 kA level tests to understand physics<br />

principles in 2013<br />

13 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


PMI/PFC choices depend on<br />

options of internals<br />

ITER<br />

14 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22nd 2012<br />

Internals Options:<br />

A) Hot divertor surface with H 2 O-cooled<br />

steel wall components (ITER)<br />

1. Water-cooled W surface divertors<br />

2. Water-cooled steel shield-blocks<br />

3. Six TBM’s each of ~1m 2 area<br />

B) All-W PFC’s (EU)<br />

1. Surface T = 750C – 1000C<br />

2. Divertor “fingers” with He jet cooling<br />

3. Solid or Pb-Li liquid breeder blankets<br />

C) Large flowing liquid Li PFC’s (US)<br />

1. Surface T = 450C+, inlet T ~ 200C<br />

2. He cooled internals<br />

3. Avoid solid surface PMI<br />

D) Water-cooled solid breeder blankets (JN)<br />

1. Super critical steam ~300C, He-purged<br />

solid breeder<br />

2. Extend LWR materials and technologies<br />

3. Extend LWR power conversion efficiency<br />

Different PMI/PFC research options favor the<br />

flexibility of the linear testing configuration


15 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


Plasma source goal: produce high-recycling, strongly<br />

coupled PMI regime, guided by ITER divertor plasma<br />

1m<br />

ITER divertor channel<br />

ITER Plasma Core<br />

Plasma Boundary<br />

Plasma Heat &<br />

Particle Fluxes<br />

Divertor Target<br />

Upstream<br />

Hot Plasma Channel<br />

Downstream<br />

10 MW/m2 max on target<br />

What source plasma parameters are required?<br />

16 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012<br />

High-recycling, strongly<br />

coupled PMI regime<br />

Linear plasma channel<br />

connected to a test target<br />

Intense<br />

Source<br />

Upstream Downstream<br />

Hot Plasma Channel<br />

Magnetic Field<br />

10 MW/m 2<br />

Test Target


Building block: Large, high-density helicon<br />

• Plasma diameter = 12 cm<br />

• n e found to maximize at (He)<br />

– B middle ~ 0.07T & 0.3T<br />

– B max /B middle ~ 2.5 & 6.7<br />

– n e ≤ 6x10 19 /m 3<br />

• Injected power ≤ 90kW (D)<br />

– n e ≤ 4x10 19 /m 3 (70kW, 1150 sccm)<br />

• Stationary condition in plasma-neutralswall<br />

surface interaction time scales<br />

0<br />

0 1 2 Z(m)→<br />

18 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22nd 0<br />

2.28 2.3 2.32 2.34 2.36 2.38<br />

2012<br />

Time (s)<br />

n e (10 19 /m 3 )<br />

↑<br />

R(m)<br />

0.1<br />

0.05<br />

n e ( 10 19 m 3 )<br />

6<br />

4<br />

Helicon B-field lines<br />

B max<br />

B middle<br />

2<br />

Power = 100kW, He<br />

0<br />

0 0.2<br />

6<br />

0.4 Bmiddle (T) →<br />

4<br />

2<br />

0<br />

1 3 5 Bmax /Bmiddle →<br />

5<br />

4<br />

3<br />

2<br />

1<br />

upstream<br />

downstream<br />

A<br />

B<br />

A<br />

RF Power<br />

B


Building block: electron<br />

heating in over-dense<br />

mirror plasmas<br />

• Tested whistler and EBW launching and<br />

absorption at modest fields and densities<br />

• Demonstrated absorption and density<br />

increase in over-dense plasmas<br />

• Heating affected by neutral pressure<br />

20 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22nd 0.0<br />

2012<br />

Plasma Density (10 11 /cm 3 )<br />

Electron Temperature (eV)<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

18 GHz = 8 kW<br />

6 GHz = 2.3 kW<br />

Ne 18 GHz<br />

Ne 18 GHz + 6 GHz EBW<br />

Ne 18 GHz + 6 GHz Whistler<br />

Over-dense<br />

at 6 GHz<br />

Pressure ~ 5x10<br />

0.0<br />

0.0 10.0 20.0 30.0 40.0<br />

Radial Position (cm)<br />

50.0<br />

-4 Torr<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

18 GHz = 8 kW<br />

6 GHz = 2.3 kW<br />

Pressure ~ 5x10 -4 Torr<br />

Te 18GHz<br />

Te 18GHz+6GHz EBW<br />

Te 18GHz + 6GHz Whistler<br />

0.0 10.0 20.0 30.0 40.0 50.0<br />

Radial Position (cm)


Integration objectives, capabilities, and research<br />

• Investigate the addition of electron<br />

heating to helicon plasma<br />

– Heating of helicon plasma electrons<br />

– Effects back on helicon plasma production<br />

– Neutral and plasma density control<br />

– RF power-to-plasma heat flux efficiency<br />

– Effects of plasma and impurity flow-back<br />

– ICRF launcher-plasma interactions<br />

magnetic<br />

field lines<br />

neutral & plasma<br />

density control<br />

magnets<br />

helicon<br />

plasma<br />

helicon<br />

launcher<br />

whistler wave<br />

launcher<br />

21 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22nd 2012<br />

(helicon + electron heaters)<br />

4m<br />

ICRF launcher<br />

plasma interaction<br />

EBW<br />

launcher<br />

electron<br />

heating<br />

flow<br />

back<br />

plasma<br />

heat flux<br />

moveable<br />

diagnostic<br />

disk-target<br />

ballast<br />

tank


Integration test (PhIX) assembly and facility<br />

• Assembly completed in September, 2012<br />

Building 7625<br />

22 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


Stepping from Integration<br />

to Prototype experiment<br />

• Simulation under way for Integration test<br />

• Add whistler and EBW heating (20 kW)<br />

• Extend to Prototype<br />

– Source fueling and power handling<br />

– Plasma boundary & neutral pressure<br />

– Ion heating (revive Archimedes RF supply!)<br />

– Plasma & neutrals flow to target & back-flow<br />

– Target particle recycling & impurity control<br />

gas injection<br />

& W armor<br />

W plasma limiter /<br />

neutral baffles<br />

↑<br />

Z(m)<br />

Prototype High Intensity Source Experiment (PHISX)<br />

23 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22nd 2012<br />

fueling<br />

Integration simulation<br />

helicon<br />

electron<br />

heating<br />

source-to-target<br />

transport section<br />

W target<br />

assembly<br />

backflow<br />

0.1<br />

0<br />

0 1 2 Z(m)→<br />

9<br />

ion cyclotron<br />

wave<br />

P elec (MW/m 3 )<br />

ne (1019 /m3 1.8 1.4<br />

) 0.4<br />

10 8<br />

Te (eV) 3<br />

0<br />

0<br />

1


ASIPP-ORNL collaboration on Prototype<br />

• Critical new components: CAD concept → 3D models → fab drawings →<br />

fabrication → inspection → shipping (early FY13)<br />

• Include all-tungsten plasma facing components (armor, limiter-baffles, targets)<br />

• Enable proof-of-principle experimentation on new high intensity plasma source<br />

– Capable for up to 15 MW/m 2 peak thermal plasma heat flux, up to 1-s<br />

• Experimental research collaboration, involving US and CN researchers<br />

ASIPP in-kind contribution<br />

24 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012


Summary – ST startup, plasma source<br />

research<br />

• Solenoid-free plasma start-up test: a major worldwide research<br />

collaboration<br />

• Produced 30-50 kA currents at 0.2-0.5 A/W for R=0.5-0.8m<br />

• Progressing toward 100 kA level tests to understand physics<br />

principle in FY13<br />

• Intense plasma source required to enable flexible testing of several<br />

PMI/PFC options<br />

• Determined required plasma source parameters<br />

• Roadmap: Helicon + electron heating ⇒ Integration (FY13) ⇒<br />

Prototype (ASIPP-ORNL collaboration, hopefully FY14 operation)<br />

These research efforts aim to enable compact, lower<br />

cost options of FNSF<br />

25 Managed by UT-Battelle<br />

for the U.S. Department of Energy Juergen Rapp, PFC meeting, June 22 nd 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!