17.08.2013 Views

E.Diegele,IFMIF Necessity and Status of Preparation.pdf

E.Diegele,IFMIF Necessity and Status of Preparation.pdf

E.Diegele,IFMIF Necessity and Status of Preparation.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>IFMIF</strong><br />

<strong>Necessity</strong> <strong>and</strong> <strong>Status</strong> <strong>of</strong> <strong>Preparation</strong><br />

Presented by Eberhard <strong>Diegele</strong>, F4E<br />

International Workshop, MFE Road Mapping in the ITER Era<br />

8th 8 September 2011 Princeton<br />

th September 2011, Princeton<br />

This contribution <strong>and</strong> any comments during the workshop<br />

do not necessarily represent the opinion or the policy <strong>of</strong> the EC or F4E<br />

Slide 1


Elements <strong>of</strong> <strong>of</strong> a a Strategy Strategy for Materials R&D –<br />

for the next Two Decades (I)<br />

RAFM steels „only“ choice for TBM (alternative options with high<br />

risk)<br />

– Development mission driven. Technology part <strong>of</strong> the programme<br />

– Full characterisation <strong>of</strong> RAFM steels in the next decade (for TBM use).<br />

– „Code „ q qualification“ required q up p to some dpa p [RCC [RCC-MRx/SDC].<br />

[ MRx/SDC]. ]<br />

– Irradiation campaigns in fission reactors („Material Test Reactors“).<br />

Test materials with fission neutrons from nuclear reactors:<br />

• Adequate flux flux.<br />

• BUT<br />

• Energy spectrum: not adequate, high energy tail missing.<br />

• Insufficient H <strong>and</strong> He production by transmutation.<br />

2<br />

<strong>of</strong> 26 slides


Elements <strong>of</strong> a Strategy for Materials R&D –<br />

for f ffor th the next t Two T Decades D d (II)<br />

(II)<br />

Construct <strong>and</strong> <strong>and</strong> start start operation <strong>of</strong> a 14 MeV neutron facility facility (<strong>IFMIF</strong>)<br />

• Adequate flux,<br />

• Fusion typical irradiation temperatures<br />

• At “h “homogeneous” ” t test t conditions diti throughout th h t a sample sample. l<br />

• Stable irradiation conditions (T) (#)<br />

<strong>IFMIF</strong><br />

is „m<strong>and</strong>atory“ to generate engineering data for DEMO design rules for<br />

E End d <strong>of</strong> f Life Lif conditions. diti<br />

is useful in testing materials <strong>and</strong> sub sub-components components prior to approval for<br />

application in power plants. DEMO will provide the endurance component<br />

tests.<br />

Is a most valuable source for verifications <strong>of</strong> multi-scale multi scale modelling predictions.<br />

Code qualify q y material:<br />

Property f (T, Tirrad, fluence, environment, load-stress-strain) – This allows to<br />

together with a code framework transferability to other conditions<br />

With temperature excursions (annealing <strong>of</strong> defects) – risk to loose data point<br />

3<br />

<strong>of</strong> 26 slides


Elements <strong>of</strong> <strong>of</strong> a a Strategy Strategy for Materials R&D –<br />

for the next Two Decades - (III)<br />

The He issue<br />

• Fission reactors produce p insufficient rates <strong>of</strong> He <strong>and</strong> H<br />

• Irradiation in fission reactors gives only non non-conservative conservative approach for<br />

degradation <strong>of</strong> materials materials. .<br />

Various tricks tricks or methods used:<br />

– B <strong>and</strong> Ni-doped steels in MTR: ~a few appm He/dpa.<br />

– Fe54 enriched steels in MTR: ~2 appm He/dpa.<br />

– Mixed spallation-neutron spectrum: ~100 appm He/dpa.<br />

– (Multi) Ion beam irradiation: up to 10000 appmHe/dpa.<br />

Different material<br />

Cost. 1kg 500k$<br />

Transmutations<br />

Transmutations<br />

pulsed<br />

10 micro-meter<br />

• All these experiments experiments p needed to increase knowledge g <strong>and</strong> underst<strong>and</strong>ing g <strong>of</strong><br />

the microstructure.<br />

• Modelling <strong>and</strong> underst<strong>and</strong>ing <strong>of</strong> irradiation results under various conditions<br />

is clearly clearly needed.<br />

4<br />

<strong>of</strong> 26 slides


Elements <strong>of</strong> <strong>of</strong> a a Strategy Strategy for Materials R&D –<br />

for the next Two Decades - (IV)<br />

Accompanying programs:<br />

– Modeling <strong>of</strong> irradiation effects towards an underst<strong>and</strong>ing <strong>of</strong><br />

irradiation damage over the full scale (from quantum physics to<br />

engineering analyses).<br />

– “Extrapolation” <strong>of</strong> dislocation damage from fission data to fusion<br />

environment.<br />

– Simulations with predictive capability.<br />

– Integrated approach with “physics-based” modeling <strong>and</strong><br />

simulations in the meso to macro scale at the interface between<br />

materials science <strong>and</strong> technical application (simulating “real<br />

conditions” <strong>and</strong> “real components”) will be an key for success.<br />

5<br />

<strong>of</strong> 26 slides


Elements <strong>of</strong> <strong>of</strong> a a Strategy Strategy for Materials R&D –<br />

for the next Two Decades - (V)<br />

In parallel: Optimization <strong>and</strong> further development <strong>of</strong> RAFM steels<br />

– For use with DEMO<br />

In parallel: Optimization <strong>and</strong> further development <strong>of</strong> ODS/NCF ODS/NCF-type type<br />

steels<br />

In parallel parallel: De Development elopment <strong>of</strong> „new“/“advanced“ ne “/“ad anced“ materials materials for high<br />

high<br />

temperature application.<br />

Including, both<br />

Irradiation campaigns in fission reactors (high fluence, ~100 dpa).<br />

Strong g science based programme p g to accumulate knowledge g <strong>and</strong><br />

underst<strong>and</strong>ing <strong>of</strong> irradiation effects to „design materials“.<br />

6<br />

<strong>of</strong> 26 slides


This summary could have been from yesterday<br />

However, it is from ... 2006 ...<br />

Long Term Materials Development<br />

The EU Road Map<br />

E. <strong>Diegele</strong><br />

EDFA EDFA-CSU CSU Garching<br />

IEA-Meeting July 10-12, 2006, Tokyo, Japan<br />

Slide 7<br />

7<br />

<strong>of</strong> ? slides


Fusion Materials Development Path<br />

Materials Performance/Component specific Loading - Stage- IV<br />

Demonstrate solution to concept-specific issues<br />

Performance under complex loading history (T, stress, multi-axial strain<br />

fields & gradients) & environmental conditions<br />

Qualified Material, Demonstration <strong>of</strong> Performance - Stage- III<br />

Complete database for final design & licensing<br />

Validate constitutive equations & models<br />

Demonstrate life time goals (He issue)<br />

Demonstration <strong>of</strong> Performance Limits - Stage- II<br />

Database for conceptual design<br />

Demonstrate pro<strong>of</strong>-<strong>of</strong>-principle solutions, design methodology<br />

Evaluation-modification cycle to optimize performance<br />

Materials Screening & Materials “Design”` - Stage- I<br />

Identify c<strong>and</strong>idate alloy composition, compatibility, irradiation stability,<br />

pro<strong>of</strong> <strong>of</strong> principle for fabrication <strong>and</strong> joining technologies -Validation Validation <strong>of</strong><br />

models <strong>and</strong> tools (microstructure)<br />

Slide 8


Fusion Materials Development Path<br />

Facilities needed<br />

Performance under component specific loading Stage IV<br />

„FNT(S)F“ FNT(S)F“ CTF<br />

Not any facility existing<br />

<strong>IFMIF</strong> <strong>and</strong> FNSF are complimentary in an<br />

INTERNATIONAL Road Map or approach<br />

Qualified materials materials, full demonstration <strong>of</strong> performance Stage III<br />

14 MeV neutrons or fusion specific n-spectra >>> <strong>IFMIF</strong><br />

Demonstration <strong>of</strong> performance limits Stage II<br />

Materials “Design” R&D Stage I<br />

To some limited extend ITER-TBM<br />

Fi Fission i reactors t (MTR <strong>of</strong> f next t generation ti like lik JJules-Horowitz) l H it )<br />

Complementary Modelling essential<br />

(<strong>IFMIF</strong>)<br />

Fission reactors (MTR)<br />

Multi-ion-beam irradiation facilitiers<br />

Slide 9


Strategy on the address<br />

fusion neutron irradiation effects<br />

Experimental underst<strong>and</strong>ing<br />

Dislocation damage, He effects, H effects, etc.<br />

Neutron irradiation (fission) Ion beam irradiation)<br />

SSTT<br />

Mechanical property data<br />

Tensile<br />

Hardnes<br />

s(Hv)<br />

Nano<br />

hardness<br />

(Hm)<br />

Microstructure data<br />

TEM<br />

Mechanical underst<strong>and</strong>ing<br />

Theory <strong>of</strong><br />

Irradiation effect<br />

Mechanical Microstructure<br />

property<br />

model<br />

evolution<br />

model<br />

Structure S ucuedeo deformation a o<br />

model<br />

Toughness<br />

CCreep<br />

Fatigue<br />

correlation<br />

Interpretatio<br />

SEM<br />

Residu<br />

e<br />

Others<br />

Theoretical prediction<br />

(Misc)<br />

n <strong>of</strong><br />

mechanical<br />

properties<br />

Evaluation <strong>of</strong><br />

fusion neutron<br />

irradiation effects<br />

Microstructure evolution<br />

Etc.<br />

<strong>IFMIF</strong> irradiation<br />

on mechanical<br />

property<br />

DEMO<br />

Blanket<br />

H. Tanigawa, Vienna Dec 2011, IAEA, modified<br />

Design<br />

Computational Simulation<br />

Irradiation fields correlation (dpa/s, PKA)<br />

Point defect migration, agglomeration<br />

Slide 10


Rick Kurtz, 7 th Sept Princeton<br />

Slide 11


Long History – Recall from...<br />

Rick Kurtz, 7 th Sept Princeton<br />

Slide 12


Long History – Recall from...<br />

Rick Kurtz, 7 th Sept Princeton<br />

Slide 13


Indicate that slides was provided<br />

by this group <strong>of</strong> authors<br />

<strong>IFMIF</strong> in the Context <strong>of</strong> Materials Research<br />

AA. Möslang Möslang, NN. Baluc Baluc, E. E <strong>Diegele</strong>, <strong>Diegele</strong> UU. Fischer Fischer, RR. Heidinger Heidinger, AA. Ibarra Ibarra, PP.<br />

Garin, V. Massout, G. Miccichè, A. Mosnier, P. Vladimirov<br />

Authors on behalf <strong>of</strong> the fusion materials <strong>and</strong> <strong>IFMIF</strong> community<br />

KIT – University <strong>of</strong> the State <strong>of</strong> Baden-Wuerttemberg <strong>and</strong><br />

National Laboratory <strong>of</strong> the Helmholtz Association www.kit.edu


15<br />

Perspectives for fusion<br />

Conception Construction Exploitation Application <strong>of</strong> results<br />

Accomppanying<br />

Programmme<br />

in<br />

Physicss<br />

<strong>and</strong> in<br />

Techn nology<br />

ITER (1/2 GW th)<br />

Materials, Intense n-source<br />

Environment <strong>and</strong> Safety<br />

DEMO (2-3 GW th)<br />

FPP (1.5 GW e)<br />

0 10 20 30 40 50 Years<br />

Large<br />

scale prroduction<br />

<strong>of</strong> electrricity<br />

A. Möslang et al.


High Performance Materials for Energy<br />

First Reactors<br />

Current Reactors<br />

Advanced Reactors<br />

Future Systems<br />

1-3 1 3 dpa < 200 dpa < 200 dpa<br />

1950 1970 1990 2010 2030 2050<br />

ITER <strong>IFMIF</strong><br />

Strategic Missions:<br />

• Electricity, Hydrogen, Heat<br />

• Contribute to lower greenhouse gas<br />

emission 1-3 dpa<br />

Specific challenges for fusion:<br />

• Short development path<br />

• More dem<strong>and</strong>ing loading conditions<br />

16<br />

20-40/year<br />

DEMO, Fusion Reactor<br />

< 150 dpa<br />

A. Möslang et al.


Main missions <strong>of</strong> an intense neutron source in<br />

roadmaps to fusion power<br />

Qualification <strong>of</strong> c<strong>and</strong>idate materials, in terms <strong>of</strong> generation <strong>of</strong><br />

engineering data for design design, licensing <strong>and</strong> safe operation <strong>of</strong> a fusion<br />

DEMO reactor, up to about full lifetime <strong>of</strong> anticipated use <strong>of</strong> DEMO<br />

Completion, calibration <strong>and</strong> validation <strong>of</strong> databases (today mainly<br />

generated from fission reactors <strong>and</strong> particle accelerators)<br />

Advanced material irradiation (towards power plant application)<br />

Promote Promote, verify or confirm selection processes<br />

Validation <strong>of</strong> fundamental underst<strong>and</strong>ing <strong>of</strong> radiation response <strong>of</strong><br />

materials h<strong>and</strong> in h<strong>and</strong> with computational material science<br />

Science-related modeling <strong>of</strong> irradiation effects should be validated <strong>and</strong><br />

benchmarked at length-scale <strong>and</strong> time-scale relevant for engineering<br />

application<br />

Experiments performed in <strong>IFMIF</strong> would validate assumptions or adjust<br />

parameters


TOP Level Requirements for an Intense Neutron Source<br />

Neutron spectrum<br />

Should simulate the first wall neutron spectrum <strong>of</strong> a fusion reactor as closely as<br />

possible p in terms <strong>of</strong> PKA spectrum, p , important p transmutation reactions, , <strong>and</strong> ggas<br />

production (He, H)<br />

Neutron fluence accumulation<br />

Up to 120 dpa dpaNRT in


TOP Level Requirements for an Intense Neutron Source<br />

Neutron spectrum<br />

Should simulate the first wall neutron spectrum <strong>of</strong> a fusion reactor as closely as<br />

possible p in terms <strong>of</strong> PKA spectrum, p , important p transmutation reactions, , <strong>and</strong> ggas<br />

production (He, H)<br />

Neutron fluence accumulation<br />

Up to 120 dpa dpaNRT in


Fusion Power Plants: Material Challenges beyond ITER<br />

20<br />

Blanket: ≤30 dpa/yr, 2.5MW/m 2<br />

Reduced Activation Structural Materials:<br />

- RAFM Steels (EUROFER) 300-550 °C<br />

- EUROFER-ODS 350-650 °C<br />

-SiCf/SiC for sophisticated concepts<br />

Functional materials<br />

- neutron multipliers, breeder ceramics<br />

Special purpose materials (diagnostic,…)<br />

Divertor: ≤10 dpa/yr 10-15 MW/m2 Divertor: ≤10 dpa/yr, 10-15 MW/m<br />

Refractory alloys (e.g. W-ODS)<br />

DEMOnstration<br />

Reactor Concept<br />

850 850-1200 1200 °CC ~600 600 - 1300 °C<br />

Nano-scaled RAF-ODS Steels<br />

Power: 130MW 1.30 MWe Plant Efficiency: 37-45%<br />

350-650 °C<br />

~250 - 800 °C<br />

5 m<br />

A. Möslang et al.


21<br />

Main Relations between ITER, , <strong>IFMIF</strong> <strong>and</strong> DEMO<br />

ITER<br />

Deuterium Deuterium-Tritium Tritium<br />

Test Blanket Modules<br />

DEMO Design Const. Operation<br />

<strong>IFMIF</strong> Const<br />

Fission Reactor <strong>and</strong><br />

Charged Particle Irradiation<br />

~30 dpa 70-100 dpa<br />

Operation Operation<br />

~10 years<br />

A. Möslang et al.


Is today <strong>IFMIF</strong> still the best choice?<br />

Neutronics: <strong>IFMIF</strong> vs. the Spallation p source MaRIE (1/8) ( )<br />

Total volume <strong>of</strong> irr. rigs ~ 0.4 l<br />

1 9<br />

3 7<br />

- Matter Radiation Interactions in Extremes -<br />

The Materials Test Station (MTS) ( ) is a spallation p source<br />

facility whose prime mission is the irradiation <strong>of</strong> fuels <strong>and</strong><br />

materials in a fast neutron spectrum.<br />

Eric Pitcher et al.<br />

al


<strong>IFMIF</strong> vs. the Spallation source MaRIE (2/8)<br />

Neutron spectra Relevant for damage<br />

<strong>and</strong> transmutations<br />

in steels<br />

1E16<br />

1 ]<br />

s -1 MeV -1<br />

ty [cm -2 neeutron<br />

fluux<br />

densit s<br />

1E15<br />

1E14<br />

1E13<br />

1E12<br />

1E11<br />

1E10<br />

1E9<br />

MTS sample can #3<br />

MTS sample can #7<br />

DEMO first wall<br />

<strong>IFMIF</strong> back plate<br />

<strong>IFMIF</strong> HFTM<br />

1E8<br />

1E-3 0,01 0,1 1 10 100 1000<br />

neutron energy [MeV]


<strong>IFMIF</strong> vs. the Spallation source MaRIE (3/8)<br />

Di Displacement l t DDamage ffor diff different t rigs i<br />

-1 ]<br />

nt [dpa fpy -<br />

dissplacemen<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

MaRIE 1 MW<br />

Neutron<br />

Proton<br />

2.0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

irradiation rig g #<br />

Irradiation Rig #<br />

5 dpa/y


<strong>IFMIF</strong> vs. the Spallation source MaRIE (4/8)<br />

Di Displacement l t DDamage: CComparison i <strong>of</strong> f ffacilities iliti<br />

Dammage,<br />

dpaa/fpy<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

acceleration l ti<br />

No possibility for<br />

accelerated irradiation<br />

DEMO FW <strong>IFMIF</strong> BP <strong>IFMIF</strong> HFTM MTS #3 MTS #7


<strong>IFMIF</strong> vs. the Spallation source MaRIE (5/8)<br />

HHelium li Production<br />

P d ti<br />

appm He/dpa H<br />

20<br />

MaRIE , 1 MW<br />

15<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8 9<br />

irradiation rig #<br />

DEMO relevant l t<br />

He/dpa ratio in<br />

steels.<br />

<strong>IFMIF</strong> meets the<br />

relevant ratio in<br />

all test modules


<strong>IFMIF</strong> vs. the Spallation source MaRIE (6/8)<br />

Flux/volume considerations<br />

MTS beam power = 11.8 8 MeV<br />

<strong>IFMIF</strong> High flux<br />

MTS test position<br />

MTS fuel position<br />

Volume for 20 dpa/fpy<br />

<strong>IFMIF</strong> : ~ 500 cm 3<br />

MTS: ~ 250 cm 3<br />

Volume for 30 dpa/fpy<br />

<strong>IFMIF</strong> : ~ 360 cm 3<br />

MTS: ~ 40 cm 3<br />

Irradiation volume in cm E Pitcher LANL<br />

3 Irradiation volume in cm E. Pitcher, LANL<br />

3


<strong>IFMIF</strong> vs. the Spallation source MaRIE (7/8)<br />

Spallation p product p accumulation<br />

Fraction F [wppm]<br />

Frraction<br />

[wwppm]<br />

10 6<br />

10 4 10 5<br />

10 2<br />

10 3<br />

10 0<br />

10 -2<br />

10 1<br />

4<br />

1x10 -4<br />

10 -6 10 -1<br />

10 -8<br />

Eur<strong>of</strong>er composition irradiated up to 25 dpa (NRT)<br />

Eur<strong>of</strong>er composition irradiated up to 25 dpa (NRT)<br />

Mn<br />

H He<br />

MMaRIE RIE sample l can #3 ( (n + p) )<br />

MaRIE sample can #3 (n + p)<br />

MaRIE sample can #7 (n + p)<br />

V<br />

MaRIE sample can #7 (n + p)<br />

HCLL Demo (FW)<br />

HCLL Demo (FW)<br />

HFTM<br />

HFTM<br />

Cr<br />

Ti<br />

B<br />

BBe N<br />

Al<br />

Li C N<br />

Na<br />

Al<br />

F<br />

Si<br />

Ne<br />

Mg<br />

O<br />

P<br />

S Cl Ar<br />

K Ca<br />

Sc<br />

Fe<br />

P & S !!<br />

0<br />

0 10<br />

10 20<br />

20 30 40 50<br />

Atomic<br />

At Atomic i<br />

number<br />

number b<br />

30<br />

60 70 80<br />

RAFM specification on S + P<br />


<strong>IFMIF</strong> vs. the Spallation source MaRIE (8/8)<br />

Effect <strong>of</strong> spallation elements on Ductile Brittle Transition<br />

KV (Jooule)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

O. DANILOVA, D. HAMON, Y. de CARLAN, A. ALAMO<br />

Effect <strong>of</strong> Dopping Elements on<br />

Impact Properties <strong>of</strong> EM10<br />

First SPIRE Progress meeting,<br />

Madrid. June 14-15, 2001<br />

EM10LCTi<br />

(ferritic)<br />

EM10 R<br />

Em10 Ti<br />

EM10 LM LMnS S<br />

EM10 TiPS<br />

0<br />

-160 -120 -80 -40 0 40 80 120 160 200 240 280 320<br />

Temperature (°C)<br />

Drop <strong>of</strong> upper shelf<br />

energy:<br />

+0.25% Ti<br />

+0.96% C<br />

+0.04% S<br />

-0.5% Mn<br />

+0.02% P<br />

Elements like S, P enhance severely the brittleness <strong>of</strong> Cr-steels


30<br />

Principle p <strong>of</strong> <strong>IFMIF</strong><br />

Source<br />

140 mA D +<br />

LEBT<br />

100 keV<br />

Accelerator<br />

(125 mA x 2)<br />

RFQ<br />

MEBT<br />

Half Wave Resonator<br />

Superconducting Linac<br />

Lithium Target<br />

25 ±1 mm thick, 15 m/s<br />

HEBT<br />

5 MeV 9 14.5 26 40 MeV<br />

RF Power System<br />

Beam shape:<br />

200 x 50 0 mm2 H<br />

Test Cell<br />

M<br />

L<br />

High (>20 ( 20 dpa/y, 0.5 L)<br />

2<br />

Medium (>1 dpa/y, 6 L)<br />

Low ( 8 L)<br />

Typical reactions<br />

7Li(d Li(d,2n) 2n) 7 Be<br />

6Li(d,n) 7Be 6Li(n,T) 4He A. Möslang et al.


31<br />

<strong>IFMIF</strong>: The Accelerator <strong>of</strong> all records!<br />

(W)<br />

m Power<br />

Beam<br />

Energy (MeV)<br />

Unprecedented Unprecedented challenges<br />

True “Laboratory” Laboratory for studying<br />

• highest intensity<br />

physics <strong>of</strong> High Intensity Beams<br />

•<br />

•<br />

•<br />

•<br />

highest space charge<br />

highest power<br />

longest RFQ<br />

Very eyhigh g aavailability aab y&& reliability eab y<br />

(halo ( formation, core – halo<br />

interaction, emittance growth,<br />

sudden particle loss)<br />

A. Möslang et al.


Current activities: EVEDA<br />

The Engineering Validation <strong>and</strong> Engineering Design Activities,<br />

conducted in the framework <strong>of</strong> the Broader Approach aim at:<br />

Providing the Engineering Design <strong>of</strong> <strong>IFMIF</strong><br />

Validating the key technologies, more particularly<br />

Th The llow energy part t <strong>of</strong> f th the accelerator l t ( (very hi high h iintensity, t it D CW b )<br />

+ CW beam)<br />

The lithium facility (flow, purity, diagnostics)<br />

The high flux modules (temperature regulation, resistance to irradiation)<br />

Strong priority has been put on Validation Activities, through<br />

The Accelerator Prototype (Constructed in EU EU,tested tested in Rokkasho Rokkasho, JA)<br />

The EVEDA Lithium Test Loop (to be tested in Oarai, Japan)<br />

Two complementary (temperature range) designs <strong>of</strong> High Flux Test<br />

MModules d l <strong>and</strong> d an iin-situ it CCreep ffatigue ti TTest t Module<br />

M d l


33<br />

<strong>IFMIF</strong>: Implementation <strong>and</strong> Actors <strong>of</strong> the Project<br />

<strong>IFMIF</strong>/EVEDA Integrated Project Team<br />

Project Leader<br />

EU Coordinator + FG Leaders JA Coordinator + FG Leaders<br />

European p Home Team<br />

Project Team<br />

In Rokkasho<br />

Japanese Home Team<br />

International Fusion Materials Community (Users)<br />

A. Möslang et al.


Engineering Validation Activities<br />

Th The Accelerator A l t Prototype<br />

P t t


35<br />

Whole Accelerator with Beam Dump<br />

Injector<br />

& LEBT<br />

Radio Frequency<br />

Quadrupole<br />

SRF Linac<br />

Cryomodule<br />

HEBT<br />

A. Möslang et al.


36<br />

International Fusion Energy gy Research Centre<br />

Administration &<br />

Computer Simulation &<br />

DDEMO R&D Buildingg<br />

Research Building RRemote Experimentation Buildingg DDEMO R&D Buildingg<br />

<strong>IFMIF</strong>/EVEDA<br />

All buildings were completed<br />

Accelerator Building<br />

in March 2010<br />

A. Möslang et al.


37<br />

Manufacturing g <strong>of</strong> the injector j<br />

Ion Source<br />

Blockhouse at Saclay<br />

120 kV<br />

250 mA<br />

Solenoid<br />

magnetic measurement High Voltage Power Supply<br />

A. Möslang et al.


Assembly y <strong>of</strong> the EVEDA Lithium Test Loop p<br />

Facility Building<br />

[40m W , 80m L , 33m H ]<br />

JAEA Oarai<br />

• Commissioning<br />

undergoing d i<br />

• Start <strong>of</strong> the<br />

experiments:<br />

June 2011<br />

38<br />

ELiTe Loop construction completed in November 2010<br />

A. Möslang et al.


Engineering g g<br />

Validation Activities<br />

The High Flux Test Module


40<br />

High g Flux Test Module current design g<br />

1<br />

2 3 4 5 6 7 8<br />

33,4,5,6: 6 Irradiation Rigs<br />

1,2,7,8: Companion Rigs<br />

About 1000 samples<br />

A. Möslang et al.


41<br />

HELOKA-LP<br />

FFull ll scale l helium h li gas coolant l t loop l<br />

Test section area<br />

Compressor station<br />

A. Möslang et al.


<strong>IFMIF</strong> schedule - Optimistic scenario<br />

p pp<br />

EVEDA phase<br />

Engineering activities<br />

Validation activities<br />

<strong>IFMIF</strong> International Review<br />

Decision to built <strong>IFMIF</strong> (that includes to<br />

built up the international consortium <strong>and</strong><br />

the site decision)<br />

<strong>IFMIF</strong> CODA<br />

Start‐up <strong>of</strong> international team<br />

Detailed engineering (site adaptation,<br />

validation activities results,…)<br />

<strong>IFMIF</strong> construction<br />

<strong>IFMIF</strong> commissioning <strong>and</strong> startup<br />

First data obtained<br />

2010 2015 2020 2025 2030<br />

2010 2015 2020 2025 2030<br />

Ad Advantages t<br />

• On time for DEMO design<br />

• Possible some impact on ITER TBM operation<br />

• Present <strong>IFMIF</strong> team <strong>and</strong> expertise is maintained along the time<br />

Challenge<br />

• Significant g EU budget g required q during g<br />

FP8 2014-2020


<strong>IFMIF</strong> schedule - Reference scenario<br />

EVEDA phase<br />

Engineering activities<br />

Validation activities<br />

<strong>IFMIF</strong> International Review<br />

Decision to built <strong>IFMIF</strong> (that includes to<br />

built up the international consortium <strong>and</strong><br />

the site decision)<br />

<strong>IFMIF</strong> CODA<br />

Start‐up <strong>of</strong> international team<br />

Detailed engineering (site adaptation,<br />

validation activities results,…)<br />

<strong>IFMIF</strong> construction<br />

<strong>IFMIF</strong> commissioning <strong>and</strong> startup<br />

First data obtained<br />

Advantages<br />

2010 2015 2020 2025 2030<br />

2010 2015 2020 2025 2030<br />

• <strong>IFMIF</strong> close to the time for DEMO (first data <strong>of</strong> <strong>IFMIF</strong> at same time<br />

than ITER DT results)<br />

• Relatively low EU budget required before 2020 (the Host country can<br />

<strong>of</strong>fer to support the International Team during some time)<br />

• Expertise <strong>and</strong> team developed during EVEDA can be maintained


<strong>IFMIF</strong> schedule - Pesimistic scenario<br />

EVEDA phase<br />

Engineering activities<br />

Validation activities<br />

<strong>IFMIF</strong> International Review<br />

Decision to built <strong>IFMIF</strong> (that includes to<br />

built up the international consortium <strong>and</strong><br />

the site decision)<br />

<strong>IFMIF</strong> CODA<br />

Start‐up <strong>of</strong> international team<br />

Detailed engineering (site adaptation,<br />

validation activities results,…)<br />

<strong>IFMIF</strong> construction i<br />

<strong>IFMIF</strong> commissioning <strong>and</strong> startup<br />

First data obtained<br />

2010 2015 2020 2025 2030<br />

2010 2015 2020 2025 2030<br />

Ad t<br />

Advantages<br />

• No EU budget required before 2020<br />

Problems<br />

• <strong>IFMIF</strong> in the critical path <strong>of</strong> DEMO<br />

• The expertise developed during the EVEDA phase will be lost


45<br />

“Hasinger Report”, 2010<br />

<strong>IFMIF</strong><br />

-Prepare CODA<br />

- Negotiations<br />

- Complete design<br />

5-6 calendar years<br />

Construction<br />

<strong>and</strong><br />

commissioning<br />

6 calendar years<br />

Irradiation+PIE*<br />

55-10 10 dpa/fpy dpa/fpy, 30% duty cycle<br />

>15 calendar years !<br />

Irradiation+PIE<br />

*20-55 dpa/fpy<br />

70% duty cycle<br />

4 calendar years<br />

Scenario 1<br />

DEMO design<br />

(in-vessel) finished<br />

*Materials data base:<br />

~50 dpa for blanket<br />

CTFs ~20 dpa for divertor<br />

A. Möslang et al.


46<br />

Summary <strong>and</strong> Conclusions<br />

<strong>IFMIF</strong> meets fully the mission <strong>and</strong> the requirements <strong>of</strong> an intense fusion<br />

neutron source <strong>and</strong> is able to deliver timely the major pillars <strong>of</strong> a materials<br />

database for construction, licensing <strong>and</strong> safe operation <strong>of</strong> a DEMO reactor<br />

Main Milestones:<br />

June 2013: Delivery <strong>of</strong> the Intermediate <strong>IFMIF</strong> Engineering Design Report<br />

June 2015: Start <strong>of</strong> the experiments <strong>of</strong> the whole Accelerator Prototype<br />

June 2017: End <strong>of</strong> the studies in the framework <strong>of</strong> the BA agreement<br />

DDec. 2013 2013: EEnd d <strong>of</strong> f <strong>IFMIF</strong> EVEDA ffor all ll activities ti iti not t contributing t ib ti tto th the<br />

Accelerator Prototype<br />

It is expected p that the Intermediate <strong>IFMIF</strong> Engineering g g Design g Report p will be<br />

the basis for an evaluation through for an international review panel.<br />

Based on that results, siting negotiations could start immediately<br />

<strong>IFMIF</strong> needs funding during 2014 2014-2020. 2020 Otherwise Otherwise,<br />

- <strong>IFMIF</strong> will be at the critical path for DEMO, <strong>and</strong><br />

- the power <strong>of</strong> the present team <strong>and</strong> its competence will be lost<br />

A. Möslang et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!