01.08.2013 Views

Information Theory, Inference, and Learning ... - MAELabs UCSD

Information Theory, Inference, and Learning ... - MAELabs UCSD

Information Theory, Inference, and Learning ... - MAELabs UCSD

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981<br />

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.<br />

C.3: Perturbation theory 611<br />

where<br />

wb = e (b) (a)<br />

L (0)f R , (C.27)<br />

so, comparing (C.25) <strong>and</strong> (C.27), we have:<br />

f (a)<br />

R<br />

e<br />

b=a<br />

(b)<br />

L (0)Ve(a) R (0)<br />

λ (a) (0) − λ (b) (0) e(b)<br />

R<br />

= <br />

(0). (C.28)<br />

Equations (C.23) <strong>and</strong> (C.28) are the solution to the first-order perturbation<br />

theory problem, giving respectively the first derivative of the eigenvalue <strong>and</strong><br />

the eigenvectors.<br />

Second-order perturbation theory<br />

If we exp<strong>and</strong> the eigenvector equation (C.11) to second order in ɛ, <strong>and</strong> assume<br />

that the equation<br />

H(ɛ) = H(0) + ɛV (C.29)<br />

is exact, that is, H is a purely linear function of ɛ, then we have:<br />

(H(0) + ɛV)(e (a) (a) 1<br />

R (0) + ɛf R +<br />

2 ɛ2g (a)<br />

R + · · ·)<br />

= (λ (a) (0) + ɛµ (a) + 1<br />

2ɛ2ν (a) + · · ·)(e (a) (a)<br />

R (0) + ɛf R<br />

1 + 2ɛ2g (a)<br />

R + · · ·) (C.30)<br />

where g (a)<br />

R <strong>and</strong> ν(a) are the second derivatives of the eigenvector <strong>and</strong> eigenvalue.<br />

Equating the second-order terms in ɛ in equation (C.30),<br />

Vf (a)<br />

R<br />

1<br />

+<br />

2 H(0)g(a)<br />

1<br />

R =<br />

2 λ(a) (0)g (a) 1<br />

R +<br />

2 ν(a) e (a)<br />

Hitting this equation on the left with e (a)<br />

L (0), we obtain:<br />

e (a) (a) 1<br />

L (0)Vf R +<br />

2 λ(a) e (a)<br />

L (0)g(a) R<br />

= 1<br />

2λ(a) (0)e (a)<br />

L (0)g(a) 1<br />

R + 2ν(a) e (a)<br />

L (0)e(a)<br />

R (0) + µ(a) f (a)<br />

R . (C.31)<br />

R (0) + µ(a) e (a)<br />

L<br />

(a)<br />

(0)f R . (C.32)<br />

The term e (a) (a)<br />

L (0)f R is equal to zero because of our constraints (C.19), so<br />

e (a) (a) 1<br />

L (0)Vf R =<br />

2 ν(a) , (C.33)<br />

so the second derivative of the eigenvalue with respect to ɛ is given by<br />

1<br />

2 ν(a) = e (a)<br />

<br />

L (0)V<br />

= <br />

b=a<br />

e<br />

b=a<br />

(b)<br />

L (0)Ve(a) R (0)<br />

λ (a) (0) − λ (b) (0) e(b)<br />

R<br />

[e (b)<br />

L (0)Ve(a) R (0)][e(a) L (0)Ve(b)<br />

λ (a) (0) − λ (b) (0)<br />

This is as far as we will take the perturbation expansion.<br />

Summary<br />

(0) (C.34)<br />

R (0)]<br />

. (C.35)<br />

If we introduce the abbreviation Vba for e (b)<br />

L (0)Ve(a) R (0), we can write the<br />

eigenvectors of H(ɛ) = H(0) + ɛV to first order as<br />

e (a)<br />

R<br />

<br />

(ɛ) = e(a)<br />

R (0) + ɛ<br />

b=a<br />

<strong>and</strong> the eigenvalues to second order as<br />

λ (a) (ɛ) = λ (a) <br />

2<br />

(0) + ɛVaa + ɛ<br />

Vba<br />

λ (a) (0) − λ (b) (0) e(b)<br />

R<br />

b=a<br />

(0) + · · · (C.36)<br />

VbaVab<br />

λ (a) (0) − λ (b) + · · · . (C.37)<br />

(0)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!