01.08.2013 Views

CPT Invariance Tests in Neutral Kaon Decay - Particle Data Group

CPT Invariance Tests in Neutral Kaon Decay - Particle Data Group

CPT Invariance Tests in Neutral Kaon Decay - Particle Data Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

–1–<br />

<strong>CPT</strong> INVARIANCE TESTS IN NEUTRAL KAON<br />

DECAY<br />

Updated October 2009 by M. Antonelli (LNF-INFN, Frascati)<br />

and G. D’Ambrosio (INFN Sezione di Napoli).<br />

<strong>CPT</strong> theorem is based on three assumptions: quantum<br />

field theory, locality, and Lorentz <strong>in</strong>variance, and thus it is<br />

a fundamental probe of our basic understand<strong>in</strong>g of particle<br />

physics. Strangeness oscillation <strong>in</strong> K0 − K 0 system, described<br />

by the equation<br />

i d<br />

dt<br />

<br />

K0 K 0<br />

<br />

<br />

K0 =[M − iΓ/2]<br />

K 0<br />

<br />

,<br />

where M and Γ are hermitian matrices (see PDG review [1],<br />

references [2,3], and KLOE paper [4] for notations and previous<br />

literature), allows a very accurate test of <strong>CPT</strong> symmetry;<br />

<strong>in</strong>deed s<strong>in</strong>ce <strong>CPT</strong> requires M11 = M22 and Γ11 =Γ22, themass<br />

and width eigenstates, KS,L, havea<strong>CPT</strong>-violat<strong>in</strong>g piece, δ, <strong>in</strong><br />

addition to the usual <strong>CPT</strong>-conserv<strong>in</strong>g parameter ɛ:<br />

KS,L =<br />

1<br />

<br />

2 1+|ɛS,L| 2<br />

1+ɛS,L 0 0<br />

K + 1 − ɛS,L K <br />

−iℑ (M12) −<br />

ɛS,L =<br />

1<br />

2 ℑ (Γ12) ∓ 1<br />

<br />

M11 − M22 −<br />

2<br />

i<br />

2 (Γ11<br />

<br />

− Γ22)<br />

mL − mS + i(ΓS − ΓL)/2<br />

≡ ɛ ± δ. (1)<br />

Us<strong>in</strong>g the phase convention ℑ(Γ12) = 0, we determ<strong>in</strong>e the phase<br />

of ɛ to be ϕSW ≡ arctan 2(mL − mS)<br />

. Impos<strong>in</strong>g unitarity to<br />

ΓS − ΓL<br />

an arbitrary comb<strong>in</strong>ation of K 0 and K 0 wave functions, we<br />

obta<strong>in</strong> the Bell-Ste<strong>in</strong>berger relation [5] connect<strong>in</strong>g CP and<br />

<strong>CPT</strong> violation <strong>in</strong> the mass matrix to CP and <strong>CPT</strong> violation <strong>in</strong><br />

the decay; <strong>in</strong> fact, neglect<strong>in</strong>g O(ɛ) corrections to the coefficient<br />

of the <strong>CPT</strong>-violat<strong>in</strong>g parameter, δ, we can write [4]<br />

[ ΓS +ΓL<br />

ΓS − ΓL<br />

+ i tan φSW][ ℜ(ɛ)<br />

− iℑ(δ)] =<br />

1+|ɛ| 2<br />

1<br />

ΓS − ΓL<br />

<br />

f<br />

AL(f)A ∗ S (f), (2)<br />

CITATION: K. Nakamura et al. (<strong>Particle</strong> <strong>Data</strong> <strong>Group</strong>), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)<br />

July 30, 2010 14:34


–2–<br />

where AL,S(f) ≡ A(KL,S → f). We stress that this relation<br />

is phase-convention-<strong>in</strong>dependent. The advantage of the neutral<br />

kaon system is that only a few decay modes give significant<br />

contributions to the r.h.s. <strong>in</strong> Eq. (2); <strong>in</strong> fact, def<strong>in</strong><strong>in</strong>g for the<br />

hadronic modes<br />

αi ≡ 1<br />

〈AL(i)A<br />

ΓS<br />

∗ S (i)〉 = ηi B(KS → i),<br />

i = π 0 π 0 ,π + π − (γ), 3π 0 ,π 0 π + π − (γ), (3)<br />

the recent data from CPLEAR, KLOE, KTeV, and NA48 have<br />

led to the follow<strong>in</strong>g determ<strong>in</strong>ations (the analysis described <strong>in</strong><br />

Ref. 4 has been updated by us<strong>in</strong>g the recent measurements of<br />

KL branch<strong>in</strong>g ratios from KTeV [6] and NA48 [7,8])<br />

α π + π − = ((1.112 ± 0.013) + i(1.061 ± 0.014)) × 10 −3 ,<br />

α π 0 π 0 = ((0.493 ± 0.007) + i(0.471 ± 0.007)) × 10 −3 ,<br />

α π + π − π 0 = ((0 ± 2) + i(0 ± 2)) × 10 −6 ,<br />

|α π 0 π 0 π 0| < 7 × 10 −6<br />

at 95% CL . (4)<br />

The semileptonic contribution to the right-handed side of<br />

Eq. (2) requires the determ<strong>in</strong>ation of several observables: we<br />

def<strong>in</strong>e [2,3]<br />

A(K 0 → π − l + ν)=A0(1 − y) ,<br />

A(K 0 → π + l − ν)=A ∗ 0 (1 + y∗ )(x+ − x−) ∗ ,<br />

A(K 0 → π + l − ν)=A ∗ 0 (1 + y∗ ) ,<br />

A(K 0 → π − l + ν)=A0(1 − y)(x+ + x−) , (5)<br />

where x+ (x−) describes the violation of the ΔS = ΔQ<br />

rule <strong>in</strong> <strong>CPT</strong>-conserv<strong>in</strong>g (violat<strong>in</strong>g) decay amplitudes, and y<br />

parametrizes <strong>CPT</strong> violation for ΔS =ΔQ transitions. Tak<strong>in</strong>g<br />

advantage of their tagged K 0 (K 0 ) beams, CPLEAR has<br />

measured ℑ(x+), ℜ(x−), ℑ(δ), and ℜ(δ) [10]. These determ<strong>in</strong>ations<br />

have been improved <strong>in</strong> Ref. 4 by <strong>in</strong>clud<strong>in</strong>g the<br />

<strong>in</strong>formation AS − AL =4[ℜ(δ) +ℜ(x−)], where AL,S are the<br />

KL and KS semileptonic charge asymmetries, respectively, from<br />

the PDG [11] and KLOE [12]. Here we are also <strong>in</strong>clud<strong>in</strong>g the<br />

T -violat<strong>in</strong>g asymmetry measurement from CPLEAR [13].<br />

July 30, 2010 14:34


–3–<br />

Table 1: Values, errors, and correlation coefficients<br />

for ℜ(δ), ℑ(δ), ℜ(x−), ℑ(x+), and<br />

AS + AL obta<strong>in</strong>ed from a comb<strong>in</strong>ed fit, <strong>in</strong>clud<strong>in</strong>g<br />

KLOE [4] and CPLEAR [13].<br />

value Correlations coefficients<br />

ℜ(δ) (3.0 ± 2.3) × 10 −4 1<br />

ℑ(δ) (−0.66 ± 0.65) × 10 −2 − 0.21 1<br />

ℜ(x−) (−0.30 ± 0.21) × 10 −2 − 0.21 −0.60 1<br />

ℑ(x+) (0.02 ± 0.22) × 10 −2 − 0.38 −0.14 0.47 1<br />

AS + AL (−0.40 ± 0.83) × 10 −2 − 0.10 −0.63 0.99 0.43 1<br />

The value AS + AL <strong>in</strong> Table 1 can be directely <strong>in</strong>cluded <strong>in</strong><br />

the semileptonic contributions to the Bell Ste<strong>in</strong>berger relations<br />

<strong>in</strong> Eq. (2)<br />

<br />

〈AL(πℓν)A<br />

πℓν<br />

∗ S (πℓν)〉<br />

Def<strong>in</strong><strong>in</strong>g<br />

απℓν ≡ 1<br />

we f<strong>in</strong>d:<br />

=2Γ(KL → πℓν)(ℜ(ɛ) −ℜ(y) − i(ℑ(x+)+ℑ(δ)))<br />

=2Γ(KL → πℓν)((AS + AL)/4 − i(ℑ(x+)+ℑ(δ))) . (6)<br />

ΓS<br />

<br />

πℓν<br />

〈AL(πℓν)A ∗ S<br />

(πℓν)〉 +2iτKS B(KL → πℓν)ℑ(δ) ,<br />

τKL<br />

(7)<br />

απℓν =((−0.2 ± 0.5) + i(0.1 ± 0.5)) × 10 −5 .<br />

Insert<strong>in</strong>g the values of the α parameters <strong>in</strong>to Eq. (2), we f<strong>in</strong>d<br />

ℜ(ɛ) = (161.2 ± 0.6) × 10 −5 ,<br />

ℑ(δ) =(−0.6 ± 1.9) × 10 −5 . (8)<br />

The complete <strong>in</strong>formation on Eq. (8) is given <strong>in</strong> Table 2.<br />

July 30, 2010 14:34


–4–<br />

Table 2: Summary of results: values, errors,<br />

and correlation coefficients for ℜ(ɛ), ℑ(δ), ℜ(δ),<br />

and ℜ(x−).<br />

value Correlations coefficients<br />

ℜ(ɛ) (161.2 ± 0.6) × 10 −5 +1<br />

ℑ(δ) (−0.6 ± 1.9) × 10 −5 +0.26 1<br />

ℜ(δ) (2.5 ± 2.3) × 10 −4 +0.08 −0.09 1<br />

ℜ(x−) (−4.2 ± 1.7) × 10 −3 +0.13 0.17 −0.43 1<br />

Now the agreement with <strong>CPT</strong> conservation, ℑ(δ) =ℜ(δ) =<br />

ℜ(x−) = 0, is at 30% C.L.<br />

The allowed region <strong>in</strong> the ℜ(ɛ) −ℑ(δ) plane at 68% CL and<br />

95% C.L. is shown <strong>in</strong> the top panel of Fig. 1.<br />

The process giv<strong>in</strong>g the largest contribution to the size of<br />

the allowed region is KL → π + π − , through the uncerta<strong>in</strong>ty on<br />

φ+−.<br />

The limits on ℑ(δ) andℜ(δ) can be used to constra<strong>in</strong> the<br />

K 0 − K 0 mass and width difference<br />

δ = i(mK0 − m K 0)+ 1 2 (ΓK0 − Γ K 0)<br />

cos φSWe<br />

ΓS − ΓL<br />

iφSW [1 + O(ɛ)] .<br />

The allowed region <strong>in</strong> the ΔM =(mK0− m 0), ΔΓ =<br />

K<br />

(ΓK0 − Γ 0) plane is shown <strong>in</strong> the bottom panel of Fig. 1. As<br />

K<br />

a result, we improve on the previous limits (see for <strong>in</strong>stance, P.<br />

Bloch<strong>in</strong>Ref.11)and<strong>in</strong>thelimitΓK0−Γ0 =0weobta<strong>in</strong><br />

K<br />

−5.1×10 −19 GeV


Im(δ) [10 -4 ]<br />

ΔΓ [10 -18 GeV]<br />

0.5<br />

0<br />

-0.5<br />

10<br />

0<br />

-10<br />

–5–<br />

95% CL<br />

68% CL<br />

0.155 0.16 0.165<br />

Re(ε) [10 -2 ]<br />

95% CL<br />

68% CL<br />

-10 0 10<br />

ΔM [10 -18 GeV]<br />

Figure 1: Top: allowed region at 68% and 95%<br />

C.L. <strong>in</strong> the ℜ(ɛ), ℑ(δ) plane. Bottom: allowed<br />

region at 68% and 95% C.L. <strong>in</strong> the ΔM,ΔΓ<br />

plane. Latest KTeV prelim<strong>in</strong>ary results not <strong>in</strong>cluded<br />

<strong>in</strong> these figures.<br />

July 30, 2010 14:34


–6–<br />

References<br />

1. See the “CP Violation <strong>in</strong> Meson <strong>Decay</strong>s,” <strong>in</strong> this Review.<br />

2. L. Maiani, “CP And <strong>CPT</strong> Violation In <strong>Neutral</strong> <strong>Kaon</strong><br />

<strong>Decay</strong>s,” L. Maiani, G. Pancheri, and N. Paver, The<br />

Second Daphne Physics Handbook, Vol.1,2.<br />

3. G. D’Ambrosio, G. Isidori, and A. Pugliese, “CP and<br />

<strong>CPT</strong> mesurements at DAΦNE,” L. Maiani, G. Pancheri,<br />

and N. Paver, The Second Daphne Physics Handbook,<br />

Vol. 1, 2.<br />

4. F. Ambros<strong>in</strong>o et al., [KLOE Collaboration], JHEP 0612,<br />

011 (2006) [arXiv:hep-ex/0610034].<br />

5. J. S. Bell and J. Ste<strong>in</strong>berger, In Wolfenste<strong>in</strong>, L. (ed.):<br />

CP violation, 42-57. (In Oxford International Symposium<br />

Conference on Elementary <strong>Particle</strong>s, September 1965, 195-<br />

208, 221-222). (See Book Index).<br />

6. T. Alexopoulos et al., [KTeV Collaboration], Phys. Rev.<br />

D70, 092006 (1998).<br />

7. A. Lai et al., [NA48 Collaboration], Phys. Lett. B645, 26<br />

(2007);<br />

A. Lai et al., [NA48 Collaboration], Phys. Lett. B602, 41<br />

(2004).<br />

8. We thank G. Isidori and M. Palutan for their contribution<br />

to the orig<strong>in</strong>al analyisis [4] performed with KLOE data.<br />

9. A. Angelopoulos et al., [CPLEAR Collaboration], Phys.<br />

Reports 374, 165 (2003).<br />

10. A. Angelopoulos et al., [CPLEAR Collaboration], Phys.<br />

Lett. B444, 52 (1998).<br />

11. W. M. Yao et al., [<strong>Particle</strong> <strong>Data</strong> <strong>Group</strong>], J. Phys. G33, 1<br />

(2006).<br />

12. F. Ambros<strong>in</strong>o et al., [KLOE Collaboration], Phys. Lett.<br />

B636, 173 (2006) [arXiv:hep-ex/0601026].<br />

13. P. Bloch, M. Fidecaro, private communication of the<br />

data <strong>in</strong> a f<strong>in</strong>er b<strong>in</strong>n<strong>in</strong>g format; A. Angelopoulos et al.,<br />

[CPLEAR Collaboration], Phys. Lett. B444, 43 (1998).<br />

14. KTEV home page, http://ktev.fnal.gov/public/.<br />

15. We thank M. Palutan for the collaboration <strong>in</strong> this analysis.<br />

July 30, 2010 14:34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!