01.08.2013 Views

Contact Geometry of second order I - Dept. Math, Hokkaido Univ ...

Contact Geometry of second order I - Dept. Math, Hokkaido Univ ...

Contact Geometry of second order I - Dept. Math, Hokkaido Univ ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

⎧ ⎛<br />

0<br />

⎜0<br />

⎪⎨<br />

⎜<br />

⎜0<br />

⎜<br />

⎜ξ<br />

⎜<br />

⎜0<br />

⎝<br />

⎪⎩<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

ξ1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−ξ1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

tξ 0 0<br />

⎞ <br />

<br />

<br />

⎟ <br />

⎟ <br />

⎟ <br />

⎟ <br />

⎟ ξ ∈ K<br />

⎟ <br />

⎟ <br />

⎠ <br />

<br />

0<br />

<br />

k ⎫<br />

⎪⎬<br />

, ξ1 ∈ K ,<br />

⎪⎭<br />

⎧ ⎛<br />

0<br />

⎜ 0<br />

⎪⎨<br />

⎜<br />

⎜x1<br />

⎜ 0<br />

⎜ 0<br />

⎝<br />

⎪⎩<br />

0<br />

0<br />

0<br />

0<br />

x<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

t 0 0 0<br />

x<br />

0<br />

0<br />

−x1<br />

0<br />

0<br />

⎞ <br />

<br />

<br />

⎟ <br />

⎟ <br />

⎟ <br />

⎟ <br />

⎟ = ˆx + ˆx1 x ∈ K<br />

⎟ <br />

⎟ <br />

0<br />

⎠ <br />

<br />

0<br />

<br />

k ⎫<br />

⎪⎬<br />

, x1 ∈ K ,<br />

⎪⎭<br />

⎧ ⎛<br />

0<br />

⎜a1<br />

⎪⎨<br />

⎜ 0<br />

⎜ 0<br />

⎜ 0<br />

⎝<br />

⎪⎩<br />

0<br />

0<br />

x0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

a<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

t 0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

a<br />

0<br />

0<br />

0<br />

−x0<br />

0<br />

0<br />

0<br />

−a1<br />

⎞<br />

<br />

<br />

<br />

⎟<br />

<br />

⎟<br />

<br />

⎟<br />

<br />

⎟<br />

<br />

⎟ = ˆx0 + â1 + â <br />

⎟<br />

<br />

0⎟<br />

<br />

0<br />

⎠<br />

<br />

<br />

0<br />

<br />

x0, a1 ∈ K,<br />

a ∈ K k<br />

⎫<br />

⎪⎬<br />

,<br />

⎪⎭<br />

ˇg0<br />

⎧ ⎛<br />

b<br />

⎜0<br />

⎪⎨<br />

⎜<br />

⎜0<br />

⎜<br />

= ⎜0<br />

⎜<br />

⎜0<br />

⎝<br />

⎪⎩<br />

0<br />

0<br />

0<br />

c<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

e<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

B<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−e<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−c<br />

0<br />

⎞ <br />

⎫<br />

0 <br />

<br />

0 ⎟ <br />

⎟ <br />

0 ⎟ <br />

⎪⎬<br />

⎟ <br />

0 ⎟ b, c, e ∈ K, B ∈ o(k)<br />

⎟ <br />

0 ⎟ <br />

0<br />

⎠ <br />

<br />

⎪⎭<br />

−b<br />

<br />

ˇg−3 =<br />

ˇg−2 =<br />

ˇg−1 =<br />

ˇgℓ = { t X | X ∈ g−ℓ }, (ℓ = 1, 2, 3, 4, 5),<br />

Then, for X = ˆx + ˆx1 + ˆx0 and A = â + â1 , we calculate<br />

Thus we obtain<br />

[[A, X], X] =<br />

<br />

(2x1 t ax − a1 t xx) ∈ ˇg−5<br />

f = 〈{2e ∗ 1 ⊚ e ∗ 2, . . . , 2e ∗ 1 ⊚ e ∗ k+1, e ∗ 2 ⊚ e ∗ 2 + · · · + e ∗ k+1 ⊚ e ∗ k+1〉 ⊂ S 2 (E ⊥ ),<br />

where {e0, e1, . . . , ek+1} is a basis <strong>of</strong> V and E = 〈{e0}〉 is the Cauchy characteristic<br />

direction. In case k = 1, f = 〈{2e∗ 1 ⊚ e∗ 2, e∗ 2 ⊚ e∗ 2}〉 is an involutive subspace <strong>of</strong> S2 (E⊥ ).<br />

Hence (Rg; D1 , D2 ) is involutive when g = ⊕<br />

p∈Z gp is <strong>of</strong> type (B3, {α1, α2, α3}). In case<br />

k > 1, we have<br />

f ⊥ = 〈{e1 ⊚ e1, ei ⊚ ej(2 ≦ i < j ≦ k + 1),<br />

e2 ⊚ e2 − ek+1 ⊚ ek+1, . . . , ek ⊚ ek − ek+1 ⊚ ek+1}〉 ⊂ S 2 (W ),<br />

where W = 〈{e1, . . . , ek+1}〉. Then we see that (f (1) ) ⊥ contains every ei ⊚ ei ⊚ ei for<br />

i = 1, . . . , k + 1, which implies f is <strong>of</strong> finite type. We can also check that exceptional<br />

cases other than G2 are <strong>of</strong> finite type by utilizing R-space orbit (Rg; D 1 , D 2 ), whereas<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!