01.08.2013 Views

CANDU Safety #12: Large Loss of Coolant Accident - Canteach

CANDU Safety #12: Large Loss of Coolant Accident - Canteach

CANDU Safety #12: Large Loss of Coolant Accident - Canteach

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CANDU</strong> <strong>Safety</strong> <strong>#12</strong>:<br />

<strong>Large</strong> <strong>Loss</strong> <strong>of</strong> <strong>Coolant</strong> <strong>Accident</strong><br />

F. J. Doria<br />

Atomic Energy <strong>of</strong> Canada Limited<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 1


Overview<br />

λ Event sequence for a large break loss-<strong>of</strong> loss <strong>of</strong>-coolant coolant accident<br />

(LOCA)<br />

λ Acceptance criteria used to assess the results <strong>of</strong> the analysis<br />

λ Normal operating conditions<br />

λ Fuel and pressure tube behaviour during the transient<br />

λ Fission product release behaviour<br />

λ Containment behaviour<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 2


<strong>Large</strong> LOCA with ECC Available<br />

λ Event Sequence<br />

– A large break occurs in a large diameter pipe in PHT,<br />

discharging coolant into containment<br />

– PHT depressurizes causing coolant voiding and an increase in<br />

reactivity<br />

– Reactor power increases until the reactor is shutdown on a<br />

neutronic trip (i.e., high power, high-rate high rate power) or process trip<br />

(i.e., low PHT pressure, low pressurizer level, high containment<br />

pressure etc.)<br />

– The PHT flow decreases fastest in the core pass downstream <strong>of</strong><br />

the break; and coolant stagnation occurs<br />

– Onset <strong>of</strong> fuel dryout results in an increase in fuel temperature<br />

– Once the PHT pressure is reduced to the ECC activation<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 setpoint, ECC is activated; the two loops are isolated from each<br />

3


PHT Pumps<br />

Postulated<br />

Break Locations<br />

1) Pump Suction<br />

2) Inlet Header<br />

3) Outlet Header<br />

Primary Heat Transport System<br />

Steam Generators<br />

Feeders<br />

Reactor/Fuel Channels<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 4


Break in Primary Heat Transport System<br />

λ Critical pass is the<br />

pass downstream <strong>of</strong><br />

the break location<br />

λ Key <strong>of</strong> analysis is to<br />

stagnate the flow in<br />

the channel<br />

the channel STEAM GENERATOR<br />

PRESSURIZER<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 5<br />

ROH<br />

pressure gradient across<br />

one core pass reduced<br />

BREAK IN REACTOR<br />

INLET HEADER<br />

RIH<br />

REACTOR CORE<br />

RIH<br />

ROH<br />

PUMP<br />

OUTLET<br />

FEEDER<br />

PIPES<br />

INLET<br />

FEEDER<br />

PIPES<br />

PHTS.DWG


Analysis Acceptance Criteria<br />

λ Dose limits are not exceeded<br />

λ Two independent shutdown systems will arrest the reactivity<br />

and power excursion, and will maintain the reactor in a<br />

shutdown state<br />

λ Fuel channel integrity is not compromised<br />

λ The structural integrity <strong>of</strong> the containment must be maintained<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 6


<strong>Large</strong> Break LOCA <strong>Safety</strong> Analysis<br />

λ Involves determining:<br />

– Fuel normal operating conditions<br />

– Fuel and fuel channel temperatures during LOCA transient<br />

– Fission product release during transient<br />

– Containment analysis<br />

– Dose analysis<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 7


Fuel conditions prior to the onset <strong>of</strong> the accident<br />

– Normal operating conditions is modelled by the ELESTRES<br />

computer code<br />

– Main Input Requirements<br />

λ Fuel element (pellet and sheath) dimensions &<br />

properties<br />

λ Power/burnup history<br />

λ <strong>Coolant</strong> temperature and pressure<br />

– Important Output Parameters<br />

λ Fission product distribution (gap, grain boundary and<br />

grain bound)<br />

λ Internal gas pressure<br />

λ Fuel temperatures<br />

λ Pellet strain<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 8


Transient Temperatures<br />

– Thermalhydraulic behaviour is calculated by the CATHENA<br />

circuit model<br />

λ Reactor Inlet Header Break (RIH)<br />

– 20%, 25%, 30%, 35%, 40% & 100%<br />

λ Pump Suction Pipe Break (PS)<br />

– 40%, 45%, 50%, 55%, 60%, 70% & 100%<br />

λ Reactor Outlet Header Break (ROH)<br />

– 80%, 90%, 95% & 100%<br />

– A critical break size is identified for each break location and<br />

a detailed CATHENA single-channel single channel analysis is performed:<br />

λ 35% RIH , 55% PS & 100% ROH<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 9


Circuit Model <strong>of</strong> Primary Heat Transport System<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 10


Depressurization in Inlet Headers (35% RIH<br />

Break)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 11


ECC Flows<br />

λ No ECC flow into the intact loop,<br />

since<br />

– intact loop pressure > broken loop pressure<br />

(intact loop was isolated from the broken<br />

loop)<br />

– Intact loop pressure > ECC supply pressure<br />

λ LOCA signal & loop isolation<br />

initiated at 9 s after accident<br />

λ Loop isolation complete by 29 s<br />

λ ECC flows into the broken loop, 3<br />

stages<br />

– High-pressure High pressure injection initiation (38 s)<br />

– Medium-pressure Medium pressure injection (293 s)<br />

– Low-pressure Low pressure injection (678 s)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 12


Break Survey for RIH breaks (Flows)<br />

CATHENA Circuit Model<br />

λ large breaks ==><br />

sustained reverse flow<br />

λ small breaks ==><br />

forward flow<br />

λ medium breaks ==><br />

stagnation<br />

λ Critical break is 35%<br />

RIH<br />

Flow (kg/s)<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

<strong>Coolant</strong> Flow at Center <strong>of</strong> Downstream Core Pass (RIH)<br />

0 10 20 30 40 50<br />

Time (s)<br />

EARLY FLOW STAGNATION<br />

20% RIH 25% RIH 30% RIH<br />

35% RIH 40% RIH 100% RIH<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 13


Break Survey for RIH breaks (Sheath<br />

Temperature)<br />

CATHENA Circuit Model<br />

λ Temperature transient<br />

corresponds to flow<br />

conditions<br />

λ Flow stagnation ==><br />

temperatures increase<br />

λ Break in flow<br />

stagnation ==><br />

temperatures drop<br />

λ Critical break is 35%<br />

RIH<br />

Temperature ( o C)<br />

RIH Break Survey- Outside Sheath Temperature at Bundle 7<br />

(center channel) <strong>of</strong> Critical Core Pass<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 20 40 60 80 100<br />

Time (s)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 14<br />

20% RIH<br />

25% RIH<br />

30% RIH<br />

35% RIH<br />

40% RIH<br />

100% RIH


Single Channel Model for 35% RIH Critical Break<br />

Boundary Conditions from Circuit Analysis Applied<br />

λ Header boundary<br />

conditions (pressure,<br />

enthalpy, void)<br />

λ 6 inlet feeder<br />

segments<br />

λ Inlet end-fitting end fitting<br />

model<br />

λ 12 channel segments<br />

(for 12 bundles)<br />

λ Outlet end-fitting end fitting<br />

model<br />

λ 7 outlet feeder<br />

segments<br />

Inlet header Outlet header<br />

Inlet Feeder<br />

Outlet Feeder<br />

Inlet End-fitting Fuel Channel Outlet End-fitting<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 15


Temperature ( o C)<br />

Single Channel Analysis <strong>of</strong> 35% RIH Critical<br />

Break<br />

Channel 06 (7.3 MW); Outer Elements; Sheath Temperatures<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Critical Pass (Broken Loop)<br />

0 50 100 150 200<br />

Time (s)<br />

Bundle 5 Bundle 6 Bundle 7 Bundle 8<br />

Non-Critical Pass (Broken Loop)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 16<br />

Temperature ( o C)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 50 100 150 200<br />

Time (s)<br />

Bundle 5 Bundle 6 Bundle 7 Bundle 8


Detailed Fuel Element Analysis<br />

λ Objective <strong>of</strong> analysis is to predict the potential for sheath<br />

failure during the LOCA<br />

λ Boundary conditions from single-channel single channel CATHENA analysis<br />

is provided to ELOCA code<br />

– coolant temperature,<br />

– coolant pressure,<br />

– sheath-to sheath to-coolant coolant heat transfer coefficient,<br />

– ELESTRES normal operating conditions, and<br />

– power pulse<br />

λ For excessive straining: the increase in sheath temperature<br />

and high internal gas pressure in conjunction with low coolant<br />

pressure may result in sheath failure<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 17


Fuel Element Failure Mechanisms<br />

λ The ELOCA code is used to generate a sheath failure map<br />

(threshold map) in conjunction with failure criteria, for<br />

• no<br />

example<br />

no excessive example<br />

straining- straining 5% strain less than 1000 oC • no-oxide no oxide cracking- cracking 2% strain greater than 1000 oC • no beryllium-braze beryllium braze penetration<br />

• no oxygen embrittlement<br />

• no fuel melting<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 18


Detailed Fuel Analysis by ELOCA code<br />

λ Sheath temperatures for a 30% RIH LOCA scenario<br />

λ Outer elements <strong>of</strong> bundle position 6<br />

λ High-powered High powered Channel O6 (7.3 MW)<br />

EARLY FLOW STAGNATION<br />

BREAK IN FLOW STAGNATION<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 19


Pressure Tube Behaviour<br />

λ Pressure tube deformation is expected for LOCA breaks<br />

resulting in high pressure tube temperatures at high channel<br />

pressures<br />

λ Objective <strong>of</strong> analysis is to determine pressure tube<br />

temperature at time <strong>of</strong> contact with its surrounding calandria<br />

tube<br />

λ Moderator temperatures are sufficiently low enough to prevent<br />

film boiling (dryout) on the outer surface <strong>of</strong> the calandria tube<br />

after the pressure tube-calandria tube calandria tube contact<br />

λ Localized hotspots on the pressure tube due to bearing-<br />

pad/pressure tube contact results in localized deformation <strong>of</strong><br />

tube<br />

λ 24-May-01 No channel failures <strong>CANDU</strong> during <strong>Safety</strong> - a <strong>#12</strong> large - <strong>Large</strong> LOCA.ppt break Rev. 0 LOCA<br />

20


Temperature ( o C)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Pressure Tube Temperatures<br />

Critical breaks: Pressure Tube Temperature<br />

at Bundle 7 <strong>of</strong> 7.3 MW Channel<br />

55% Pump<br />

Suction 100% Reactor<br />

35% Reactor Outlet Header<br />

Inlet Header<br />

0 10 20 30 40 50 60<br />

Time (s)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 21


Barriers to Fission Product Release<br />

1) Uranium-Dioxide Fuel Matrix & 2) Sheath<br />

3) Primary Heat Transport System, 4) Containment & 5) Boundary<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 22


Fission Product Release<br />

λ The gap inventory plays a key role in the fission products released released<br />

during the transient (i.e., sheath failure ==> retention & transport transport<br />

<strong>of</strong><br />

fission products in the gap ==> released to heat transport system) system)<br />

λ Secondary release phenomena may include diffusion, fuel<br />

oxidation, Zircaloy-UO<br />

Zircaloy UO2 reaction and fuel cracking<br />

λ LOCA Methodology<br />

– Entire gap inventory is assumed to be released upon sheath failure failure<br />

– 1% <strong>of</strong> fission products residing on grains and grain boundary is assumed to<br />

be released: to account for the possibility <strong>of</strong> secondary release mechanisms<br />

λ Fission Product Retention in Heat Transport System<br />

– large surface area in primary heat transport system (for example, example,<br />

endfitting,<br />

feeders) for fission product deposition<br />

– The retention <strong>of</strong> fission products in the system are currently not not<br />

credited in<br />

the analysis; however, plan to credit in the future<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 23


Example <strong>of</strong> Fission Product Release Transient<br />

I-131 Release (TBq)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Transient I-131 Release for 50%<br />

Pump Suction Break<br />

0 20 40 60 80<br />

Time (s)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 24


Pressure (kPa(g))<br />

Containment Behaviour<br />

λ Pressure increases rapidly due to large amount <strong>of</strong> heat<br />

rejected to the containment atmosphere<br />

λ Peak Pressure is below design pressure <strong>of</strong> 124 kPa (g)<br />

λ Dousing system limits peak pressure<br />

Containment Pressure Transient for<br />

100% ROH LOCA<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 100 200 300 400 500<br />

Time (s)<br />

24-May-01 <strong>CANDU</strong> <strong>Safety</strong> - <strong>#12</strong> - <strong>Large</strong> LOCA.ppt Rev. 0 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!