02.08.2013 Views

1.2 Directional Derivatives

1.2 Directional Derivatives

1.2 Directional Derivatives

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Functions and their properties 9<br />

y ∂z<br />

∂y<br />

x ∂z ∂z<br />

+ y<br />

∂x ∂y<br />

=<br />

x 2<br />

x 2 + y 2<br />

1<br />

= y ·<br />

2 (<br />

1<br />

x2 ) · (2y)<br />

+ y2 =<br />

= 1<br />

y 2<br />

x 2 + y 2<br />

<strong>1.2</strong> <strong>Directional</strong> <strong>Derivatives</strong><br />

Let z = f(x, y) define a surface S in R 3 and P0(x0,y0) apointonS.<br />

The gradient of z (or f) atP0 is a vector defined by:<br />

∇f(P0) = ∂f<br />

∂x |P0 i + ∂f<br />

|P0<br />

j<br />

∂y<br />

(this vector, if it is not equal to zero, is always perpendicular to the surface S<br />

(ornormalto it)). Why??<br />

If F (x, y, z) = 0 defines a surface S ∗ then, for P0 on S ∗ , the gradient of F is:<br />

∇F |P0 = ∂f<br />

∂x |P0 i + ∂f<br />

∂y |P0 j + ∂f<br />

∂z |P0 k<br />

Let u be any vector on the xy−plane, and z = f(x, y) define the surface<br />

S. The directional derivative of f in the direction u at the point P0 on S:(u is<br />

a unit vector here)<br />

∂f<br />

∂s |P0 = ∇F |P0 · u<br />

[It represents the rate of change of f along the ”curve,” f(x, y) onS where (x, y)<br />

runs along u]<br />

Note: The directional derivative is a maximum when the angle Θ between ∇f|p0<br />

and u is 0, because:<br />

∇f|p0 · u = |∇f||p0 ·|u| cos Θ<br />

Figure 1<br />

ie. when ∇f|P0 and u are parallel.<br />

So, directional derivative is maximum in the direction of ∇f|P0 of f at P0<br />

The directional derivative of z = f(x, y) atP0(x0,y0) onS in the direction Θ<br />

(Θ in radians) means in the direction of the unit vector u =(cosθ)i +(sinΘ)j


10 The ABC’s of Calculus<br />

Example 9<br />

Find ∂f<br />

∂s |P0<br />

Here f(x, y) =x 2 + xy + y 2<br />

z = x 2 + xy + y 2 , P0 =(3, 1), Θ= π<br />

3<br />

∇f = ∂f<br />

∂x i + ∂f<br />

∂y j<br />

= (2x + y)i +(x +2y)j<br />

∇f|P0 = ∇f| (3,1)<br />

= (2· 3+1)i +(3+2· 1)j<br />

= 7i +5j<br />

Also u = cosΘi +sinΘj<br />

= cos π<br />

3 i +sin π<br />

3 j<br />

= 1<br />

2 i<br />

√<br />

3<br />

+<br />

2 j<br />

Therefore ∂f<br />

∂s |P0 = ∇f|P0 · u<br />

= (7i +5j) · ( 1<br />

2 i +<br />

= 7<br />

2 + 5√3 2<br />

Example 10 z =2x 2 +3xy − y 2 at (1, 1) toward (2, 1).<br />

√ 3<br />

2 j)<br />

Here f(x, y) =2x 2 +3xy − y 2 , ∇f =(4x +3y, 3x − 2y) or ∇f| (1,−1) =(4· 1+<br />

3(−1), 3(1) − 2(−1)) = (1, 5)<br />

To find u we need to find a vector from (1, 1) to (2, 1). This is given by v =<br />

√(2, 1) − (1, −1) √ = (1, 2). Tomakevinto a unit vector we divide v by its length:<br />

12 +22 = 5.<br />

Therefore u = v (1, 2)<br />

= √ =(<br />

|v| 5 1<br />

√ ,<br />

5 2<br />

√ )<br />

5<br />

∂f<br />

∂s | (1,−1) = ∇f| (1,−1) · u<br />

= (1, 5) · ( 1<br />

√ ,<br />

5 2 √ )<br />

5<br />

=<br />

1<br />

√ +2<br />

5 √ 5<br />

√<br />

5<br />

=<br />

5 +2√5 = 11√<br />

5<br />

5


Functions and their properties 11<br />

What is its maximum value? When:<br />

u = ∇f<br />

|∇f| |P0 : ∂f<br />

∂s | (1,−1) = 1 2 +5 2 = √ 26<br />

1.3 Maxima and Minima Subject to Constraints<br />

To look for maximum and minimun of functions of two variables, z = f(x, y)<br />

we set:<br />

∂f<br />

∂f<br />

=0 and<br />

∂x ∂y =0<br />

and look for those points P (x, y) atwhichbothof these hold. If, at such P ,<br />

( ∂2f ∂x∂y )2 − ( ∂2f ∂x2 )(∂2 f<br />

) < 0<br />

∂y2 and<br />

1) ∂2f ∂x2 + ∂2f ∂y2 > 0<br />

OR:<br />

at p ⇒ relative minimum at p<br />

2) ∂2f ∂x2 + ∂2f ∂y2 < 0 at p ⇒ relative maximum at p<br />

3) ∂2 f<br />

∂x 2 + ∂2 f<br />

∂y 2 =0 atp ⇒ Undetermined: need more info.<br />

NOTE : The boundary of the domain of f must always be checked separately for<br />

relative maximum or minimum values.<br />

Example 11 z =2x +4y − x 2 − y 2 − 3 (= f(x, y))<br />

(Domain of f is the whole plane R 2 ), (so boundary of domain is at ∞)<br />

So we need:<br />

(1, 2) is only possible candidate<br />

∂z 0= ∂x =2− 2x ⇒ x =1<br />

=4− 2y ⇒ y =2<br />

0= ∂z<br />

∂y<br />

so x =1, y =2. This means that (1, 2) is the only critical point inside dom(f).<br />

At P0:<br />

[( ∂2 f<br />

∂x∂y )2 +( ∂2 f<br />

∂x 2 ) · (∂2 f<br />

∂y 2 )](1, 2) = (0)2 − (−2)(−2) = −4 < 0 O.K.<br />

So go to the next step, At P0:<br />

[( ∂2f ∂x2 )+(∂2 f<br />

)](1, 2) = (−2) + (−2) = −4 < 0<br />

∂y2 By this second derivative test, therefore relative maximum at (1, 2).


12 The ABC’s of Calculus<br />

Example 12 Find positive numbers x, y, z such that x + y + z =12and xy 2 z 3<br />

is a maximum.<br />

So, here we want to maximize the function xy 2 z 3 subject to the constraint x +<br />

y + z =12.<br />

But then z =12−x−y and so we wnat to maximize the function of two variables<br />

f(x, y) =xy 2 (12 − x − y) 3 over those x>0,y >0.<br />

Now,<br />

0= ∂f<br />

∂x = y2 (12 − x − y) 3 + xy 2 · 3(12 − x − y) 2 (−1)<br />

= (12−x−y) 2 y 2 [(12 − x − y)+x(−3)]<br />

= (12−x−y) 2 y 2 next<br />

(12 − 4x − y)<br />

0= ∂f<br />

∂y = 2xy(12 − x − y)3 + xy 2 · 3(12 − x − y) 2 (−1)<br />

= xy(12 − x − y) 2 [2(12 − x − y) − 3y]<br />

= xy(12 − x − y) 2 (24 − 2x − 5y)<br />

so we need to find those x, y for which,<br />

and<br />

(12 − x − y) 2 y 2 (12 − 4x − y) =0<br />

(12 − x − y) 2 xy(24 − 2x − 5y) =0<br />

there are many possiblilities – Each one must be considered in turn.<br />

1) One possibility is that (12 − x − y) 2 =0⇒ x + y =12<br />

In this case, since x+y+z =12and x+y =12⇒ z =0and so xy 2 z 3 =0<br />

is a ”minimum” (as x, y, z are all assumed positive).<br />

2) Another possibility is tah y =0but again this gives a minimum.<br />

3) Yet another possibility is that 12 − 4x − y =0Now from the second equation<br />

there are two sub-cases (Why?):<br />

a) x =0<br />

b) 24 − 2x − 5y =0<br />

a) x =0As before this gives xy2z 3 =0, a minimum.<br />

b) 24 − 2x − 5y =0and 12 − 4x − y =0have the common solution<br />

(x, y) =(2, 4).<br />

So the only possible critical point which can give a maximum is: (x, y) =(2, 4)<br />

For (x, y) =(2, 4), z=12− x − y =12− 2 − 4=6.


Functions and their properties 13<br />

<br />

Now at (2, 4) =<br />

[( ∂2 f<br />

∂x∂y )2 +( ∂2 f<br />

∂x 2 ) · ( ∂2 f<br />

∂y 2 )] < 0<br />

And calculations show that the above is a maximum.<br />

Maximum value<br />

xy 2 z 3 = (2)(4) 2 (6) 3 =32· 6 3<br />

Remarks: In many of these problems we are faced with solving systems of<br />

equations of the form:-<br />

ABC =0<br />

Where A, B, C are functions of several variables.<br />

Then the cases are:<br />

A = 0 B = 0 C =0<br />

A = 0 B =0 C = 0<br />

A = 0 B =0 C =0<br />

A =0 B = 0 C =0<br />

A =0 B =0 C = 0<br />

A =0 B =0 C =0<br />

A =0 B = 0 C = 0<br />

and each one must be treated separately.<br />

1.4 Constrained Maxima and Minima: Method<br />

of Lagrange<br />

This techmique is used for finding the maximum and minimum of functions<br />

z = f(x, y) subject to some additional constraint, like:<br />

The idea is then:<br />

1) Form the function<br />

h(x, y) = f(x, y)<br />

<br />

Origional<br />

φ(x, y) =0<br />

+ λ<br />

<br />

Lagrange multiplierf(x,y)<br />

2) Solve ∂h ∂h<br />

∂x =0, ∂x = 0 for all possible x, y and λ.<br />

constraint<br />

<br />

φ(x, y)


14 The ABC’s of Calculus<br />

3) Continue as in previous section.<br />

Example 13 Find area of largest rectangle which can be inscribed in a semicircle<br />

of radius a with base on its diameter.<br />

Denote rectangle’s sides by: 2x, y<br />

Figure 2<br />

We want to maximize the area of the rectangle, i.e. A(x, y) =sxy subject to<br />

constraint that ”rectangle is inscribed in semicircle”. This means that x 2 + y 2 =<br />

a 2 (see diagram) or, φ(x, y) =x 2 + y 2 − a 2 =0.<br />

UseLagrangemultipliers:So let h(x, y) =2xy + λ(x 2 + y 2 − a 2 )<br />

Then:<br />

Also<br />

∂h<br />

=0⇒ 2y + λ(2x) =0 ie. λx + y =0<br />

∂x<br />

∂h<br />

=0⇒ 2x + λ(2y) =0 ie. λy + x =0<br />

∂y<br />

From the first of these two we get λ = −y<br />

x (if x = 0).<br />

(an assumption which is good, since if x =0⇒ no area)<br />

Substitute this value of λ = −y<br />

x<br />

−y 2<br />

into the second equation, to find:<br />

x + x =0 or x2 = y 2 ⇒ x = ±y<br />

Since we can assume x>0,y >0, thismeansx = y.<br />

Now:<br />

x 2 + y 2<br />

or 2x 2 =7a 2<br />

or x =<br />

= a 2<br />

⇒ x 2 + x 2 = a 2<br />

a<br />

√ 2<br />

Thus x = a √ 2 ,y = a √ 2 is an extreme point and:<br />

Area = 2xy<br />

= 2· a √ ·<br />

2 a √<br />

2<br />

= a 2


Functions and their properties 15<br />

Example 14 Find the shortest and largest distance from the origin to the curve<br />

x 2 + xy + y 2 =16and give a geometric iterpretation.<br />

HINT: find the maximum of x 2 + y 2 .<br />

CONSTRAINT: x 2 + xy + y 2 =16<br />

[h(x, y) =x 2 + y 2 + λ(x 2 + xy + y 2 − 16)]<br />

∂h<br />

∂x<br />

= 2x + λ(2x + y) =0 1<br />

∂h<br />

∂y<br />

= 2x + λ(x +2y) =0 2<br />

∂h<br />

∂λ = x2 + xy + y 2 − 16 = 0 3<br />

Now: if 2x + y =0,thenx =0too! but then y = −2x =0too! so x =0, y =0<br />

is only possibility here for 1 .<br />

NOTE: x =0, y =0satisfied 1 , 2 ,butnot 3 so 2x + y = 0can solve for λ<br />

λ = −( 2x<br />

2x+y ) from 1<br />

so we feed this value of λ into 2<br />

2y +(− 2x<br />

)(x +2y)<br />

2x + y<br />

= 0<br />

2y(2x + y) − 2x(x +2y)<br />

2x + y<br />

= 0<br />

so y(2x + y) − x(x +2y) = 0<br />

y 2 − x 2 = 0<br />

⇒ y = ±x<br />

finally set y = ±x into constraint equation x 2 + xy + y 2 =16.<br />

Which leaves two cases: y = x and y = −x<br />

case 1: y = x ⇒ x 2 + x 2 + x 2 =16or 3x 4 =16<br />

x = ± 4 √ 3 But y = x ⇒ y = ± 4 √ 3 too!


oy-<br />

16 The ABC’s of Calculus<br />

case2: y = −x ⇒ x 2 − x 2 + x 2 =16or x 2 =16.<br />

So we get four critical points:<br />

x 2 + y 2<br />

32<br />

3<br />

32<br />

3<br />

32<br />

32<br />

x 2 + y 2<br />

<br />

32<br />

3<br />

32<br />

3<br />

√<br />

√<br />

32<br />

32<br />

x = ±4 But y = −x ⇒ y = ±4 too!<br />

x = 4 √ 3<br />

check critical points for max/min.<br />

, y = 4 √ 3<br />

x = − 4 √<br />

3<br />

, y = − 4 √<br />

3<br />

x =4 , y = −4<br />

x = −4 , y =4<br />

Note that maximum is at (4, −4) and (−4, 4) and the value at this point is √ 32<br />

Note that minimum is at (± 4 √ 3 , ± 4 √ 3 ) and the value here is<br />

1.5 Double and Iterated Integrals<br />

32<br />

3<br />

Let domain f = R and write z = f(x, y) continuous over a finite region R of<br />

the x, y plane. We divide R into n subregions area ∆A1, ∆A2, ......, ∆An in any<br />

fashion what so ever.<br />

Figure 4<br />

Next we pick a point (x1,y1), (x2,y2), ......, (xn,yn) in each one of these subregions<br />

and form the sum:<br />

n<br />

f(xi,yi)∆Ai = f(x1,y1)∆A1 + ...... + f(xn,yn)∆An<br />

i=1<br />

Think about f(xi,yi)∆Ai : This is the signed volume of a parallelepipeds of<br />

base area ∆Ai and height f(xi,yi).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!