02.08.2013 Views

Assignment 8–Algebra I Due at the beginning of tutorial Nov. 27 1 ...

Assignment 8–Algebra I Due at the beginning of tutorial Nov. 27 1 ...

Assignment 8–Algebra I Due at the beginning of tutorial Nov. 27 1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Assignment</strong> <strong>8–Algebra</strong> I<br />

<strong>Due</strong> <strong>at</strong> <strong>the</strong> <strong>beginning</strong> <strong>of</strong> <strong>tutorial</strong> <strong>Nov</strong>. <strong>27</strong><br />

1. Compute AB where /3<br />

<br />

˙1<br />

A =<br />

˙2<br />

˙2<br />

˙2<br />

<br />

∈ M22(Z3)<br />

and<br />

B =<br />

˙0 ˙2 ˙1<br />

˙1 ˙2 ˙0<br />

<br />

∈ M23(Z3).<br />

Show enough work to convince your marker th<strong>at</strong> you know wh<strong>at</strong> you are<br />

doing.<br />

2. Suppose F is a field and A ∈ Mnn(F ) is a diagonal m<strong>at</strong>rix, which means<br />

[A]kj = 0 whenever k = j. Suppose fur<strong>the</strong>r th<strong>at</strong> [A]kk = [A]jj for k = j,<br />

and B ∈ Mnn(F ).<br />

(a) Compute [BA]kj for all k = j. /2<br />

(b) Compute [AB]kj for all k = j. /2<br />

(c) Prove th<strong>at</strong> AB = BA if and only if B is a diagonal m<strong>at</strong>rix. /6<br />

3. Suppose A ∈ Mnn(C) s<strong>at</strong>isfies 〈Av, Aw〉 = 〈v, w〉 for all v, w ∈ C n . Prove /6<br />

th<strong>at</strong> A is unitary. (Hint: Use exercise 2 (a)-(b) from assignment 7. Be<br />

sure to use <strong>the</strong> definition <strong>of</strong> unitary given in <strong>the</strong> lectures (not <strong>the</strong> text).)<br />

SUGGESTED EXERCISES<br />

(see next page)<br />

• Exercises C21-C25 in section MISLE.EXC.<br />

• Exercises T10 and T11 in section MINM.EXC.<br />

• Suppose F is a field, α1, . . . , αm ∈ F , and v1, . . . , vm ∈ F n .<br />

induction on m ≥ 1 th<strong>at</strong><br />

Prove by<br />

⎡ ⎤<br />

m<br />

⎣ ⎦<br />

m<br />

= [vj]k, 1 ≤ k ≤ n<br />

and ⎡<br />

m<br />

⎣<br />

j=1<br />

j=1<br />

vj<br />

αjvj<br />

⎤<br />

⎦<br />

k<br />

k<br />

=<br />

j=1<br />

m<br />

αj[vj]k, 1 ≤ k ≤ n.<br />

j=1<br />

• Suppose F is a field, A ∈ Mmn(F ) and ej ∈ F n is <strong>the</strong> jth standard basis<br />

vector. Prove<br />

[Aej]k = [A]kj, 1 ≤ j ≤ n, 1 ≤ k ≤ m.<br />

1


• Suppose F is a field. We define a m<strong>at</strong>rix A ∈ Mnn(F ) to be upper-triangular<br />

if [A]kj = 0 for all 1 ≤ j < k ≤ n.<br />

1. Give an example <strong>of</strong> an upper-triangular m<strong>at</strong>rix.<br />

2. Suppose A, B ∈ Mnn(F ) are upper-triangular. Prove th<strong>at</strong> AB is<br />

upper-triangular.<br />

3. Suppose A ∈ Mnn(F ) is upper-triangular. Prove th<strong>at</strong> A m is uppertriangular<br />

by induction on m ≥ 1.<br />

4. Give a definition for a square m<strong>at</strong>rix to be lower-triangular. Do <strong>the</strong><br />

previous result remain true for lower-triangular m<strong>at</strong>rices?<br />

• Suppose A ∈ Mnn(C) and v, w ∈ C n . Prove th<strong>at</strong><br />

by using Theorem AIP.<br />

〈v, Aw〉 = 〈A ∗ v, w〉<br />

• Suppose A ∈ Mnn(C) is invertible. Prove th<strong>at</strong><br />

and<br />

A −1 = ( Ā)−1<br />

(A ∗ ) −1 = (A −1 ) ∗ .<br />

• Give examples <strong>of</strong> invertible m<strong>at</strong>rices A and B such th<strong>at</strong> A + B is not<br />

invertible.<br />

• Give examples <strong>of</strong> invertible m<strong>at</strong>rices A and B such th<strong>at</strong> A+B is invertible,<br />

but (A + B) −1 = A −1 + B −1 .<br />

• Give examples <strong>of</strong> non-zero m<strong>at</strong>rices A and B such th<strong>at</strong> AB is <strong>the</strong> zero<br />

m<strong>at</strong>rix.<br />

• Pick a m<strong>at</strong>rix in M22(Z5) and determine whe<strong>the</strong>r it is invertible or not. If<br />

it is invertible, compute its inverse. Repe<strong>at</strong> this exercise until comfortable.<br />

Try with Z7 in place <strong>of</strong> Z5.<br />

• Suppose {v1, . . . , vk} ⊂ C n is an orthonormal set and w ∈ span{v1, . . . , vk}.<br />

Prove th<strong>at</strong> w = k<br />

j=1 〈w, vj〉vj. This gives us a simple way <strong>of</strong> computing<br />

a linear combin<strong>at</strong>ion expressing w!<br />

• Suppose F is a field and A, B ∈ Mmn(F ). Prove th<strong>at</strong> A = B if and only if<br />

vA = vB for all row vectors v ∈ F m . (Hint: Imit<strong>at</strong>e Theorem EMMVP.<br />

For this exercise think <strong>of</strong> v as a 1 × m m<strong>at</strong>rix.)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!