02.08.2013 Views

16 The Quadratic Reciprocity Law - Caltech Mathematics Department

16 The Quadratic Reciprocity Law - Caltech Mathematics Department

16 The Quadratic Reciprocity Law - Caltech Mathematics Department

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>16</strong> <strong>The</strong> <strong>Quadratic</strong> <strong>Reciprocity</strong> <strong>Law</strong><br />

Fix an odd prime p. If q is another odd prime, a fundamental question, as<br />

q<br />

we saw in the previous section, is to know the sign , i.e., whether or<br />

p<br />

not q is a square mod p. This is a very hard thing to know in general. But<br />

q<br />

Gauss noticed something remarkable, namely that knowing is equivalent<br />

p<br />

<br />

p<br />

to knowing ;they need not be equal however. He found the precise law<br />

q<br />

which governs this relationship, called the <strong>Quadratic</strong> <strong>Reciprocity</strong> <strong>Law</strong>. Gauss<br />

was very proud of ths result and gave several proofs. We will give one of<br />

his proofs, which incidentally introduces a very basic, ubiquitous sum in<br />

<strong>Mathematics</strong> called the Gauss sum. We will also give an alternate proof,<br />

which is in some sendse more clever than the first, due to Eisenstein.<br />

<strong>The</strong>orem (Gauss) (<strong>Quadratic</strong> reciprocity) Let p, q be distinct odd primes.<br />

<strong>The</strong>n <br />

q<br />

=(−1)<br />

p<br />

(q−1)(p−1)<br />

Explicitly,<br />

<br />

p<br />

4 .<br />

q<br />

<br />

(q/p)/(p/q) =<br />

1,<br />

−1,<br />

if p or q is ≡ 1 (mod 4)<br />

if p and q are ≡ 3 (mod 4)<br />

This theorem is very useful in computations.<br />

Example <br />

37<br />

=3<br />

691<br />

It is not easy to compute (37) 691−1<br />

2 (mod 691).<br />

Better to use then:<br />

<br />

37<br />

691<br />

37−1<br />

=(−1) ( 2 )( 691−1<br />

<br />

2 ) 691<br />

37<br />

1<br />

<br />

691<br />

= ;<br />

37<br />

691 25<br />

=18<br />

37 37<br />

2 25 5<br />

= = =1<br />

37 37<br />

1


Proof#1oftheorem: p, q odd primes, p = q. Put<br />

ξ = e 2πi<br />

q ∈ C<br />

<strong>The</strong>n<br />

ξ q =1, but ξ m =1ifm


This allows us to do “congruence arithmetic” mod p in R.<br />

), Gauss introduced the following “Gauss Sum”:<br />

To study ( q<br />

p<br />

Sq = <br />

a mod q<br />

<br />

a<br />

ξ<br />

q<br />

a .<br />

Clearly, Sq ∈ R.<br />

Aside (Not part of proof of Quad. Recip., but interesting)<br />

So if<br />

Sq =<br />

2<br />

q−1<br />

a=1<br />

a<br />

q<br />

<br />

−1<br />

=1,Sq =<br />

q<br />

<br />

ξ a +<br />

2<br />

q−1<br />

a=1<br />

<br />

−a<br />

ξ<br />

q<br />

−a<br />

<br />

( −1<br />

q )( a<br />

q ) ¯ ξa <br />

<br />

a<br />

(ξ<br />

q<br />

a + ¯ ξa ) ∈ R ∩ R<br />

and if <br />

−1<br />

= −1, Sq∈ R ∩ iR<br />

q<br />

pure read or im.<br />

Lemma 1:<br />

Proof of Lemma 1:<br />

S 2 q =<br />

<br />

a mod q<br />

c mod q<br />

S 2 q =(−1) q−1<br />

2 q<br />

<br />

a<br />

ξ<br />

q<br />

a<br />

<br />

<br />

a mod q<br />

b mod q<br />

<br />

b<br />

ξ<br />

q<br />

b<br />

<br />

= <br />

<br />

a b<br />

ξ<br />

q q<br />

a mod q b mod q<br />

a ξ b<br />

= <br />

ab<br />

ξ<br />

q<br />

a+b<br />

= <br />

ξ c<br />

<br />

<br />

<br />

a(c − a)<br />

q<br />

<br />

3


So<br />

where a ′ a ≡ 1(modq).<br />

where<br />

S 2 q = <br />

c mod q<br />

= <br />

But −a 2 (1 − a ′ c)<br />

f(c) =?<br />

c ≡ 0(modq):<br />

q<br />

c mod q<br />

<br />

c<br />

ξ<br />

2 ac − a<br />

a mod q<br />

2 ′ −a (1 − a c)<br />

<br />

c<br />

ξ<br />

a mod q<br />

<br />

−1<br />

=<br />

q<br />

<br />

(−1) q−1<br />

2<br />

⇒ S 2 q =(−1) q−1<br />

2<br />

f(c) = <br />

a mod q<br />

f(0) =<br />

q<br />

q<br />

2 a<br />

q<br />

<br />

=1 as a≡0 modq<br />

<br />

c mod q<br />

′ 1 − a c<br />

q<br />

<br />

a mod q<br />

a≡0 (modq)<br />

⇒ f(0) = q − 1<br />

c ≡ 0(modq): Note that, in this case, the set<br />

ξ c f(c),<br />

<br />

,<br />

a ≡ 0modq<br />

<br />

1<br />

q<br />

{1 − a ′ c|a mod q, a ≡ 0modq}<br />

′ 1 − a c<br />

runs over elements of Z/q −{1} exactly once. Indeed, given any b ∈ Z/q,<br />

b ≡ 1(modq), we can solve (a ′ + b ≡ 1(modq), and the solution is unique.<br />

<strong>The</strong>refore,<br />

f(c) =<br />

<br />

b mod q<br />

b≡1 (modq)<br />

4<br />

<br />

b<br />

.<br />

q<br />

q


We proved earlier that<br />

so<br />

when c ≡ 0(modq).<br />

Consequently<br />

S 2 q =(−1) q−1<br />

2<br />

Claim: <br />

c mod q ξc =0.<br />

Proof of claim:<br />

<br />

c mod q<br />

ξ c =<br />

⇒ (1 − ξ)<br />

<br />

=0<br />

Proof 2 of claim:<br />

<br />

By claim,<br />

c mod q<br />

S 2 q<br />

This proves Lemma 1.<br />

Lemma 1: S 2 q<br />

<br />

b mod q<br />

f(c) =<br />

<br />

⎡<br />

(c−1) mod q<br />

<br />

c mod q<br />

=(−1) q−1<br />

2 q<br />

<br />

b<br />

=0<br />

q<br />

<br />

1<br />

= −1,<br />

q<br />

⎢<br />

⎣(q − 1) + (−1) <br />

ξ c = <br />

c mod q<br />

ξ c =0⇒ <br />

c mod q<br />

ξ c =1+ξ + ···+ ξ q−1 =<br />

=0sinceξ q =1.<br />

c mod q<br />

c≡0 modq<br />

⎤<br />

ξ c⎥<br />

⎦<br />

ξ c+1 = ξ <br />

c mod q<br />

ξ c<br />

ξ c = 0 as claimed.<br />

1 − ξq<br />

1 − ξ<br />

<br />

<br />

q−1<br />

=(−1) 2 (q − 1) + (−1)(0 − 1)<br />

<br />

+1<br />

=(−1) q−1<br />

2 q.<br />

5


Lemma 2: S p−1<br />

q<br />

≡ ( p<br />

q )(modp)<br />

(This happens in R mod p)<br />

Proof of Lemma 2:<br />

S p <br />

<br />

<br />

a<br />

q =<br />

ξ<br />

q<br />

a mod q<br />

a<br />

p = <br />

p a<br />

ξ<br />

q<br />

ap + pw, w ∈ R.<br />

( a<br />

p )q =( a<br />

p<br />

a mod q<br />

a<br />

) because ( )=±1 andpis odd<br />

q<br />

In other words,<br />

S p q ≡<br />

<br />

<br />

a<br />

ξ<br />

q<br />

ap (mod p).<br />

a mod q<br />

Since p = q, p is invertible mod q, andthemapa ↦→ ap is a permutation of<br />

Z/q, alsoap ≡ 0(modq) iffa ≡ 0(modq). so the sum over a mod q can be<br />

replaced with the sume over ap mod q. Write b for ap mod q. <strong>The</strong>n<br />

a ≡ bp ′ (mod q), where pp ′ ≡ 1modq).<br />

⇒ S p q ≡ <br />

b mod q<br />

bp ′<br />

But <br />

′<br />

′<br />

bp b p<br />

=<br />

.<br />

q q q<br />

Since p ′ p ≡ 1(modq),<br />

<br />

′<br />

′<br />

p p 1<br />

p<br />

= =1⇒ =<br />

q q q<br />

q<br />

So <br />

′ bp b p<br />

= .<br />

q q q<br />

So (∗) gives<br />

S p <br />

p <br />

<br />

b<br />

q ≡<br />

ξ<br />

q q<br />

b mod q<br />

b<br />

<br />

(mod p)<br />

Sq<br />

6<br />

q<br />

<br />

ξ b (mod p) (*)<br />

<br />

p<br />

q


This is justified because<br />

⇒ S p−1<br />

q ≡<br />

<br />

p<br />

q<br />

Sq ≡ 0(modp),<br />

(mod p)<br />

which follows from lemma 1.<br />

Proofof<strong>The</strong>orem: Compute Sp−1 in 2 different ways. On the one hand,<br />

by lemma 1,<br />

i.e.,<br />

S p−1 =(S 2 ) p−1<br />

<br />

2 =<br />

<br />

≡<br />

Euler<br />

(−1) q−1<br />

2 q<br />

(−1) q−1<br />

2 q<br />

<br />

p−1<br />

2<br />

(mod p<br />

p<br />

⇒ S p−1 q−1<br />

2 −1<br />

<br />

q<br />

<br />

≡<br />

(mod p,<br />

p 2<br />

S p−1 p−1<br />

≡ (−1) ( 2 )( q−1<br />

2 )<br />

On the other hand, by lemma 2,<br />

S p−1 ≡<br />

So, putting them together we get<br />

<br />

p<br />

q<br />

<br />

p<br />

q<br />

<br />

q<br />

p<br />

(mod p).<br />

p−1<br />

=(−1) ( 2 )( q−1<br />

2 )<br />

(mod p).<br />

<br />

q<br />

.<br />

p<br />

Last time, gave a proof of <strong>Quadratic</strong> <strong>Reciprocity</strong> law. More precisely we<br />

proved:<br />

<strong>The</strong>orem (Gauss) Let p, q be distinct, odd primes. <strong>The</strong>n<br />

p<br />

q<br />

<br />

p−1<br />

(−1) ( 2 )( q−1<br />

2 )<br />

7<br />

q<br />

p<br />

<br />

.


Example:<br />

Check if 29 is a square mod 43:<br />

<br />

29 and 43 are distinct odd primes, so by<br />

=1. byQRL,<br />

definition 29 ≡ (mod 43) iff 29<br />

43<br />

<br />

29<br />

=(−1)<br />

43<br />

28(42)<br />

<br />

43 43<br />

4 =<br />

29 29<br />

<br />

14 2 7<br />

= =<br />

29 29 29<br />

<br />

2<br />

= −1 as29≡5(mod8) 29<br />

<br />

29 7<br />

= − = −(−1)<br />

43 29 QRL<br />

6(28)<br />

<br />

29<br />

4<br />

7<br />

<br />

29 1<br />

= − = − = −1<br />

7 7<br />

So 29 ≡ (mod 43).<br />

Remark: QRL tells you a way to know<br />

1. whether q is a square mod p or not. But when it is a square, it gives<br />

no procedure to find the square root.<br />

2. One can use QRL to check whether a number is a prime, similar to the<br />

way one uses Fermat’s little theorem. For example, one can show that<br />

m = 1729 is not a prime by looking at<br />

y def ≡ 11 864 (mod 1729)<br />

Note: 864 = 1729−1<br />

.So,ifmis a prime, y ≡ ( 2<br />

11<br />

1729 )(modm).<br />

Since 1729 ≡ 1(mod4),byQRL,<br />

<br />

11 1729<br />

= =<br />

1729 11<br />

<br />

2<br />

= −1<br />

11<br />

as 11 ≡ 3 (mod 8). on the other hand, one can check using PARI, or<br />

by successively squaring mod m = 1729, that<br />

11 864 ≡ 1(modm).<br />

8


(This is part of a homework problem.) Get a contradiction! So the only<br />

possibility is that 1729 is not a prime (which is easy to verify directly<br />

as 1729 = 13 · 133 = 13 · 7 · 17). But this method is helpful, when it<br />

works, for larger numbers.<br />

A histoical remark: G.H.Hardy went to see Ramanujan, when the latter<br />

was dying of TB in England. <strong>The</strong>n Ramanujan asked Hardy if the number<br />

of the taxicab Hardy came in was an interesting number. Hardy said “No,<br />

not interesting, just 1729”. Ramanujan replied immediately, saying, “On the<br />

contrary, the number is interesting because it is the first number which can<br />

be written as a sum of 2 cubes in two different ways”. (Indeed we have<br />

1729 = 10 3 +9 3 =12 3 +1 3 .<br />

)<br />

A second proof of quadratic recip. (Eisenstein) (Eisenstein’s trignometric<br />

lemma)<br />

Lemma: Letnbea positive, odd integer. <strong>The</strong>n<br />

sin nx<br />

sin x<br />

n−1<br />

=(−4) 2<br />

(n−1)<br />

2<br />

j=1<br />

<br />

sin 2 2 2πj<br />

x − sin<br />

n<br />

Proof: Up to us. Hint: treat as a polynomial in sin x:<br />

Example:<br />

n =3<br />

sin 3x sin(2x + x)<br />

LHS = =<br />

sin x sin x<br />

= sin 2x cos x +cos2xsin x<br />

sin x<br />

= 2sinxcos2 x +(1−2sin 2 x)sinx<br />

sin x<br />

=2(1− sin 2 x)+(1− 2sin 2 x)=3− 4sin 2 x<br />

⎛<br />

RHS = −4(sin 2 ⎜<br />

x − ⎜<br />

2π ⎟<br />

⎝<br />

sin ⎟<br />

3 ⎠<br />

<br />

=3− 4sin 2 x.<br />

√ 3/2<br />

9<br />

⎞<br />

2<br />

<br />

<br />

= −4 sin 2 x − 3<br />

<br />

4


Sketch of proof of lemma: Use induction on n to show that<br />

sin nx<br />

sin x = fn(sin 2 x),<br />

where fn is a polynomial in sin 2 x of degree n−1<br />

2 .<br />

(f0(t) =1,f3(t) =3− 4t,...)<br />

On the other hand, the RHS of lemma is also of the form gn(sin 2 x), where<br />

gn is the explicitly given polynomial in sin 2 x of degree n−1<br />

2 .<br />

So it suffices to show that fn and gn have the same roots and that the<br />

leading coefficient of fn is (−4) n−1<br />

2 . So when we use induction on n, check<br />

that the leading coefficient is (−4) (n−1)<br />

2 and that its roots are<br />

<br />

<br />

2 2πj<br />

sin <br />

n − 1<br />

n 1 ≤ j ≤ .<br />

2<br />

Alternatively, check the constant coefficient by checking at x → 0.<br />

Recall Gauss’ lemma: <br />

q<br />

=<br />

p<br />

<br />

es(q)<br />

s∈S<br />

where S = {1, 2,..., p−1<br />

2 } and ex(q) ∈{±1} defined by<br />

Applying sin( 2π),<br />

we get<br />

p<br />

qs = es(q)s ′ , with s ′ ∈ S.<br />

<br />

2πqs 2πes(q)s<br />

sin =sin<br />

p<br />

′ <br />

p<br />

′ 2πs<br />

= es(q)sin<br />

p<br />

since sin is an odd function. So<br />

<br />

2πqs<br />

sin p<br />

es(q) = <br />

2πs ′<br />

sin<br />

10<br />

p


By Gauss’ lemma,<br />

<br />

q<br />

=<br />

p<br />

<br />

<br />

2πqs<br />

sin p<br />

<br />

2πs ′<br />

s∈S sin p<br />

<br />

s∈S<br />

=<br />

sin<br />

<br />

2πqs<br />

p<br />

<br />

s∈S sin<br />

.<br />

2πs ′<br />

Note the map S ↦→ S ′ is a permutation of S. So,<br />

<br />

′ 2πs<br />

sin =<br />

p<br />

<br />

<br />

2πs<br />

sin<br />

p<br />

s∈S<br />

⇒<br />

(p−1)<br />

<br />

q<br />

2<br />

=<br />

p<br />

i=1<br />

s∈S<br />

<br />

p<br />

sin 2πiq<br />

p<br />

sin 2πi<br />

p<br />

Applying Eisenstein’s trig. lemma with n = q and sub. in (3), we get<br />

<br />

q<br />

p−1<br />

=(−4) ( 2 )(<br />

p<br />

q−1<br />

(p−1)<br />

2<br />

2 )<br />

i−1<br />

(q−1)<br />

2<br />

i−1<br />

<br />

sin 2<br />

<br />

<br />

2πi<br />

− sin<br />

p<br />

2<br />

<br />

2πj<br />

p<br />

Can get everything we need from this without computing the sines:<br />

Reversing the roles of p and q, weget<br />

<br />

p<br />

=(−4)<br />

q<br />

q−1<br />

2<br />

p−1<br />

2<br />

2<br />

q−1<br />

i−1 i−1<br />

Comparing (3) and (4), we see that<br />

<br />

q<br />

p<br />

<br />

sin 2<br />

=(−1) (p−1) (q−1)<br />

2 2<br />

11<br />

<br />

2πj<br />

− sin<br />

p<br />

2<br />

<br />

2πi<br />

p<br />

<br />

p<br />

q<br />

(1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!