02.08.2013 Views

Modeling Free Space Optical Systems

Modeling Free Space Optical Systems

Modeling Free Space Optical Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Modeling</strong> <strong>Free</strong> <strong>Space</strong> <strong>Optical</strong> <strong>Systems</strong><br />

• Steven P. Levitan<br />

• Timothy P. Kurzweg<br />

• Jose A. Martinez<br />

• Donald M. Chiarulli<br />

University of Pittsburgh<br />

• Philippe J. Marchand<br />

• Lee Hendrick<br />

• Xuezhe Zheng<br />

University of California San<br />

Diego<br />

Funding DARPA: F30602-97-2-0122 / NSF: ECS 96-16879<br />

Chatoyant - Goals & Methods<br />

Chatoyant Design Environment<br />

Electronics<br />

Devices and<br />

Circuits<br />

Optics Packaging Mechanical<br />

Tolerancing<br />

Functional level<br />

(VHDL)<br />

Logic level<br />

(GateSim)<br />

Gate level<br />

(Spice)<br />

Optoelectronic System level O/E CAD tool to:<br />

Analytical<br />

Models<br />

Physical Models<br />

(Experimental<br />

Data fitting)<br />

Image Formation<br />

Gaussian Beam<br />

Propagation<br />

Ray Tracing<br />

(CodeV,Zemax)<br />

Diffraction Analysis<br />

(Diffract)<br />

Area, Volume<br />

Weight, Cost<br />

Auto-CAD<br />

Light Tools<br />

• Develop 1st order analytical,<br />

empirical, and lumpedparameter<br />

models for<br />

optoelectronic components<br />

• Develop a hierarchical &<br />

modular software environment<br />

using Ptolemy engine<br />

Misalignment<br />

1st order<br />

thermal<br />

Finite<br />

Element<br />

Analysis<br />

VCSEL Output - 300M Hz<br />

Y<br />

14.0<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

X x 10-9<br />

0.0 10.0 20.0 30.0 40.0<br />

• Predict performance<br />

• Analyze technology vs.<br />

architecture trade-offs<br />

- Without costly prototyping<br />

Y<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

Detector Output - 300M Hz<br />

1.0<br />

X x 10-9<br />

0.0 10.0 20.0 30.0 40.0<br />

Eye Diagram - 300MHz<br />

Y<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

X x 10-9<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0


Models of <strong>Optical</strong>/Electronic<br />

Signals<br />

• Messages are arrays of O/E signals<br />

• Piece-wise linear Intensity or Voltage<br />

• Gaussian shape, angle, position, wavelength,<br />

polarization<br />

• Source impedance<br />

• Variable time step (Δt)<br />

– discrete, continuous, PWL<br />

Lumped parameter models<br />

Quantum Optics<br />

Electromagnetic Optics<br />

Wave Optics<br />

Gaussian Beams<br />

Ray Optics<br />

B.E.A. Saleh and M. Teich, Fundamentals of Photonics, Wiley, 1991<br />

• Analytic models<br />

– Physics based<br />

• Empirical models<br />

– Experimental data<br />

fitting<br />

• Derived models<br />

Models of Components<br />

Driver<br />

ΔP<br />

– Parametric models<br />

extracted from or verified<br />

by lower level tools<br />

⎡ 2<br />

⎡ W ⎤ 2 ⎤<br />

( , ) = 0<br />

r<br />

I<br />

r z I0<br />

⎢ ⎥ exp⎢−<br />

⎥<br />

⎣W<br />

( z)<br />

2<br />

⎦ ⎣ W ( z)<br />

⎦<br />

V<br />

Pin<br />

Pout<br />

16<br />

14<br />

2.5V<br />

12<br />

10<br />

8<br />

4V<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Input Power(mW)<br />

Output Power(mW)<br />

ηLI<br />

/ V<br />

P th<br />

out =<br />

( Pin<br />

− IthVth<br />

)<br />

( 1−η<br />

LI / Vth)<br />

Vdd<br />

2<br />

Stage1<br />

a b<br />

R f<br />

V0( s)<br />

= ⋅ Poptic<br />

( s)<br />

⎛ R f C ⎞<br />

1+<br />

⎜ ⎟s<br />

⎝ A ⎠


Piecewise Linear Model for Time<br />

• Motivation:<br />

– <strong>Modeling</strong> dynamic response<br />

is necessary.<br />

• Problem:<br />

– Small signal model analysis<br />

is invalid<br />

• Solution:<br />

– Use a mixture of analytic and<br />

lumped-parameter models<br />

– CMOS Large Signal Models<br />

• Advantages:<br />

– Dynamic time resolution<br />

achieves high accuracy at<br />

low computation cost<br />

– Homogeneous simulation<br />

environment<br />

Input Stage 1 Output Stage 2 Output<br />

High frequency response in Chatoyant<br />

for a cascade driver configuration (f =<br />

600 MHz & C ld = 1fF).<br />

Electrical Drivers (Tests)<br />

f= 10 MHz C=3.774ff f= 100 MHz C=3.774ff f= 1 GHz C=3.774ff<br />

Spice Level 2 Model I Model II Spice Level 2 Model I Model II Spice Level 2 Model I Model II<br />

Speed<br />

Time 0.13 0.093 0.15 0.12 0.089 0.091 0.12 0.094 0.089<br />

Iterations 307 100 200 313 100 100 300 100 100<br />

Accuracy 0 9.1%/18.8 SD 1.8%/4.7 SD 0 3.4%/6.8 SD 3.3%/6.7 SD 0 10%/12.9SD 9.99%/13.8SD<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

f=10 MHz C=3.774 ff<br />

0<br />

0.00E+00<br />

-1<br />

5.00E-08 1.00E-07 1.50E-07 2.00E-07 2.50E-07 3.00E-07 3.50E-07 4.00E-07 4.50E-07<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Time (secs)<br />

f=1 GHz C=3.774 ff<br />

0<br />

0.0E+00 5.0E-10 1.0E-09 1.5E-09 2.0E-09 2.5E-09 3.0E-09 3.5E-09 4.0E-09 4.5E-09<br />

-1<br />

Time (secs)<br />

Vout Model II<br />

Vin<br />

Vout Spice (Model II)<br />

Vout Model II<br />

Vin<br />

Vout Spice (Model II)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-1<br />

f=100 MHz C=3.774 ff<br />

0<br />

0.0E+00 5.0E-09 1.0E-08 1.5E-08 2.0E-08 2.5E-08 3.0E-08 3.5E-08 4.0E-08 4.5E-08<br />

Time (secs)<br />

Vout Model II<br />

Vin<br />

Vout Spice (Model II)<br />

The times for the models include the<br />

computational load of the whole system<br />

(Chatoyant Implementation).


Static Simulation of Gaussian<br />

Beam Propagation<br />

Gaussian Beam propagation<br />

Dynamic Simulation:<br />

Detector Response<br />

Gaussian Beams On Detector Array<br />

Detector Output Eye Diagram


BER<br />

1.00E-04<br />

1.00E-05<br />

1.00E-06<br />

1.00E-07<br />

1.00E-08<br />

BER = 10 -9 120ps<br />

BER <strong>Modeling</strong><br />

1.00E-09<br />

-400 -300 -200 -100 0 100 200 300 400<br />

Offset from reference Decision Sample Time (ps)<br />

BER<br />

1.00E-03<br />

1.00E-06<br />

1.00E-09<br />

1.00E-12<br />

1.00E-15<br />

1.00E-18<br />

1.5 2.5 3.5 4.5 5.5 6.5<br />

Recieved Photocurrent (uA)<br />

Poptic<br />

C<br />

BER=10 -9<br />

VDD<br />

A<br />

Rf<br />

5.2μA<br />

Vout<br />

Krishnamoorthy, A.V., Woodward, T.K., Goossen, et. al<br />

“Operation of a Single-Ended 550Mbit/s, 41fJ, Hybrid<br />

CMOS/MQW Receiver-transmitter”, Electronic Letters,<br />

April 1996.<br />

System 1: 3D OESP / FFT Demo<br />

Prototype<br />

Digital Logic VCSEL / Detector Array<br />

Sapphire Substrate<br />

Lenslet Array<br />

500μm<br />

13mm<br />

Silicon Microbench<br />

7mm<br />

Electrical Drivers / Amplifiers<br />

7cm<br />

20mm<br />

7mm 13mm<br />

Digital Logic<br />

μBench Assembly<br />

Function: FFT<br />

512x512<br />

32 bits complex<br />

Throughput < 1 msec<br />

Power < 340 W<br />

Volume < 35 cm3 Function: FFT<br />

512x512<br />

32 bits complex<br />

Throughput < 1 msec<br />

Power < 340 W<br />

Volume < 35 cm3


15 Degree Divergence<br />

10 Degree Divergence<br />

5 Degree Divergence<br />

4 10 4<br />

2 10 4<br />

Gaussian Beam<br />

Lenslet<br />

0<br />

6 10<br />

4<br />

4<br />

4 10 4<br />

2 10 4<br />

•At Second Lenslet Plane<br />

•Blue is off-axis clipped beam<br />

•Red is on-axis clipping<br />

•Approximately 40 μm offset<br />

System Analysis with Different<br />

VCSEL Beam Divergence<br />

VCSEL 1 μm Mechanical<br />

Tolerancing - Scalar Analysis<br />

0 2 10 4<br />

Clipped Beam<br />

1<br />

0.5<br />

0<br />

0.5<br />

1 μm<br />

508 μm<br />

250 μm Lens<br />

4 10 1<br />

1<br />

Uint<br />

0.5 0 0.5 1<br />

4<br />

6 10 4<br />

0.4<br />

0.2<br />

4 10<br />

5<br />

5<br />

0<br />

CAN NOT MODEL<br />

NEED SCALAR MODELS…<br />

20 mm<br />

2 10 5<br />

1 μm<br />

40 μm<br />

508 μm<br />

0 2 10 5<br />

4 10 5<br />

Final Intensity Distribution on<br />

the 80mm detector<br />

Intensity Distribution Contour<br />

At 2nd Lenslet Plane


VCSEL source<br />

SDA Movement Decoder<br />

Output Graph<br />

System2: 1x2 <strong>Optical</strong> MEM<br />

Switch in Chatoyant<br />

Beam Splitter<br />

Delay Element<br />

1st Interferometer<br />

Moveable Plate<br />

2nd Interferometer<br />

Scratch Drive Actuator<br />

Static Result<br />

Mirror<br />

Beam Recombiner<br />

Detector 1<br />

Data Beam<br />

Data Beam<br />

Reference Beam<br />

Detector 2<br />

Switch Control Circuitry<br />

Reference Beam<br />

Reference Beam “Off” Data Beam<br />

“On” Data Beam<br />

Crosstalk<br />

• 56% System Efficiency<br />

• -15.5 dB Crosstalk between neighbors<br />

• With 1.0 Degree Offset, Efficiency Drops to 53.5%,<br />

Crosstalk Climbs to -11.42<br />

Feedback<br />

Circuitry


1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Mirror Tolerance = +1.0 Degrees<br />

Monte Carlo Mechanical<br />

Tolerancing<br />

•Each mirror in interferometer has a tolerance range<br />

•No mis-alignment produces a efficiency of 56% Crosstalk<br />

Number of Sam ples<br />

2.8<br />

8.4<br />

14<br />

19.6<br />

25.2<br />

30.8<br />

36.4<br />

42<br />

47.6<br />

53.2<br />

58.8<br />

64.4<br />

System Efficiency<br />

Number of Samples<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

One Beam Detected<br />

Mirror Tolerance = +2.5 Degrees<br />

2.8<br />

8.4<br />

14<br />

19.6<br />

25.2<br />

30.8<br />

36.4<br />

42<br />

47.6<br />

53.2<br />

58.8<br />

64.4<br />

Detected Power Efficiency (in %)<br />

1x2 Switch Dynamic Outputs<br />

Switch Selection Reference Beam<br />

Feedback to SDA Mirror Position


1x2 Switch Output<br />

Chatoyant Development<br />

• New O/E Message Class<br />

• Used New domain (DDF) for multi-rate systems<br />

• Multi-platform (SunOS/Linux) support<br />

• Use of TCL/TK Scripts for Monte Carlo Analysis<br />

• VRML 3D Models<br />

• Interfaces to/from low level electronic, optical, thermal &<br />

mechanical tools<br />

• Non-sequential surfaces, multiple time bases, & multiple<br />

energy domains<br />

• Ptolemy II???

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!